Sept. 2006, Vol.21, No.5, pp.648—664 J. Comput. Sci. & Technol.

Massive Storage Systems

Dan Feng (¥4 F}) and Hai Jin (& &)
School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
E-mail: dfeng@hust.edu.cn; hjin@hust.edu.cn
Received April 2, 2006; revised July 24, 2006.

Abstract
e-Business, physical storage devices and control components have been separated from traditional computing systems to
become a scalable, intelligent storage subsystem that, when appropriately designed, should provide transparent storage
interface, effective data allocation, flexible and efficient storage management, and other impressive features. The design goals

To accommodate the explosively increasing amount of data in many areas such as scientific computing and

and desirable features of such a storage subsystem include high performance, high scalability, high availability, high reliability
and high security. Extensive research has been conducted in this field by researchers all over the world, yet many issues
still remain open and challenging. This paper studies five different online massive storage systems and one offline storage
system that we have developed with the research grant support from China. The storage pool with multiple network-attached
RAIDs avoids expensive store-and-forward data copying between the server and storage system, improving data transfer rate
by a factor of 2-3 over a traditional disk array. Two types of high performance distributed storage systems for local-area
network storage are introduced in the paper. One of them is the Virtual Interface Storage Architecture (VISA) where VI
as a communication protocol replaces the TCP/IP protocol in the system. VISA’s performance is shown to achieve better
than that of IP SAN by designing and implementing the vSCSI (VI-attached SCSI) protocol to support SCSI commands in
the VI network. The other is a fault-tolerant parallel virtual file system that is designed and implemented to provide high
1/0O performance and high reliability. A global distributed storage system for wide-area network storage is discussed in detail
in the paper, where a Storage Service Provider is added to provide storage service and plays the role of user agent for the
storage system. Object based Storage Systems not only store data but also adopt the attributes and methods of objects that
encapsulate the data. The adaptive policy triggering mechanism (APTM), which borrows proven machine learning techniques
to improve the scalability of object storage systems, is the embodiment of the idea about smart storage device and facilitates
the self-management of massive storage systems. A typical offline massive storage system is used to backup data or store
documents, for which the tape virtualization technology is discussed. Finally, a domain-based storage management framework
for different types of storage systems is presented in the paper.

Keywords massive storage, SAN, NAS, intelligent storage, storage virtualization, data grid

cable. DAS attributes its roots to the era of computing
before the networking revolution, an era in which infras-

1 Introduction

According to IBM and InfoWeek, the amount of stored
information is growing at a rate of 700 percent per year,
mainly driven by e-Business, the digital revolution, and
the explosive growth of Internet, as well as enterprise
data.

The storage technology has seen rapid advances over
the past fifty years since introduction of the IBM 305
RAMAC in 1956. Aside from the increases in disk
drive capacity and speed, enterprise disk and tape tech-
nology have morphed into a network resource through
Network-Attached Storage (NAS) and Storage Area Net-
work (SAN). In conjunction with networking, storage
technology has also increased its brainpower with the
addition of cheap and powerful microprocessors. These
developments result in a new generation of intelligent
storage networks that can automate tasks, maximize uti-
lization, and lower operating costs.

1.1 Direct-Attached Storage

Direct-attached storage (DAS) is defined as a colle-
ction of storage disks attached to a single server via a

tructure design was not concerned with the future needs
of data sharing or information management but focused
on applications and servers, not data and storage. Over
time, these deployments revealed the limitations of DAS,
such as single server access, labor-intensive management,
poor scalability, costly upgrades, low utilization and mul-
tiple “single points of failure”.

To overcome the shortcomings of DAS, network has
been adopted to construct storage systems. This infras-
tructure design offers a way to share storage resources
using one of the two technologies, namely, Network At-

tached Storage (NAS) and Storage Area Network (SAN).

1.2 NAS

The NAS system has several advantages. For in-
stance, it is relatively easy to use, and it leverages the
standard Ethernet infrastructure to connect clients to
the storage.

RAIDM (Redundant Array of Inexpensive Disks),
proposed by David A. Patterson et al. in 1988, led to

high performance and reliable storage systems. As the

Survey

This paper is supported by the National Natural Science Foundation of China under Grants No.60125208, No.60273074, No.60303032,
No0.69973017, and the National Grand Fundamental Research 973 Program of China under Grants No.2004CB318201, No. 2003CB317003.

Dan Feng et al.: Massive Storage Systems

most common device of data storage in DAS, RAID is a
category of disk drives that employ two or more drives in
combination for fault tolerance and performance. RAID
is used frequently on servers but is not generally nec-
essary for personal computer. There are a number of
different RAID levels: 0/1/2/3/4/5/6/0+1/10/7/S.

NAS systems are characterized as specialized servers
with optimized file systems and thin or stripped-down
operating systems that are tuned for the requirements
of file serving. They communicate with clients using the
NFS (Network File System) protocol, the CIFS (Com-
mon Internet File System) protocol, or both.

However, the NAS system suffers from the same scal-
ability problems associated with DAS. The filer proto-
cols are often incompatible with certain common appli-
cations.

1.3 SAN
SAN offers a block-level protocol (e.g., SCSI) for

clients to access data over the network. This block-
level protocol is embedded into a network protocol such
as Fibre-Channel (FC) and Internet SCSI (iSCSI). Un-
like the network file protocols (e.g., NFS and CIFS) that
NAS uses, these block-level protocols provide complete
application compatibility, plus performance results that
match and often exceed those of DAS.

However, despite its benefits, the number of actual
FC deployments remains relatively modest. This is due
to several new problems created by FC, and once again
several key problems left unresolved. For instance, it is
very expensive to deploy and grow FC-based SANs —
prohibitively so for most organizations.

Unlike the FC technology, utilizing an ordinary IP
network, the iSCSI protocol transports block-level data
between an iSCSI initiator on a server and an iSCSI tar-
get on a storage device. With the adoption of the iSCSI
standard by the Internet Engineering Task Force (IETF)
and strong vendor support from industry leaders such
as Microsoft, Cisco and Network Appliance, iSCSI has
rapidly matured into a viable, alternative SAN technol-

ogy.

1.4 Object-Based Storage

There are increasing demands for storage capa-
city, throughput and ease of management. For exam-
ple, it is believed that the quality expectation drives
technology!?, with the highest level of quality being de-
manded by the Tri-labs and the oil and gas industry, re-
quiring throughput of 1GB/s and 1.2GB/s, respectively.
For technology to improve and bridge the chasm, the
need for such performance must be demanded by the
masses. This includes the need for both file and file
aggregate bandwidth improvements. Bigger file server
boxes!?! cannot keep up with the growth of demand or
supply. The Lustre File System[® and the Panasas Ac-
tiveScale File System!* are based on the object-based
storage (OBS)M technology, having been designed from

649

the ground up to meet the demands of the world’s largest
high-performance cluster systems.

The contributions of OBS can be regarded as the con-
vergence of NAS and SAN. Users and applications get
file interface from NAS and block interface from SAN,
respectively. Like files or blocks, objects are primitive,
logical units of storage that can be directly accessed on
a storage device.

By proposing a “multi-layer scalable storage object”
concept, we want to unify and update the network stor-
age, and to construct an object-based petabyte-scale
storage system. The main idea of “multi-layer scalable
storage object” is to move the parts of program that are
used to access the disks in host system into the stor-
age system, to encapsulate them into objects containing
data and operations, and to endow the storage objects
with the characteristics of intelligence and the ability of
initiative service.

1.5 Massive Distributed Storage Systems

There have been many research prototypes, mid-
dleware, or protocols of distributed storage systems
or global storage systems, such as DPSS!/, SRBI7,
OceanStorel®!, and GridF TP,

Distributed Parallel Storage System (DPSS)l is a
scalable, high-performance, distributed parallel data
storage system, which provides a high performance data
handling architecture for building high-performance stor-
age systems from low-cost commodity hardware compo-
nents.

GridFTPP! is a high-performance, secure, reliable
data transfer protocol optimized for high-bandwidth
wide-area networks. The GridFTP protocol is based on
FTP. It provides a universal grid data transfer and access
protocol for secure, efficient data movement in grid en-
vironments. It extends the standard FTP protocol, and
provides a superset of the features offered by the various
grid storage systems currently in use.

Storage Resource Broker (SRB) of the San Diego Su-
percomputing Center (SDSC)m is a client-server middle-
ware that provides a uniform interface for heterogeneous
data resources over a network and accesses to replicated
data sets. In conjunction with the Metadata Catalog,
SRB provides a way to access data sets and resources
based on their attributes rather than their names or
physical locations.

OceanStorel® is a global persistent data store de-
signed to scale to billions of users by using a peer-to-peer
infrastructure. It provides a consistent, high-available,
and durable storage utility atop an infrastructure com-
prised of untrusted servers. It employs a Byzantine-fault
tolerant commit protocol to provide strong consistency
across replicas.

1.6 Other Trends

Recent efforts on storage systems research are step-
ping toward an intelligent storage system. More storage

650

devices embedded with powerful ASIC designs are capa-
ble of considerable processing. Some research efforts on
intelligent storage design have explored two promising
enhancements: impressive storage interface and embed-
ded computational power. Active Disk!'% self-star(tl],
IBM’s Autonomic Computing!*?/, EMC’s AutoIS!*3! and
Semantically-Smart Storagel!¥ all focus on the intelli-
gent storage design.

