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Abstract
science, information theory, and applied mathematics. It provides completely new paradigms to do information processing

Quantum information theory is a new interdisciplinary research field related to quantum mechanics, computer

tasks by employing the principles of quantum mechanics. In this review, we first survey some of the significant advances
in quantum information theory in the last twenty years. We then focus mainly on two special subjects: discrimination of
quantum objects and transformations between entanglements. More specifically, we first discuss discrimination of quan-
tum states and quantum apparatus in both global and local settings. Secondly, we present systematical characterizations
and equivalence relations of several interesting entanglement transformation phenomena, namely entanglement catalysis,

multiple-copy entanglement transformation, and partial entanglement recovery.
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1 Introduction

In 1982, when Elk Cloner—the first known com-
puter virus that has been spread “in the wild”—was
slowly copying itself from floppy to floppy, physicists
announced confidently that quantum information can-
not be cloned!™?. Again in 1982, Feynman noticed that
simulation of general quantum systems might be compu-
tationally expensive on traditional computing machines
and proposed the original idea of simulating quantum
systems using quantum computers!3l. From then on,
information science, benefited from its successful mar-
riage with quantum physics, embraces an extraordinary
new era of ongoing development. Numerous amazing
discoveries exploiting the power of quantum mechanics
not only contribute to the field of quantum informa-
tion processing itself, but also impact the classical ar-
eas like computation, communication and cryptography
by causing rethinking of fundamental problems in these
areas—“What is computation?” “How powerful is it?”
and “Is information physical?”

To tackle the problems listed above in the quantum
context, exciting progress has been made constantly in
quantum information theory. However, as it is nowa-
days impossible to have a comprehensive review of all
these great achievements in such a short article, we will
only introduce some of the most important ideas and
will focus on the results that the authors are more fa-
miliar with. To get a more complete picture of quantum
computation and quantum information, the readers are
referred to [4-6].

Feynman’s observation!®! inspired the inquiry of the
computational power of quantum mechanics. Many dif-
ferent models of quantum computation are hence pro-
posed. In 1985, Deutsch reexamined the Church—Turing

discrimination, entanglement transformation, quantum computing, quantum information

thesis and argued that there is a physical assertion un-
derlying itl”). He then rigorously formalized quantum
Turing machine model (QTM)!"], the counterpart of the

classical Turing machinel®, and introduced in 1989 the
9]

quantum circuit model in terms of quantum networks!
Yao proved that any function that is polynomial-time
computable by a QTM has a polynomial-size quantum
circuitl®. This alleviates the burden of dealing with
abstract QTMs. Highly related to the circuit model is
the one-way quantum computation model proposed by
Raussendorf and Briegel®12], It encodes a quantum
circuit as simple measurements performed on a so called
cluster state!'! which has possible advantage in phys-
ical realization'. Recently, adiabatic quantum com-
putation model, proposed by Farhi et al[*®!) is shown
to be equivalent to the standard quantum computation
model'®. The strength of adiabatic model—its unified
methods in both designing and analyzing algorithms—
makes it a more promising new model of quantum com-
putation. Quantum systems are especially susceptible;
therefore it is also necessary to consider models that take
the effect of noise into account. The first quantum error
correction codel!”) designed by Shor stimulates a whole
theory of how to fight against quantum noises!'8=21],
At the same time of developing quantum computa-
tion models, many fancy quantum algorithms are also
found. It is Deutsch who devised the first quantum
algorithm(”! which is generalized later and is now known
as the Deutsch-Jozsa algorithm![??). Though the prob-
lem it solves is a little bit artificial, the algorithm sheds
light on the principles of quantum algorithms. Evi-
dences of the quantum advantage of computation are
further shown by Bernstein, Vazirani?®! and Simon/24
in an oracle model. In 1994, the first “killer applica-
tion”, Shor’s algorithm, eventually emerged: Shor re-
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ported his ingenious way of efficiently factoring large
numbers using a quantum computer!?®/. Although quan-
tum computers cannot be built today, this algorithm
theoretically threats the RSA public cryptosystem!2®]
and popularizes the area of quantum computation and
quantum information largely. Another important quan-
tum algorithm, Grover’s algorithm[27:28!, uses the quan-
tum tricks to quadratically speed up the searching of
a specific datum out of an unsorted database. It is
also found that Grover’s construction is optimal/?® and
many generalizations are made to investigate the power
of quantum computation in the oracle model®*—33], Re-
cent development of quantum algorithm includes the
introduction and applications of quantum walks®*—36],
and algorithms for “Hidden Subgroup Problem” (see,
for example, [37]).

Quantum algorithms, though superior to their clas-
sical counterparts in many ways, are infamous for their
counter-intuitive nature. It is thus quite necessary to
develop systematic methodologies that can accelerate
the development of quantum algorithms. One attempt,
motivated by the success of classical programming lan-
guages in developing classical programs, is to develop
and study quantum programming languages. Knill
moved the first step by outlining a set of basic principles
for writing quantum pseudo-code!®®!; while the first ac-
tual quantum programming language is due to Omer/39!
Sanders and Zuliani extended the probabilistic version
of Dijkstra’s guarded command language (pGCL) to in-
clude quantum primitives!*?), The most distinguishing
feature of their language is the support for stepwise re-
finement which can be used in program derivation and
program verification. Recently, Bettelli et al. presented
a quantum language extending the well-known language
C++!41] and the first functional quantum programming
language, which admits a denotational semantics assign-
ing a super-operator to each quantum program frag-
ment, was later proposed by Selinger!42.

It is worth noting that the notion of “Quantum Soft-
ware Engineering” has already been proposed in the UK
Grand Challenge Proposal, Journeys in Non-Classical
Computation!*344, Tt is conducted by the UK Com-
puting Research Committee (UKCRC) with the hope
to seek “long-term, large-scale international research
project with clearly defined deliverables, mile-stones,
and plans for development, evaluation, and validation
of its research results”.

