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Abstract
globally deformed supershapes. In this paper, this framework is applied with a new supershape implicit function that is based
on the notion of radial distance and results are presented on realistic models composed of hundreds of hierarchically globally

In the previous work, an efficient method has been proposed to represent solid objects as multiple combinations of

deformed supershapes. An implicit equation with guaranteed differential properties is obtained by simple combinations of the
primitives’ implicit representations using R-function theory. The surface corresponding to the zero-set of the implicit equation
is efficiently and directly polygonized using the primitives’ parametric forms. Moreover, hierarchical global deformations are
considered to increase the range of shapes that can be modeled. The potential of the approach is illustrated by representing

complex models composed of several hundreds of primitives inspired from CAD models of mechanical parts.

Keywords

1 Introduction

Among various existing methods to represent ob-
jects, a natural idea is to express complex objects as
combinations of simpler ones, which leads to the no-
tion of solid modeling!*~*. Two major approaches, with
their inherent strengths and weaknesses, are known as
constructive solid geometry (CSG) and boundary repre-
sentation (B-Rep). Constructive solid geometry allows
simple, natural, and fast combinations of primitives by
Boolean operations. Unfortunately, obtaining the result-
ing mesh representing the zero-set of the implicit func-
tion requires either to explicitly solve the implicit equa-
tion, or to use polygonization algorithms such as March-
ing Cubes. Moreover, such algorithms can only approx-
imate the surface, and in the case of implicit functions
built from a CSG tree, sharp edges have to be treated
specifically®%l. Boolean operations are slower and more
difficult to perform on B-reps using parametric surfaces,
such as NURBSI["#!, or subdivision surfaces®!, due to the
lack of characteristic function to directly evaluate the in-
teriority of a point to an object. In counterpart, the
vertices, normals, and higher order derivatives can be di-
rectly and, most importantly, exactly computed. Other
methods, known as hybrid methods, try to combine dif-
ferent representations or apply a same representation to
various kinds of primitives. For example, Adzhiev et
al.['% combine volume representation by voxels and real
continuous functions; Allegre et al.'Y apply the CSG
framework to skeletal implicit functions and polygonal
meshes.

The compactness of the representation is also an im-
portant factor to be considered: sophisticated implicit
functions often require few coefficients whereas para-
metric surfaces need complex control meshes that may
need larger data storage but allow easier editions. Com-
pact primitives such as quadric have been generalized
to superquadrics, introduced by A. H. Barr!!>13], and

implicit surface, solid modeling, superquadrics, supershape

have been used for various applications, both in com-
puter graphics and in computer vision!*=1¢!  Initially
aiming at the representation of natural shapes, a re-
cent extension of superquadrics, namely the supershapes,
has been proposed by Gielis et al.l718]. Supershapes
have two major advantages: they can simply represent
regular polygons and natural shapes with various sym-
metries and they have both a parametric and an im-
plicit representation!!?). Depending on the branch of R-
function used, differential properties for the resulting im-
plicit function are guaranteed. The parametric definition
of each primitive is used to efficiently and accurately gen-
erate the resulting mesh: the vertices of the final mesh
lie exactly on the surface and sharp edges are preserved.

The contributions of this paper are the new implicit
function for supershapes, that is based on the notion of
radial distance and its application to the representation
of models that are composed of hundreds of hierarchi-
cally globally deformed supershapes. The rest of this
paper is organized as follows. Section 2 briefly presents
most common R-functions and their differential proper-
ties. Section 3 deals with supershapes and their implicit
and parametric representations. Section 4 presents in de-
tails the algorithm to generate the surface of complex ob-
jects from a CSG tree of globally deformed supershapes
with sharp edges. Results are presented in Section 5 be-
fore our conclusions and future work.

