July 2006, Vol.21, No.4, pp.565-573 J. Comput. Sci. & Technol.

Performance Aware Service Pool in Dependable Service Oriented
Architecture
Gang Huang™™* (¥), Li Zhou! (J& 37), Xuan-Zhe Liu® (X|f##7), Hong Mei® (i

Shing-Chi Cheung? (7§ fi7&)
L School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, P.R. China

%), and

2 Department of Computer Science, Hong Kong University of Science and Technology, Hong Kong 999077, P.R. China
E-mail: {huanggang, zhouli04, liuxzh}@sei.pku.edu.cn; meih@pku.edu.cn; sccheung@cs.ust.hk
Revised May 11, 2006.

Abstract As a popular approach to dependable service oriented architecture (SOA), a service pool collects a set of services
that provide the same functionality by different service providers for achieving desired reliability. However, if the tradeoff
between reliability and other important qualities, e.g., performance, has to be considered, the construction and management
of a service pool become much more complex. In this paper, an automated approach to this problem is presented. Based on
the investigation of service pools in the typical triangle SOA model, two challenges critical to the effectiveness and efficiency
of service pools are identified, including which services should be held by a pool and what order these services are invoked
in. A set of algorithms are designed to address the two challenges and then a service pool can be automatically constructed
and managed for given reliability and performance requirements in polynomial time. The approach is demonstrated on a

J2EE based service platform and the comparison results between different pooling algorithms are evaluated.

Keywords

1 Introduction

In the past few years, service oriented architecture
(SOA) has been emerging as a promising paradigm for
the development, deployment, integration and manage-
ment of such distributed systems that reside in the sea
of rapid and continuous changes of user requirements
and runtime environments!"2/. One of the most impor-
tant issues in SOA is dependability. In terms of the
concepts and taxonomy built up by Avizienis et all?],
the dependability can be defined as the ability to avoid
service failures that are more frequent or more severe
than the extent acceptable by any stakeholders of the
service. Particularly, the dependability becomes much
more difficult to guarantee when using SOA to integrate
distributed systems developed and/or operated by dif-
ferent parties.

A widely adopted solution to dependable SOA is to
pool multiple services that provide the same functiona-
lity by different service providers!*!. For a given request,
if a service in the pool fails, another service will be
selected to process the request again. Obviously, the
failure ratio of a service pool decreases rapidly accord-
ing to the product of the failure ratio of each service in
the pool. Conceptually, service pools are analogous to
clusters. Both of them are to satisfy a given require-
ment for dependability. However, SOA is also subject
to other important quality requirements, in particular,
the performance. The construction and management of
a service pool have to consider multiple quality require-
ments simultaneously. This makes the problem more

service oriented architecture, service pool, dependability, performance

difficult than that of the clusters. It is aggravated by
the complexities brought about by the Internet. Firstly,
Internet catalyses market competition and the persona-
lization of services. This triggers the ever increasing
number of services with the same or similar functions,
offering a wide spectrum of prices and service qualities.
It is impractical and even impossible to put all available
services into one pool due to technical and nontechnical
factors. Secondly, the invocation order of the services
in a pool could impact some qualities, such as response
time. As a result, though a subset of services determines
the dependability of the pool, the invocation order of
the services has to be carefully determined so that some
other qualities can be guaranteed in a best effort way,
e.g., guaranteeing the desired dependability while keep-
ing the average response time minimal. Thirdly, the ex-
tremely open and dynamic nature of Internet makes the
qualities of services change from time to time and then
makes the construction and management of a service
pool become difficult, error-prone and time-consuming.

In this paper, an automated approach to construct-
ing and managing a service pool according to given re-
liability and performance requirements is presented. In
Section 2, we investigate how service pools can guaran-
tee dependability in the well-known triangle SOA model
and identify the technical challenges of service pools.
For automatically constructing a service pool that sat-
isfies given dependability requirements while keeps the
best-of-the-breed performance, we design a set of algo-
rithms in Section 3. We also prove that the algorithms
are optimal from the user’s perspective and the execu-

Regular Paper
*Corresponding author

Supported by the National Natural Science Foundation of China under Grant Nos. 90412011, 90612011, 60233010, and 60403030,
the National Basic Research 973 Program of China under Grant No. 2002CB312003, and the IBM University Joint Study Program.

566

tion times of the algorithms are polynomial. In Section
4, we demonstrate the approach on PKUAS, a J2EE ap-
plication server integrating service oriented mechanisms,
and evaluate the experimental results between different
pooling algorithms. Finally, we introduce some related
work in Section 5 and conclude the whole paper in Sec-
tion 6.

2 Service Pool in Dependable SOA

Since dependability is tightly coupled with cus-
tomers’ satisfaction and enterprises’ credits and prof-
its, poor dependability could result in uncompensable
damages, such as crash of service instances, crash of
hosting servers, hang or deadlock of services, exceptions
of messages (e.g., the delay is so long, a request mes-
sage results in two or more replicated response mes-
sages), and so on. However, we find that failures mostly
emerge from the elementary roles in the well-known tri-
angle SOA model™?, including service consumers, ser-
vice providers, service brokers and exchanged messages,
as shown in Fig.1. Though different roles require dif-
ferent dependability mechanisms, the service pool is a

common mechanism for the first three roles @.

Dependability

Service pool

Dependability

Bind

Service

Service
provider

consumer

Dependability Dependability

Fig.1. Dependability model of SOA.