From the perspective of information theory[*®!, the
source and channel coding theorems have been gener-
alized to their quantum counterparts/*6—*8 although it
still remains open whether entangled input can further
increase the classical capacity of a quantum channel. For
a detailed discussion on this topic, we refer to a survey
article[*9].

What is more interesting in quantum informa-
tion theory is that it encounters many issues differ-
ent from their classical counterparts. The non-cloning
theorem[!:?l| for example, says that we cannot create

an identical copy of an arbitrary unknown quantum
state with certainty though we are used to copy and
backup data on classical computers. The theorem has
profound implications in quantum information theory.
Namely, it invalidates the classical way of doing quan-
tum error correction, breaks the semantics of assignment
in programming languages, and makes it impossible to
backup quantum data. On the other hand, however,
the theorem insures the security of some quantum cryp-
tography protocols against eavesdropping(®, protects
the uncertainty principle, and more surprisingly, pre-
vents superluminal communication. There are in fact a
series of “no-go” theorems in the same spirit of non-
cloning: non-discrimination theorem!®!, non-deleting
theorem(®?!, and non-programmable theorem!®3!. Al-
though we cannot clone, discriminate or delete perfectly,
it is still possible to perform these tasks in an imperfect
approach!®4%%] and we will discuss these problems in de-
tail below.

Another specific topic lying at the heart of quan-
tum information is the study of quantum entanglement.
Entanglement is a quantum state of multiple particles
among which there are strong, non-classical, correla-
tions. The discussions of entanglement date as far back
as the early days when quantum mechanics itself is in its
infancy. In 1935, Einstein, Podolsky, and Rosen pointed
out the weirdness of entanglement and argued that the
quantum theory is incomplete/®®. However, researchers
are now focusing on how to harness the weirdness to as-
sist information processing. In 1992, Bennett and Wies-
ner discovered that entanglement can assist a noiseless
quantum channel by doubling its classical capacity®7.
The protocol they proposed is now referred to as su-
perdense coding. A year later, there came forth the fa-
mous quantum teleportation protocoll®®! that can trans-
fer quantum state between any two parties with the cost
of consuming a shared entangled state and transmission
of some classical information. Teleportation, formerly
the imagination of science fiction writers, has now been
realized by experimentalists(®?!.

Superdense coding and teleportation have stimu-
lated broad interests of understanding the nature of
quantum entanglement. It is nowadays widely accepted
that entanglement is a new type of physical resource,
like energy, which is indispensable in many informa-
tion processing procedures. Therefore, a lot of effort
has been made trying to measurel® transform/®!, and
purify[2:63] the new resource. The structure and prop-
erties of pure (noiseless), bipartite (shared between two
parties) entanglement are best understood while the
characters of both the mixed (noisy) entanglement and
multipartite entanglement are much lesser known. We
will present detailed results in the context of transfor-
mation of pure entanglement later.

Before finishing this brief introduction to quantum
computation and quantum information, we would like
to mention some more interesting issues that have not
been referred to so far: quantum cryptography (more
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precisely, quantum key distribution[50’64’65}), the quan-
tum version of communication complexity'%:%6] quan-
tum game theory/67:68] logical approach to quantum
computation!® and probably more that the authors
have neglected.

The rest of the paper is organized as follows. In
Section 2, the problem of discriminating pure states is
first discussed. Next, we analyze more general problems
where mixed states are under consideration. Section 3
devotes to the topics of discriminating operations, in-
cluding unitary evolutions, measurement apparatus and
general quantum operations. In the last part of the pa-
per, we present, in order, numerous results concerning
local manipulation of entanglements: local transforma-
tion of entanglement, entanglement catalysts, multiple-
copy transformation, and partial recovery of entangle-
ment.

2 Discrimination Between Quantum States

The general state discrimination problem is as fol-
lows: suppose a quantum system is prepared secretly in
one of a set of states, and we hope to determine what
quantum state the system is actually in. Precise quan-
tum discrimination among any state set is forbidden by
the laws of quantum mechanics. It is easy to prove
that only orthogonal states can be perfectly discrimi-
nated. For discrimination among nonorthogonal state,
there are two strategies we can use. The first strategy is
the so-called “quantum hypothesis testing”. The goal of
discrimination under this strategy is to guess, with the
minimum probability of error, which state the system is
in depending on the outcome of some measurement ap-
plied on the target state. The second strategy is unam-
biguous discrimination, in which one must identify the
state with certainty, but leaving a possibility of unde-
cidability. Our aim then is to minimize the probability
of inconclusive answer. In this section, we restrict our
attention only on unambiguous discrimination between
pure or mixed states.

It is worth noting that the particular one we actually
adopt in reality depends upon the type of information
about the state we wish to obtain, and also on the prior
information we have about the system.

2.1 Pure State Case

Suppose the quantum system we are concerned with
is prepared in one of the n states [¢1),[12),...,|¢Yn)
in a d-dimensional Hilbert space with probabilities
P1,P2, . --,Pn respectively, where d > n. What we wish
to do is to identify which state the system is prepared
in with no errors. The most general unambiguous dis-
crimination strategy is carried by constructing a posi-
tive operator-valued measurement, or POVM for short,
{lI;,5=0,1,...,n}, such that Z;'I:o II; =1 and

(il lL[¢i) = P;di; (1)
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for any i,j > 0. The requirement in (1) ensures that if
the outcome of the measurement is j, we can definitely
say that the system is in the state |¢;). Here P; is the
success probability of |¢;) being identified. The opti-
mal unambiguous discrimination is then the one which
maximize the success discrimination probability

=1

For the simplest case of discriminating two states
|11}, |1h2) with equal a priori probabilities, it was estab-
lished by Ivanovicl™ Dieks!” and Peres®! that the
optimal success probability reads 1 — |(¢1]1¢2)|. Jaeger
and Shimony[®¥ further extended the result to the case
of unequal priori probabilities p; and ps with p; < po,
and get the result as

1—2y/pipa|(ala)l, (W lea)] < \/?
p2(1 = [(]92) ),

Popt —

suc
otherwise.

