Jan. 2006, Vol.21, No.1, pp.147-152 J. Comput. Sci. & Technol.

ACO-Steiner: Ant Colony Optimization Based Rectilinear Steiner
Minimal Tree Algorithm*

Yu Hu'® (] %), Tong Jing! (& J¥), Zhe Feng! (14
Xiao-Dong Hu? (#l¢ %), and Gui-Ying Yan? (JEf:#)

! Department of Computer Science and Technology, Tsinghua University, Beijing 100084, P.R. China
2 Institute of Applied Mathematics, Chinese Academy of Sciences, Beijing 100080, P.R. China

8 Electrical Engineering Deparment, UCLA, Los Angeles, CA 90095, U.S.A.

ﬁ), Xian-Long Hong1 (Bt i)

E-mail: hu@ee.ucla.edu; jingtong@tsinghua.edu.cn

Received November 11, 2004; revised June 3, 2005.

Abstract The rectilinear Steiner minimal tree (RSMT) problem is one of the fundamental problems in physical design,
especially in routing, which is known to be NP-complete. This paper presents an algorithm, called ACO-Steiner, for RSMT
construction based on ant colony optimization (ACO). An RSMT is constructed with ants’ movements in Hanan grid, and
then the constraint of Hanan grid is broken to accelerate ants’ movements to improve the performance of the algorithm. This
algorithm has been implemented on a Sun workstation with Unix operating system and the results have been compared with
the fastest exact RSMT algorithm, GeoSteiner 3.1 and a recent heuristic using batched greedy triple construction (BGTC).
Experimental results show that ACO-Steiner can get a short running time and keep the high performance. Furthermore, it
is also found that the ACO-Steiner can be easily extended to be used to some other problems, such as rectilinear Steiner

minimal tree avoiding obstacles, and congestion reduction in global routing.

Keywords
1 Introduction
Routing plays an important role in the very large

scale integrated circuit/ultra large scale integrated cir-

cuit (VLSI/ULSI) physical design. Useful algorithms

have been proposed focusing on routability!’?, timing
issue®=5! coupling effects!®!, and rectilinear routing tree
construction!”8].,

The rectilinear Steiner minimal tree (RSMT) prob-
lem is one of the fundamental problems in routing. How-
ever, Garey and Johnson!®! proved that the RSMT prob-
lem is NP-complete, which indicates that a polynomial-
time algorithm to compute an optimal RSMT is unlikely
to exist. So, many helpful algorithms continue to focus
on the RSMT problem to get high efficiency.

[10] gave an extensive survey of RSMT heuristics in
1992. Kahng and Robins!'!! introduced the Batched Tter-
ated 1-Steiner (BI1S) heuristic with an average improve-
ment over the minimum spanning tree (MST) on termi-
nals of almost 11%. The edge based heuristic of Borah!!2]
has a time complexity of O(n?) and similar performance
as the BI1S. In recent years, several efficient heuristics
were presented. Kahng and Mandoiu et al.['3] proposed
a batched greedy triple construction (BGTC) algorithm
with a very short runtime while keeping the performance.
Zhou!'¥ introduced the spanning graph as a base for
MST and then constructed the RSMT from the MST.

Another work is an O(nlogn) octilinear Steiner mini-

rectilinear Steiner minimal tree (RSMT), routing, physical design, ant colony optimization (ACO)

mal tree heuristic'®/. Besides these heuristics, Warme

et al. released the GeoSteiner['®17] which is the most
efficient existing exact algorithm. The shortcoming of
GeoSteiner is the long runtime. So, there is still some
room for researchers to design some algorithms to ob-
tain higher efficiency.

The main contribution of this paper is to propose an
efficient heuristic, called ACO-Steiner, to construct an
RSMT, by which we can get a short running time and
keep the high performance. When the number of termi-
nals is no more than 50, ACO-Steiner can achieve ex-
act results (better than BGTC) while keeping the short
running time. When the number of terminals is more
than 50, ACO-Steiner can achieve approximate opti-
mal results (within 1% wire length increments compared
with GeoSteiner) but keeping short running time. Fur-
thermore, our ACO-Steiner is easy to be extended to
solve other tree construction problems, such as rectilin-
ear Steiner minimal tree avoiding obstacles, and conges-
tion reduction in global routing.