2 Implicit Modeling and R-Functions

The primitives we consider have both a parametric
and an implicit representation, which allows us to take
advantage of implicit modeling techniques. min(z,y) and
max(z,y) functions are among the simplest functions
known to blend objects. Unfortunately, these functions
are not differentiable along the line * = y. Geometri-
cally continuous blending functions, such as the ones in-
troduced by Riccil2?, Blinn?!!| or Pasko??!, can be used

*A preliminary version of this paper appeared in Proc. Pacific Graphics 2005, Macau.
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to generate smooth objects. In this category also fall
R-functions, introduced by Rvachev!?®!. An English tu-
torial has been proposed by Shapiro!?*!. We will denote
R-conjunction and R-disjunction with the same notation
(symbol +), with R-conjunction obtained by considering
— and R-disjunction by considering +. R-negation is the
opposite sign function = —z. Depending on their differ-
ential properties/?®!, different R-functions may be used,
namely R, R{" and R,. An illustration of R-disjunction
using R, R{* and R, is presented in Fig.1.

R |

~

Fig.1. Intensity of the scalar field of the R-disjunction of two vari-
ables z € [—1,1] and y € [—1,1]. On the dashed line, the zero-set
of the R-function. Left: max(z,y), middle: R{*(z,y) with m = 2,
and right: R, (z,y) with p = 2.

2.1 Properties of R,

1+ (x +y+ 22+ y? — 2azxy) (1)

where a(f1, f2) is an arbitrary symmetric function such
that —1 < a(f1,f2) < 1. Setting o to 1 leads to the
simplest and most popular R-functions: min(z,y) and
max(z,y).

Rq :

2.2 Properties of R’ and R,

To solve the loss of differentiability along the line
x =y, two other functions RF* and R, are proposed.

($+yivw2+y2)(x2+y2)? (2)

where m is any even positive integer. Shapiro shows in
[25] that Ry" is m times differentiable everywhere, includ-
ing the corner point z = y = 0. All partial derivatives
are identically zero at corner points, but unfortunately,
R{" is not normalized. R,-function achieves normaliza-
tion and is differentiable everywhere but at the corner
point x =y = 0.

Ry :

1
R,:z+y=£(zP +yP)P (3)

for any even positive integer p.

3 Supershapes: Parametric and Implicit

Formulations

Supershapes have been recently presented by

Gielis'™18] as an extension of superquadrics. Gielis uses
the terminology superpolygon to describe 2-D super-

shapes, the term supershape is used for 3-D. Deriving
from the superellipse representation, a term mT¢, m € R,

is introduced to allow a rational or irrational number of
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symmetry and three shape coefficients ny, ng, and ng
are considered. In polar coordinates, the radius r of a
superpolygon is defined by

o iv/‘ 1 (mG) ny
—cos | —
a 4
with a, b, and n; € RT, and m € R}.
Parameters a > 0 and b > 0 control the size of the
polygon, m > 0 defines the number of symmetry axis and
can also be taken as the number of sectors in which the

plane is folded. For m = 4 and ny = ng, the original
superellipses are obtained. When m is a natural num-

GO
—sm | —
4

ber, non-self-intersecting closed curves are obtained, and
regular polygons can be generated by setting the shape
coefficients to specific values as shown in [17]. Exten-
sion to 3D is performed by the spherical product of two
2D superpolygons as done for superquadrics in [13]. In
this paper, we are interested in solid objects and non
self-intersecting surfaces, which implies m has to be an
integer. A condensed parametric version can be written

as
z(0,9) r1(6)r2(¢) cos b cos ¢
y(0,8) | = | r1(0)ra(d)sinbcosd |, (5)
2(6,9) r2(¢)sin¢

with —m < 0 < 7mand -5 < ¢ < 5. A unit super-

shape (a = b = 1) is defined by 6 shape parameters

noted as {ni,na,ns, Ny, Na, N3}, where n; and N; are
used in r1(0) and ro(¢) respectively. In [17], two simi-
lar distance functions are proposed for supershapes: the
authors’ idea is to project a considered point onto the
two orthogonal generating planes of the supershape to
independently evaluate two distances. We propose two
new implicit functions, the first one being directly de-
duced from the previous parametric definition of super-
shape in (5), the second based on the notion of radial
distance. The advantage of these formulations is to ob-
tain one signed value for a given point to determine the
inside, the outside or the surface of a given supershape.
A first implicit formulation for supershape, derived from
its parametric formulation in (5), is defined by
22 +y?+r2(6)22