Future storage technologies will be built on previous
research and developments in access, scalability, inter-
operability, and long term stewardship of globally dis-
tributed storage. For example, recently, peer-to-peer
(P2P) and Grid are both concerned with the pooling and
coordinated use of resources within distributed commu-
nities and have emerged as a popular way to share huge
amounts of data. P2P systems decentralize the man-
agement of massive storage systems and harness unused
resources on computers distributed across the world. Un-
like traditional client/server systems that essentially de-
pend on many servers with high reliability and avail-
ability, in P2P systems, failure of a few nodes may not
result in a sharp decrease in data availability because
all nodes are peers and the remaining peers may pro-
vide the required data. Both approaches have seen rapid
evolution, widespread deployment, and successful appli-
cation. Other key trends include storage system secu-
rity, management, storage compliance with regulation,
fixed content optimizations, tiered storage, storage vir-
tualization, policy management['® and storage manage-
ment software.

In China, extensive research efforts in the field of
massive storage system have been supported by the 973
Program, the 863 Program and the National Natural
Science Foundation of China, aiming at addressing such
problems prevalent in the current server systems as I/0O
bottleneck, storage capacity, data robustness and so on.
Significant results have been achieved from these efforts.

In this paper, we will present some of these achieve-
ments from several storage systems under development:
a storage pool with network-attached RAID, an object
storage system, a high performance distributed storage
system for local area network storage, and a global dis-
tributed storage system for wide area network storage.
All of these storage systems are online massive storage
systems. A typical offline massive storage system are
used to backup data or store documents, for which the
tape virtualization technology is described in the paper
also. By investigating the storage system architecture,
storage system controller software and the management
software, among other things, different storage systems
have been developed to achieve high availability, high
reliability, high performance, high scalability, and high
security.

The rest of the paper is organized as follows. A stor-
age system of Network-Attached RAIDs with Heteroge-
neous Channels is presented in Section 2. A Petabyte-
Scale Object Storage System and its key technologies are
presented in Section 3 to show the trend of incorporat-

J. Comput. Sci. & Technol., Sept. 2006, Vol.21, No.5

ing more intelligence into storage systems. In Section 4
two types of high-performance distributed storage sys-
tems for local-area network storage are described, i.e.,
the Virtual Interface Storage Architecture (VISA) and a
fault tolerant parallel virtual file system. A global dis-
tributed storage system for wide-area network storage
is discussed in detail in Section 5. The tape virtual-
ization technology for offline massive storage systems is
described in Section 6. Section 7 presents a domain-
based storage management framework for the heteroge-
neous WAN-based environment. We conclude the paper
in Section 8.

2 Storage Systems of Network-Attached
RAIDs with Heterogeneous Channels

2.1 Network-Attached RAIDs Systems with
Heterogeneous Channels

In massive storage systems, disk arrays are mostly
used for capacity and performance reasons. Disk arrays
can make multiple disk drives working in parallel to im-
prove both the throughout and the I/O rate. Normally
a disk array is connected to the server only by a pe-
ripheral channel. This kind of connection organization
confines the data-moving path between storage devices
and network to pass through the server, thus confining
the advantages brought by storage devices.

Despite of the rapid development of network technol-
ogy and high-performance storage device technology, and
the continued increase in processing power, the server re-
mains a performance bottleneck by sitting on the data-
moving critical path and spending too much time and
power in controlling I/O operations to move data multi-
ple times inside the system. To relieve the server of the
burden and increase storage performance, the functions
of storage device are promoted by adding network proto-
col supports, thus delivering the retrieved data directly
to the network by storage devices without going through
the system memory and the buffers of network interfaces.

To this end, a different architecture for massive stor-
age system, called the Heter-RAID (Heterogeneous chan-
nel RAID) system, shown in Fig.1, is proposed and de-
signed for better delivering of large amount of data over
the network. Heter-RAID consists of file server and
Heter-RAID device. The Heter-RAID device is a key de-
vice of the system. It is a disk array with additional intel-
ligence and functions that support the network protocol
stack and dynamic I/O strategy adjustment. Apart from
the usual components of a disk array, the Heter-RAID
controller has a network interface to link the disk array
directly onto the network. In this way, it gets dual chan-
nels: the traditional peripheral channel and the network
logic data channel. The relationship between the server
and the storage subsystem is no longer only a simple
master-slave relationship, but now also a peering-entry
relationship in the network. The relationship between
the storage subsystem and the client also changes from
one of invisible device screened by the server to one of

Dan Feng et al.: Massive Storage Systems

visible peer node on the network.

1/0 Bus
Server >
1l 1l
&) |&m) . | &)
— (®an)| | (RaD] | .. | (RAD)
NIC NIC NIC
Y, b/
D D
Cgmmand oo] | hame 2 Channel n
Network >

¢

Fig.1. Block diagram of the Heter-RAID workflow.

In Heter-RAID, I/O tasks from server or clients ac-
cepted by command implementer enter the command
queue according to their arrival times. Then the queue
optimizer schedules the tasks in the queue at the user
request level, and decomposes and rearranges them to
get the optimized I/O command queue.

Scheduling is determined by a given strategy. I/O
implementer schedules and operates the I/O commands
at the I/O level. The resultant data is transferred by the
data redirector either to the server through the periph-
eral channel or to clients through the network interface.

The architecture avoids expensive store-and-forward
data copying between the server and Heter-RAIDs when
clients download/upload data from/to the server. For
example, when a client requires data from the server,
the read command is sent to the disk array through the
peripheral bus by the server, but the data is directly
transferred from the disk array to the client. So the la-
tency is lower than that with traditional architecture.
The system performance of the proposed architecture is
evaluated through a prototype implementation based on
the logical separation in the File Transfer Protocol. In
a multi-user environment, its data transfer rate is 2—3
times higher than that with a traditional disk array, and
service time is about 3 times shorter.

2.2 Multi-Task Pipelining I/0 Scheduling in
Network Storage Systems

Task parallelism and pipelining are two common
forms of concurrency. Task parallelism assigns differ-
ent tasks to different concurrent objects; whereas, task
pipelining divides a repetitive task into specialized stages
so that successive tasks can be overlapped in time when
they are executed in distinct stages simultaneously. Net-
work storage systems must meet two requirements to
benefit from the pipelining technology: the system can
get information of the next command before the com-
pletion of the current command, and different units
(stages) can operate simultaneously without resource
contention!*®!,

1/0 path!17! involves every phase of information pro-

cessing, transmission and storage. Shortening an I/0

651

path helps decrease the protocol layer, reduce complex-
ity, shorten overhead or lower resource consumption. In
modern network storage systems, more complex storage
protocols and network protocols translate to more diffi-
cult management. Moreover, additional overhead intro-
duced by an unsuitable I/O path design reduces the effi-
ciency of network storage. I/O scheduling implemented
by pipelining schedule can overlap part of the overhead
in an I/O path and achieve high storage performancel!8]

Fig.2 shows a multi-task pipelining I/O scheduling
timing diagram. In the same pipelining stage, the
number of sub-tasks is called the degree of pipelining
parallelism, which generates synchronization overhead.
A large workload can be segmented into a number of
smaller sub-workloads at a stage in the I/O path, so as
to process these sub-workloads in parallel at the same
stage.

In Heter-RAID['9], virtual SCSI commands encap-
sulated with operation type (read/write), start sector,
sector number and other information are adopted to ex-
ecute I/O operation. There are multiple virtual SCSI
commands in the Heter-RAID command queue within
system resources. Pipelining producer/consumer policy
divides the I/O cycle of virtual SCSI command into dif-
ferent stages and uses a buffer technique to smooth work
speed of different function components, which overlaps
disk I/O and CPU computation to improve system per-
formance.

b T,

non-pipelining N
2 CrrrrrrrrrzA
o 1 S 5 ‘
=1} 0 SR PP i) Jh
g Time ™
wr P
. @ !
g s !
= Thirst . Thottleneck o Tlast . Tsave_}
E‘ 1 I o8 v A | o 2] | i 8 1) I
o= —F I R I—T ‘| | |
a0 :; [as 3 i 1 : } .
(b) Time
Synch-______
, e eAheration oo Tt —— e e N |
b Thirst Ly~ operdtlgn_‘ Thottleneck 1 Tlast |
o ! T —— e !
2 | - e — e
7 | T) "\\ T 1 T]
%bl e e — .‘.‘,‘i‘.... " }
k= T \ o, P 5 |
=) = CTT 1T I I
=) | 1 1 |
— — o -
& 0h)] ; [as =, T] : : }
= il [1) I5; 1! H L
(c) Time

@ The overhead of pipelining stage @@ B O The latency of transfer data

Fig.2. Multi-task pipelining I/O scheduling timing diagram. (a)
Parallel degree is 1 for three-stage non-pipelining. (b) Parallel de-
gree is 1 for three-stage pipelining. (c) Parallel degree is 3 for

three-stage pipelining.

According to the overlapping degree of I/O schedul-
ing processes, pipeline operations of a network attached
storage system can be divided into two methods, namely,
the fixed pipeline scheduling, and the flexible pipeline
scheduling['%!. Multiple processes will be executed by a
fixed scheduling sequence in the fixed pipeline schedul-
ing. Otherwise, the flexible pipeline scheduling examines
the completing sequence and overlaps multiple processes

freely. The Heter-RAID scheme has doubled the per-

652

formance of average I/O response time and throughput

(improved from 78MB/s to 147TMB/s).

3 Petabyte-Scale Object Storage Systems

Hints are sometimes necessary to facilitate computer
system design, and it is important to use hints to speed
up normal execution?). In HOSS (HUST object stor-
age system), objects can give useful hints to the stor-
age system, in the form of object attributes (e.g., size,
access, resilience, security, semantics) and object meth-
ods, thus making the storage system effectively smarter.
Hints about an object’s access pattern, reliability, avail-
ability, accessibility, and lifespan can aid in a variety of
ways including improving the object’s layout on an ob-
ject storage node, QoS2Y and increasing the effectiveness
of management and data caching.