The rest of this paper is organized as follows. In Sec-
tion 2, we introduce the ant colony optimization (ACO)
and some basic definitions of RSMT problem. In Section
3, the ACO-Steiner heuristic is described in detail. Sec-
tion 4 gives performance improvements based on some
special strategies. Then, Section 5 gives the experimen-
tal results and some discussions. Finally, Section 6 con-
cludes the paper.

Short Paper

This work was partially supported by the National Natural Science Foundation of China (NSFC) under Grant No. 60373012, and
the Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP) of China under Grant No. 20050003099.

*Some preliminary results of this work were presented at IEEE International Conference on Communications, Circuits and Systems

(ICCCAS), Chengdu, China, 2004.

148
2 Preliminaries

2.1 Ant Colony Optimization

Ant Colony Optimization (ACO) is a class of algo-
rithms that mimic the cooperative behavior of real ant
behavior to achieve complex computations consisting of

multiple iterations1®:19].

2.2 Denotations in RSMT Problem/2?

In the rest of this paper, T always denotes the ter-
minal set and S always denotes the Steiner point set.
The cost (c(7,j)) between vertex i and vertex j is the
Manhattan distance between vertexes 7 and j.

3 Our ACO-Steiner Algorithm

3.1 Tree Construction Based on ACO

In this section, we construct the RSMT based on
ACO. Firstly, we generate the Hanan grid?! of the ter-
minal set T. Then, we place the ants in each terminal
that needs to be connected. An ant will determine a
new vertex by some rules and move to that vertex via an
edge in Hanan grid. Each ant maintains its own tabu-
list, which records the visited vertices to avoid revisiting
it again. When ant A meets ant B, ant A dies, and the
vertices in the A’s tabu-list are added into B’s. After
every movement, an ant will leave some trail in the edge
just passed, and the trail will evaporate in a constant
rate.

An ant determines its next vertex it wants to move
stochastically, but the process is biased on a higher value
Di,;j, which is a trade-off between the desirability and the
trail intensity.

Given an ant m in vertex i, the desirability of vertex
j (j must be the neighbor of ¢ in Hanan grid) is defined

as follows.
1

R i p @)
where v is a constant, and 7" is the shortest distance
from vertex ¢ to all the vertices in the tabu-list of other
ants, which makes the current ant join into others as
quickly as possible.

The updating of the trail intensity in Hanan edge
(4,7) is defined as follows.

Tij =1 —=p) Tij+p- AT (2)

where p is a constant, called the trail evaporation rate,
which measures how rapidly the trails evolve. The incre-
ment of updating is given by the following formula.

Q@
c(St)’
0

.
Ar = i (6,d) € By (3)

, otherwise

where ¢(S;) is the total cost of the current result tree
S¢, Ey is the edge set of it, and @ is a constant which
matches the quantity of the tree cost.

J. Comput. Sci. & Technol., Jan. 2006, Vol.21, No.1

The probability of an ant using edge (4, j) to move is
defined as follows.

[7i.4]%51°
Dk tabu—tist(m) [Tik] 271
0

ifjeA
bij =

, otherwise

where A is the set made up of all vertices which are con-
nected with ¢ and are not in the tabu-list of ant m. It is
obvious that an ant has at most three possible vertices
to move in the Hanan grid when it has set off, that is,
the four neighbor vertices except the vertex that the ant
comes from.

The essence of our ACO-Steiner algorithm is shown
in Fig.1.

ACO-Steiner

INPUT: terminal set T'

OUTPUT: an RSMT spanning T’

1. Generate Hanan Grid G based on T}

Set the intensity in each edge in G to be pg;

‘While loopNum < MAXLOOP do
ConstructSteinerTreeByACO (T, G);
Update the trail intensity in every edge by (2);
Update the current best solution;
loopNum++;

Return the current best solution;

© NSO N

Fig.1. ACO-Steiner algorithm.

In Fig.1, the MAXLOOP is the maximum loop
number, and the sub-procedure ConstructSteinerTree-
ByACO is to construct a Steiner tree using ant colony
optimization, which is shown in Fig.2.