2.1 Service Pool for Dependable Service
Consumers

A service consumer usually requests a proper service
and waits for responses. If a request fails, the consumer
can repeat the request until it succeeds or the number
of retries exceeds some limit. The consumer may also
contact the service broker to locate and request an al-
ternative service. In this case, the consumer itself im-
plements core functions of a service pool, i.e., detecting
the failures and selecting a new service.

These dependability mechanisms can be hard-coded
in the implementation of service consumers or encap-
sulated in the client-side middleware. For example,
J2EE application servers, such as Weblogic®!, JBossl6!,
JonAS[7 and PKUASI®!| usually employ the client-side
retrying and re-finding mechanisms for improving the

J. Comput. Sci. & Technol., July 2006, Vol.21, No.4

dependability while moving the corresponding perfor-
mance penalty from servers to clients.

Such dependability mechanisms work well in J2EE
due to the relatively static nature of J2EE, such as the
number and location of servers are deterministic, the
failure of a server is usually temporary, etc. On the
contrary, an SOA system is much more dynamic. As
a result, the retrying may not succeed for ever because
the service provider may disappear permanently, and
the re-finding cost may be very expensive because the
number and location of services may change rapidly and
continuously. Obviously, a common and reusable service
pool that deals with the construction and scheduling of
service candidates can free service consumers from the
dependability problems.

2.2 Service Pool for Dependable Service
Brokers

A service broker usually stores a WSDL definition
when a service provider publishes its service into the
broker and returns a WSDL definition when a service
consumer queries a desired service. For guaranteeing
the dependability, the service broker may become much
more active. It may periodically validate the availabil-
ity of services specified by stored WSDL definitions. If a
service is unavailable, its WSDL definition could be re-
moved from the broker. Even better, the service broker
may support ranking of services!®], that is, it can collect
the failed and successful history of services and rank
these services so that service consumers can always get
the most dependable services. In these two cases, the
service broker acts as a service pool using two different
scheduling algorithms.

Such dependability mechanisms for the naming and
directory servers are also common in the classical dis-
tributed computing areas. For example, the dependabil-
ity of HTTP based systems is usually achieved by the
way that the DNS server maintains a list of replicated
HTTP servers and returns one of them to an HTTP
client in terms of some scheduling algorithms.

The effectiveness of such dependability mechanisms
depends on the implementation details of the applica-
tion. For example, if a service consumer invokes the
service broker per request to a desired service, it will
get the most dependable service. If the consumer in-
vokes the broker one time and requests the service more
times, the dependability mechanisms provided by ser-
vice brokers cannot impact the consumer until it invokes
the broker again. Since SOA systems usually belong to
the first case, the service pool in service brokers is effec-
tive in SOA. According to the experience gained in tra-
ditional distributed systems, the scheduling algorithm is
the key to the effectiveness and efficiency.

D The dependability supported by service pools has many terms, such as reliability, availability and accessibility in different litera-
ture. To our point of view, these different terms just come from different perspectives. In this paper, we use ‘reliability’ because we

focus on how to implement the service pool.

Gang Huang et al.: Performance Aware Service Pool in Dependable Service Oriented Architecture 567

2.3 Service Pool for Dependable Service
Providers

There are two types of service providers: one pro-
vides a service by assembling a set of existing services
while another provides a service by encapsulating exist-
ing business logic in legacy systems.

In the first type of services, called composite services,
the service pool is a common dependability mechanism.
For example, in most service composition approaches,
a service type can be implemented by a set of service
partners, which will be selected dynamically by some
algorithms. Furthermore, a service provider can assem-
ble multiple services into a service pool for providing a
more reliable version of the service. Though the ser-
vice pool is commonly used in service composition, its
construction and management are done by hand or au-
tomated by some inefficient algorithms. More discussion
on their limitation can be found in the section of related
work.

The stakeholders of SOA systems usually overlook
the dependability mechanisms of the second type of ser-
vices, called primitive services. Usually, a primitive ser-
vice is implemented by a set of backend components
in legacy systems, in which classical middleware, such
as CORBA and J2EE, provides many sophisticated de-
pendability mechanisms. These mechanisms can im-
prove the dependability as well as impact other qual-
ities of primitive services and then make the scheduling
of these services in a pool more complex. For exam-
ple, we employ the recovery-oriented computing mech-
anisms for repairing the failure of a service, which can
improve the dependability of a service by 80% but in-
crease the response time by 10 to 15 seconds'®). This
work also shows that the dependability mechanisms of
backend systems can be efficiently utilized if and only if
the stakeholders of SOA systems take them into consid-
eration.

3 Pooling Algorithms

From the above study on service pools in the trian-
gle SOA model from the perspective of dependability, it
can be concluded that the core of the service pool is the
pooling algorithm, which can select a set of services and
define the invocation order according to desired quali-
ties. Different qualities have different calculations and
we only focus on the reliability and response time, i.e.,
keeping the response time as little as possible while sat-
isfying a given reliability.

3.1 Basic Definitions

The reliability and response time are defined as
follows. (Note that, there are some other definitions
of these two qualities, which do not impact our algo-
rithms.)

Reliability is a successful execution rate of a service,
which is the probability representing the degree to which
a request is correctly served!!l. It can be calculated as
follows:

Vreliability = N(S)/M(S),

where N(s) is the number of times that the service has
been successfully completed within the maximum ex-
pected time frame and M (s) is the total number of in-
vocations.