(3)
This result is also discussed by Ban in [72] in the context
of quantum communications.

In the case of discriminating between more than
two states, Chefles!™! first find that such an unam-
biguous strategy can exist if and only if the states
|1, |tha), ..., |¢n) are linearly independent. Further-
more, when the independency requirement is satisfied,
the form of the POVM satisfying (1) can be restated by

Byl

forl1<j<n,and Il =1 — Z?:l II;, where the nor-
malized state [¢;) is defined as that which is orthogonal
to all |¢;) for i # j.

When we try to decide the optimal unambiguous
discrimination between n quantum states for n > 2,
things become more complicated. In fact, we can easi-
ly transform the optimal unambiguous discrimination
problem to the problem of solving the following semi-
definite programming!7]

n
Maximize E p: P;
i=1

subject to X-Ir>0 I'>o0 (5)
where X = [(¥;|¢j)]nxn is the matrix with the (4, j)-
th entry being (¢;|¢;) and I' = diag(Pi, Pa,..., Pp).
Unfortunately, semi-definite programming problems are
mathematically very hard to find analytic solutions, and
only numerical methods are known up to now!™!.
Although the ezplicit expression of optimal success
probability for unambiguous discrimination among n
general quantum states are hard or, be more pessimistic,
impossible to obtain, we can simplify the most general

problem to consider two easier questions instead. One
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question is, for some spectal quantum states and priori
probabilities, how to derive the optimal discrimination
strategies. Chefles and Barnett!™l considered the case
of n symmetric independent quantum states with equal
a priori probabilities and obtained the maximum prob-
ability to unambiguously discriminate them. A set of
states is symmetric if there exists a unitary operator U

such that U™ = I and
|9i) = Ulthi 1) = U ). (6)

The other question is that we can derive upper
bounds on the optimal success probability of discrim-
ination. By using a series of proper inequalities, Zhang
et al.l”™ derived an upper bound on success probability
of unambiguous discrimination as follows

i#]
The above bound was further improved by Feng et al.l™!
to
n

1#]

Suppose the unknown state to be discriminated is
shared by spatially separated parties, and the operations
allowed are restricted to local operation and classical
communication (LOCC). It is obvious that this restric-
tion limits the ability to discriminate between quantum
states. Indeed, there exist a set of globally distinguish-
able product states that cannot be identified locally[™!.

Surprisingly, however, for the special case of discrim-
inating between two pure state, it seems that LOCC is
strong enough to perform optimal discrimination. Wal-
gate et al.3% first proved that any two orthogonal mul-
tipartite states, entangled or not, can be distinguished
perfectly using only LOCC. Later, Virmani et al. proved
in [81] that the minimum probability of error can be
achieved by LOCC discrimination in the setting of quan-
tum hypothesis testing. For unambiguous discrimina-
tion, Chen et al.[32:83] and Ji et al!®¥ considered the
problem of unambiguous discrimination between any
two product pure states with arbitrary a priori proba-
bility, any two pure states with equal prior probability,
and any two pure states with arbitrary prior probabil-
ity, respectively. It was shown that in all these cases,
a local operation and classical communication protocol
exists that achieves the optimal success probability of
global unambiguous discrimination.

2.2 Mixed State Case

Unambiguous discrimination among pure states has
attracted considerable research efforts for a long time.
Somewhat surprisingly, it is only recently that the
problem of unambiguous discrimination between mixed
states is considered.

The aim of mixed state discrimination is to iden-
tify a quantum system which is prepared secretly in the

states py, pa,...,p, with probabilities py,po,...,p, re-
spectively. The POVM {II;} which can be used to un-
ambiguously discriminate among these states then must
satisfy the following condition:

tI‘(iji) = Pjéi,j, (9)

for any 4,5 > 0. Rudolph et al[®® first considered
the special case of discriminating between two mixed
states with the kernels both being one-dimensional. De-
noting by |k;)(k;| the projector onto the kernel of p;,
A1 = p1{ka|p1lke), and Ay = pa{k1|p2|k1), the optimal
success probability P2P! is then given by

suc

A1 + A2 — 2cos 0\/ A1A2

sin’ 6

. Ami
, if cos@ < (/=

max

Amaxa Otherwise,
(10)

where 6 is the angle between the kernels, i.e.,

cos 6 = |(k1|k2)|, (11)
Amin = min{Ay, Ao}, Amax = max{A4;, As}. This ex-
tended the result of Jaeger and Shimony(®¥ for two pure
states. They also derived a lower bound and an upper
bound on the maximal probability of successful discrim-
ination of two mixed states.

Raynal et al.l®¢! presented two reduction theorems
to reduce the optimal unambiguous discrimination of
two mixed states to that of other two mixed states
which have the same rank. For the general case of n
mixed state discrimination, Fiurasek and Jezek®” and
Eldar[®] gave some sufficient and necessary conditions
on the optimal unambiguous discrimination and some
numerical methods were discussed. We found in [89]
(see also [90]) that the mixed quantum states p1,..., pn
can be perfectly discriminated if and only if they are
orthogonal, that is, for any i,j =1,...,n,

pip; = 8ip5 (12)
while they can be unambiguously discriminated if and
only if for any i = 1,...,n,

supp(pi) € Y supp(p;)-
i

(13)

Here supp(p) denotes the support space of p, i.e., the
space spanned by the eigenvectors with nonzero eigen-
values. Furthermore, an upper bound on success proba-
bility of unambiguous discrimination which extends the
result in (8) can be derived:

n
Psuc < n_1 ZPinF(Pian)z
i#]

(14)

where F(p;, p;) is the fidelity of p; and p;.
For the case of discriminating between multipartite
mixed states, it was found by Chefles[®! that N-particle
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states p1, ..., pn can be LOCC discriminated if and only
if forany ¢ = 1,...,n, there exists an N-particle product
state |11) ® - -+ ® |¢) such that

1) @ @ |¥N) € <z:sur>p(pj))L—supp(m)L (15)
i

where the notation S+ represents the orthogonal com-
plement of S.

