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Abstract  Substantial research has been devoted to the modelling of the small-world phenomenon that arises in nature
as well as human society. Earlier work has focused on the static properties of various small-world models. To examine
the routing aspects, Kleinberg proposes a model based on a d-dimensional toroidal lattice with long-range links chosen at
random according to the d-harmonic distribution. Kleinberg shows that, by using only local information, the greedy routing
algorithm performs in O(lg® n) expected number of hops. We extend Kleinberg’s small-world model by allowing each node

to have two more random links to nodes chosen uniformly and randomly within (g n)% Manhattan distance from z. Based
on this extended model, we then propose an oblivious algorithm that can route messages between any two nodes in O(lgn)
expected number of hops. Our routing algorithm keeps only O((lg n)‘”l) bits of information on each node, where 1 < 8 < 2,
thus being scalable w.r.t. the network size. To our knowledge, our result is the first to achieve the optimal routing complexity

while still keeping a poly-logarithmic number of bits of information stored on each node in the small-world networks.
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1 Introduction

In [1] Milgram shows that there is a small-world phe-
nomenon in the human society, namely, any two per-
sons in the world can be connected by a chain of six
acquaintances on average, and hence people can relay
messages efficiently to any target via common acquain-
tances. The small-world phenomenon has also been
shown to be pervasive in networks from nature and engi-
neered systems, such as the World Wide Web!23]| peer-
to-peer systems[4’7], etc.

A number of network models has been proposed to
study the small-world properties, see, e.g., [3, 8-10].
Newman and Wattsl®! propose a random rewiring model
whose diameter is a poly-logarithmic function of the size
of the network. The model is constructed by adding a
small number of random edges to nodes uniformly dis-
tributed on a ring, where the nodes are connected with
their near neighbors. However, Newman and Watts’s
model does not address the routing issues of small-
world networks('9. The poly-logarithmic diameter of
some graphs does not imply the existence of efficient dis-
tributed routing algorithms?!. For example, the ran-
dom graph in [11] yields a logarithmic diameter, yet any
routing algorithm equipped with only local information
requires at least 1/n expected number of hops (where n
is the size of the network)!Cl.

In order to examine the routing issue, Kleinberg'"]
develops a new model based on a d-dimensional
torus with long-range links chosen randomly from
the d-harmonic distribution, that is, a long-range
link exists between nodes w and v with probability
O(Dist(u,v)~?), where Dist(u,v) denotes the Manhat-
tan distance between u and v. Based on this model,

small-world model, augmented local awareness, decentralized routing, analysis of algorithms, distributed

Kleinberg shows that a simple greedy routing algorithm
using only local information can route messages between
any two nodes in O(lg2 n). The symbol lg denotes base-
2 logarithm. Also, we remove the ceiling or floor for
simplicity throughout the paper. This bound is tight-
ened to O(lg?n) later by Barriere et al.l'?l and Martel
et al.13] respectively. Further research!®'3=15 ghows
that in fact the O(lg”n) bound of the original greedy
routing algorithm can be improved by injecting more in-
formation to the routing message. Manku et al.l show
that if each message holder at a routing step takes its
neighbors’ neighbors into account when making rout-
ing decisions, the routing complexity can be improved

to O(%), where g denotes the number of long-range
contacts for each node. Lebhar and Schabanell!* pro-
pose a routing algorithm for 1-dimensional Kleinberg’s

model; they show that a routing path with expected

length of O(%) can be found. Two research

groups, namely, Fraigniaud et al'®/ and Martel and
Nguyen!™®, independently report that if each node is
aware of its O(lgn) closest local neighbors, the rout-
ing complexity in d-dimensional Kleinberg’s small-world
networks can be improved to O((lgn)'*/?¢) expected
number of hops. The difference is that [13] requires ad-
ditional state information during routing, while [15] uses
an oblivious greedy routing algorithm. In [13], Martel
and Nguyen show that the expected diameter of a d-
dimensional Kleinberg network is @(lgn). However, it
is so far unresolved whether the routing complexity can
be matched, which motivates our work.