Response time is the amount of time between send-
ing the request and receiving a responsel!!] or the guar-
anteed average time required to complete a service re-
quest, which can be represented in the following formula:

Responsetlme = Tezecutiontime + Tdelay + Twaitinga

where Tegecutiontime 1S the time to process the service
task, Tgelqy is the time for the transmission, and Tiyasting
is the time of waiting for the result. In our model, the
binding time and network latency are not considered as
either they can be ignored, compared with the execution
time, or they cannot be controlled at all in the unstable
or heavy traffic network. In the rest of our paper, we

use 2 to denote the definition formula.
Suppose that there are m service instances in the

pool. Let S é{51, Sa,...,Sn} be the pool of service in-
stances, Ry, R, ..., R, be the reliability of them with
execution time Ty, 75, ..., T,.

Let Ié{l,2 ...,n} be the index set. If A is a subset
of I, we use S(A) é{51|(z € A)} to denote the selected

group of service instances. The MRT (maximum re-
sponse time) of this group of service instances is denoted

as MRT(A) 2 Y ica Ti- Tt is easy to prove that the reli-
ability of S(A) denoted by R(A) is 1 —]];c4(1 — R;) @

The minimum reliability of the service required is de-
noted by Ry. There are many measurements of the re-
sponse time, two of which are considered in this paper
for simplification. The first measurement is the mini-
mal mazimum response time of S, denoted as MINMRT,
where MINMRT(S) 2 min (MRT(A)) and

(ACS)A(R(A)>Ro)
R(A) > Ry are the reliability constraint of the ser-
vices. The second measurement is the average response
time of S, denoted by ART, which means the math-
ematical expectation of the response time. To calcu-
late ART, we have to rearrange the selected set A,

and denote the result as o(A) é(’il,’ig, .vvyim), Where
A = {i1,42,...,%m . The corresponding service invoca-
tion order can be decided by this. In this order, if the
instance iy is missed, the request will be automatically
bound to the instance ix41. Therefore, it is easy to ob-
tain the formula of calculating the expected response
time as

ART(U(A)) é E(TEzecution)
= RlTl + (1 — Rl)Rz(Tl + TZ)

: We assume unreliability is contributed OIlly by services. Note that other components in the service pOOl mana ement, such as
g
service switching could introduce unreliability, which are omitted since we assume the service pOOl itself is reliable.

568

+(1—Ri1)(1— Ro)Ra(Ty + T2+ T3) +---

+(1—-Ri)(1—R2)--- (1 — Rpm_1)

Rn(Th4+To+-4+Tn)+(1—Ri)(1—Rs)---

1= Rm1) (1 —Run)(T1+To+ -+ Tw)
=Ti(Ri+(1—Ri)Re+---+(1—Ri1)(1—R2)---

(1= Ry 1)((1 = Rm) + Rim))

+T2((1 - Ri)R2+---+ (1—R1)(1—Rz)---

(1= Rm-1) (1= Rn) + Rn))+---

+Tm(1 = R1)(1=Ra)- (1= Ry 1)(Rom + (1 = Rm))
=T1+To(1 —Ry)+ -+ +Tm(1 —Ri)(1 — R2)--+ (1 — Ry—1)

=T +T2(17R1)+~~~+Tm(7ﬁ1(1 fRz-,))
=1

:i),

where the meaning of A and o(A) is the same as above.

For convenience, we represent the values of reliabi-
lity measurements as the logarithm of the failure ratio.
Let ER; 21— R;, ER(A) 21— R(A) be the failure ratio,
LER; 2 —1g(ER;), LER(A) 2 —1g(ER(A)) be the loga-
rithm of failure ratio, where lg(z) is the common loga-
rithm function and ¢ € T U {0} = {0,1,...,n}. Notice
that LER is always positive since ER< 1. The reason
we choose this measurement is that the requirement of
the accuracy of the percentage notation of Ry will be
increased when Ry is close to 1. For example, the relia-
bility of 90% and 90.1% can be considered almost the
same in most cases, while 99.9% and 99.99% are very
different. If a server receives 10000 requests per hour,
99.9% means that one error will occur per six minutes
in average while 99.99% means that one error will oc-
cur per hour in average. So, it would be better to use
the scientific notation of the failure ratio to express our
requirements, which is proper to be measured by the
logarithm instead of the percentage of reliability. Here
we make an assumption that every LER has the accu-
racy of 2 decimal digits. We think this approximation is
reasonable since very few users require such a high ac-
curacy that they care the reliability difference between
90% and 90.5%, or between 99.9% and 99.905%. Of
course, we can ask for a higher accuracy or lower accu-
racy. The algorithm would still work when the require-
ment of accuracy changes, while the accuracy does not
impact our algorithm.

Jj—1

(H(l - Riz))Tz‘]— (Wheref[R,

=1

>

3.2 Optimal Analysis

Our optimal analysis on this approximate model in-
cludes two kinds of selection problems.