3 Discrimination Between Quantum
Operations

We considered unambiguous discrimination between
quantum states in the last section. In this section, let us
turn to examine the problem of unambiguous discrim-
ination between quantum operations. Suppose we are
given a quantum mechanical black box that performs
one of the operations &i,...,&,, how can we identify
which one it really performs? A natural idea is to in-
put a probe state to the black box and then discrim-
inate between the possible outputs. Then the results
obtained in the last section can be used to derive the abi-
lity of discriminating quantum operations. Indeed, we
found many similarities between discriminating quan-
tum states and quantum operations. There are, how-
ever, also many distinctions, especially when multiple
copies of the states are provided or multiple uses of the
operations are allowed.

3.1 Discriminating Unitary Operations

The simplest quantum operations are unitary op-
erations which preserve the inner product of any two
states. Recall that perfect discrimination is impossible
for nonorthogonal states unless the number of copies of
the unknown states goes infinite. To one’s surprise, it is
always possible to completely tell apart different unitary
operations by only finite number of uses of the unknown
devices!?29] . To be specific, given any finite set of uni-
tary operations, Uy,...,U,, there always exists a finite
number N such that U?N, ..., U®N are perfectly dis-
tinguishable, although they were not in the single-copy
case.

It is worth noting that in the protocol of discrim-
inating unitary operations in [92] and [93], a suitable
entangled state is used as input. As we know, creation
of entanglement needs to perform joint quantum opera-
tions on composite systems, which are generally difficult
and expensive. So a natural question arises here is: Can
we achieve the task without use of entanglement? Duan
et al.94 gave the question a positive answer by allowing
the ability to perform any known unitary operations and
projective measurements on single quantum systems. To
be specific, suppose we are given an unknown quantum
black box which can perform unitary operations U or
V. To determine which case it really is, we first apply
this box to a state prepared in state |¢). If the possible
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resulting states Uly) and V|¢) are orthogonal, then a
perfect discrimination is achieved and the task is com-
plete. Otherwise we apply a known unitary operation,
say X1, on the resulting state and then apply the un-
known box once more. Then the orthogonality of the
new possible resulting states is tested. It was proven
in [94] that there always exist a finite N, a sequence of
unitary operations Xq,...,Xxy_1, and a suitable input
state |¢) such that the final states UXn_1U ... X1U )
and VXn_1V --- X V|¢) are orthogonal. Such a dis-
crimination strategy is illustrated in Fig.1.

R[]

Discriminate

o -THEHT-- AT EH T

Fig.1. Discriminating two unitary operations without use of en-

tanglement.

A more delicate analysis shows that the number N
of uses of the unknown box is not more than that in the
protocol where entanglement is used.

In the same paper, the authors also considered the
problem of discrimination between nonlocal unitary op-
erations in LOCC setting. Surprisingly, for almost all
unitary operations perfect discriminations can always
be achieved if multiple use is allowed. To be specific, let
U and V be two multipartite unitary operations such
that UV is not Hermitian. Then there exists a finite
integer N such that U®N and VN are perfectly distin-
guishable using only LOCC. In the special case where U
and V act on the composite Hilbert space Hy @ H,, for
any n > 2 or Hz3 @ Hs, U and V can always be perfectly
LOCC discriminated when multiple use is allowed.

3.2 Discriminating Projective Measurements

If the quantum mechanics black box we want to iden-
tify is actually an unknown measurement device, a more
direct strategy without resorting to state discrimination
can be used to realize the discrimination task[®®. The
idea can be best illustrated by the following examples.
Suppose the projective measurements to be discrimi-
nated are presented by observables o, and o, where

1 o0 do. |01
UZ_O—I anam—lo.

To achieve this task, we prepare first an entangled state
(J00) — |11))/+/2 and then measure both qubits with
the unknown apparatus. It is easy to see that if the
two results coincide, the apparatus is o ., otherwise
o,. A more complicated example needs the help of
Let M = Y°°_ |i)(i| and

Zle [1:){1;] be two projective measurements

(16)

other unitary operations.
N =
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where
_ D) =202) +13) _D+12)+103)
|'¢1> - \/6 ) |¢2> - \/g ) (17)
and
) = ) (18)

V2

To discriminate between M and N, we prepare a maxi-
mal entangled state (|11) +|22) +|33))/v/3 and measure
the first qutrit. If the outcome is 1, then the state of
the second qutrit is now either |1) or |¢;) depending on
the unknown apparatus. Apply to it a unitary operation
which keeps |1) unchanged and rotates [11) to a state
orthogonal to itself. Such a unitary can be

1 5 0 0
U, = 5 0 -1 V24
0 —v24 -1

If the second measurement still outputs 1, the unknown
device is definitely M else it is N. The case when the
first outcome is other than 1 can be solved similarly by
choosing proper U; or Ujs. Such a discrimination strat-
egy, called M-U-M scheme, is illustrated in Fig.2.

(19)

Compare

o/

Fig.2. Illustration of the M-U-M scheme.

By using this strategy, the authors!®®! proved that

all projective measurements can be perfectly discrimi-
nated provided that multiple use is allowed. The op-
timal protocol for discriminating qubit observables was
also proposed.