3.1 HUST Object Storage System (HOSS)

HOSS comprises at least a scalable Object-based Stor-
age Controller (OSC)[”]7 which combines the advantages
of the object-based interface and the embedded process-
ing power. An OSC has a flexible way to describe object
attributes, so an OSC can store any kind of object and is
adaptive to a wide range of applications. Furthermore,
users can offload operations (or methods) in an OSC. An
object is treated as a stream. User can associate a chain
of methods/?® with the stream, and an OSC can auto-
matically execute a series of method taking the stream
as input.

An OSC is built from off-the-shelf components, as
shown in Fig.3. Like other intelligent disks, it has pro-
cessor, memory, network interface and block-based disk
interface, and has the ability to perform intelligent pro-
cessing on stored objects.

Certificate Authority Replication Manager
Application Domain Manager Migration Manager
Policy Manager Local Resource Manager
File System | [Metadata Manag Storage Object Management
Net Protocol Net Protocol Net Protocol |Disk Controller
Met Hardwarg Net Hardware Net Hardware] ~ HDA
i Metadata Server
Cnl € 08C1 | :
[-—-] d 05‘(;’2" RAM _CPU <»|Disk 1
: i —
. d v 2 ‘_’J_)'L Kg

sk Interface
L —

E E]:lO‘fC n ‘“f- --‘"'

()——High-Speed Network—)

0SC Network
Fig.3. OSS architecture.

In HOSS, Metadata Server (MS) provides the infor-
mation (global object metadata) necessary to directly
access objects, along with other information of the data
including its extended attributes, security keys, and per-
missions (authentication). At the same time, MS pro-
vides objects layout information in OSCs. For exam-
ple, MS stores higher-level information about the ob-
ject, such as object ID (OID), object name, object type

J. Comput. Sci. & Technol., Sept. 2006, Vol.21, No.5

(e.g., file, device, database table) and storage map (e.g.,
(OSC1, partionl, OID1, OSC2, partion2, OID2, stripe
unit size of 64KB)), which are not directly interpreted
by OSC. OSCs expose an object-based interface, and the
access/storage unit is object, like a file, a database table,
a medical image or a video stream. OSCs manage local
object metadata (data organization in disks). Clients
contact MS and get the information about objects. OSCs
receive and process those requests with some predefined
policies.

3.2 Scalable Object Attributes and Methods

An object can be extended to define an object in
HOSS. An object is variable-length and can be used to
store any type of data. Thus different types of data
has different attributes. If we use a uniform format to
represent attributes for all types of objects, more disk
space may be wasted while saving objects with their at-
tributes in disks. We propose a scalable way to present
attributes!?3], called attribute card (AC). HOSS can sup-
port a new type of object by simply defining a new AC
Such a scalable attribute representation makes
OSC suitable for any application.

for it.

Object attributes can tell the storage system how to
deal with an object, for instance, the level of RAID to
apply, the size of the capacity quota or the performance
parameters required for that data. Once OSC accesses
to attributes describing the objects, it can use these at-
tributes to achieve improvements at the device level. For
example, OSC might make sure that the hot spot object
is available more quickly, or that previous versions of ob-
jects are automatically saved when it detects that objects
are being changed. When OSC understands the meaning
of data it contains, such as backup or QoS requirements,
object access patterns (sequential or random), or rela-
tionships to other objects, it can use that information to
create new storage applications that take advantage of
OSC’s ample processing power,.

In the traditional way, a block-based disk can only
perform READ and WRITE operations on data. An in-
telligent device changes this by allowing users to upload
application-specific operations at the disk level and per-
form operations on data when receiving requests from
users. Furthermore, an intelligent device must provide
more flexible and scalable operations that can be ap-
plied to more application fields. An OSC provides good
scalability by supporting the Method Chain(23].

Clients can associate an object with specific meth-
ods in two ways that are transient and persistent. In
the transient way, methods can be built when an object
is opened and destroyed when the object is closed. In
the persistent way, methods for an object can be cre-
ated/destroyed through a register/un-register request to
HOSS. After an object is associated with its methods
through registration, the operations in the Method Chain
are always implicitly performed.

Dan Feng et al.: Massive Storage Systems

3.3 Adaptive Policy Triggering Mechanism

Besides the above scalability of HOSS, the extension
of the storage system is confronted with problems of
management. With scalable object attributes and meth-
ods, an abundance of clues (or hints) are obtained to
guide or direct the solution of self-management by HOSS.
Therefore, HOSS is more facilitating in setting up mass
storage systems than either NAS (file-level interface) or

SAN (block-level interface).
<>
Criteria
Register

Register

Policy Pool ‘Contact

(Security, QoS, Logging, Pre- [
Fetch, Migration, Backup etc.)

Load/Unload
Y
Policies I

Operate

Criteria Pool
(Time, Space, Frequency etc.)

Get Criteria

Trigger
£8 Match

Process

Statistic/Collect

Fig.4. Adaptive policy triggering mechanism.

Record

A “policy” can be thought of as a coherent set of
rules to administer, manage, and control access to net-
work resources. Fig.4 shows the design of an adaptive
policy triggering mechanism (APTM). In Fig.4, criteria
and policies are separated because one policy may corre-
spond to several criteria while one criterion may adapt to
different policies. The criteria pool is filled with general
values regarded to be useful by one or more of the man-
agement policies. Most popular criteria such as time,
frequency of access, capacity and size are initially regis-
tered to the pool. A new policy registered into the pol-
icy pool has to contact the corresponding criteria in case
they are not already registered. So HOSS can provide a
solution for a dynamic loading or unloading policy.

APTM ensures that the registered criteria are up-
dated on the performance of storage system state. These
policies themselves are just descriptions of how to imple-
ment system management functions and specify system
states and how to response to them. These may include
any proposed storage system management policy. When
clients or the system operates on objects, HOSS records
these information by object attribute values. For the
adaptive policy triggering, those correlative policies are
triggered and therefore have the largest effect on the stor-
age system performance. Additionally, the adaptive pol-
icy triggers the policy depending on the matching pro-
cess between object attribute values and criteria from
the criteria pool.

3.4 Object Assignment Algorithm

By distributing objects across many devices, ob-
ject storage systems have the potential to provide high

653

throughput, reliability, availability and scalability!?4.
AFSP5] Lustrel, Panasas/?, GFS[, Codal?” and
GPFS[28] have investigated hierarchy management of dis-
tributed file systems, but relatively little research has
been aimed at improving the efficiency of object alloca-
tion in large scale object-based storage systems.

HOSS represents files as sets of objects stored on self-
managed object storage nodes (composed of OSC and
disks). The algorithm used for object allocation deter-
mines the performance of the system at the beginning
of the communication process. It affects the workload
among the devices, and it also influences the OSC-level
parallelism.

INITIALIZATION:
Get number of devices (the total number of OSCs) and
set dev|[] empty.

Objects_allocation (the size of file)

Input: The size of file

1: if the size of file < 512KB then //small file

2 Hashing();
3: else //large file
4 if number of devices < 20 then
5: N = number of devices;
6: else if 20 <= number of devices <= 40 then
7 N = 20;
8 else
9: N = 40;
10: endif
11: Sort dev[1], dev[2], ..., dev[number of devices] by
performance;
12: if the size of file <= N * 512KB then
13: Fragment_striping (dev[1], dev[2], ...,
dev[the size of file/512KB]);
14: else
15: Fragment_striping (dev[1], dev[2], ..., dev[N]);
16: endif
17: endif
Devices parameters in Sort dev[1], dev[2], ..., dev[number

of devices| by performance;
typedef struct dev_info {

int type; //OSC types
(RAID, JBOD, single disk)
int busy; //busy status
uint64_t freesp; //free capacity
uint64.t partitions; //partitions in the device
ulong ip; //IP address
struct dev_info*next ;
}DEVINFO;

Fig.5. Static object allocation algorithm.

In HOSS, a static data layout algorithm considers the
following three questions. The first is how to draw the
boundary between small and large files. The second is
how to determine the optimal number of objects mapped
from one file. The third is how to select OSCs for paral-
lel transmission. [29] integrates two techniques that are
hashing and fragment-mapping based. The algorithm is
shown in Fig.5. When the file is small, it is converted
to a single object and directly mapped to an OSC by
hashing. If the file is large, it is converted to multiple
objects and each object will be distributed to some, pos-

sibly different, OSC.

654

4 High Performance Distributed Storage
Systems

The high performance-cost ratio of cluster comput-
ing has made it the most popular platform for high-
performance computing today. Nevertheless, as with the
traditional massively parallel computers, I/O remains a
challenge. For example, scientific applications running
on clusters, such as astrophysics simulation and global
climate modeling, usually require the input and output
of large amounts of data. Therefore, I/O performance
is crucial and tends to be the bottleneck for the overall
system as well as application performance.

Also, storage industry wakes up to these actualities.
In MSST 2005, the “topl100io” storage systems, spon-
sored by the IEEE Computer Society Mass Storage Sys-
tems Technical Committee (MSSTC), was originally in-
tended to track and detect trends in high performance
storage systems.

4.1 Virtual Interface Storage Architecture

VISA (Virtual Interface Storage Architecture)l®® is
a distributed storage system based on Virtual Interface
(VI), where VI as a communication protocol replaces the
TCP/IP protocol in the system. In order to implement
remote accesses in the storage system, a front-end server
running the iSCSI protocol is added to the system.

Although VI was originally designed primarily for
message transfers in a cluster environment, it is also suit-
able for distributed storage systems and SANs because
of its high-bandwidth and low-latency. A new network
storage system, called VISA, is designed based on the
VI communication protocol. The architecture is shown
in Fig.6.

Mapping

Ssgora ae
States Strategy

Data Distributior
and Address Map

Resource
Allacatis:

G_____“__ Occupy Flag

Offset

State

Other.