1) MRT-prior selection. It is easy to prove that
MINMRT(S) is not related to the order of service in-
stances of a selected set S(A). So an MRT-prior selec-
tion can be described as follow. Firstly, we select a sub-
set A of index set I satisfying MRT(A) = MINMRT(S),
i.e., S(A) is the set of selected service instances ensuring

J. Comput. Sci. & Technol., July 2006, Vol.21, No.4

that the reliability of the service will not be less than
Ry, and the MRT of this set is minimum. This subset is
denoted by Ajpp,. Secondly, we select an arrangement
O'(AM”L) of AMzn (denoted by O'(AM.m) é(il, ig, . ,’im),
where Anin = {i1,%2,-..,%m}), which satisfies that
for any arrangement of Apn, say, o'(A), such that
ART(0(A)) < ART(0'(A)). o(Apsin) is called an MRT-
prior selection.

2) ART-prior selection. Only the first k-th three ser-
vice instances need to be considered because the contri-
butions of other instances to ART are so small (less than
1/100) that they can be ignored, as we will show later.
Therefore, we select the first three service instances in
the pool to get an approximately optimized ART and
it will be close to the best. For the rest of service in-
stances, we prefer to find an MRT-prior solution. So, an
ART-prior selection can be described informally as fol-
low. Firstly, we select three service instances as the first
three instances so that the ART of this selection is close
to the best. Then we make an MRT-prior selection for
other service instances so that the service can still have
a good MRT and the reliability requirement is satisfied.

3.3 MRT-Prior Selection Algorithm

Without loss of generality, we assume that S is sorted
by descending sort of T;/R; (i = 1,2, ...,n). The reason
for this assumption will be discussed later. To solve the
MRT-prior selection problem, the first step is to select
A such that MRT(A) = MINMRT(S). Suppose that
S(A) is the selected set. By the above definitions of ER
and LER we can easily get that LER(A) =), , LER;.

So we have

R(A) > Ry < lg(1 — R(A)) > —lg(1 — Ro)
& LER(A) > LER,,

then

Min

(e a5 pyy MET(A))

- Min 3 T)

(Ag)A(ZiEA LER;>LERo) " icA

It can be proved that if all the values were considered
as real numbers, this problem would have the same com-
plexity with the 0-1 knapsack problem which is NP-
hard. But we have already been on the assumption that
the LER values only have 2 decimal digits. This means
that the value set of LER is finite instead of infinite.
So we can find an algorithm with polynomial time re-
spect to || and another parameter about LER. In fact,
our algorithm is linear to both |I| and the parameter

Pézz‘el LER; in our approximate model. It is very
[11]

similar to the integer-value 0-1 knapsack algorithm!**/

although we must make some changes.
Let I,2{1,2,3,...,k} C 1.

function F'(k,e) 2 B Max
(Ag’f)/\(ziex LER;<e)

We
(Zzez TZ), and

define a

Gang Huang et al.:

F(k,e) 2 o if e < 0. Note that

Min

MIN MRT(S) =
(ACDA(R(A)>Ro)

(MRT(A))

= Min (Ti)
(ACI)/\(Z LER;>LERg) *

i€EA
e M (Ee)
(Xgl)A(X:iEZ LER;<P—LERq) —
S s Yy (27
Py (ACI)/\(Z + LER;<P—LERo)
=Y T.— F(n,P - LER,), (1)
i€l

where A2 T — A is the complement of A. Therefore we
can calculate MINMRT(S) by computing F(k,e) recur-
sively from the following equations:

F(k—1,e— LERy)+T};

F(0,e):=0, 0<e<P;
F(k,0):=0, 0<k<mn
F(k,e)= —oo, (e <0). (2)

Now we show the explanation of (2). Let Ag C I
satisfies MRT(Ag) = F(k,e). There are only two
cases. If k belongs to A, since Ag — {k} C Ix_1,
F(k,e) = MRT(Ao) = Xica, i = 2icap—{my Ii +
T, < F(k—1,e —Ty) + T < F(k,e), and then
F(k,e) = F(k—1,e— LER}) + T} If k does not belong
to A, it is obvious that F(k,e) = F(k — 1,e). So the
first equation of (2) holds, and other equations of (2)
are quite obvious.

We use A(k,e) to denote a subset A which satisfies
MRT(A) = F(k,e). It will not make any confusion in
this paper. From the above discussion, the correctness
of the following algorithm is proved.

Algorithm 1. Calculate All F(k,e) and A(k,e)
1. F(0,e) :=0,0< e < P, F(k,0) :=0,0 < k < n,
F(k,e) := —oo (e < 0);
2. A(0,¢) :0) 0<e< P, Ak,0):=0,0 < k <n,
A(k,e) =0 (e < 0);

3. fork:=0ton
for e := 0 to P step 0.01
F(k,e) :==Max{F(k—1,e),F(k—1,e— LER:)+Tk};
if (F(k,e) = F(k —1,e — LER,) + T:) then
A(k,e) :== A(k — 1,e — LERy) U {k};
else
A(k,e) := A(k — 1,e);
4. return F'(k,e), A(k,e) for every (k,e).

Now we can get MINMRT(S) by returning), ; T;
F(n,P— LERy). And we can get Anin because AMln =
I — A(n,P — LERy). It is easy to prove the complexity
of this algorithm is O(100Pn) = O(Pn).

The MRT-prior selection problem has not been fin-
ished yet because we have to decide o(Apin). We need
the following lemma to solve this problem.