3.3 Discriminating General Quantum
Operations

Now we turn to the discrimination between gen-
eral quantum operations &i,...,&,. Recall that for
any trace-preserving quantum operation &, there exist
some set of matrices, called Kraus operators, {E;,7 =

1,...,d} with 3, ETE; = I, such that

E(p) = Z EipE!. (20)

It was proved by Wang and Ying!® that the operations

&1,...,&, can be unambiguous discriminated by a single
use if and only if for any i = 1,...,n,

supp(&;) € Y supp(&;)-
i

(21)

Here for any quantum operation &, supp(€) denotes the
span of its Kraus operators {Ey}, i.e.,

supp(€) = {Z)\kEk P A, € C}. (22)
k

4 Entanglement Transformation Under LOCC

Quantum entanglement is a valuable resource
in quantum information processing. It can imple-
ment some information processing tasks that can-
not be accomplished classically. As a consequence,
entanglement has been widely used in quantum
cryptography[®®| quantum superdense coding!®”), and
quantum teleportation(®®l; see [4] for an excellent exposi-
tion. Due to the great importance of quantum entangle-
ment, a fruitful branch of quantum information theory
named quantum entanglement theory is currently being
developed.

Since quantum entanglement exists between differ-
ent subsystems of a composite system shared by spa-
tially separated parties, a natural constraint on the ma-
nipulation of entanglement is that the separated parties
are only allowed to perform local quantum operations
on their own subsystems and to communicate to each
other classically (LOCC). Using this restricted set of
transformations, the parties are often required to opti-
mally manipulate the entangled state. One of the cen-
tral problems of quantum entanglement theory is thus
to find the conditions for when an entangled state can be
transformed into another one using LOCC. This prob-
lem can be approached in two different, but comple-
mentary, contexts: the finite regime and the asymptotic
regime. In the asymptotic regime Bennett and his col-
laborators proposed a reversible protocol which shows
that any two bipartite entangled pure states with in-
finite copies can be converted into each other without
any loss of entropy of entanglement/®%!. Since in practice
one can only have finitely many copies of an entangled
state, it is of great interest to consider the problem of en-
tanglement transformation in a finite (non-asymptotic)
settingl61:97-124]

Arguably, the most important step in the finite
regime was made by Nielsen in [61], where he reported
a necessary and sufficient condition for a bipartite en-
tangled pure state to be transformed into another pure
one deterministically using LOCC. Let |¢) and |¢) be
two bipartite entangled states, and let ¢ and ¢ be their
respective Schmidt coefficient vectors. Then the trans-
formation of |¢) to |¢) can be realized with certainty
using LOCC, written [¢)) — |¢), if and only if ¥ is
majorized by ¢, i.e., ¥ < . Here two n-dimensional
vectors 1 and ¢ satisfy ¢ < ¢ if and only if

E(¢) = Ei(p), forall 2<l<n

and E;(¢) = Eq(p), where E;(¢)) denotes the sum of
the least n — [ + 1 components of . If all inequalities
in the above equation hold strictly and E1(v) = E1(),
then we say that 1 is strictly majorized by ¢.
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Nielsen’s theorem establishes a connection between
the theory of majorization'?®'26] and entanglement
transformation. It is of fundamental importance in
studying entanglement transformation and has been ex-
tended in several ways to the case where deterministic
local transformation cannot be achieved!97—99,102,111]
Notably, Vidal generalized Nielsen’s result with a prob-
abilistic manner and found an explicit expression of the
maximal conversion probability between any two states

under LOCCP7| say,

Ei(y)

Ei(p)’ (23)

P(¢ — ¢) = minigi<n
Since the fundamental properties of a bipartite pure
state under LOCC are completely determined by its
Schmidt coefficients, which can be treated as a prob-
ability vector, we always identify a probability vector
with the quantum state represented by it. Let V™ de-
note the set of all n-dimensional probability vectors. For
any n X n state |¢), let S(p) be the set of n X n states
that can be directly transformed into |p) by LOCC, by
Nielsen’s theorem,

Sle)={veV":¢ <}

For any |p), S(p) is a compact convex set with ex-
treme points of the form Py, where P is an arbitrary
permutation over V™. Thus the structure of determinis-
tic entanglement transformations under LOCC has been
completely understood.

It is straightforward to generalize S(¢) to a proba-
bilistic version. For any A € [0, 1], let S*(¢) be the set
of n x n states that can be transformed into |¢) using
LOCC with success probability at least A, i.e.,

(24)

SMNe)={Y e V" : P(y = ¢) = A}. (25)
In particular, S%(¢) = V", S'(¢) = S(p). Let
SOA:(I_AE2(QD)7ﬁ27"'7/Bn)7 (26)

then it holds that S*(p) = S(p)*?%, where ot =
(B1,.--,Bn) is the vector that is obtained by rearranging
the components of ¢ into non-increasing order. Hence
S (¢) is also a convex compact set, with extreme points
of the form Py), where P is arbitrary permutation over
v,

In sum, the structure of transformations under
LOCC in the single-copy scenario (that is, only one copy
of source state and one copy of target state are under
consideration) can be captured completely. However,
when we introduce extra entangled states to help the
original transformation or increase the number of copies
of the source state, the transformations between bipar-
tite pure states may get very complicated.

5 Catalyst-Assisted Entanglement
Transformation

Unlike common resources, it was discovered by
Jonathan and Plenio that quantum entanglement is
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truly a strange one: sometimes, it can help in becoming
impossible entanglement transformations into possible
without being consumed at all®?l. For a concrete exam-
ple, let |¢) and |¢) be two bipartite states such that

% = (0.4,0.4,0.1,0.1) (27)

and

© = (0.5,0.25,0.25,0). (28)