ConstructSteinerTreeByACO
INPUT: terminal set T', connection graph
OUTPUT: a rectilinear Steiner tree spanning 7'
1. Place an ant on each vertex in the terminal set T’
and put the vertex into its tabu-list;
Set the current sub-tree ¢t empty;
While ant number > 1 do
Select an ant m randomly;
AntMove (m);
Add the edge m passing into t;
If m meets m1 then
Add vertices in tabu-list of m to that of my;
9. m dies;
10. Relocate(my);
11. Prune(t);
12. Returnt;

XN O LN

Fig.2. Sub-procedure of ConstructSteinerTreeByACO.

In Fig.2, the sub-procedure AntMove decides the next
vertex that the current ant will move to. The input of
this procedure is the ant’s current position. AntMove is
shown in Fig.3.

In the experiments, we found that when two ants
meet, if the survival one is still in the original location,
the solution will be far from the optimal. So we use the
sub-procedure Relocate to relocate the survival ant to a
new location, which is the vertex in the ant’s tabu-list
closest to those of other ants.

When there is one ant left, a tree is constructed. But
some leaves in the tree may not be a terminal. So we use
the procedure Prune to delete all 1-degree non-terminal
vertices in the tree.

Yu Hu et al.: ACO-Steiner: Rectilinear Steiner Minimal Tree Algorithm

AntMove
INPUT: current location of ant m

1. Compute the p; of m by (1) and (4);
Ifp;==0(:=1,2,3,4) then

Deconfuse (m);
Ant m moves to j under the probability of p;;
. Add vertex j to the tabu-list of m;

TURA W N

Fig.4. Instance for confused sit-

Fig.3. Sub-procedure of AntMove. .
uation.

The sub-procedure Deconfuse in Fig.3 solves the fol-
lowing problem. Sometimes, an ant may have no avail-
able vertices to move (see Fig.4). We solve this problem
by moving this ant to some other vertex in its own tabu-
list. But this new location should be closest to one of
other ants.

We can see an example in Fig.4. There are two ants
(m and m') left after several iterations. The bold line
denotes the tabu-list of ant m, and the black solid ver-
tices denote terminals. The current ant m is in vertex
C whose only two neighbor vertices (A and B) are both
in its tabu-list, which makes ant m not move any more
but stay in the current position. So, we must find a new
position for ant m. We should find this new position
in the tabu-list of ant m and make the new position be
the closest one to the other ants. Following this rule, we
find vertex D as the new position of ant m, which is the
closest to ant m/.

3.2 Graph Reduction Methods

Since ACO-Steiner algorithm is performed based on
Hanan grid, we can reduce the Hanan grid so as to re-
duce the searching space, which is based on the following
theorem. We use the following three methods, convex-
hull reduction, fulsome Steiner tree (FST) reduction, and
terminal reduction.

3.2.1

[22] proved that any non-terminal vertex that is ad-
jacent to exactly two orthogonal edges e; and es can be
deleted if the other two edges forming a rectangle with
e; and e; are present. The vertices remaining, after this
reduction (see Fig.5(a)) is performed, are precisely those
that lie within the rectilinear convex-hull of the termi-
nals. For small and randomly generated sets of terminals,
it is typically quite effective.

Convex-Hull Reduction

3.2.2 FST Reduction

M. Zachariasen et al.ll”]

proposed a graph reduction
method by overlaying the generated FSTs on Hanan grid.
They concluded that the number of Steiner points left in
the grid is almost linear, approximately 3n. In large scale
problem, this reduction is very efficient. An example of
FST reduction is shown in Fig.5(b).

3.2.3 Terminal Reduction

The convex-hull reduction and FST reduction often

149
(a) (b) (¢ ()

Fig.5. (a) Convex-hull reduction. (b) FST

reduction. (c), (d) Terminal reduction.

leave many terminals of 1-degree. Such terminals can be
deleted (along with their adjacent edge), their neighbor
can be made a terminal, and the appropriate edge can
be added back into the final solution.