Lemma 1. Given an index subset A. If 0(A) is an
arrangement of A satisfying that for any arrangement

Performance Aware Service Pool in Dependable Service Oriented Architecture 569

o'(A), ART(c(A)) < ART(c¢'(A)), then, let o(A) =

(i1,82, - ,0m), we have T;, /R;, < Ty, [R;,,,, Vj < m.
Proof. Suppose that there is a J, which
makes kJéTiJ/RiJ > ki1 éEJ+I/Ri1+1' Recall

the definition of ART(c(A)), ie. ART(c(A))2
> (HJ IER”)Ti]. (1‘[? R, 21) Now, let o’ =
(B1ye ey 81,005y b))y afEle,b ER;,,,, and let
a2 Hf;ll ER;,. It is obvious that o > 0. Then,

ART() — ART(c")
((T +EJ+1ER) (iJ+1 +TiJERiJ+1))

o ((ks(1—a)+kyii(1—b)a)
— (kyra(1 = b) + ky(1 = a)b))
a-(ky—kye1)(1—a)(1—b)>0. (3)

Since ART(0(A)) > ART (c'(A)) is a contradiction,
this lemma is proved. O

Because the arrangement set of A is finite, such o(A)
in the above lemma exists and ART (0(A)) is the mini-
mum solution. So it is easy to get the following lemma
by recalling the assumption in the beginning of this
subsection, which ensures the descending sort of T;/R;
(i=1,2,...,n).

Lemma 2. If 0(Appn) is the descending sort of the
index subset Apgin, then o(Apin) is one of the MRT-
prior selections of S.

With this, the following algorithm makes sense.

Algorithm 2. MRT-Prior Selection

1. Re-label the index of S in order that S is sorted by

the descending sort of T5/R; (1 =1,2,...,n);

2. Calculate all F((k,e) and A(k,e);

3. Return) ., Ti — F(n, P — LERo) as MINMRT (S);

4. Return the descending sort of I — A(n, P — LERy) as

a MRT-prior selection of S.

It is not hard to see that the complexities of these
four steps are O(nlogn), O(nP), O(1), O(n) respec-
tively. Therefore, the overall complexity of this algo-
rithm is O(nP).

3.4 ART-Prior Selection Algorithm

It is reasonable to assume that the reliability of ev-
ery service instance in the pool is over 80%. By the
definition of ART, the coefficient of T}, is Hg;ll ER;,.
Therefore, the coefficient of T;; is not greater than 1/125
when 7 > 3, and reduced exponentially. In that sense,
it is reasonable to ignore the contributions of the ser-
vice instances after the first three instances. So after
the first three instances are selected, we prefer to use
the MRT-prior selection for the other instances. Then
we can define a good selection as follow:

Definition. A minimum selection (MS for short)
oMin(A) is a selection such that the reliability con-
straint is satisfied and ART(cMin(A)) < ART(c'(A"))
for every selection o'(A’). Let o(A) be a selection. We
call o(A) a good selection if the following statement is
true: for every o Min(A) there ezist selections o'(A'),

570

" (A") such that ART(c(A)) < ART(o'(4")), while
d’(A") and oMin(A), o"(A") and o(A) both have the
same first three terms, and all of them satisfy the relia-
bility constraint.

Now we prove the following lemma:

Lemma 3. Suppose every MS has at least three
terms. Then any descending sort of o(A), where A con-
tains {n,n — 1,n — 2}, is good with the assumption in
the beginning of Subsection 3.4.

Proof. Let o Min(A) be any MS. Select a o'(I), an
arrangement of the index set ¢/(I) which has the first
|A| terms is the same as oMin(A). From Lemma 1,
ART(c¢'(I)) > ART((n,n — 1,mn — 2,...,1)). So the
lemma is proved. a

If some service instances can satisfy the reliability
constraint itself, then we use M to denote the index of
the one which has the minimum response time. Simi-
larly, we use (M1, M>) to denote the pair that has a min-
imum ART and satisfies the reliability constraint them-
selves. It is easy to prove that if the ART of a selection
is smaller than a good selection, this selection is good
too. And it is also clear that if an MS has less than 3
terms, it must be (Mj, Ms) or (M). Now we suppose
that o(A) is any selection the first three terms of which
are (n,n — 1,n — 2). Then, from Lemma 3, we can get
that Min{ART (¢(A)), ART((M,, M>3)), ART((M))} is
the ART of a good selection. We can choose the corre-
sponding arrangement as the good selection.

The following algorithm is a solution to this prob-
lem and the correctness of it is ensured by the above
discussion.

Algorithm 3. ART-Prior Selection

1 and 2 are the first two steps of the algorithm MRT-

prior selection.

3. if LERoy > LER, + LER,._1 + ER,,_> then

Tag: =true;

TM := Y T, - F(n—3,P~ (LERo — LER,

2
— LERu-1 = LERu-2) + Y Tu-s;
=0
A:=1—A(n—3,P — (LERy — LER,, — LER,_;
— LER,_3))+ {n,n—1,n —2};

o'(A) := the descending sort of A.
else
Tag:= false; A := oo;
4. Search M and (M7, M>).
5. T_min := Min{ART (¢’ (A)),
ART((My, My)), ART((M))};
o(A):= the corresponding arrangement of 7"_min.
6. Return o(A), T_min as the ART-prior selection and
its ART.
7. if T_min = ART(¢'(A)) and Tag= true then
Return TM as the MRT of this selection
else Return MRT (0(A)) as the MRT.

We can sort all T; before the search of M and
(Ml, Mg) Notice ART((Ml, Mg)) = T‘]M1 + ERMlTM2~
Therefore, by using the binary search to the selections of

J. Comput. Sci. & Technol., July 2006, Vol.21, No.4

My, the complexity of the fourth step is O(nlogn). It is
obvious that the first two steps are the bottleneck of the
algorithm. Therefore the complexity of this algorithm
is also O(nP).