,f-ln;‘c Address Spac
1

N— Required

q

Block

Fig.6. Virtual interface storage architecture (VISA).

VISA contains three main types of components,
which are one or more metadata servers, a number of
storage nodes that provide storage resource and a num-
ber of client nodes that consume the storage resource.
All the three types of components are connected by a VI

J. Comput. Sci. & Technol., Sept. 2006, Vol.21, No.5

network.

The metadata server is a pivotal part in VISA. First,
it holds physical storage information of all storage nodes
and keeps the information up-to-date. Second, it has
a function of virtualizing the storage: the client nodes
can access the storage resource transparently without
client’s knowledge of physical data layout. Finally, it
can actively send messages to storage nodes to inquire
the status of all storage nodes. It can also passively ac-
cept messages informing storage resource changes sent by
storage nodes, thus dynamically detecting node arrivals
at or departures from VISA. This feature allows VISA
to be expandable. The VISA design can accommodate
two or more metadata servers to ensure the scalability
and availability of the system.

Storage nodes are another important part in VISA.
Storage nodes not only provide storage resource for
clients but also ensure the reliability of clients’ data. By
using RAID and some other technologies, it can achieve
good reliability and high performance. Cooperating with
the metadata server(s), it can respond to the status in-
quiries sent by the metadata server(s) and actively send
the information to metadata server(s) when the storage
resources change.

Because VIA is designed primarily for local area net-
works, a front-end server is added to the VISA system to
implement remote access. The front-end server supports
the iSCSI protocol. As an inexpensive network storage
protocol, iSCSI is widely used in SAN and some other
network storage systems. In Internet, any storage server
and device supporting the iSCSI protocol can process
storage operations mutually.

vSCSI (VI-attached SCSI) protocol is designed and
implemented to support SCSI commands in the VI net-
work. The VISA storage system is based on vSCSI.

To compare with iSCSI and IP SAN, a prototype sys-
tem is built and some results are obtained by testing with
representative benchmarks.

Our testing environment consists of a 1Gbps Fast
Ethernet connecting a number of nodes. Every node
has a 3 SysKonnect SK-9821 100M/1000M Fast Ethernet
adaptor to support M-VIA. The operating system run-
ning on each node is RedHat Linux 7.3 Kernel 2.4.18.

Fig.7 shows the performance comparison between
vSCSI and iSCSI in transferring different block-sized
packets. For sequential write/read, the throughput of
vSCSI is markedly higher than iSCSI. In particular, the
maximum achieved throughput with iSCSI is about half
of the vSCSI. For random read/write, when block size
is small, the vSCSI performance is worse than that of
iSCSI by about 10%. But for large block size, vSCSI
outperforms iSCSI, especially in the write mode.

Table 1 shows the performance comparison between
VISA and IP SAN that are connected with the same
Ethernet adaptor. The performance is nearly the same
for random read/write. But for sequential write/read,
the VISA performance is significantly better than that
of IP SAN.

Dan Feng et al.: Massive Storage Systems 655
(x10%) (x10%) (x10%)
~ 35 - 70 - 70 -
= [o vSCSI m iSCSI] % ‘0 vSCSI m iSCSI | = ‘o vSCSI m iSCSI |
3 30 2 60 = = 2 60
¥ 25, M 50 & 50
'éz() H 5 40 g 40
15 i £30 230
Z10(|H £ 20 £ 20
Z 5| Z 10 210 — il
= 0 Al Al AR = 0 il | il & gl L
SEEEEEEEEEE SRR EEEEEEL SR
Block size (KB) Block size (KB) - Block size (KB)

(@)

(b) ©

Fig.7. Comparison of throughput between vSCSI and iSCSI. (a) Sequential write. (b) Sequential read. (c) Random read/write.

Table 1. Performance of VISA and IP SAN with
Different Number of Storage Nodes
Sequential Write Sequential Read

Number of VISA IP-SAN VISA IP-SAN
Storage Nodes (KB/s) (KB/s) (KB/s) (KB/s)

2 41556.18 17188.55 66216.76 43640.48

3 44759.53 20748.39 64327.28 44623.66

4 51747.68 28963.93 62531.04 46358.68

4.2 CEFT-PVFS

Disks (IDE or SCSI) in nodes of a cluster can poten-
tially form a distributed disk array to meet the demand
for large scalable storages. Parallel file systems, such as
GPFS/28] and PVFSPBY, have been developed to provide
high I/O performance.

Without any additional cost, all the disks on the
nodes of a cluster can be connected together through
CEFT-PVFSP32 an RAID-10 style parallel file system,
to provide a multi-GB/s parallel I/O performance. 1/0
response time is one of the most important measures of
quality of service for a client. When multiple clients sub-
mit data-intensive jobs at the same time, the response
time experienced by the user is an indicator of the power
of the cluster.

4.2.1 Design and Implementation of CEFT-PVFS

CEFT-PVFS is an extension of PVFS, which aims to
providing a multi-GB/s parallel I/O performance with
significant fault-tolerant capability. There are compute
nodes and I/O server nodes in the cluster, and a node
can be either or both depending on the overall workload
distribution. All I/O server nodes are divided into two
groups, the primary one and the mirroring one. File data
is striped across the primary group and duplicate on the
mirroring group. When writing, data are stored in the
primary group in the RAID 0 style and backed up in the
mirroring group simultaneously. Data is retrieved from
the nodes that have less workload between the mirrored
pair to optimize the write performance.

The metadata manager handles operations such as
file access permission, file size, striping size, and striped
data location on disks. It only informs the clients the
locations of the CEFT-PVFS file and does not partici-
pate in the read/write operations to avoid becoming a
bottleneck of the system. Clients handle all file I/Os

without the manager’s intervention. Four different pro-
tocols for data duplication with different performance
and reliability trade-offs are implemented to optimize
performance for different application environments. A
scheduling algorithm for dynamic load-balancing based
on CPU, memory and disk workload is developed to im-
prove the performancel®?. Compute nodes can directly
access I/O servers through the network. Clients can be
distributed in all nodes of the cluster.

4.2.2 Performance Analysis

The queuing model for the CEFT-PVFS service un-
der data-intensive load is shown in Fig.8. Assume that
I/O requests follow a Poisson process; with a mean ar-
rival rate of A. Each request is handled by the meta-data
server to get meta-data, and then performs actual data
read or write operations to I/O nodes. Part of the main
memory space in a server node is used for I/O cache
buffer to hide the disk I/O latency and to take advan-
tage of data reference locality. Assume the number of
I/O server nodes to be N in each group. The arrival
rate to the server node ¢ is P;\, where P; is the probabil-
ity that the request is directed to node i. When the I/O
request is a small read or write, where the data size is
equal to or less than the size of a striped block, and the
workload on a server node among a group is balanced,
P; is equal to 1/N. When the I/O request is a large
read or write, where data is striped on all of the nodes
in a group, P; is equal to 1. So the typical range of P;
is [I/N,1]. Let P, and P, = 1 — P, denote the read
and write probability of a request, respectively. Assume
that the I/O cache buffer hit rate for read requests to
be h, and the probability of write buffer being full to
be f,. Thus, the effective arrival rate to each disk is:
A = [Pr(]- 7h7‘) +oww] - P

Assume that the metadata service time, the network
service time and the I/O buffer service time are expo-
nentially distributed with the average times Tyis, Thet
and T, respectively. Therefore, request residence time
in the network and in the I/O buffer can be modeled
using the M/M/1 queuing model™. According to the
M/M/1 modell’, the average residence time in meta-
data server can be calculated as:

Tws (1)

Wys = ——M5
MS = 1 N Tus

656

Read Hit/
Network Cache 4 Write Buffer

P TTTHITTH—251T]

Network Cache

Pa) Ai
ATTTHITH 1]

: : Read Not Hit/

Network Cache Write Disk
Pn A s

\ /\—N>||||H||| —{ [[]

Read Hit/ >
’| }’ Network Cache Wegte Buffer Primary Group

Metadata |P1 A |||H||| A |||
Server f I;\Ietwork Cache N

A TTTHITTH—2ST1T]

: : Read Not Hit/
Network Cache Write Disk

PN M TTTH T TH—24+11T]

Fig.8. A queuing model of I/O service for CEFT-PVFS.

Mirror Group

The average residence time in network can be calcu-

lated as:
Tnet

—_— 2
]-_PiA'Tnet’ ()
and the average residence time in the I/O buffer can be
calculated as:

Wnet =

T

Wcace:—-
T I-PAT.

(3)
According to M/G /1 model(*¥] the average residence
time in a disk drive can be calculated as:

NE(Y?
Wiaisk = 5)

[— NE(V)] + E(Y). (4)

The average I/O response time is composed of three
components, namely, the average transfer time for the
network, the average residence time in the I/O buffer
and the average residence time in the disk drive. So the
average 1/0 response time can be expressed as:

Z = WMS + Wnet + Wcache + Pdisk : Wdisk

_ TMS + Tnet + Tc
T 1-XNTys 1—-PXA-T.. 1—PX\ T,
NE(Y?)
P.(1—-h,)+ Py,fw v 7 L RE(Y
+ [P (1~ h,) + f]x{z[l_wmﬁ (v)}

(5)

where Tyet = L/Rnet, Te = L/Rmemory and L is the size
of data to be accessed on each I/O server node. Even
though the data is striped in fixed blocks to server nodes
in a RAID O style, the blocks can be incorporated into
a large block with length equal to L. Ryet and Rpemory
are the available network bandwidth and the available
memory access rate respectively.