For the second formulation, we express a function of the
ratio t = % where the point [ is the intersection of the
supershape surface and the half line [OP). When t = 1,
P lies on the surface of the supershape (¢ < 1 means P
is inside the supershape, and for ¢ > 1 P lies outside
the supershape).
classical definition of an implicit surface, i.e., the surface

In order to stay consistent with the

corresponds to the zero-set of the implicit function, we
translate the result by 1, which leads to

F =1 =1—t
(z,y,2) ol

—-1— £C2 + y2 + 22
- r2(0)r2(¢) cos® ¢ + r3(¢) sin” ¢
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o 1 22 4 o2 4 22
- ro(¢) \| cos?2 g(r?(0) — 1) +1°

It is important to notice that # and ¢ do not exactly
correspond to the classical spherical angles, actually, it is
easy to see that spherical and supershape angles are equal
only for r1(0) = 1. For a point P(z,y, z), expressed in the
canonical referential, and a unit supershape (a = b =1
for both generating superpolygons), angles 6 and ¢ are
defined by

(7)

0 = arctan (ﬂ)

Zrl (0) sin(@))
Yy
zr1(0) cos(8) ) .

T

¢ = arctan (

(8)
= arctan (

Notice angle ¢ is the function of the coordinates of
the point P, the angle 0, and the 3 shape coefficients
used in 1. To determine € and ¢, we have to solve the
equation I(0,¢) = tP, i.e., find 6 and ¢ such that the
points I, P, and O are aligned as illustrated in Fig.2.
Among the advantages of the supershapes are their dual
parametric and implicit representations. This means we
can directly and exactly generate solutions of the implicit
equation by using the parametric representation. Since
I lies on the surface of a supershape, it verifies (5). We
can see that % = % = tan#, which leads us to angle
0. Once 0 is known, the radius of the first generating
superpolygon 71(0) can be computed. Using a similar

idea, i.e., expressing quantity tan¢ from (5), it can be
P.r1(0)sin0 __ I.r1(0)sin6
Py - Iy

us (8). In other words, for a given point P;(z,v, z), we
evaluate the angles 6 and ¢ to compute radii 7 and 7y
that are then used to evaluate equations (6) or (7). The
reason why we consider parameter m as an integer and
not a rational for generating superpolygons now appears
clearly: with m rational the surface would still be closed,
but it would self-intersect, which means there would ex-
ist many intersections between the surface and the half
line [OP). Fig.2 shows the intensity of the scalar field
for a plane z = const using the first formulation. Fig.3
shows examples of supershapes with various sets of shape
parameters.

We have now defined two implicit functions for unit
supershape. To increase the range of shapes that can be
modelled, we consider four global transformations (scal-
ing, tapering, twisting, and bending) as illustrated in
Fig.4. Furthermore, deformations are not only applied
to single primitives but to complete subtrees as proposed
by Wyvill in [26]. Without loss of generality, the implicit
function of a globally deformed supershape is defined by

F(Pean) = Fean(D™1(P)) (9)

seen that

= tan ¢, which gives

where F,, represents the implicit function in the canon-
ical referential and D~! the inverse transformation to
bring P to P.,, in the canonical referential. In our case,
D contains the usual transformations, such as rotations
and translations, and the four deformations mentioned
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earlier. In the case of a CSG tree, where each node con-
tains its own deformations and transformations, the re-
verse transformation to evaluate P.,, is hierarchically
evaluated from the root to the current node.