4 Implementation and Experiments
4.1 Prototype on PKUAS

Being a J2EE application server, PKUAS! has been
widely used in Chinese academia and industry. For
supporting some SOA systems, e.g., the national wide
component repositories, PKUAS integrates a set of web
service mechanisms, including JUDDI? as the service
broker and Apache AXIS[* as the SOAP engine. On
the basis of PKUAS, we implement a service pooling
prototype as a special middleware plug-in, as shown in
Fig.2.

The core of the prototype is a Service Pooling Ma-
nager, which consists of three major components. The
Pool Planner gets the functional requirement from the
service type definition that uses WSDL and then queries
the UDDI server with the given functions. It also gets
the reliability and response time requirements from a
WSLA or an extended WSDL of the given service type.
After that, the Pool Planner will use the pooling algo-
rithm to generate the selection policy according to the
given reliability and response time requirements. On
the basis of the selection policy, the Service Selector de-
termines which services will be selected for or removed
from the service pool. The Pool Generator finally gen-
erates the service pool as an available service queue for
service consumers. It maintains the up-to-date states of
the service pool, including the execution state and mes-
sages triggered by services. Once the pool is unavailable
or suffers a significant performance penalty, it requests
the Service Selector to do removal operation and re-plan
the pool policy.

4.2 Experimental Evaluation

We conducted a series of experiments for two goals,
i.e., investigating the improvement of reliability by us-
ing the service pool and illustrating the effectiveness
of reducing the response time through our pooling al-
gorithms. The experimental environment consists of a
server and several client machines. All the machines
are Pentium IV 2.8G PC with 512M DDR memory and
directly connected with 100 Mbps Ethernet.

Firstly, we deploy 10 services having the same func-
tions in the AXIS server and publish them in the JUDDI
registry. Then we search for services, consume every ser-
vice and provide feedbacks to record the response time
and reliability. The three steps are repeated 500 times.
Particularly, we randomly interrupt some requests, i.e.,
throwing exceptions, so that the successful ratio of a ser-
vice falls into the range of 80% to 90%. Then the test
data for each service instance with the concrete values
of the response time and reliability is generated.

Gang Huang et al.: Performance Aware Service Pool in Dependable Service Oriented Architecture 571

Service Type

request
(Consumer Client } B

Reliability comparison

1. Cret user requests Sexvice Pool 0.96
® —
0.95 &
=]
| von //A/"“_"_‘,
uDoDi \ - > / /-
Rt Pool Planner | £ 093
Gt 3. Feedback z o // /
4.:i.u'n\'r:|h' |’:Nl|l[|!: Policy 9. Replan Pool T—) 0.92
|5 Service Selecion i ~ pd /‘ -= Optimal selection
A - Random selection
Service Selection e \ 0.90
Manager 8. Service removal
/ 0'890 1 2 3 4 5 6 7 8 9 10 11
Provider N Pool Generator) . .
Number of service instances in pool
6. Pool Construction

Fig.2. Architecture of service pooling prototype.

Next, we consume the service for 1000 times while
increasing the size of service instances. Four different
algorithms for constructing the service pool tested here
are: 1) non-optimal selection in the random sequence; 2)
optimal selection with the optimal algorithm; 3) relia-
bility prior selection in the reliability descending order;
4) response time prior selection in the response time as-
cending order.

Two assumptions are held in the experiment: 1) we
do not consider the binding time of requests since all the
services are deployed in the same network environment;
2) the sort duration is neglected since we apply Merge-
Sort, which costs less than 20 milliseconds and such time
cost can be neglected compared with the execution time
of a service.

4.2.1 Simulation 1: ART-Prior Selection

First we investigate the ART-prior algorithm and
we constraint the reliability ranges from 85% to 95%.
Fig.3 shows the trend for reliability with the size of ser-
vice pool. No matter what selection policy is applied,
we can see that the reliability increases when the ser-
vice pool size increases. This gives us the confidence
that the reliability will be higher by using more ser-
vice instances in a certain range. On the other hand,
it also shows the effectiveness of different algorithms.
Besides the reliability prior selection (it always selects
the service having higher reliability than others), the
optimal selection can achieve a little higher reliability
than the random selection and the response time prior
selection. Another conclusion using the optimal selec-
tion algorithm we get is that the reliability keeps stable
after the pool involves 4 instances (here the reliability
is 95.4%). It means the first four instances are reliable
enough in most cases, while the random selection needs
more instances to reach the same reliability. Therefore,
by the optimal policy, it is unnecessary to enlarge the
capacity of service pool continuously and then the main-
tenance penalty can be well controlled.

Fig.3. Comparison of reliability (ART Prior).

Fig.4 shows that the response time increases more
or less when the pool size extends. Obviously, the in-
creasing response time penalty in the optimal selection
is much smaller than the other three algorithms. When
the pool generated by our optimal algorithm reaches the
capacity of 4 instances, the response time will be very
stable (about 9600 milliseconds). The reason is, usu-
ally by our algorithm, the first 3 instances can satisfy
the reliability requirement, and the remainders can be
neglected in almost all cases. On the contrary, the re-
sponse time in the random selection grows very fast.
The response time of the response time prior selection
is only less than that of the random selection. It means
that only considering the response time may not get
the desired little response time. Although the reliabil-
ity prior selection can achieve much higher reliability, it
always leads to longer response time than the optimal
selection (increasing 10%-30%), while the reliability dif-
ference is very small (95.4% versus 95.7%).