The available network bandwidth is about 120MB/s
in the PrairieFire system and the memory access rate is
about 500MB/s. The data striping block size is 64KB in
CEFT-PVFS. Typical values for relevant disk parame-
ters are: 50MB/s for data transfer rate, 1.2ms for track-
to-track seek time, 8.5ms for average seek time, 4.17ms

J. Comput. Sci. & Technol., Sept. 2006, Vol.21, No.5

for average latency, and 19036 for the number of cylin-
ders. Tyg is the time for a request handled by metadata
server to get metadata and the average time is measured
about 5us in the PrairieFire system.

The results reveal that the response time is a func-
tion of several operational parameters. The results show
that I/O response time decreases with the increase in
I/O buffer hit rate for read requests, write buffer size for
write requests and number of server nodes in the par-
allel file system, while higher I/O requests arrival rate
increases I/O response time. On the other hand, the
collective power of a large cluster supported by CEFT-
PVF'S is shown to be able to sustain a steady and stable
I/O response time for a relatively large range of the re-
quest arrival rate.

5 GDSS: Global Distributed Storage System

Advances in science and technology are made possi-
ble largely through the collaborative efforts of many re-
searchers in a particular domain. We see collaborations
of hundreds of scientists in areas such as gravitational-
wave physicsi®3, high-energy physics®¥, astronomy!3?!
and many others coming together and sharing a variety
of resources collaboratively in pursuit of common goals.
These resources are geographically distributed and can
encompass people, scientific instruments, computer and
network resources, applications and data. It is common
to see datasets on the order of terabytes today, and on
the petabyte-scale soon. Grid technologies!®6=38! enable
efficient resource sharing in collaborative distributed en-
vironments.

One challenge facing data-intensive and high-
performance computing applications is to provide effi-
cient management mechanism and transfer model for
terabytes or petabytes of information in wide-area, dis-
tributed environments[373% Tt also needs efficient secu-
rity mechanism to insure data confidentiality and inte-
gration.

GDSS is a novel architecture for a wide-area dis-
tributed storage system built on SAN, NAS, or any other
storage systems. Our purpose is to construct a dis-
tributed storage system with high scalability, security,
and efficiency to offer a high quality storage service to
millions of users in the grid environment!36!.

We propose a user and group-based multi-namespace
architecture, and develop a new approach to solving the
bottleneck problem of metadata server. A new com-
ponent, called Storage Service Provider (SSP), is intro-
duced to provide storage service for users, which play the
role of user agent to the storage system. In order to dis-
tinguish QoS for users, files can be replicated, clipped,
and stored in different storage devices, and the access is
transparent for users.

5.1 A Global View of GDSS

GDSS is a middleware to unify heterogeneous storage
resources to provide a huge available storage capacity

Dan Feng et al.: Massive Storage Systems

for millions of users. As described in Fig.9. It contains
the following modules: Storage Service Provider (SSP),
Global Name Server (GNS), Resource Manager (RM),
Storage Agent (SA), and Certification Authority (CA).

RootCA

" Domain: ‘:v
|

= SA@ e E‘l:‘ﬁ i Domain

RewurLe

\Storage Storage E
Fesoufce Resource

“ Domain

Domam

Fig.9. Structure of global distributed storage system.

SSP is the access point of the system, and the whole
system is divided into several domains. In each domain
there are GNS and RM to store metadata and replica in-
formation respectively, and to manage storage resources
in the domain. There exists several SSPs in the system
and each of them is equal in their status and capacity.
SSP is the entry of the system through which all the sys-
tem components are accessed. GNS is in charge of meta-
data management, including metadata operation inter-
face, metadata fault-tolerant subsystem and metadata
search engine. GNS contains several Name Servers (NS)
that record parts of the metadata information and are
organized as a tree-like structure to provide metadata
information to other system components. RM main-
tains a storage resource list: it is in charge of resource
application and scheduling. RM presents a transpar-
ent and dynamic replica scheme that can greatly reduce
the access latency and bandwidth consumption and im-
prove load balancing and reliability. The dynamic replica
scheme automatically performs replica creation, deletion
and management operations according to the condition
of information access. CA is the certificate management
subsystem: it enforces information access control, en-
sures system security, and records user’s information. SA
provides a standard access interface above heterogeneous
storage systems and implements a data transfer protocol
that can substantially improve the data transfer speed.

GDSS implements storage virtualization from three
aspects: 1) SSP virtualizes distributed storage resources
as a logical storage pool and provides a single storage
image for users; 2) SA provides a uniform access inter-
face to heterogeneous storage resources and ensures that
GDSS adapts to the variety of storage resources; and
3) NS reflects the relationship between the logic storage
pool and the physical storage devices.

5.2 Characteristics of GDSS

5.2.1 Metadata Organization and Management

GDSS transforms heterogeneous distributed storage

657

resources into a big logic storage pool for users who do
not care where the data is stored and how to fetch them.
In order to attain the above goals, GDSS should manage
all the data, user and group information, which is called
metadata. The metadata server in GDSS is implemented
by GNS that stores and manages metadata and makes
metadata server extendable and fault tolerant.

GDSS uses LDAP to store all the metadata and orga-
nizes them as a tree-like structure. Metadata organiza-
tion is separated into two branches: one records user and
group information; the other records user or group file
structure. Fig.10 illustrates an example of such organi-
zation with two users and one group. GDSS reflects the
tree to every user and group to shape the user’s single
file image to which file access control is attached.

DC=SUBIJECT

GROUP 1

DIRNAME= DIRNAME=
USER GROUP
DIRNAME DIRNAM DIRNAME:
LlU GROUPI
IRNAM DIRNAME DIRNAME
=DOC =SW =SHARE

Fig.10. Metadata organization in GDSS.

ID=

With the increase in access frequency to GNS and
in the number of users, metadata server should be dy-
namically extended to balance the access load. All the
metadata is stored in NS managed by GNS in GDSS.
NS can be extended to distribute metadata. Utilizing
the referral defined in the LDAP protocol GDSS divides
the whole metadata tree into several NSs to decrease the
access frequency to every NS, as shown in Fig.11. A
matching table is stored in GNS to indicate where to
find the corresponding metadata information. Table 2 is
an example matching table. When inquiring, GNS first
checks its matching table and finds which NS stores it,
and then fetches the metadata information through the
corresponding NS.

Table 2. Example for Matching Table

Root Path Name Server
/root NS-A
/root/B1 NS-B
/root/A1/A2/C11 NS-C
/root/B1/B2/B3/B4/D1 NS-D

GDSS uses metadata replica to ensure the reliabil-
ity of metadata. If the fault is a disk error or server
outage, the system reallocates the space to store the cor-
responding metadata from its replica. The higher the se-
curity level of metadata, the more replicas will be made.
Replica is stored in another NS. Through the matching
table, system can find the information.

658

Fig.11. Example for metadata tree division.

5.2.2 Global Information Sharing

One of the main goals of GDSS is to enable the sharing
of a wide range of information by users. There are two
methods to provide information sharing: the exchange
of private information between two users and the shar-
ing of information through a shared storage space among
for a large number of users. The main problem caused
by information sharing is access control: different user
has different right to a file and when a user access a file,
system must limit the user’s operation based on his/her
access right.

Individual and group users are the two types of users
defined in GDSS. An individual user can join one or more
group users. A group user can join another user group.
The relationship between individual user and group user
is shown in Fig.12.

/Group®,
A

//)

Fig.12. Relationship between group and individual user.

For an individual user, access right does not need
to be attached to directories in its own name space
and only this user can access directories in his/her own
name space. An individual user can share resource
through output sharing that is associated with access
right. Other users can access the resource if the access
right is granted. When an individual user joins a user
group, he/she can access the corresponding resource ac-
cording to the role is assigned by the group administra-

J. Comput. Sci. & Technol., Sept. 2006, Vol.21, No.5

tor. Every directory in group user name space has an
access control list and lower lever directory inherits the
access rights from the upper lever directory.

5.2.3 Data Transfer

Data transfer is the main function of GDSS that
largely determines the system performance. GDSS mod-
ifies several aspects of traditional data transfer protocol
to make it more efficient.

Sliced-data transfer is to slice data into several pieces
and get the data from different storage devices. Since
there are several data replicas in GDSS, the system can
get the data from different storage devices and each de-
vice provides a piece of data.

Another modification is the socket channel. The
speed of small-size file transfer is very low, and the trans-
fer of a batch of small-size files is about 2-15 times slower
than that of a single file with the same size when using
FTP4941 a5 the transfer protocol. Socket channel is
used in GDSS to optimize small-size file transfer. Socket
channel encapsulates a batch of small-size files into one
socket command, in which one socket channel is shared
by all the files. The data structure of socket channel is
shown in Fig.13.

Establish File File File File

Connection | Info | Data | Info | Data

Close

Connection

Fig.13. Style of data channel.

Fig.14 shows the operation flow of the datatransfer
subsystem in GDSS. First, the user issues an operation
request, then according to the operation type and meta-
data, the data transfer subsystem creates transfer tasks
and put them into a task queue. The transfer controller
fetches transfer tasks from the task queue and submits it
to the lower data transfer layer to complete data trans-
fer. During the transfer process, the status of transfer
will be fedback to the transfer task. We use this infor-
mation to monitor the transfer process. When transfer
completes, the transfer controller confirms the usage of
resource and modifies the metadata.

| Put | | Get |
_>| Request Storage Resource | | Get File Location |
Resource Location Location Location
Confirm Information Information || Information
i LCreate Transfer Tasks
:“ SubTask || SubTask || SubTask | --- ‘
Status i L
Feedback | Data Channel Pool |

—{ Transfer Data |

Fig.14. Operation flow of transfer subsystem in GDSS.