Fig.2. Supershapes. (a) Geometric interpretation. (b) Intensity of

the scalar field generated for a planar section z = const using (6).

b @

Fig.3. Example of 3D supershapes with m a natural number. From
left to right: m =3, M =6; m =5, M = 6; m =8, M = 4;
m =M = 8.

ARGe

From left to right: scaled, ta-

Fig.4. Example of deformations.
pered, twisted, and bent supershape. The last represents the com-

bination of the four deformations.

4 Generation of the Surface of the CSG Tree

We detail in this section the different steps of our al-
gorithm to create the surface of the resulting object. We
consider in input of our algorithm a CSG tree of glob-
ally deformed supershape. The output includes three
components: an implicit function, a union of paramet-
ric intervals of the primitives, and a mesh representing
the resulting surface. The inspiring CAD model consid-
ered to illustrate our algorithm is presented in Fig.9. The
decomposition of such model into a CSG tree is not triv-
ial and has been done manually. Our goal in this paper
is not to reverse engineer existing complex CAD models,
but to show that, even in the case of numerous Boolean
operations, sharp edges are preserved using our method.
A simpler part, presented in Fig.5, is used for intermedi-
ate steps of the algorithm. An illustration of the intensity
of the scalar field of the resulting R-function using R,-
function with p = 2 and (6) is presented in Fig.11.

Fig.6 presents a simplified CSG Tree of the “Hub”
model and the intermediate results during the evaluation
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of the resulting surface.

sy

Fig.5. Brake hub model: the corresponding CSG tree is composed

of 54 supershapes and 31 Boolean operations.
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Fig.6. Simplified “Hub” and intermediate results.

Once the CSG tree is defined, an implicit equation
for the resulting object can be obtained by combinations
of the primitives’ implicit equations through R-functions.
To create a mesh accurately representing the surface of
the resulting object, including the sharp edges, we iso-
late the parts of the supershapes that must be kept and
merge them along the approximations of the intersection
curves. The process can be split into two simple algo-
rithms: the initialization, where the primitives are poly-
gonized and the deformation hierarchically applied and
the node evaluation, where the surface is going to be built
and refined. Because of the tree structure, the main algo-
rithm, i.e., the node evaluation, is recursive. The sign of
the implicit function of each subtree is used as a charac-
teristic function to determine if a vertex is lying inside or
outside the volume defined by the other subtree. Faces
are considered completely inside/outside if their vertices
are completely inside/outside the resulting object. Since
vertices P, even approximation of intersection points, are
created using a primitive parametric form, F(P) = 0,
which implies that the resulting R-function is also null.

Once the inside/outside evaluation is performed for
vertices, two types of faces have to be considered: the
faces that are completely inside (or outside) the object,
and the faces that are crossed by an intersection curve.
The first ones are directly transmitted to the parent node
in the CSG tree, depending on the Boolean operation
performed. The second ones must be split along the in-
tersection curve before being transmitted. During this
operation, we have to deal with two different issues. The
first one concerns the scales of the objects and their sam-

plings, and the second the accuracy of the approximation
of the intersection curves. We introduce two user defined
parameters € and § to control the accuracy and the den-
sity of vertices representing the intersection curves, an
illustration of their influence on split faces is presented
in Fig.7.

Fig.7. Influence of parameters ¢ and § on the intersection curve.
Parameter é controls the sampling along the intersection curve

(darker dots).

Since we are not able to directly solve the implicit
equation F' = G, where F' and G represent the im-
plicit equation of the two considered CSG trees, we
can only approximate the desired solutions. Using the
parametric definition of the primitives, the mesh can be
refined to generate vertices lying exactly on the result-
ing surface and that are approximating the intersection
curve within an e accuracy. In practice, we consider
|F(P)| < e = 107° sufficiently robust to quickly obtain
accurate intersection points. It is also possible to con-
sider a minimum distance along the gradient, or define
an attraction force as in [5], because the resulting im-
plicit function can be differentiable everywhere, if R’
or R,-functions are used. This technique has the ad-
vantage to be completely independent of the scale of the
objects. Parameter ¢ controls the maximum distance
between two consecutive vertices along the approxima-
tion of the intersection curve. Its role is to interface
the gaps in term of sampling or scale that may arise
when evaluating important CSG trees. Parameter § is
adjusted in function of the smallest edge length of the
two objects that are combined to avoid cracks and holes
when combining primitives with very different scales or
different samplings. The last step of the algorithm con-
sists in merging the parts from both objects and closing
the resulting mesh. A technique can be found in [5], and
we also perform a merging operation between close or
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Fig.8. Example of intersection curve after merging.
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Fig.9.