We can easily check that the transformation of |1)) to |¢)
cannot be realized by LOCC as ¢ £ . Surprisingly, if
someone lends the two parties another entangled state

|¢) with

¢ = (0.6,0.4), (29)

then the transformation of [¢)) ® |¢) of |¢) ® |#) can be
realized with certainty, as ¥ ® ¢ < ¢ ® ¢. The transfor-
mation can be represented as
)@ 16) > o) @ |8), (30)
in which it is obvious that the state |¢) is not consumed
during the process. The effect of the state |¢) in this
transformation is just similar to that of a catalyst in a
chemical process since it can help entanglement trans-
formation process without being consumed. Thus it is
termed a catalyst for the transformation of |¢) to |¢).
Such a transformation that uses intermediate entan-
glement without consuming it is called ‘entanglement-
assisted local transformation’ in [99], abbreviated to
ELOCC. Intuitively, it can also be called catalyst-
assisted entanglement transformation. The mathemati-
cal structure of ELOCC has been carefully investigated
in [109, 115, 117, 120]. It has also been shown that
such an entanglement catalysis phenomenon exists in
the manipulation of mixed states['°), and in the imple-
mentation of non-local quantum operations!*27!.
Let us now review some basic properties of ELOCC.
For any n x n state |p), the set
Tp)={YpeV":3¢ st. Y@ d < o® P} (31)
denotes all the nxn states |1) which can be transformed
into ) by LOCC with the help of some catalyst[']. Tf
1 € T(p), then we say that |¢)) can be transformed into
|¢) using ELOCC. If we restrict the state |¢) used as
catalyst in T'(¢) to be k X k-dimensional, then we can
define Ty (p) similarly; namely,

Th(p)={weV":3p e VFst. v @ ¢ < p®¢}. (32)

The fundamental problem concerning ELOCC is to
determine when the transformation between two given
states are possible using an appropriate catalyst. Let
|1) and ¢ be the source and the target respectively, with
dimensions n X n. If n = 4, then analytical characteriza-
tions for the existence of 2 x 2 catalysts do exist[118]. For
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general n, a polynomial time algorithm of time complex-
ity O(n?*+3-) can be used to determine the existence of
a kx k catalyst, where k is treated as a fixed integer[''8].
When k is a variable, the above algorithm is of expo-
nential time complexity and is not efficient any more. It
remains an open problem to find a feasible characteri-
zation for the existence of catalysts.

Another important problem is to determine when
ELOCC has advantages over than mere LOCC. More
precisely, for a given state |¢), decide whether cataly-
sis is useful in producing |¢), i.e., S(¢) # T(v). The
condition is very simple: ¢ has at least two succes-
sive components that are distinct from both its smallest
and largest components!'%?l. Moreover, for any given
k > 1, whether k x k dimensional states can serve
as catalysts in producing |¢) also has an analytical
characterization(!1%!. Two consequences are of great in-
terest. On the one hand, even in the case that catalysis
is useful, increasing the dimension of catalysts does not
mean a necessary improvement of the catalysis power.
On the other hand, whenever ELOCC is useful the di-
mension of the potential catalysts are not bounded.

A somewhat surprising constraint on the power of
ELOCC is that a maximally entangled state cannot
serve as a catalyst(®®l. Thus a necessary condition for
being a catalyst is partially entangled. Interestingly,
this partially entangled condition is also a sufficient one.
Indeed, it has been shown that any partially entangled
state can be used to catalyze certain transformation!1%9],

Similar catalysis effect exists for probabilistic trans-
formations. In this scenario we say a catalyst is useful
if it can increase the maximal conversion probability of
a given transformation. That is, for a transformation of
|¢) to |¢) such that P(¢p — ¢) < 1, there may exist a
catalyst |¢) such that

P @¢—=¢®¢)> P — o) (33)

An interesting question is when such an improvement is
possible? Except for a special case, probabilistic cataly-
sis is always possible!*'6:129] To be concise, let |¢) and
|¢) be two n x n states with the respective least Schmidt
coefficients «,, and (,,, then there exists a finite dimen-
sional |¢) such that (33) holds if and only if
. Ay

Py — p) <m1n{1,/3—}. (34)

For any A € (0,1), T(¢) and Tk(¢) can be general-

ized to probabilistic transformations directly[*2°]. To be
specific, let

T o) = {p € V" : I s.t.

Ph@¢—o®¢) > A} (35)

be the set of all nx n states that can be transformed into
|p) with a success probability not less than A with the
help of a finite dimensional catalyst state. 77 (¢) has a
similar meaning but the dimension of catalyst state is

kx k, ie.,

T p) ={peV":3peVFsit.
PY@¢—¢®@e¢) > A}

In contrast to the deterministic case, the condi-
tion, when probabilistic ELOCC has advantage over
than mere LOCC, is rather simple, and the probabilistic
threshold A is not involved'2%!, Furthermore, whenever
probabilistic catalysis is useful, the dimension of the po-
tential catalyst is unbounded.

One may naturally expect that the deterministic case
(A = 1) and the probabilistic case (0 < A < 1) can be
unified. Unfortunately, it is not the case. This strange
phenomenon suggests there may exist some essential dif-
ference between deterministic transformations and prob-
abilistic transformations('?].

(36)

6 Multiple-Copy Entanglement
Transformation

Another interesting way of manipulating quan-
tum entanglement was proposed by Bandyopadhyay et
al.111] Specifically, they found that sometimes multiple
copies of a source state may be transformed into the
same number of a target state although the transforma-
tion cannot happen for a single copy. Take |¢) and |¢)
in (27) and (28) as an example, it is a simple calcula-
tion to show that ¥®3 < ©®3. Hence the transformation
of |9)®3 to |p)®3 can be achieved with certainty under
LOCC. This kind of transformation that uses multiple
copies of source state and then transforms all of them
together into the same number of target state can be
intuitively called “multiple-copy entanglement transfor-
mation”, or MLOCC for short['?'l. The mathematical
structure of MLOCC has been extensively studied in
[115, 122, 123].