Dan Feng et al.: Massive Storage Systems

5.2.4 Security in GDSS

In GDSS the basic security infrastructure provides
the following functions: 1) Secure communication. Mu-
tual authentication happens before data transfer. During
data transfer the data can be encrypted and integrity can
be guaranteed; 2) Security across organizational bound-
aries. There may be many security domains and all
the domains can coordinate to provide a distributed and
manageable security system; 3) Single sign-on. In or-
der to support the mobile users, the system provides a
single sign-on so that the user can access the system any-
where via any SSP; 4) Use-defined security class. Users
can define the security class to reduce some unnecessary
overhead.

5.3 Operations of GDSS

GDSS provides an ftp client and a special client to ac-
cess data. Using the special client the user attains high
performance of data transfer because it uses the improve-
ments in SA. Using the ftp protocol a user cannot attain
those characteristics.

Fig.15 shows the process of the read file process
through the APIs of the system: 1) a client sends a con-
nect command to an SSP with user name, group name
and password; 2) the SSP passes the connect request to
a CA, the CA verifies the information. If the current
CA could not verify this user, it sends the verification
request to another CA. For a legitimate user, a user in-
formation table will be returned; 3) the user sends the
read command with the file names to the SSP. The SSP
finds out which metadata server keeps the metadata of
the files from the Metadata scheduler. The SSP sends
the file names to the corresponding metadata server and
gets the metadata to the client; 4) with the metadata
the client can easily get data from Agents.

In some cases, a user has no special clients that
can use the API defined by the system. When a user
accesses the system through standard FTP clients or
HTTP clients, the operation procedures are different
from the above. SSP does substantial work for the client.
It must be noted that when the file is divided the file
must be merged through SSP, the data transfer will be
through SSP. Otherwise the third part of transfer will be
adopted as shown in Fig.16.

y
Client

Fig.16. Read operations thro-

Fig.15. Read operations thro-
ugh API of GDSS.

ugh general client.

659

5.4 Performance Evaluation

Fig.17 shows system extendibility. The evaluation
environment consisted of 100M Ethernet and disks with
IDE interface. Several users transfer different 100M-size
files simultaneously. We conclude that system collective
bandwidth increases linearly with the increase of stor-
age resources, which indicates that GDSS has good ex-
tendibility.

2 40

a [—#— Collective Bandwidth]

> 30 —
=20 +

E

N . .)

g 1 2 3 4 5
as]

Number of Storage Resources

Fig.17. Relationship between system bandwidth and storage re-

source number.

Fig.18 shows a comparison between the traditional
FTP server and the socket channel when transferring a
batch of small files. In the experiment, 100 files of the
same size are transferred, and the average transfer time
is obtained.

~ 2500 b— —— Socket Channel /'
2 —»— FTP /
S 2000 /
" /7
500 J__.J’_'\-"/ /
0

\‘) c;) \Q5 5QS\QQ‘>‘)QQ‘> \‘F\Q‘@%Q‘P\QQ“")QQ“* \§\ c)é\\Q@

File Size (M)

Transfer Tim
=)
S
S

Fig.18. Comparisons between socket channel and traditional FTP

when transferring a batch of small files.

Fig.18 shows that the time of transferring a batch
of small files (whose size is less than 500K) changed
slightly using standard FTP. Frequent connections be-
tween servers and clients can explain this phenomenon.
When the size of files increase from 500K, the trans-
fer rate rises gradually. The transfer rate of the socket
channel is 1-8 times as fast as that of the standard FTP.
Fig.18 also shows that the average transfer time for files
whose size is less than 500B is larger than that of trans-
ferring files whose size is between 1K—100K. Reasons for
this phenomenon are redundant file information and fre-
quent file operations (such as open and close). It can be
predicted that performance improvement will be more
remarkable as network latency increases.

Fig.19 shows a comparison between FTP and GDSS
when transferring large files. Because of the net-
work bandwidth and the processing limitation of clients,
the transferring bandwidths of servers are limited to
1500KB/s. To simplify the implementation of the proto-
type system, we slice files according to its size. That is,
no slicing is done if the file size is between 50-100MB, 2

660

slices for the file size between 100-200MB.

6000
= 5000 +— TP
% —B—GDSS
= 4000
& .
5 3000 —
£ 2000 f
F

1000

0

50 100 200 300 400 500 600 700
File Size (M)

Fig.19. Comparisons between GDSS and traditional FTP when

transferring large files.

Fig.19 shows that as file size increases, the transfer
rate increases and the transfer rate using GDSS is much
higher than that of the standard FTP.

6 Tape Virtualization Technology

Virtualization is charting a new direction for the tech-
nological development of storage systems. With the help
of the virtualization technology, a Tape Library File Sys-
tem (TLFS) is proposed!*?. Also, virtual disk, which
looks like a massive disk, maintains a consistent view of
massive tape and RAID storage, so that the user can
effectively manage them.

6.1 Tape Library File System

The primary benefits for the end users are to re-
duce primary disk space and improve performance (as
expressed in faster response time). However, for the in-
dustries, the first type of disk option, simply buying an
inexpensive disk array and backing up to a file system,
has some limitations. For instance, the backup software
may require a license to be used in a file-system-type de-
vice, such as a RAID, backing up to a file system is more
complicated and costly in management than backing up
to tape (or tape library). General file systems are more
prone to being infested with viruses, and thus have an
inherent problem of fragmentation.

In an attempt to address the above problems, TLFS
effectively integrates the Virtual Tape Library (VTL)143l
technology, the RAID-DP technology!**, and the iSCSI
technology to provide transparent tape file access for
users while retaining other functions of tape libraries.
Our study of TLFS shows the main advantages of TLFS
over the conventional tape libraries and conventional
(disk-based) file systems as follows: 1) high backup and
restoration performance; 2) low cost compared with sim-
ple disk-based systems; 3) some finer functions inte-
grated both the disk and the tape library.

TLFS allows users to create files and directories as
well as delete, open, close, read, write and/or extend

J. Comput. Sci. & Technol., Sept. 2006, Vol.21, No.5

the files on the device(s). TLFS maintains security on
the files and provides the management for fragmenta-
tion. Moreover, TLFS can support large-scale file sys-
tems. Users have two ways to access TLFS: using gen-
eral backup application, and through the APIs provided
by TLFS.

In the target, our function modules are implemented
in SCST*5!, which is a generic SCSI target middle level
for Linux. It is designed to provide a unified, consistent
interface between SCSI target drivers and Linux kernel
and simplify target driver development as much as pos-
sible. Although the data distribution policy is different
compared with [46, 47], in substance, their implementa-
tion technologies are analogical. And they all have to
record all the logical objects!*®! on the RAID.

The SCSI command analysis module receives SCSI
sequential commands from the backup application, and
determines whether the commands should be executed
on the RAID or on the tape library. Then it delivers
them to the proper module (or media). The SCSI com-
mand transform module is responsible for transforming
SCSI sequential commands into SCSI block commands.
The LBA (logical block address) mapping module main-
tains the block mapping information, which associates
the logical unit of an object with its logical block ad-
dress in the RAID. The data transfer module performs
data transfer between RAID and tape library according
to some information lifecycle management policy. Tables
3 and 4 show the results.

Table 3. Average Write/Read Time of the VTL

Tape in Different Network Environment

Total Size VTL Tape in TLFS

Num.ber of File 1000M Ethernet 100M Ethernet
of Files (MB) Write (s) Read (s) Write (s) Read (s)

1 50.0 2 3 3 4

1 200.0 10 17 12 21

1 1000.0 53 84 55 106

381 85.0 6 5 6 6

3386 455.1 39 29 40 30

22216 1000.0 112 79 112 91

10 2000.0 238 247 259 251

The average write time of the VTL tape in 1000M Ethernet
is 99.14% of that in 100M Ethernet and the average read time
in 1000M Ethernet is 95.68% of that in 100M Ethernet, which
indicated that different network environment has few influence

for TLFS.

Table 4. Performance Comparison of the Local
Node of VTL and the Physical Tape

Number Total Size VTL in Local Node Physical Tape
of Files of File (MB) Write (s) Read (s) Write (s) Read (s)

1 50.0 2 2 8 17

1 200.0 9 16 32 59

1 1000.0 47 80 163 305

381 85.0 5 4 16 24

3386 455.1 27 20 87 119

22216 1000.0 84 52 132 223

10 2000.0 92 112 268 330

It indicates network has large influence for TLFS. In the same

time, the average write time of the VTL tape in local host is
54.62% of that in 100M Ethernet and the average read time
in local host is 61.64% of that in 100M Ethernet

Dan Feng et al.: Massive Storage Systems

661

I Windows Application I
4

] Virtual Device FDO | Virtual Device Drive Stack

Virtual Device Driver |—[>{ Virtual Device PDO |

—

i
—

Disk Device Drive Stack

Tape Device Drive Stack

—

Disk PDO |

I

Tape PDO

e

| Adapter Function Driver I—{>{ Adapter FDO |

| Adapter FDO |<l—| Adapter Function Driver |

PCI Bus Driver > Adapter FDO |

I Adapter FDO Id—{ PCI Bus Driver I

Fig.20. Virtual device drive stack of Microsoft Windows.

6.2 Virtual Disk

Any problem in computer science can be solved with
another layer of indirection*?!. Virtual disk, which is
implemented both under Redhat Linux (kernel 2.4.20-8)
and under Microsoft Windows 2000, is a hybrid storage
system based on RAID and tape library. For users, it
looks like a general disk, except for its very large capac-
ity (equal to the sum of all tapes’ capacity).

In Microsoft Windows 2000 development environ-
ment, a virtual device driver has both virtual device
PDO (physical device object) and FDO (functional device
object), shown in Fig.20. This virtual device looks like
a disk by a Windows application. As shown in Fig.21,
this design is built above the disk device drive stack and
the tape device drive stack, so users do not have to care
about different vendor’s storage device driver. Addition-
ally, for virtual disk, the real access address space is the
sum of RAID’s and all tapes’ address space.