We call this the terminal reduction (see Fig.5(c)).
The most significant effect of the terminal reduction is
not the non-terminals it removes, but rather the fact
that often two or more terminals collapse into a single
new terminall?0,

We can perform convex-hull reduction or FST reduc-
tion followed by terminal reduction. The Hanan grid
in Fig.1 can be reduced by these methods as shown in
Fig.5. In practice, we find that convex-hull reduction is
easier to implement and efficient in small scale problems,
while FST reduction is more complex but very effective
for large scale problems (only 0.3% Steiner points left in
1,000-terminal cases).

By using these reduction approaches, we can speed
up our algorithm to some extent. However, the ACO-
Steiner algorithm is still time consuming because the
ants must move based on the Hanan grid and move only
a small segment in the iteration. So, we make effort to
shorten the running time to get high efficiency, which
will be introduced in the next section.

4 Performance Improvement

4.1 Performance Improvement Approaches

We extend the tabu-list of each ant to record the edges
instead of the vertices that this ant has visited. Every
movement is not constrained by Hanan grid. Each time,
an ant will choose the closest edge (here consider the ver-
tex as a degenerate edge) out of its tabu-list, and move
to this edge with the shortest path.

We define the distance between two edges as shown
in Fig.6, in which, the distances between edge L; and
edge Ly in (a), (b), (¢), (d) are h, h + w, h, and h + w,
respectively.

If the shortest path is a line, there is only one way
to move. However, if the shortest path has an L-
shape, there are two possible ways to move, which are
TOP_ORIENT and BOTTOM_ORIENT. We choose one
orientation to move based on both the trail intensity and
the topology.

Here, the trail will deposit in the four directions of
terminal vertices instead of edges. Thus, we can decide
which way to move by comparing the trail intensities in

150

different directions of the current vertex. The updat-
ing rule of trail intensity is still based on (2). Here, 7; ;
denotes the trail intensity in direction ¢ — j.

The topology is another factor in deciding the mov-
ing orientation. We compute the gains for each of the
two possible orientations based on the following rules.

L1 o—?—o L1°_? Ll.—!h—o Llo—?h
h h L
L2 — Lw..L_Q. Lo 1L2
(a) (b) (c) (d)

Fig.6. Definition of distance between two edges.

Firstly, for a given edge orientation we find the closest
vertex (out of the current ant’s tabu-list) to the edge as
shown in Fig.7. Then, compute the distance D. between
this vertex to the edge in this orientation. Compute the
distance Dy between this vertex and the edge in the op-
posed orientation. The gain in this orientation is D¢-D..
We can see this rule from the instance shown in Figs. 7(c)

and 7(d).

A D1 Dy
S, {\\ RSN T By) ’

NN i
e IK\ \\\\\\\\\\\ N l T 2
:r’/’:’j’i’//// KRR \\\\\\ & l !
ISl AN Co l
(05 AN A
; S5 1 Ag

(a) (b) (c) (d)

Fig.7. (a) BOTTOM.ORIENT. (b) TOP_ORIENT. (c) BOT-

TOM_ORIENT segment. (d) TOP_ORIENT segment.

The suffix of the vertex label is just to distinguish the
two orientations. For example, A; and A are the same
vertex but in different situations.

In Figs. 7(c) and 7(d), the current location of an ant
is in vertex B, and the closest vertex out of its tabu-
list is vertex C. However, the path between B and C
has two possible shapes, which are shown in Figs. 7(c)
and 7(d), respectively. The path between B and C in
Fig.7(c) is BOTTOM_ORIENT, and the one in Fig.7(d)
is TOP_ORIENT. Now the ant wants to decide the orien-
tation of edge (B, C). The closest vertex to edge (B1, C1)
is A; with the distance |A;A)| and the distance be-
tween Ay and edge (Ba,C2) is |A2AL|. So, the gain in
BOTTOM_ORIENT is |A2A4| — |A1A]| and the gain in
TOP_ORIENT is |D;C1| — |D2D4|.

When we compute the gain of one orientation we
rewrite (1) as follows:

lgain
= dist g (5)
where d is the two orientations (BOTTOM_ORIENT and
TOP_ORIENT), gain, is the gain in orientation d, disty
is the distance from the closest vertex out of its tabu-list
to the edge in orientation d, and A is a constant that is
the trade-off between the closest distance and gain.
Now, an ant can decide the orientation with the value
given in (4).