8
-+ Optimal
7t | = Non-optimal
-+ Responsetime-prior /‘//1
6 | - Reliability-prior /:7/‘//
<
25 .
x sl
~ 4
E A//./(
- e
2 /./
1 %‘7
o 1 2 3 4

0
5.6 7 8 9 10 11

Pool size

Fig.4. Comparison of response time (ART Prior).

4.2.2 Simulation 2: MRT-Prior Selection

To demonstrate the MRT-prior algorithm, we reach
much higher reliability, i.e. 98%. As shown in Fig.5,
it is obviously that the optimal selection always resides

572

below other three algorithms. It reveals that optimal
selection guarantees the lowest time overhead. The ran-
dom selection has the worst MRT, since it may try all
service instances. Another conclusion we get is that the
slope of all four algorithms becomes higher when the
pool size increases and the smaller the pool size, the
better the effectiveness of our optimal algorithm.

8
—+ Optimal
T -=- Non-optimal /
¢ || = Responsetime-prior A
- Reliability-prior
e N
5 y
= //‘//
£3
< /
2 /
1 v
0

o 1 2 3 4 5 6 7 8 9 10 11
Pool size

Fig.5. Comparison of response time (MRT Prior).

5 Related Work

Currently, the selection for dependable web services
becomes an active research area. Due to the computa-
tional complexity of service selection over the Internet,
some researchers focus on the optimal way. Bonatti et
al.'4 proved the service selection problem as NP-hard
and proposed three kinds of optimal algorithms. These
algorithms are based on cost minimization and two dif-
ferent quality maximization criteria. Their work pro-
vides some computational foundation and heuristic so-
lutions for service selection.

In AgFlow!%:1%] Zeng et al. discuss a global plan-
ning way to generate a QoS model for service selection.
A multidimensional QoS model involves price, accessi-
bility, response time and reputation. They provide a
mechanism for service providers to query their QoS com-
puted by the QoS registry, and update their published
services to become more competitive at runtime. For the
optimal selection, linear planning is applied to the QoS
matrix for maximum QoS values. For a given service
flow and assuming each service has multiple implemen-
tations, they try to calculate an execution path that
satisfies the desired multiple QoS requirements. The
most important contribution is to design and compare
two methods. One is to select the optimal implemen-
tation only considering the individual service. Another
is to select the optimal implementation from the global
perspective. It should be noted that their global selec-
tion is similar to the scenario specific validation in our
approach. They optimize the global calculation with In-
teger Programming (IP), which reveals the fundamental
differences with ours.

The algorithm presented in this paper uses a differ-
ent mathematical model for the above work. In real-

J. Comput. Sci. & Technol., July 2006, Vol.21, No.4

world SOA cases, we discovered that users not only ne-
glect the little difference of the response time of differ-
ent instances, but also do not care the difference of such
as 89.9% and 90% reliability. The two-digit is enough
to specify the reliability constraint in practice. It also
makes our algorithm with precise MRT solution in the
approximate model. The discussion in the beginning
of Subsection 3.4 explains why we chose the first three
instances, and the latter experiment supports this dis-
cussion.

The broker is a common technique to improve net-
working level qualities such as reliability and availabi-
lity, etc. The broker acts as an intermediary third party
to make web services selection and QoS negotiation on
behalf of the client. Tsai et all®! propose a testing ap-
proach, CV&V (Collaborative Verification and Valida-
tion) on UDDI server to achieve dynamic reconfigura-
tion. They suggest group testing technique that has
the ability to evaluate the test scripts, automatically es-
tablish the oracle of the each test script, and identify
faulty web services in a failed composite one. Erradi et
al.[19] design a QoS-aware dynamic reconfigurable bro-
ker (called wsBus) to ease reliable integration and run-
time management of web services by using a broker pat-
tern enriched with various fault-tolerance mechanisms.
However, the delegation of selection and negotiation
raises performance penalty. Actually, our approach can
also be regarded as a broker. We give details on how
to reduce the performance penalty and enforce our ap-
proach in an objective manner for the service consumers.

Besides the service consumer, broker and provider,
the relationships between them can contribute to the
dependability, i.e., the dependable message exchange.
Since existing popular middleware has been originated
for problems of message exchange, e.g., CORBA for
interoperation between distributed objects, there are
many efforts on how to improve dependability via spe-
cial mechanisms in message exchange. For example,
FlexiNET['7l and MChaRM!®! support asynchronous
message exchange, group communication, buffer-and-
deliver transmission, etc. PKUASE! provides an open
interoperability framework so that some special depen-
dable communication protocol, like RTP (Real Time
Protocol), can be installed on demand. There are some
similar efforts on SOAP. Looker et al.[*! have concluded
the limitations of current SOAP 1.1 standard on build-
ing an FT web service and then propose an FT-SOAP
(Fault Tolerant SOAP) for building web services with
higher resilience to failure. Obviously, dependability
mechanisms for message exchange can deal with depend-
ability threats related to communications with more
or less performance penalty. More importantly, these
mechanisms are usually specific to the protocol imple-
mentation so that it will impact the openness of SOA.