7 Domain-Based Storage Management
Framework for the Heterogeneous
WAN-Based Environment

As the Internet continues to grow and the storage
technologies evolve, users want to get storage services
at anytime and anywhere by connecting to the network.
A domain-based storage management framework is de-
signed for the Wide Area Network (WAN) toward cater-
ing for the large-scale and heterogeneous storage environ-
ment. It is based on the Storage Management Initiative
Specifications (SMI-S).

7.1 Storage Management Framework
Architecture

The framework can be generally divided into 3 ma-
jor components, which are storage system agent, domain
agent and management application. The architecture is
illustrated in Fig.21.

Users can access one of multiple administrative do-
mains through the management application, and the pro-

tocol between the management application and the do-
main agents is XML/HTTP to which the CIM operates
over HTTP mechanism of SMI-S that is applied. In a
domain, StorageSys agent represents the storage system
and domain agent represents the sub-domain, they can
communicates with the domain agent for registration and
transmitting information through SIP and XML/HTTP.
A StorageSys agent can access storage system resources
with a specific interface such as protocols, files, etc. We
shall show each of these components in more details.

| Management Application|
Y

2
XML/HTTP|
\\
| Domain Agent |
A
XML/HTTP| XML/HTTP XML/HTTP
SIP SIP SIP
v v v
. StorageSys StorageSys
Domain Agent Agent Agent
XML XML/HTTP % Specific Specific]
S SIP ¥ S S = SIP Interface Interface‘
torage Sys| (Storage Sys Storage
Agent Agent SSt)(I)srtaegrg vaien
A .
Specific Specific
[Interface . Interface
Storage Storage Domain
_|_System System J

Fig.21. Overall management framework architecture.

7.1.1 StorageSys Agent

The StorageSys agent has two main responsibilities for
the storage system: 1) allowing the storage system to dy-
namically register to be a member of a certain domain,
and 2) collecting, dealing with and transmitting man-
agement information of the storage system. The agent
consists of one common information model object man-
ager (CIMOM), one SIP provider and a set of storage
resource providers (SRPs). Fig.22 shows the architec-
ture of a StorageSys agent.

CIMOM is a central component that routes and saves
information about storage resources and events objects

662

J. Comput. Sci. & Technol., Sept. 2006, Vol.21, No.5

) //—{ StorageSys Agent ’—\

XML/ —— CIM MOF
I\//ianeiger?enl HTTP WBEM Repository Storage System 4 h
pprication Schema XML
Managcmcml HTTP| N CIM MOE
- Application _l WBEM Storage Domain
Provider Manager CIMOM Schema
XML/HTTP
i t
- StorageSys
SIP Provider g;g;i%:eg Dom'aﬁl i
[siPUA |[SMIS UA | Providers gyp || Manager SIP Provider
\ P ﬁ [SIP UA] SMI-S UA|
SIP XML/HTTP Specific =
v v y Interface SIP XML/HTTP

Domain Agent Storage System

Fig.22. Architecture of StorageSys agent.

between components. The storage resources and events
objects are described by SMI-S-compliant CIM classes
and CIM instances and stored in CIM repository. The
CIMOM responds to the operations from management
application defined in the WBEM specification, such
as create, modify, and delete. It also interacts with
providers, which actually obtain the information from
the resources, through the Provider Manager.

Each SRP corresponds to one storage resource within
the storage system, and via a specific interface, such as
SNMP, RPC, etc., collects, gathers and updates the stor-
age resource information. SRP is in fact a so-called in-
strumentation agent to obtain the information from the
resources and forward it to the CIMOM.

SIP Provider is used to implement StorageSys agent
registration by means of one function module SIP UA
(user agent), then send the storage system common infor-
mation objects into the domain with the other function
module SMI-S UA if the registration has been successful.

7.1.2 Domain Agent

The domain agent plays the role of a manager in a do-
main, which consists of one CIMOM, one domain man-
ager, one SIP Server with DB, and one SIP Provider.
Fig.23 illustrates the architecture of the domain agent.
The domain agent can allow its own domain freely be-
come one sub-domain of another domain, by means
of SIP Provider, which improves the scalability of the
framework.

SIP Server is used to achieve the goal of automatic
discovery of storage system. SIP server receives registra-
tion messages from other agents that would like to join
the domain, parse these messages and store the entities’
location information into DB.

Domain manager is responsible for domain informa-
tion statistics. Due to the fact that the managed objects
and information frequently change due to dynamic reg-
istration actions, it is necessary for the domain agent
to collect statistics on information such as total domain
storage capacity, spare storage capacity, etc. It executes
the management process on the basis of data from DB

v
lDomain Agenl‘
Fig.23. Architecture of domain agent.

and repository in CIMOM. With respect to what way
to run the task, we periodically run it at present. The
policy-based and triggered way is the future pattern we
will adopt.

7.2 SMI-S Based Storage Management Scheme

7.2.1 Storage System Management Scheme

We can sufficiently describe the management re-
sources information of the storage system via SMI-S
profiles(®!, which are based on DMTF’s CIM core and
common models®!!| such as fabric profile, array profile,
etc. The management objects can be described in XML
as well as the Management Object Format (MOF)(52
We also use the corresponding SRPs (See “StorageSys
Agent” in Subsection 2.2) to obtain the actual resources’
information. Fig.24 shows the storage system manage-
ment scheme.

| CIM Schema |

[SMI-S Profiles |

—+ +

| [Storage System

Storage Storage Storage | Object
Object 1 Object 2 Object n | Model
1] 1] 1]
1] 1] 1]
| sRP1 | [SRP2 | - | SRPn |
¢ Inheritence ——— Association

Fig.24. Storage system management scheme.

The StorageSys agent will collect and deal with the
dynamic resource information through SRPs once it re-
ceives the WBEM-compliant management requests or
registers successfully.

7.2.2 Storage Domain Management Scheme

For the domain management scheme, first, we also
create some managed objects that are derived from the
CIM objects defined in SMI-S profiles and represent the

Dan Feng et al.: Massive Storage Systems

storage domain common information, such as total do-
main storage capacity, spare storage capacity, etc. These
objects are called Common Information Objects (CIOs).

/—{ Domain Agent ’—\

Domain CIOs

Domain
Manager

Storage System Storage System| | Sub Domain

CIOs CIOs CIOs
_ 4 y A /)
XML/ XML/ XML/
HTTP HTTP HTTP
StorageSys StorageSys Domain Agent
Agent Agent

Fig.25. Storage domain management scheme.

The system agent or other domain agent will inte-
grate its CIOs including CIM classes and instances into
the CIM repository of the domain agent, through SMI-S
UA of the SIP provider, which uses schema or instance
manipulation operations such as CreateClass, Modify-
Class, DeleteClass, Createlnstance, ModifyInstance, and
Deletelnstance®3! | after it registers successfully. So, the
domain manager is designed to periodically collect and
deal with these existing objects’ information, and up-
date domain’s CIOs’ attribute value. Fig.25 illustrates
the process.

7.3 Implementation

A prototype is implemented that consists of two Stor-
ageSys agents, one domain agent and one Web-based
management application. The two StorageSys agents are
respectively responsible for a RAID located in Wuhan
and a SAN housed in Beijing, China. The domain agent
is also in Wuhan, which controls the two StorageSys
agents, meanwhile, we deploy the management applica-
tion in the same place with domain agent. It can manage
the storage system in WAN and it is shown to be scal-
able.

8 Conclusion

Applications such as e-Science and e-Business involve
geographically distributed and heterogeneous resources
such as computational resources, scientific instruments,
and databases. The data in these applications is usu-
ally massive and distributed across numerous institu-
tions for various reasons including the inherent distri-
bution of data sources; large-scale storage and computa-
tional requirements; to ensure high-availability and fault-
tolerance of data; and caching to provide faster access.
To satisfy such mounting demand, storage is required
to be more scalable, reliable, secure, manageable and
intelligent. Building, managing, and operating such dis-
tributed data and storage systems in autonomic manner

663

are not only challenging, but also presents a large busi-
ness opportunity for storage industry.

We present some of these achievements from sev-
eral storage systems under development: a storage pool
with network-attached RAID, an object storage system,
a high performance distributed storage system for lo-
cal area network storage, and a global distributed stor-
age system for wide area network storage. All of these
storage systems are online massive storage systems. A
typical offline massive storage system is used to backup
data or store documents, for which the tape virtualiza-
tion technology is described in the paper also. All these
types of massive storage system can meet different de-
mands for huge data storage.

References

[1] Gibson G A, Patterson D A. Designing disk arrays for high

data reliability. Journal of Parallel and Distributed Comput-

ing, Jan, 1993, 17(1): 4-27.

Gibson G. Scaling file service up and out. In Keynote Ad-

dress at the 3rd USENIX Symp. File and Storage Technologies

(FAST’04), San Francisco, California, March 31, 2004.

[3] Braam P J. The Lustre storage architecture. = Techni-
cal Report, Cluster File Systems, Inc., January 2004,
http://www.lustre.org/docs/lustre.pdf.

[2

[4] Object Storage Architecture. White paper, January 2004,
http://www.panasas.com/activescaleos.html.

[5] Intel Corporation. Object-based storage: The next
wave of storage technology and devices. Jan. 2004,

http://www.intel.com/labs/storage/osd/.
[6] Tierney B, Johnston W, Lee J et al.
tributed computing architecture for grid applications. Future
Generation Computer Systems, April 2000, 16(5): 473-481.
[7] Baru C, Moore R, Rajasekar A et al. The SDSC storage re-
source broker. In Proc. CASCON’98 Conf., Toronto, Canada,
1998.