J. Comput. Sci. & Technol., Jan. 2006, Vol.21, No.1

We keep the main flow of ACO-Steiner algorithm
given in Figs.2 and 3, but improve the sub-procedure
AntMove (see Fig.3) to obtain a higher performance (see
Fig.8).

Since each leave vertex in the tree must be a termi-
nal, the sub-procedure Prune in Fig.2 is unnecessarily
any longer in the improved algorithm.

AntMove2

INPUT: current location of ant m

1. Compute the p; of m by (4) and (5);

2. Ant m moves to j based on pj;

3. Add the path from m to j into the tabu-list of m;

Fig.8. Improved sub-procedure of AntMove(m).

4.2 Discussions on the Improvement

In the original ACO-Steiner algorithm, an ant will
step over one edge of Hanan grid in each iteration. In
the worst case, ants’ movements may cover the whole
Hanan grid, so it will take O(n?) steps to complete a
In the improved algorithm, an ant
may step over several edges of Hanan grid in each iter-
ation, and one ant will be removed from the set of alive

tree construction.

ants in each movement. So it will take only O(n) steps
to construct a tree.

To show the efficiency of the improvement approaches
intuitively, we use the following case to simulate the pro-
cesses of tree construction for the original ACO-Steiner
algorithm given in Section 3 (see Fig.9) and the improved
algorithm given in this section (see Fig.10).

L

i —— ==

Y

Fig.9. Original tree construction process.

We can find that the original one needs 9 steps to
construct a tree, while the improved one needs only 4
steps. We can also find that these two algorithms can
generate the same topologies of the final trees.

5 Experimental Results and Discussions

We have implemented ACO-Steiner algorithm in C++
and generated testing cases by using a sub-program pro-
vided by GeoSteiner 3.1. Then, perform GeoSteiner,

Yu Hu et al.: ACO-Steiner: Rectilinear Steiner Minimal Tree Algorithm

BGTC, and ACO-Steiner on a Sun V880 fire worksta-
tion with Unix operating system, respectively. We set
a=5 =1,v=1, A = 3, and Q = 10,000 in our
experiments.

In the experiment, we find that the improvement
method described in Section 4 is efficient. An ant de-
cides the next node or the edge orientation greedily in-
stead of stochastically with the possibility p. By using
“greedy approach”, we can maintain a quick convergence
while keeping a good performance. Fig.11 shows the per-
formance improvements in 50-, 100-, and 200-terminal
RSMT instances. It shows that the algorithm gets the
most improvement in the first 10 iterations, and improves
little after 50 iterations. To get the best tradeoff between
running time and performance, we set MAXLOOP as 10.

e et =
S N
| |

I
1
oA N N

(c)

Fig.10. Improved tree construction process.

Table 1 shows the wire length and running time of
results produced by the three algorithms.

From Table 1, we can see that ACO-Steiner performs
well when the number of terminals is no more than 50.
It can always achieve the optimal results and keep short
When the number of terminals increases our
algorithm can keep the performance within 1% worse
than the optimal (GeoSteiner) with a very short run-
time. When the number of terminals reaches 1,000, the
GeoSteiner 3.1 fails to produce a result in our worksta-
tion.

Fig.12 Shows the result of ACO-Steiner for a 1,000-
terminal tree.

Fig.13 shows the result of BGTC vs. ACO-Steiner in
a case with 50 terminals. Fig.13(a) shows the result of
BGTC with a wire length of 51,878 and Fig.13(b) shows

runtime.

151

the result of ACO-Steiner with a wire length of 51,595.
The circles show the differences between two results.

3,000
2,500

2,000
1,500
1,000

500

Improvements (wire-len)

0

Iterations

Fig.11. Performance improvements.

Fig.12. Result of ACO-Steiner for a 1,000-terminal tree.

In VLSI/ULSI routing, most of the nets in a circuit
have no more than 50 terminals (clock tree/mesh design
needs special methods). When the problem scale be-
comes larger, our algorithm can keep good performance
in a short running time. So our ACO-Steiner can be used
in practical applications well.