For an n x n state |¢), we denote M () by the set of
all n x n states which, when provided with a finite (but
large enough) number of copies, can be transformed into
the same number of |¢) under LOCCI'??| that is,

M(p) = {1 € V™ : Ik s.t. Pp&F < ¥k} (37)

If we restrict the number of copies used in M(¢) to be
k, then we can define My(yp) similarly; namely,

My (p) = {v € V" : p®F < @+

The fundamental problem about MLOCC is to give
a feasible characterization for when ¢ € M(p), where
|1} and |p) are any two given states. Such a character-
ization has not been found yet. So we are interested in
determining whether ¢ € My(¢) holds for a given inte-
ger k. In contrast to determining ¢ € Ty (), the former
can always be verified efficiently when one of n and k is
a constant!22,

Similar to ELOCC case, a simple characterization
for when MLOCC (or k-MLOCC) has an advantage

over LOCC exists'22/.  An interesting consequence is

(38)
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in determining whether a transformation can occur by
MLOCC, the number of the copies we should consider
is unbounded.

We can also consider probabilistic transformations
in the MLOCC scenariol*!9l. A careful investigation is
needed to generalize the above results. For any k > 1,
we define the average probability of k-copy transforma-
tion, namely, the transformation of |)®* to |¢)®* as
follows:

P(k)w @) = [P — <p®k)]%- (39)

Intuitively, P(*) is the geometric average value of the
probability of (single-copy) transformation [¢) — |¢)
when considering in the environment of k-copy transfor-
mation |)®* — |p)®*k. Now M} (¢) can be generalized
to probabilistic transformations as follows:

M) ={v e V" : P®) (4 — p) > A} (40)

The intuition behind the above definition is that with
the help of k-MLOCC, the geometric average value of
the probability of a single-copy transformation is not less
than A. When the k is not fixed, we have the following

M @) ={ e V": Tk st. PP (=) = A} (41)
The physical meaning of ¢ € M?(yp) is that with the
help of MLOCC, the average probability of a single-copy
transformation is not less than A. With these notations,
most properties of deterministic transformations under
MLOCC can be easily generalized to probabilistic trans-
formations. For details about probabilistic MLOCC we
refer to [115].

7 Equivalence Between ELOCC and MLOCC

At first glance, entanglement-assisted transformation
and multiple-copy entanglement transformation are two
completely different extensions of ordinary LOCC. To
achieve a specific transformation, the former needs to
borrow extra entanglement as resource but is promised
not to consume it during the transformation, while the
latter realizes a similar purpose by accumulating a suf-
ficiently large number of copies of source state and then
transforms all these copies together into the same num-
ber of target state.

A surprising fact is that these two kinds of ma-
nipulations of entanglement are closely related to each
other[113:115,122,123] " We will show some interesting con-
nections between them.

The first interesting relation is that for any state |¢),
A €[0,1], and k > 1, k-copy transformation is useful in
producing |¢) if and only if k-dimensional catalysis is
useful in producing the same target(!1%], That is,

SMe) = M (p) & SMp) = TR(p)-  (42)
In particular, when k tends to infinity, we obtain a nice

equivalence between MLOCC and ELOCC: MLOCC is
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useful in producing a state if and only if ELOCC is use-
ful in producing the same target!'?? i.e.,
SMe) = M (p) & SMp) =T (). (43)
Furthermore, one can show that every multiple-copy
entanglement transformation can be implemented by an
appropriate entanglement-assisted one'?!, i.e.,
M) € T (). (44)
Another interesting question is, whether we can help
entanglement-assisted transformation by increasing the

number of copies of the original state? To be concise,
let us define

T () ={y € V" : 3k, 3¢ s.t.

PW® @6 — ¢ @ ¢) > X},
(45)

Then for any state |¢), we have

T*M () = TA(¢). (46)
Intuitively, the combination of MLOCC and ELOCC is
still equivalent to pure ELOCC!?2],

One may naturally hope that every catalyst-assisted
transformation can also be simulated by a suitable
multiple-copy one. This suggests a strong equivalence
between ELOCC and MLOCC: M*(¢) = T*(¢). Un-
fortunately, this is not always correct since sometimes
an entanglement-assisted transformation is more pow-
erful than a corresponding multiple-copy entanglement
transformation3!.  Surprisingly, these two kinds of
transformation are asymptotically equivalent although
it is not the case when only a finite manner is allowed.
To present this result, we need to introduce several nota-
tions. The optimal conversion probability of a multiple-
copy entanglement transformation is given by

Pu(t— @) = sup P (1) — o), (47)

where P(%) is the k-copy average transformation proba-
bility defined in (39) and k ranges over all positive inte-
gers. On the other hand, we define the optimal conver-
sion probability of an entanglement-assisted transforma-
tion from |4} to |¢) by

PE(¢—><p)=Sl(;pP(¢®¢—><p®¢), (48)

where |@) ranges over all finite dimensional bipartite
pure states. Now the asymptotical equivalence of
ELOCC and MLOCC can be exactly stated as['23:

Pp(y = @) = Pu(¥ = ¢). (49)

The above relation can be alternatively stated as follows:

TA(p) = MA(¢), A € (0,1). (50)
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Note that for a subset A C V™, A represents A’s closure.
It is unclear whether the above relation also holds for
A=1.

The equivalence of ELOCC and MLOCC transfor-
mations is interesting in many ways, both theoreti-
cally and practically. In principle, it uncovers an es-
sential connection between entanglement catalysis and
multiple-copy entanglement transformation, and de-
clares that they have almost the same effect. In practice,
it provides a more feasible way to evaluate the optimal
conversion probability of an ELOCC transformation by
calculating the optimal conversion probability of the cor-
responding MLOCC one.

8 Efficiency of Deterministic Entanglement
Transformation

Suppose that two parties share some copies of en-
tangled pure state |¢1), and want to deterministically
transform them into some copies of another state |[¢2) by
LOCC, the efficiency of such a transformation is charac-
terized by the deterministic entanglement exchange rate
from |¢1) to |1)2), which is defined as the supremum of
ratios of n and m for any positive integers m and n such
that m copies of |¢)1) can be transformed into n copies

of |1h3) by LOCCI e,

D(r,vn) = sup { = : [v1) " = )" |, (51)
Intuitively, for a sufficiently large m, we can transform
m copies of |11) exactly into mD(|y1),|¢2)) copies of
|12) by LOCC.