A data intensive dis-

[8] Rhea S, Eaton P, Geels D et al. Pond: The OceanStore pro-
totype. In Proc. the 2nd USENIX Conf. File and Storage
Technologies (FAST’08), March 2003.

[9] Allcock W, Bester J, Bresnahan J et al. GridFTP proto-

col specification. GGF GridFTP Working Group Document,
September 2002.

[10] Riedel E, Faloutsos C, Gibson G A, Nagle D. Active disks
for large-scale data processing. IEEE Computer, June 2001,
34(6): 68-T4.

[11] Mesnier M, Thereska E, Ellard D et al. File classification in
self-*storage systems. In Proc. the First Int. Conf. Au-
tonomic Computing (ICAC-04), New York, NY. May 2004,
pp-44-51.

[12] Kephart J O, Chess D M. The vision of autonomic computing.
IEEE Computer, 2003, pp.41-50.

[13] Storage Networking Industry Association. CIM-SAN-1 Ven-
dor Profile, Feb.2006, http://www.snia.org/tech_activities/
SMI/CIMSAN /emc.doc

[14] Sivathanu M, Bairavasundaram L, Arpaci-Dusseau A C et al.
Database-aware semantically-smart storage. In Proc. Fourth
USENIX Symp. File and Storage Technologies (FAST’05),
San Francisco, California, December 2005, pp.239-252.

[15] Morris R. Storage: From atoms to people. In Keynote Address
at Conference on File and Storage Technologies (FAST’02),
Monterey, California, USA, January 28-30, 2002.

[16] Zhou K, Feng D, Wang F, Zhang J-L. Research on network
RAID pipeline technology. Chinese Journal of Computers,
Mar. 2005, 28(3): 319-325. (in Chinese)

[17] Farley M. Building Storage Network.
Osborne/McGraw-Hill, May 22, 2001.

[18] Zeng L, Feng D, Zhou K, Wang F. Research on mechanism
of network storage 1/O pipelining. Mini-Micro Systems, 2006,
27(1): 42-45. (in Chinese)

2nd Edition,

664

[19]

[20]

[21]

(22]

(23]

24]

[25]

[26]

[27]

(28]

[29]

30]

[31]

[32]

(33]
(34]

35]
[36

(37]

(38]

(39]

[40]

Wang F, Zhang J-L, Feng D et al. Adaptive control in Heter-
RAID system. In Proc. Int. Conf. Machine Learning and
Cybernetics, 4-5 Nov. 2002, pp.842-845.

Lampson B W. Hints for computer system design. ACM Op-
erating Systems Review, October 1983, 15(5): 33—48.
KleinOsowski K, Ruwart T, Lilja D J. Communicating quality
of service requirements to an object-based storage device. In
Proc. 22nd IEEE/13th NASA Goddard Conf. Mass Storage
Systems and Technologies (MSST 2005), Monterey, CA, USA,
April 2005, pp.224-231.

Feng D, Zeng L. Adaptive policy triggering for load balancing.
In Proc. the 6th Int. Conf. Algorithms and Architectures,
Melbourne, Australia, October 2005, pp.240-245.

Feng D, Qin L, Zeng L et al. A scalable object-based intel-
ligent storage device. In Proc. the 3rd Int. Conf. Machine
Learning and Cybernetics, China, Aug. 2004, pp.387-391.
Wang F, Brandt S A, Miller E L, Long D D E. OBFS: A
file system for object-based storage devices. In Proc. 21st
IEEE/12th NASA Goddard Conf. Mass Storage Systems and
Technologies (MSST’04), College Park, MD, April 2004.
Morris J H, Satyanarayanan M, Conner M H et al. Andrew:
A distributed personal computing environment. Communica-
tions of the ACM, Mar. 1986, 29(3): 184-201.

Soltis S R, Ruwart T M, O’Keefe M T. The global file system.
In Proc. the 5th NASA Goddard Conf. Mass Storage Systems
and Technologies, College Park, MD, 1996.

Satyanarayanan M, Kistler J J, Kumar P et al. Coda: A highly
available file system for a distributed workstation environment.
IEEE Trans. Computers, 1990, 39(4): 447-459.

Schmuck F, Haskin R. GPFS: A shared-disk file system for
large computing clusters. In Proc. the 2002 Conf. File
and Storage Technologies (FAST’02), USENIX, Montery, CA,
USA, Jan. 2002.

Wang F, Zhang S, Feng D. A hybrid scheme for object allo-
cation in a distributed object-storage system. In Proc. Int.
Conf. Computational Science 2006 (ICCS’06), UK, 2006.
Chen J, Feng D. VISA: A virtual interface storage architec-
ture for improved network performance. In Proc. the 2nd Int.
Conf. Embedded Software and Systems, Xi’an, China, Decem-
ber, 2005, pp.587-592.

Carns P H, Ligon W B III, Ross R B et al. PVFS: A parallel
file system for Linux clusters. In Proc. the 4th Annual Linuz
Showcase and Conf., Atlanta, GA, Oct. 2000, pp.317-327.
Zhu Y, Jiang H et al. Design, implementation, and perfor-
mance evaluation of a cost-effective fault-tolerant parallel vir-
tual file system. In Proc. Int. Workshop on Storage Network
Architecture and Parallel I/Os, New Orleans, LA, 2003.
Barish B C, Weiss R. LIGO and the detection of gravitational
waves. Physics Today, 1999, 52: 44.

Wulz C-E. CMS— Concept and physics potential.
II-SILAFAE, San Juan, Puerto Rico, 1998.

NVO, 2004. http://www.us-vo.org/.

Foster I, Kesselman C, Tuecke S. The anatomy of the grid: En-
abling scalable virtual organizations. International Journal of
High Performance Computing Applications, Aug. 2001, 15(3):
200-222.

Chervenak A, Foster I, Kesselman C et al. The data grid:
Towards an architecture for the distributed management and
analysis of large scientific data sets. J. Network and Computer
Applications, 2001, 23(3): 187-200.

Rajasekar A, Jagatheesan A. Data grid management systems.
In Proc. the 2003 ACM SIGMOD Int. Conf. Management of
Data, April 2003.

Jin H, Cortés T, Buyya R (eds.). High Performance Mass Stor-
age and Parallel I/O. IEEE Press, John Wiley & Sons, Inc.,
2002.

Postel J, Reynolds J. File transfer protocol (FTP). Oct. 1985.
http://www.ietf.org/rfc/rfc0959.txt?number=959.

In Proc.

[41]

[42]

[43]

[44]

[45]

[46]

[47]

48]

(49]

50]

[51]

[52]

(53]

J. Comput. Sci. & Technol., Sept. 2006, Vol.21, No.5

Postel J, Reynolds J. Telnet protocol specification (FTP). May
1983. http://www.ietf.org/rfc/rfc0854.txt?number=0854.
Feng D, Zeng L, Wang F, Xia P. TLFS: High performance tape
library file system for data backup and archive. In Proc. the
6th Int. Conf. High Performance Computing in Computa-
tional Sciences (VECPAR’2006), Rio de Janeiro, Brazil, July
10-12, 2006.

Anderson T E, Dahlin M D, Neefe J M et al. Serverless net-
work file systems. ACM Trans. Computer Systems, Feb. 1996,
14(1): 41-79.

Lueth C. NetApp data protection: Double parity RAID for
enhanced data protection with RAID-DP. March 5, 2005,
http://www.netapp.com/tech_library/3298.html

Palekar A, Ganapathy N, Chadda A et al. Design and imple-
mentation of a Linux SCSI target for storage area networks. In
Proc. the 5th Annual Linuz Showcase & Conference, Oakland,
CA, USA, 2001.

Mu F, Shu J, Li B et al. A virtual tape system based on stor-
age area networks. In Proc. GCC’2004 Workshop on Storage
Grid and Technologies, LNCS 3252, 2004, pp.278-285.
Myllymaki J, Livny M. Disk-tape joins: Synchronizing disk
and tape access. ACM SIGMETRICS Performance Evalua-
tion Review, 1995, pp.279-290.

ANSI. SCSI Stream Commands-2 (SSC-2). Revision 09, July
9, 2003, http://www.t10.org.

Wheeler D. Any problem in computer science can be
solved with another layer of indirection. March 26, 2005,
http://www.computer.org/computer/homepage/0505/GEI/
Storage Networking Industry Association (SNIA). (2003).
SNIA Storage Management Initiative Specification Version
1.0.1. Retrieved October 5, 2005, from http://www.snia.org/
smi/tech_activities/smi_spec_pr/spec/SMIS_v101.pdf.
Distributed Management Task Force (DMTF). (Jun 14
1999). Common Information Model (CIM) Specification
Version 2.2. Retrieved October 7, 2005, http://www.

dmtf.org/standards/cim/DSP0004.pdf.

Distributed Management Task Force (DMTF). Management
Object Format (MOF). http://www.dmtf.org/education/mof.
Distributed Management Task Force (DMTF). Specification
for CIM operations over HTTP Version 1.0, DMTF Specifica-
tion, Aug. 1999.

Dan Feng received the Ph.D. de-
gree from Huazhong University of Sci-
ence and Technology (HUST), Wuhan,
China, in 1997. She is currently
a professor of School of Computer,
HUST. Her research interests include
computer architecture, storage sys-
tem, parallel I/O, massive storage and
performance evaluation.

Hai Jin received his Ph.D. degree
in computer engineering from HUST
in 1994. Dr. Jin now is a professor
of computer science and engineering,
the director of Cluster and Grid Com-
puting Lab, and the Dean of School
of Computer Science and Technology
at HUST. He also is the chief scien-
tist of the ChinaGrid project, one of
the largest national grid computing in

China. His research interests include computer architecture,

cluster computing, grid computing, semantic web, peer-to-

peer computing, network storage, network security, and per-
vasive computing.