Our ACO-Steiner algorithm is based on graph, so it
can be easily extended to solve other tree problems which
can be formulated as problems in graph, such as obsta-
cle avoiding rectilinear Steiner minimal tree (OARSMT)
and congestion reduction in global routing.

To solve OARSMT problem, we can construct an Es-
cape Graph!?®! or other connection graphs based on the
given terminals and obstacles, and perform our ACO-
Steiner on a connection graph. The result tree on the
graph is an RSMT avoiding all obstacles.

Table 1. Experimental Results of ACO-Steiner and the Comparison Results with BGTC and GeoSteiner 3.1

Terminal BGTC ACO-Steiner GeoSteiner
Wire Wire length Wire
number length CPU (s) Best Ave.g Worst CPU (s) length CPU (s)
9 19,913 < 0.001 19,799 19,799 19,799 < 0.001 19,799 < 0.001
10 21,259 < 0.001 21,143 21,143 21,143 < 0.001 21,143 < 0.001
20 34,767 < 0.001 34,767 34,778 34,878 < 0.001 34,767 < 0.001
30 40,226 < 0.001 40,037 40,072 40,215 < 0.001 40,037 < 0.001
50 51,878 < 0.001 51,595 51,800 52,094 < 0.001 51,595 < 0.001
70 59,564 < 0.001 59,531 59,701 60,093 0.004 59,503 0.020
100 73,289 < 0.001 73,356 73,751 73,929 0.018 72,979 0.050
200 104,750 0.01 105,277 105,567 105,701 0.387 104,178 0.880
500 161,875 0.050 164,440 164,484 164,565 3.380 160,844 38.880
1,000 203,653 0.54 230,873 234,998 238,219 54.00 - -

152

Fig.13. BGTC vs. ACO-Steiner for a 50-terminal tree. (a) BGTC.
(b) ACO-Steiner.

In global routing, our ACO-Steiner can be used not
only to construct initial trees for all nets, but also to im-
prove routing trees in iterations in routing algorithms.
We should note that ACO-Steiner can produce different
topologies in different runs because of the random se-
lection of an ant in each iteration in our algorithm (see
Line 4 in Fig.2). Meanwhile, these result trees in differ-
ent topologies keep almost the same performance (wire
length). This property is useful to generate various rout-
ing trees for a net in global routing, so as to reduce con-
gestion scarifying only a little wire length. Fig.14 shows
the three different result trees for a 70-terminal case, the
wire lengths of these three topologies are 59,737, 59,551,
and 59,531 respectively.

(a) (b) (c)

Fig.14.
cost=59,737. (b) cost=59,551. (c) cost=>59,531.

Different topologies for a 70-terminal case. (a)

6 Conclusions

In this paper, we propose a heuristic for RSMT con-
struction based on ACO. Then, we use some strategies
to speed up the algorithm. The experimental results
show that our heuristic ACO-Steiner keeps high perfor-
mance with a very short running time. Furthermore,
our ACO-Steiner can be easily extended to solve other
tree-construction problems in graph.

We find that there is still room for improvement in
our work. We will continue to improve the performance
in wire length of ACO-Steiner while keeping short run-
ning time, which is regarded as our future work.

References

[1] Carden R C IV, Li J M, Cheng C K. A global router with
a theoretical bound on the optimal solution. IEEE Trans.
Computer-Aided Design, Feb. 1996, 15: 208-216.

J. Comput. Sci. & Technol., Jan. 2006, Vol.21, No.1

[2] Jing T, Hong X L, Bao HY, Xu J Y, Gu J. SSTT: Efficient
local search for GSI global routing. J. Computer Science and
Technology, 2003, 18(5): 632-639.

[3] Jing T, Hong X L, Xu J Y, Bao H Y, Cheng C K, Gu J.
UTACO: A unified timing and congestion optimization algo-
rithm for standard cell global routing. IEEE Trans. CAD,
2004, 23(3): 358-365.

[4] Xiang H, Tang X P, Wong D F. An algorithm for integrated pin
assignment and buffer planning. In Proc. ACM/IEEE Design
Automation Conf. (DAC), 2002, pp.584-589.