There are normally two approaches for decentral-
ized routing: oblivious and non-oblivious schemes('?].
A routing algorithm is oblivious if the message holder
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makes routing decisions only based on its own routing
table and the target node. A routing algorithm is said
to be non-oblivious if the routing decisions of the mes-
sage holder also depend on the routing history stored
in the message header. The scheme in [15] is oblivious,
while the schemes in [13, 14] are non-oblivious. We will
only consider the oblivious routing scheme.

In [16], we have proposed a one-dimensional ex-
tended small-world model with augmented local links,
and presented both non-oblivious and oblivious routing
algorithms that can route messages between any two
nodes in O(lgnlglgn) expected number of hops. In this
paper, we propose a d-dimensional extended version of
Kleinberg’s small-world model, where each node is aug-
mented with two more random links to nodes within
certain Manhattan distance. Based on this model, we
present an oblivious decentralized algorithm that can
finish routing in O(lgn) expected number of hops, which
is optimal.

Potential applications of the small-world model in
computer networks include efficient lookup in peer-to-
peer systems!*~7l, gossip protocol in a communication
network[!”!, flood routing in ad-hoc networks!*®!, etc.

The rest of the paper is organized as follows. Sec-
tion 2 introduces the augmented small-world model and
the decentralized routing algorithm. Section 3 lists our
main results and contributions. Section 4 analyzes the
complexity of decentralized routing algorithm. Section
5 briefly concludes this paper.

2 Small-World Model and Decentralized
Routing

Our small-world model is an extension of Klein-
berg’s d-dimensional modell!?). It is based on a d-
dimensional torus [n]q = {0,1,...,n}? with three ex-
tra links for each node, where d > 2. Firstly, as with
Kleinberg’s original modell'? each node has a long-
range link to another node chosen randomly accord-
ing to the d-harmonic distribution, i.e., the probability
that node u sends a long-range link to another node v
is Prju — o] = m, where Dist(u,v) denotes
the Manhattan distance between nodes u and v, and
Ty = Zz;&u W. To avoid confusing with the ex-
tra links to be introduced shortly, we refer to such long-
range links as the K-type links (or K-links for short,
where K stands for Kleinberg), and refer to node v as
a K-neighbor of node u if there exists a K-link from
u to v. Here we will introduce two more extra links
for each node u to nodes that are chosen uniformly at
random from nodes within (lg n)z/ 4 Manhattan distance
from u. We refer to these two links as the augmented
local links or AL-links for short, and refer to node v
as an AL-neighbor of node u if there exists an AL-link
from u to v. Finally, we refer to the local links on the
torus as the torus-links or T-links for short, and re-
fer to the local neighbors of node u on the torus as u’s
T-neighbors. We refer to all the nodes linked by u,

including its K-neighbor, AL-neighbor and T-neighbor,
collectively as the immediate neighbors of node wu.

We assume that all T-links on the torus are undi-
rected, while all extra links including K-links and AL-
links are directed. Obviously, there are 2d 4+ 3 immedi-
ate neighbors for each node in our extended small-world
model. Thus, our extended model retains the same O(1)
order of node degree as that in Kleinberg’s small-world
model. Throughout this paper, we use the terms model
and network interchangeably.

In our decentralized routing algorithm, the message
holder is also referred to as the current node. Given
the current node z, let I',(0) = {z}, and let I,(1) de-
note the AL neighborhood of all nodes in I',(0), and
I',(2) denote the AL neighborhood of all nodes in I';(1),
and so on. In other words, we refer to I',(i) as the
ith level of AL neighborhood for node z, and refer to
Az (i) = Uj<; I'=(4) as the first ¢ levels of AL neighbor-
hood for node x. For a given level ¢ of AL neighborhood,
A, (i—1) is said to be the set of previously known nodes.
The set L,(i) = A, (1) — A, (i—1) denotes the new nodes
discovered during the ith level of AL neighborhood. We
will call A, (k) the AL awareness of node z, where each
node in our extended small-world model is aware of the
first k levels of its AL neighborhood.

The description of our oblivious routing algorithm is
given in Algorithm 1 in Fig.1.

Algorithm 1
Input: source s and target ¢.
Initialization: = + s.