plicit representation using supershapes and

Complete axle mesh and its im-
R-functions.

identical vertices.
shown in Fig.8.

As a remark, computing directly the R-function at the
root of the CSG tree is also possible and has been tested.
Using this technique avoid all the recursive data transfers
from the leaves to the root of the tree. Unfortunately, it
has also several drawbacks:

e The simpler the R-function, the smaller the compu-
tational error. This becomes crucial during intersection
curve approximation.

e It is easier and faster to merge the frontiers of two
objects than many frontiers of many objects: by con-
sidering binary trees and working recursively, we avoid
other problems about the topology of the object near the
merged frontiers and keep intermediate meshes closed.

An example of merged frontier is

5 Results

We applied our method to represent a complex CSG
tree, inspired from an existing CAD model as presented
in Fig.9. The complete CSG tree is composed of several
hundreds of nodes: 235 supershapes combined through
238 Boolean operations. Using the symmetry properties
of the model, only four parts needed to be represented
before being copied and pasted to build the final object.
Two parts and their implicit representation are presented
in Fig.10. Additionally, the intensity of the scalar field
of the R-function is presented on two sliced subparts in
Fig.11.

6 Conclusions and Future Work

In this paper, we proposed an extension of our algo-
rithm to accurately polygonize the resulting surface of
an implicit function describing the volume of a solid that
is defined as multiple Boolean operations between hierar-
chically deformed supershapes. Our framework combines
the advantages of using R-functions with guaranteed dif-
ferential properties to transcribe Boolean predicates into
analytical functions, with powerful, versatile, and com-
pact primitives. Our method preserves most of the inter-
esting properties of implicit and parametric techniques:
using R-function theory allows us to efficiently evaluate
the parts of primitives that must be kept, and the para-
metric representation of the primitives is used to effi-
ciently refine the resulting mesh around the intersection
curves within the desired accuracy. Even if sharp edges

Fig.10. “Shaft”: original CAD model and

supershape representation.

J. Comput. Sci. & Technol., Mar. 2006, Vol.21, No.2

Fig.11. Examples of intensity of the scalar
of the resulting R-function for the stabilizer
and the brake hub.

cannot be exactly computed, intersection curves can be
approximated to an e-accuracy and the vertices repre-
senting intersection points are lying exactly on the zero
set of the resulting R-function. Another parameter ¢ is
also used to control the density of points along intersec-
tion curves and to avoid cracks and holes when parts of
primitives with important sampling or scale disparities
are merged. Due to the implicit formulation underlying
for every node, the time complexity for node evaluation
stays linear in the number of vertices considered which
allows to represent complex CSG trees where hundreds of
Boolean operations are performed. The implicit function
for supershape that is introduced in this paper is based
on the notion of radial distance. Being now able to rep-
resent any complex object by a CSG tree of primitives,
i.e., a single implicit equation, we are going to study the
potential solutions to retrieve more accurately the CSG
tree structure from a cloud of points. The radial formu-
lation of supershapes also presents interesting isotropy
properties that are going to be used to develop surface
reconstruction algorithms that are going to be applied to
reverse engineering and computer vision.

References

[1] Hoffmann C M. Geometric and Solid Modeling: An Introduc-
tion. Morgan Kaufmann Publishers Inc., 1989.