6 Conclusions and Future Work

The dependability and performance are the most im-

Gang Huang et al.: Performance Aware Service Pool in Dependable Service Oriented Architecture

portant qualities in service oriented architecture (SOA).
The service pool succeeds in improving dependability
of SOA systems but suffers the significant performance
penalty. In this paper, we presented an automated ap-
proach to constructing and managing service pools that
can achieve the given reliability while keeping the re-
sponse time (e.g., average response time or maximum
response time) minimal. The algorithms in our ap-
proach are optimal and spend polynomial time, which
are proved not only in theory but also by the experi-
ments on J2EE.

There are many open issues to be addressed in the
future. Firstly, service pools should support the trade-
off between more QoS attributes. However, it should be
noted that the measurements of different QoS attributes
may be diverse from one to another. And the interac-
tions between some qualities are hard to investigate in
a quantified way. In that sense, the popularization of
the service pool is correlated to the QoS modeling of
SOA. Secondly, the service pool may not work well in
service composition because QoS evaluation of service
composition does not rely on individual services. So the
role and challenges of the service pool, in service com-
position, should be investigated carefully. Finally, the
service pooling prototype will be improved and released
as a plug-in to popular service platform and then more
cases can be studied.

References

[1] Kreger H. IBM Web Services Conceptual Architecture. 2001.
http://www.ibm.com.

[2] Papazoglou M P, Georgakopoulos D. Service-oriented comput-
ing: Introduction. Communications of ACM, 2003, 46(10):
24-28.

[3] Avizienis A, Laprie J C, Randell B et al. Basic concepts and
taxonomy of dependable and secure computing. IEEE Trans.
Dependable and Secure Computing, 2004, 1(1): 11-33.

[4] Tsai W T, Song W, Paul R et al. Services-oriented dynamic
reconfiguration framework for dependable distributed com-
puting. In 28th Annual Int. Computer Software and Applica-
tions Conf. (COMPSAC), Hongkong, China, 2004, pp.554—
559.

[5] WebLogic Homepage. http://www.bea.com.

[6] JBoss Homepage. http://www.jboss.org.

[7] JonAS Homepage. http://www.objectweb.org.

[8] Mei H, Huang G. PKUAS: An architecture-based reflective

component operating platform. In 10th IEEE International

Workshop on Future Trends of Distributed Computing Sys-

tems (FTDCS), Suzhou, China, 2004, pp.163—169.

Tsai W T, Paul R, Cao Z et al. Verification of web services

using an enhanced UDDI server. In The Eighth Workshop on

Object-Oriented Real-Time Dependable Systems (WORDS),

Guadalajara, Mexico, 2003, pp.131-138.

[10] Huang G, Liu X, Mei H. SOAR: Towards dependable service-
oriented architecture via reflective middleware. Int. J. Simu-
lation and Process Modeling, Jan. 2007 (to appear).

[11] Zeng L, Benatallah B et al. QoS-aware middleware for web
services composition. IEEE Transactions on Software Engi-
neering, May 2004, 30(5): 311-327.

[12] http://ws.apache.org/juddi/.

[13] http://ws.apache.org/axis.

[14] Bonatti P A, Festa P. On optimal service selection. In Proc.
Int. Conf. World Wide Web, Japan, 2005, pp.530—538.

[9

573

[15] Liu Y, Ngu A H, Zeng L J. QoS computation and policing in
dynamic web service selection. ACM Conference on World
Wide Web, New York, USA, 2004, pp.66—73.

[16] Erradi A, Maheshwari P. A broker-based approach for im-
proving web services reliability. In International Conference
of Web Services, Florida, USA, 2005, pp.355—-362.

[17] Hayton R, ANSA Team. FlexiNet Architecture. 1999,
http://www.ansa.co.uk.
[18] Cazzola W. Communication-oriented reflection: A way to

open up the RMI mechanism [Dissertation]. Milano, Italy,

2001.

[19] Looker N, Jie Xu. Assessing the dependability of SOAP RPC-
based web services by fault injection. In Ninth IEEFE Interna-
tional Workshop on Object-Oriented Real-Time Dependable
Systems (WORDS), Guadalajara, Mexico, 2003, pp.163-170.

Gang Huang is an associate pro-
fessor in the School of Electronics
Engineering and Computer Science,
Peking University. His research inter-
ests are in the area of distributed com-
puting with a focus on middleware,
including the construction and man-
agement of middleware, and software
engineering with a focus on compo-
nent based development and software
architecture.

Li Zhou is a master student in
the School of Electronics Engineer-
ing and Computer Science, Peking
university. His major research in-
terests include software architecture,
model checking, service-oriented ar-
chitecture and agent technique.

Xuan-Zhe Liu is a Ph.D. stu-
dent in the
Engineering and Computer Science,
Peking University. His research inter-
ests are in the area of service oriented
architecture (SOA) with a focus on
web services, dependable service de-
livery and enterprise service bus.

School of Electronics

Hong Mei is a professor in
Dept. Computer Science and Tech-
nology, Peking University.
rent research interests include soft-

His cur-

ware engineering and software engi-
neering environment, software reuse
and software component technology,
distributed object technology, soft-
ware production technology, and pro-
gramming language.

Shing-Chi Cheung is an asso-
ciate professor in the Department of
Computer Science, Hong Kong Uni-
versity of Science and Technology.
His research interests are in the areas
of software testing, pervasive comput-
ing, RFID based systems.