2
The first phase: Dist(z,t) > (Ign)d T .

1. while Dist(z,t) > (1gn)§+1 do
2. node z checks in its AL awareness A;(Blglgn) whether
there exists a node z that contains a K-neighbor within
m/lg™ n Manhattan distance from ¢, where 1 < 8 < 2
and 7 denotes a certain constant which will be specified
later. Let Z, denote the set of such nodes z.
. if Z, is empty then
The message is routed to an immediate neighbor closest to t.
else
. node z finds a node z in Z, that is closest
to = in terms of AL-links (ties are broken arbitrarily).
7. node x computes a shortest path 7 : z = g, z1,...,2t = 2
from = to z among Az (Blglgn).

8. end if
9. if the shortest path 7 consists of only node z itself then
10. The message is routed to node z’s K-neighbor.

11. else

12. node z routes the message to its next AL-neighbor

1 along the shortest path .
13. end if
14. end while

2
The final phase: Dist(z,t) < (lgn)d !
The message is forwarded to an immediate neighbor closest
to the target node t, until it reaches t.

N

Fig.1. Our oblivious routing algorithm (Algorithm 1).

3 Owur Contributions

Our main result is as follows.
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Theorem 1. If each node in the extended small-
world model is aware of the first Blglgn levels of its
AL neighborhood, where 1 < 3 < 2, then there exists an
oblivious algorithm that can route messages between any
two nodes in O(lgn) expected number of hops.

Since any graph with O(1) node degree has 2(lgn)
expected path length, the O(lgn) expected bound of
routing complexity in Theorem 1 is optimal. In ad-
dition, since the size of neighborhood |A.(Blglgn)| =
14+24...4208len < 2lgﬁ n, and the address of each
node is represented in a string of O(lgn) bits, the num-
ber of bits required on each node is at most O((Ign)?*1),
where 1 < 8 < 2. To our knowledge, this is the first re-
sult that achieves the optimal routing complexity while
still keeping a poly-logarithmic number of bits stored on
each node in the small-world networks. A comparison
of our scheme with the other existing results is shown
in Fig.2.

4 Analysis of Decentralized Routing

In this section, we will give the proof of Theorem 1.
A road map of the proof is given as follows. In Lemma
2, we first show that if each node is aware of the first
Blglgn levels of its AL neighborhood, where 1 < 3 < 2,
then it is aware of at least (Ign)°*+! different nodes with
certain probability, where 0 < § < 8 — 1. Based on this
result, in Lemma 3 we show that the AL awareness of
each node is very likely to contain a K-neighbor that is
close to the target node. Then in Lemmas 7 and 9 we
show that our oblivious routing algorithm can reduce
the Manhattan distance effectively so that the O(lgn)
expected bound of routing complexity can be achieved.

The following lemma from [4, 10] is useful for our
subsequent analysis.

Lemma 1. Let Pr[u — K] denote the probability
that node u sends a K-link to node v in a d-dimensional
small-world model. Suppose that a < Dist(u,v) < b,
then bdclﬁ < Prlu — Ko) where c¢; and co are
constants independent of n.

We first quantify the size of the AL awareness of each
node.

Lemma 2. Let 8 denote a constant such that
1< B <2 Let A.(Blglgn) denote the AL awareness

C2
adlgn’
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of node x in the extended small-world model, where each
node is aware of the first Blglgn levels of its AL neigh-
borhood. Then there exists a constant 0 < 6 < 3 —1
such that
1
Pr[|4,(Blglgn)| > (lgn)'*°] > 1~ ——,
Ig°n
where & > 0.
Proof. The proof is divided into two parts. In Part

4
1, we show that with probability at least 1 — 8(lgn)™ 3,

|LE(%lg lgn)| > (lgn)%, that is, every AL-link points
to a new node during the first %lg lgn levels of x’s AL
neighborhood. In Part 2, by using Chernoff’s bound,
we show that |L,(7)| still increases at an exponential
rate for all %lg lgn < i < Blglgn, based on which we
have |L,(81glgn)| > (Ign)'+® with probability at least
1-— En where £ > 0.

Part 1. We will show that at each level of AL neigh-
borhood (among the first % lglg n levels of AL neighbor-
hood), the probability that an AL-link points to a pre-
viously known node is so small that all AL-links tend to
point to new nodes, and hence \Lm(% lglgn)| > (1gn)/3
w.h.p..