[2] Rossignac J R. Constraints in constructive solid geometry. In

Proc. the 1986 Workshop on Interactive 3D Graphics, Chapel

Hill, North Carolina, USA, 1986, pp.93-110.

Rossignac J R, Requicha A A G. Constructive non-regularized

geometry. Computer-Aided Design, 1991, 23(1): 21-32.

Rossignac J R, Voelcker H B. Active zones in csg for accelerat-

ing boundary evaluation, redundancy elimination, interference

detection, and shading algorithms. ACM Trans. Graphics,

1989, 8(1): 51-87.

[5] Ohtake Y, Belyaev A, Pasko A. Dynamic mesh optimization for
polygonized implicit surfaces with sharp features. The Visual
Computer, 2003, 19(2-3): 115-126.

[6] B Wyvill, K Van Overveld. Polygonization of implicit surfaces
with constructive solid geometry. J. Shape Modelling, 1996,
2(4): 257-274.

[7] Krishnan S, Manocha D, Gopi M, Culver T, Keyser J. Boole: A

boundary evaluation system for Boolean combinations of sculp-

3

[4

tured solids. International Journal of Computational Geome-

try & Applications, 2001, (1): 105-144.

Piegl L, Tiller W. The NURBS Book.

Springer, 1997.

[9] Biermann H, Kristjansson D, Zorin D. Approximate Boolean
operations on free-form solids. In Proc. SIGGRAPH’01, Los
Angeles, CA, USA, 2001, pp.185-194.

8

Second Edition,



Yohan D. Fougerolle et al.: Radial Supershapes for Solid Modeling 243

[10] Adzhiev V, Kazakov M, Pasko A, Savchenko V. Hybrid sys-
tem architecture for volume modeling. Computers & Graphics,
2000, 24(1): 194-203.

[11] Allegre R, Barbier A, Galin E, Akkouche S. A hybrid shape
representation for free-form modeling. In Proc. Shape Model-
ing International, Genova, Italy, June 7-9, 2004, pp.7—18.

[12] Barr A H. Superquadrics and angle-preserving transformations.
IEEE Computer Graphics and Applications, 1981, 1(1): 481-
484.

[13] Barr A H. Global and local deformation of solid primitives.
Computer Graphics, 1984, 18(3): 21-30.

[14] Jakli¢ A et al. Segmentation and Recovery of Superquadrics.
Dordrecht: Kluwer Academic Publisher, 2000.

[15] Jakli¢ A, Solina F. Moments of superellipsoids and their ap-
plication to range image registration. IEEE Trans. Systems,
Man, and Cybernetics, 2003, 33(4): 648—657.

[16] Montiel M E , Aguado A S, Zaluska E. Surface subdivision for
generating superquadrics. The Visual Computer, 1998, 14(1):
1-17.

[17] Gielis J, Beirinckx B, Bastiaens E. Superquadrics with ratio-
nal and irrational symmetry. In Proc. 8th ACM Symp. Solid
Modeling and Applications, Seattle, USA, 2003, pp.262—265.

[18] Gielis J. A generic geometric transformation that unifies a wide
range of natural and abstract shapes. American Journal of
Botany, 2003, 90: 333-338.

[19] Fougerolle Y D, Gribok A, Foufou S, Truchetet F, Abidi M A.
Boolean operations with implicit and parametric representa-
tion of primitives using R-functions. IEEE Trans.
tion and Computer Graphics, 2005, 11(5): 529-539.

[20] Ricci A. A constructive geometry for computer graphics. The
Computer Journal, 1972, 16(2): 157-160.

[21] Blinn J F. A generalization of algebraic surface drawing. ACM
Trans. Graphics, 1982, 1(3): 235-256.

[22] Pasko A, Adzhiev V, Sourin A et al. Function representation
in geometric modeling: Concepts, implementation and appli-
cations. The Visual Computer, 1995, 11(8): 429-446.