[5] Hong X L, Jing T, Xu J Y, Bao HY, Gu J. CNB: A critical-
network-based timing optimization method for standard cell
global routing. J. Computer Science and Technology, 2003,
18(6): 732-738.

[6] Xu J Y, Hong X L, Jing T, Cai Y C, Gu J. A novel timing-
driven global routing algorithm considering coupling effects for
high performance circuit design. IEICE Trans. Fundamentals
of ECCS, 2003, E86-A(12): 3158-3167.

[7] Wang Y, Hong X L, Jing T, Yang Y, Hu X D, Yan G Y. An
efficient low-degree RMST algorithm for VLSI/ULSI physical
design. Lecture Notes in Computer Science (LNCS)8254 — In-
tegrated Circuits and System Design, Santorini, Greece, Sept.
2004, pp.442-452.

[8] XuJY, Hong X L, Jing T, Cai Y C, Gu J. An efficient hierar-

chical timing-driven Steiner tree algorithm for global routing.

INTEGRATION, VLSI J., 2003, 35(2): 69-84.

Garey M R, Johnson D S. The rectilinear Steiner tree prob-

lem is NP-complete. SIAM Journal on Applied Mathematics,

1977, 32: 826-834.

[10] Hwang F K, Richards D S, Winter P. The Steiner Tree Prob-
lem, Annals of Discrete Mathematics. Amsterdam: North-
Holland, The Netherlands, 1992.

[11] Kahng A B, Robins G. A new class of iterative Steiner tree
heuristics with good performance. IEEE Trans. Computer-
Aided Design, July 1992, 11: 893-902,

[12] Borah M, Owens R M, Irwin M J. An edge-based heuristic for
Steiner routing. IEEE Trans. Computer Aided Design, 1994,
13: 1563-1568.

[13] Kahng A B, Mandoiu I I, Zelikovsky A Z. Highly scalable al-
gorithms for rectilinear and octilinear Steiner trees. In Proc.
Asia and South Pacific Design Automation Conference (ASP-
DAC), Kitakyushu, Japan, 2003, pp.827-833.

[14] Zhou H. Efficient Steiner tree construction based on spanning
graphs. In Proc. ACM ISPD, Monterey, CA, USA, 2003,
pp.152-157.

[15] Qi Zhu, Hai Zhou, Tong Jing, Xianlong Hong, Yang Yang.
Spanning graph-based nonrectilinear Steiner tree algorithms.
IEEE Trans. CAD, 2005, 24(7): 1066-1075.

[16] Warme D M, Winter P, Zachariasen M. Exact algorithms for
plane Steiner tree problems: A computational study. Tech-
nical Report DIKU-TR-98/11, Department of Computer Sci-
ence, University of Copenhagen, April 1998.

[17] Zachariasen M. Rectilinear full Steiner tree generation. Tech-
nical Report DIKU-TR-97/29, Department of Computer Sci-
ence, University of Copenhagen, December 1997.

[18] Dorigo M, Maniezzo V, Colorni A. The Ant System: Optimiza-
tion by a colony of cooperating agents. IEEE Trans. Systems,
Man, and Cybernetics—Part B, 1996, 26(1): 1-13.

[19] Das S, Gosavi S V, Hsu W H, Vaze S A. An ant colony approach
for the Steiner tree problem. In Proc. Genetic and Evolution-
ary Computing Conference, New York City, New York, 2002.

[20] Ganley J L. Computing optimal rectilinear Steiner trees: A
survey and experimental evaluation. Discrete Applied Mathe-
matics, 1998, 89: 161-171.

[21] Hanan M. On Steiner’s problem with rectilinear distance.
SIAM Journal on Applied Mathematics, 1966, 14: 255-265.

[22] Yang Y Y, Wing O. Suboptimal algorithm for a wire routing
problem. IEEE Trans. Circuit Theory, September 1972, 19:
508-510.

[23] Ganley J L, Cohoon J P. Routing a multi-terminal critical net:
Steiner tree construction in the presence of obstacles. In Proc.
IEEFE International Symposium on Circuits and Systems, Lon-
don, UK, 1994, pp.113-116.

[9

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