We first calculate the following upper bound for

|4a(31g1gn)].

1 2 Ligign
‘Az<§lglgn>‘ 1424224423l
=2(Ign)*3 — 1 < 2(1gn)'/.

Thus, we have |4, (i)| < [4.(:1glgn)| < 2(1gn)!/?
forall 0 <17 < %lg lgn. Consider the construction of an
AL-link of node z. Since each AL-link is connected to
a node chosen randomly and uniformly from lg® n clos-
est local nodes, each AL-link points to a node within
the Manhattan distance lg2/d n with an equal probabi-
lity (Ign)~2. Since |4,(i)] < 2(1gn)'/?, there are no
more than 2(lg n)l/ 3 previously known nodes at each
level of AL neighborhood. Hence, the probability that
any AL-link is connected to a previously known node
is at most 2(lgn)/? - (Ign)~2 = 2(1gn)~5/3. Thus, the
probability that an AL-link points to a new node is at
least 1 — 2(Ign)~5/3. There are in total at most

#Dbits of awareness

Oblivious

Scheme on each node #hops expected or Non-oblivious?

Kleinberg’s greedyl410,12] O(qlgn) O(lg%n/q) Oblivious

Non-greedyl®] O(q%Ign) 0(1g2n/(qlgq)) Non-oblivious

Decentralized algorithm in [14] O(1g2n/1g(1+4q)) O((Ign)?/1g%(1 + q)) Non-oblivious

Decentralized algorithm!!3] O(lg% n) O((1gn)'+1/4) Non-oblivious
Indirect-greedy algorithm![15] O(lg% n) O((1gn)1+1/4) Oblivious

Ne?11‘100;;113?:51}18‘?:;;&::;:;rﬂ:;;ii::;:?ig]mal O(1g2 n) O(lgn 1glgn) Both are considered
Optimal algorithm for d-dimensional O((1gn)PTT) O(lgn) Oblivious
model with augmented awareness [this paper] (1<p<2)

Fig.2. Comparisons of our decentralized routing algorithms with the other existing schemes. In the first three schemes (in [4, 6, 10, 12,

14]), we suppose that each node has q K-links, while in the next four schemes (in [13, 15, 16] and this paper), we suppose that each

node has one K-link.
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2|4, (31glgn)| < 4(lgn)/? number of AL-links, so all
AL-links point to new nodes with probability at least
(1—2(1gn)5/3)4(e DR 1—8(lgn)~*/? for sufficiently
large n. Here we use the fact (1 + z)* > 1+ az for
@ > —1 and a > 1. Thus, we have Pr[|L,(1lglgn)| >
(Ign)'/?] > 1 - 8(lgn)~*/.

Part 2. Let B denote the event that |L, (35 lglgn)| >
(Ign)'/3. From Part 1, we have Pr[B] > 1 —8(lgn)~*/3.
Next, we will consider the sequence of L. (i) for
%lglgn < 1 £ PBlglgn. We assume that |A,(7)] <
(Ign)t+o for all %lg lgn < i < Blglgn, otherwise the
lemma holds true. Since each AL-link is connected
to a node chosen uniformly and randomly from lg*n
closest local nodes, and there are at most (Ign)'*?
previously known nodes at each level of AL neighbor-
hood, each AL-link reveals a new node with probability
at least 1 — (Ign)~2 - (Ign)'*% = 1 — (Ign)’~'. Let
X; denote the sum of 2|L,(7)| independent Bernoulli
random variables each with expectation 1 — (lgn)®~1.
Then |L,(i + 1)| stochastically dominates X; for all
%lglgn <t < Blglgn. By Chernoff’s bound, there
exists a constant 0 < € < 1 such that

Prl |Lo(i+1)] < 2(1 — (Ign)’ ") (1 — €) - | Lo (i) ]
<exp ( — 62(1 —(lg n)6_1)|Lw(i)D.