[23] Rvachev V L. Geometric Applications of Logic Algebra.
Naukova Dumka, 1967. (In Russian)

[24] Shapiro V. Theory of R-functions and applications: A primer.
Technical Report TR91-1219, Computer Science Department,
Cornell University, Ithaca, NY, 1991.

[25] Shapiro V, Tsukanov I. Implicit functions with guaranteed dif-
ferential properties. In Symposium on Solid Modeling and Ap-
plications, Ann Arbor, Michigan, USA, 1999, pp.258-269.

[26] Wyvill B, Guy A, Galin E. Extending the CSG tree — Warp-
ing, blending and Boolean operations in an implicit surface
modeling system. Computer Graphics Forum, 1999, 18(2):
149-158.

Visualiza-

Yohan D. Fougerolle received
his M.S. degree in electrical engineer-
ing from the University of Burgundy,
Dijon, France, in 2002. He is a Ph.D.
candidate in electrical and computer
engineering at the University of Bur-
gundy, Le Creusot, France and was a
visiting research scholar in the Imag-
ing, Robotics, and Intelligent Systems
Laboratory, Knoxville, Tennessee from
2002 to 2005. His research interests include computer vision,
solid modeling and surface reconstruction.

Andrei Gribok is a research as-
sistant professor in the Department
of Computer and Electrical Engineer-
ing at the University of Tennessee,
Knoxville and also holds a position of
an adjunct professor of statistics in the
Department of Statistics at the same
university. His area of expertise is in-
verse and ill-posed problems in engi-
neering, statistical learning and model

misspecification in statistics. His publications list includes
three book chapters and numerous journal and conference pa-
pers. Dr. Gribok has a B.S. degree in system science and an
M.S. degree in nuclear engineering from the Moscow Institute
of Physics and Engineering. He received his Ph.D. degree
from the Moscow Institute of Biological Physics in the area of
acoustical pattern recognition, artificial intelligence and non-
destructive testing. He has 15 years of experience in industry
as well as in academia. Dr. Gribok worked as an invited sci-
entist in the Cadarache Nuclear Research Centre in France
where his work focused on nuclear power plants monitoring,
diagnostics and ultrasonic imaging.

Sebti Foufou received his Ph.D.
degree in computer science in 1997
from the University of Claude Bernard
Lyon I, France. He has been working as
an associate professor in the Computer

-y Science Department at the University
of Burgundy, France. His research
interests concern geometric modeling

: and CAD-CAM topics and surfaces

blending, subdivision surfaces, and ge-

ometric constraints solving. Currently, he is working as a tem-

porary guest researcher at the National Institute of Standards

and Technology, Gaithersburg, Maryland, on smart machin-
ing systems, tolerances, assembly modeling, and PLM.

Frédéric Truchetet received his
M.S. degree in physics from Dijon Uni-
versity, France, in 1973 and a Ph.D. de-
gree in electronics from the same uni-
versity in 1977. He was for two years
with Thomson-CSF as a research engi-
neer and he is currently full professor in
Le2i. His research interests are focused
on image processing for artificial vision
inspection and particularly on wavelets
transform, multiresolution edge detection and image compres-
sion. He has authored and co-authored more than 150 inter-
national publications, three books, and holds one patent. He
is a member of GRETSI, ASTI, IEEE, SPIE, Chairman of
SPIE’s conference on wavelet applications in industrial pro-
cessing and member of numerous technical committees of in-
ternational conferences in the area of computer vision.

Mongi A. Abidi is a professor
and deputy director of the Department
of Electrical and Computer Engineer-
ing, directs activities in the Imaging,
Robotics, and Intelligent Systems Lab-
oratory. He received his Ph.D. degree
in electrical engineering at The Univer-
sity of Tennessee in 1987, M.S. degree
in electrical engineering from the Uni-
versity of Tennessee in 1985, and prin-
cipal engineer in electrical engineering at the National Engi-
neering School of Tunis, Tunisia in 1981. Dr. Abidi conducts
research in the field of 3D imaging, specifically in the areas of
scene building, scene description, and data visualization.





<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