Let &; denote the event that |L,(i + 1)] > 2(1 —
(lgn)°)[L.()|(1 — €), where lglgn < i < Blglgn,
then we have Pr[&;] > 1—exp(—€e?(1—(Ign)’ )| L,(4)]).
Let £ denote the occurrences of the consecutive success-

ful events £ ) then for
B’E;%lglgn’ %lglgn-}-l’ »CB1glgn,

large n, we have

Prl€] > (1 — 8(Ign)~3)(1 — exp(—e2(1 — (Ign)*~Y)

1
S
lg*n

)

where £ > 0. At the last step, we applied the fact that
(1+2z)*>14azxforz>—-1and a>1.
When the event £ occurs, we have

1
L.(Blglgn)] >|L. (5 lelen)

. (2(]— — (lgn)5fl)(1 - 6))(ﬂ—%)lglgn
> (Ign)

— (Ign) )8-5)1e (20-0gm) (1)

(Ign
+(8-3)1g (20-(gn)’~H)(1-0))

Wl Wl W=

Il
—~~

—
09

S
~—

Given a constant 1 < 8 < 2, we can always find
suitable constants 0 < § < 8 —1, 0 < € < 1 and
ng such that for all n > ny, % + (8- %)lg (2((1 -
(Ign)°~')(1—¢€)) > 1+ 4. Thus, there exists a constant
0 < 6 < 8 —1 such that Pr[|A,(B1glgn)| > (Ign)'*+°] >
Pr[|L.(Blglgn)| > (Ign)'*0] > 1 — 1g+n’ where & > 0.
Therefore, the lemma is verified. |

(2(1 — (lgn)5—1)(1 . 6))(,3—§)lglgn

Next, we will show that the AL awareness of the cur-
rent node is very likely to contain a K-neighbor within
m/lg” n Manhattan distance from the target node t,
where 7 denotes a certain constant.

Lemma 3. Suppose that the Manhattan distance be-
tween the current node x and the target node t in the ex-

2
tended small-world model is m > (Ign)d ™. Then there
exists a constant T such that with probability at least

1- lg+n’ where ( > 0, ©’s AL awareness A,(B1glgn)
contains a K-neighbor within lng Manhattan distance

from the target node t.

Proof. Let C denote the event that |A,(8lglgn)| >
(Ign)'*9. By Lemma 2, we have Pr[C] > 1— lg%ﬂ, where
£>0.

Let D;(t) denote the set of all nodes within { Man-
hattan distance from ¢. Given a node u in A,(Blglgn),
let Prfu —¥ D;(t)] denote the probability that u’s K-
neighbor is inside the ball D;(t).

Since each AL-link spans the Manhattan distance
no more than (Ig n)2/d, the nodes in z’s AL awareness
A,(Blglgn) are all within Glglgn(lgn)?/¢ Manhattan

2
distance from z. Since Dist(z,t) = m > (lgn)d*,
the maximum Manhattan distance between a node in

A, (Blglgn) and any node in Dll(t) is no more than
g™ n

(m + 7 + Blglgn(lgn)?/?) < 2m. By Lemma 1,
the progbability for u’s K-neighbor to be inside the ball

Dlng (t) is at least (277_5751“, so we have

C1
Prlu =X D _m )] >|D_m_ (t)| ———
ffu " Do (0] 21D (0]

R S
~\lg"n (2m)dlgn  (Ign)md+1’
where ¢3 = cl/2d denotes a constant.
Let Pr[A,(Blglgn) =X Dll(t)] denote the prob-
g™ n

ability that at least one node in A,(Blglgn) contains a
K-neighbor within D _m_(t). Then if 7d < §, we have
I

m_ ()]

-

g™ n
Pr[A.(Blglgn) =% D
) =% D

Ig™n
>Pr[A.(Blglgn m (t) | C] - Pr[C]
g™ n
c3 (lgn)'*e 1
(- () )0
d—7d 1
>(1 — exp(—cs(lgn) ”'@_Eﬁ)

bz
(using the fact (1 + —) <elbeR x> 0)
T

>1— % (because 7d < §),
for a constant ¢ > 0. a
By using a similar technique as that in Lemma 3, we
can obtain the following lemma.
Lemma 4. Suppose that the Manhattan distance be-
tween the current node x and the target node t in the ex-

2
tended small-world model is m > (Ign)d ™. Then there
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exists a constant T such that with probability at least
1- lg+n’ where ( > 0, ©’s AL awareness A,(Blglgn)
m=B(gn)*/"Iglgn Manhat-

contains a K-neighbor within -
g n

tan distance from the target node t.

Given the current node z and the target node t, we
refer to the set of nodes within Dist(z,t)/lg" n Man-
hattan distance from t as the influenced set of node z,
where 7 is a certain constant as given above.

Lemma 5. Suppose that the Manhattan distance
between the current node x and the target node t in the

extended small-world model is m > (lg n)%‘H. Then
a node within (m — B(lgn)?/?1glgn)/lg” n Manhattan
distance from t is also inside the influenced set of any
node in A, (Blglgn).

Proof. Since each AL-link spans no more than
(Ign)?/? Manhattan distance from the current node,
and there are in total Glglgn levels of AL neighbor-
hood for z, all nodes in A, (81glgn) span no more than
B(lgn)?/41glgn Manhattan distance from z. By this
simple observation, the proof of the lemma can be eas-
ily obtained. a

Lemma 6. Suppose that the Manhattan distance
between the current node x and the target node t in the

2
extended small-world model is m > (Ign)d™". Let I
denote the set of nodes within Manhattan distance lg%
fromt, and let Iy denote the set of the nodes within Man-

hattan distance %Z:Iglgn from t. Then the prob-
ability for A,(Blglgn) to contain a K-neighbor within
I, — I> is no more than lg+n’ where ¢ > 0.

Proof. We first calculate an upper bound of |I; — I5|.
We have

_( m 4 m — B(lgn)*/?1glgnd
1h = bl = <lg7n) B ( lg"n )
_m? — (m - B(lgn)**1glgn)?
Ig™%n

When m > (Ign)¥**', we have (m —
B(lgn)*?1glgn)® > m? — m=!(B(Ign)*/*1glgn).
Thus, we can obtain the following upper bound for
|11 — I

md1(B(1gn)*/1glgn)

|} — I2| < 17

By Lemma 1, the probability for a node y; in
Az (Blglgn) to send a K-link to a node y, in I — Iy
is at most (m/;%, since Dist(yy,y2) = m/2 if m >

2
(Ign)d™. Since |A,(B1glgn)| < 21g” n, we have

Pr[A,(Blglgn) contains a K-neighbor within

c
I — ] < m Az (Blglgn)| - [I1 — L]
27¢,y 1o md_l(ﬁ(lgn)z/dlglgn)
n-

\mdlgn' lgfdn
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2
2 2d02ﬂ(lgn)ﬁ+3 Iglgn

m(lg n)+7d
2-2%c,B8(gn)Plglgn . 2.,
(gn)d (since m > (Ign)d™")
1
< 5 (where ¢ > 0).
Thus, the lemma is verified. O

Lemma 7. Suppose that the Manhattan distance be-
tween the current node x and the target node t in the ex-

tended small-world model is m > (lg n)%‘H. Then after
at most O(lglgn) ezpected number of hops, the message
will reach a node within m/1g" n Manhattan distance
from t, where T denotes a certain constant.

Proof. As in Lemma 6, let I; denote the set of nodes
within Manhattan distance lg% from ¢, and let Iy de-
note the_set of the nodes within Manhattan distance
%ﬁlglg" from t. Let F; denote the event that
A.(Blglgn) contains a K-neighbor within I; — I, and
let > denote the event that A,(Blglgn) contains a
K-neighbor within I;. By Lemmas 6 and 4, we have

Pr[F] € & and Pr[%] > 1 —

lg¥n

1 .
% respectively,

where ¢, > 0. Thus, with probability at least a posi-
tive constant, A, (81glgn) contains a K-neighbor within
I, but no K-neighbor within I; — I5.

We refer to the routing steps from a given node =z
to its intermediate node z in A, (lglgn) as an indirect
phase. The routings in different indirect phases are in-
dependent from each other. By above statement, after
at most O(1) expected number of indirect phases, i.e., at
most ¢’ - 81glgn expected number of hops for a constant
c’, the message will be routed to a node x whose AL
awareness contains a K-neighbor within I, but no K-
neighbor within I; — I5. Let z be the intermediate node
in A,(B81glgn) that contains a K-neighbor within the in-
fluenced set I; (or I1) and is closest to node z in terms
of AL-links. Next, we will show that after the event
Fo () ~F1 occurs, our oblivious algorithm will route the
message to the intermediate node z along a shortest path
T Ly =&, Ty,...,x =2z among A, (Blglgn).

We refer to a node z in A,(lglgn) as a good inter-
mediate node if it satisfies the following two conditions:
1) it has a K-neighbor within g7y to the target node;
2) it is closest to node « in terms of AL-links.

We first consider the case where no tie arises, that is,
x’s good intermediate node z is unique. By our oblivi-
ous algorithm, node x will route the message to its next
AL-neighbor z; along a shortest path 7. From Lemma
5, node z’s K-neighbor is also inside the influenced set
of z;, and hence it satisfies the first condition of a good
intermediate node for z1. In addition, since z is an inter-
mediate node closest to z, it is also an intermediate node
closest to 1. Thus, it also satisfies the second condition
of a good intermediate node for x;. Therefore, node x;
will also regard node z as its good intermediate node,

and find a shortest path 7 : x1,xs,...,2; = z from x1 to
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z, and then route the message to its next AL-neighbor
Zo. Such a process is repeated for every node x; on the
shortest path 7 until the message reaches the interme-
diate node z. After that, the message will be routed to
z’s K-neighbor and hence reach a node within m/l1g™ n
Manhattan distance from the target node t.

When the ties happens, there may be more than one
good intermediate nodes z for the current node z. How-
ever, it is easy to show that the message will be routed
to a good intermediate node z along one of the shortest
paths. This does not affect the result. Therefore, the
proof of the lemma is completed. O

Lemma 8. Suppose that the Manhattan distance be-
tween the current node x and the target node t in the ex-

tended small-world model is m > (lg n)%‘H. Then after
at most O(lgn) expected number of hops, our oblivious
routing algorithm can reduce the Manhattan distance to
within (1g n)%'H.

Proof. By Lemma 7, after at most O(lglgn) ex-
pected number of hops, the message will reach a node
within lng Manhattan distance from ¢, where 7 denotes
a certain constant.

Divide the whole Manhattan distance Dist(z,t) into
phases such that the ith phase contains the nodes within
[(lg’;;)”-, (lgn;f(i_l)) Manhattan distance from t. Since
the maximum Manhattan distance is n, there are at
most O(Igl;glg"n) phases. Because each phase takes at
most O(lglgn) expected number of steps by Lemma 7,
after O( g n ) -O(lglgn) = O(lgn) hops, the Manhat-

Iglgn
2.
atl, O

tan distance can be reduced to within (lgn)
Lemma 9. Suppose that the Manhattan distance
between the current node x and the target node t in the

2
extended small-world model is m < (Ign)d*. Then us-
ing Kleinberg’s greedy algorithm can route the message
to the target node t in O(lgn) expected number of hops.

Proof. When Dist(z,t) < (lg n)%'H, Kleinberg’s
greedy algorithm is executed, that is, the message is
forwarded to an immediate neighbor closest to ¢. Ac-
cording to the time complexity of Kleinberg’s routing
algorithm, it takes O(lg® m) steps to route a message to
a target node within m Manhattan distance. Thus, the
final routing phase using Kleinberg’s original algorithm
takes at most O(lg®m) = O((lglg%+1 n)?) = O(lgn)
steps. Therefore, the lemma follows. ]

Combining Lemmas 7 and 9 together, we obtain the
proof of Theorem 1.

5 Conclusion

We extend Kleinberg’s small-world network with two
more augmented local links, and show that if each node
in the network is aware of Blglgn levels of augmented
local neighborhood, where 1 < 8 < 2, there exists an
oblivious decentralized algorithm that can finish routing
in O(lgn) expected number of hops, which is optimal.

481

Our results may be applied to the design of the log-
ical overlay structure of large-scale distributed systems,
such as peer-to-peer networks, in the same spirit as
Symphony!®!. Since the links in the model are random-
ized, our extended network is less vulnerable to adver-
sarial attacks, and thus provides good fault tolerance.

Here we only focus on the oblivious routing scheme.
A non-oblivious algorithm can be easily obtained based
on the design and analysis of our oblivious scheme.
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