It would be desirable to know the precise value of
D(41,12). However, we still do not know how to com-
pute the deterministic entanglement exchange rate at

present. Nevertheless, we can obtain a lower bound and
an upper bound of D(ty, 1) as follows!M9):

0 < D(¢1,v2) < R(¢Y1,92),

where R(t1,%2) is the entropy ratio of |t1) and |t9)
and is defined to be the infimum of the ratios of Renyi’s
entropies of |¢1) and |¢2).

The relation D(1)1,%2) > 0 reveals a fundamental
property of entangled pure states. That is, any two en-
tangled pure states are interconvertible in the sense that
sufficiently many copies of one state can always be ex-
actly transformed into some copies of another state by
LOCC.

In general whether the upper bound R(t1,v3) is
tight or not is still unknown. In particular, if the target
state is maximally entangled, the deterministic entan-
glement exchange rate can be calculated explicitly and
coincides with the upper bound presented above.

It is also of great interest to consider the influence
of catalysis on the deterministic entanglement exchange
rate. Since an ELOCC transformation is always not less,
and sometimes strictly more, powerful than an LOCC

(52)

transformation, one may naturally expect that the de-
terministic entanglement exchange rate will be increased
by introducing extra states to serve as catalysts. How-
ever, a rather surprising fact is that D (1)1, 12) cannot be
enhanced even allowing extra entangled states to serve
as catalysts. In other words, entanglement catalysis has
no effect on the deterministic entanglement exchange
rate!'9. Tt is interesting that this result also holds in
the multipartite setting though the existence of multi-
partite catalyst is still unknown.

The above discussions have been generalized to mul-
tipartite scenario!14]. A state is genuinely entangled if
it cannot be written in product form between any bi-
partite of the parties. Formally, let P be the set of all
parties under consideration, say, P = {P; : 1 < ¢ < m}.
A state |¢) shared by parties in P is called an m-partite
entangled state if for any nonempty proper subset of P,
say A, |¢) is entangled according to any bipartite par-
tition A and P — A. Let [¢) and |1)2) be two m-partite
entangled states, where m > 3. The definition of the de-
terministic entanglement exchange rate of |¢1) to |i)2)
is the same as bipartite case. However, the entropy ra-
tio needs a careful investigation, since different bipartite
partition can cause different values. Let R(¢7,v5) be
the entropy ratio obtained through the bipartite parti-
tion {A,P — A}, then the entropy ratio between |1)1)
and |vy) is defined by

R("/’Ylv ¢2) = mlnAR(qpfv 1/}54)7

where A ranges over all nonempty proper subsets of P.
With these notations, (52) also holds for any m-partite
entangled states14.

(53)

9 Partial Recovery of Quantum Entanglement

Unlike the transformations in the asymptotic regime,
a direct implication of Nielsen’s theorem is that a cer-
tain amount of entanglement will be lost in an LOCC
transformation(®!l. It would be desirable to save some
entanglement lost and reduce the net loss of entangle-
ment in the transformation, since the saved entangle-
ment can be used, for example, to increase the classical
capacity of a quantum channel'28!,

The possibility of recovering lost entanglement was
first observed by Morikoshil'®!l. Morikoshi’s recovering
scheme can be outlined as follows. Suppose Alice and
Bob share an entangled state |¢)) and they can trans-
form it into |¢) by LOCC. Suppose now an auxiliary
state |x) is supplied to Alice and Bob. Instead of trans-
forming [¢) into |p) directly, they perform collective
operations on the joint state |¢) ® |x), and transform
it into another joint state |p) ® |w). Of course, as re-
quired by Nielsen’s theorem, entanglement of the whole
system decreases too. But by choosing a suitable aux-
iliary state |x), sometimes a more entangled state |w)
can be obtained. Intuitively, this process enables part
of entanglement lost in the original transformation to
be transferred to the auxiliary state, and it was termed
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partial entanglement recovery. Morikoshi demonstrated
that partial entanglement recovery for a transformation
between 2 x 2 states is always possible by using a 2 x 2
auxiliary state. Partial entanglement recovery for trans-
formations between higher dimensional states was con-
sidered by Bandyopadhyay et al.[1°7) They showed that
for any states |¢) and |¢) such that v is strictly ma-
jorized by ¢ and n > 2, it is always possible to use a
2 x 2-dimensional auxiliary state to achieve partial en-
tanglement recovery.

Here we consider the possibility of partial entangle-
ment recovery for general transformations(!?4. More
precisely, we consider the problem of whether a given
entangled state can be used to recover some entangle-
ment lost in a specified transformation. Let |¢)) and |¢)
be the source state and the target state of the specified
transformation, respectively, and let |x) be the given
auxiliary state. Our goal is to determine whether there
exists another state |w) satisfying (i) the transformation
of |¥) @ |x) to |¢) ® |w) can be implemented with cer-
tainty using LOCC, and (ii) |w) is more entangled than
)

A somewhat interesting thing is when the given
transformation satisfies strict majorization, i.e., 1 is
strictly majorized by ¢, the possibility of partial en-
tanglement recovery can be determined analytically124.
For the case where 1 is not strictly majorized by ¢, a
complete solution appears to be very difficult. Neverthe-
less, two sufficient conditions for partial entanglement
recovery are presented.

We can also employ an algorithmic approach to
studying the process of partial entanglement recovery.
To be specific, let n and k be the dimensions of 1 (as
well as ¢) and x (as well as w), respectively. Then an
algorithm of time complexity O(n2?k?*) can be used to
efficiently determine the possibility of partial entangle-
ment recovery[124].

As an interesting application, one can generate
maximally entangled states by using a scheme based
on partial entanglement recovery[101:106:124] = Fyrther
investigations show that partial entanglement recov-
ery also happens in situations such as entanglement
catalysis['?! mutual catalysis(!'?], and multiple-copy
transformation'?2/, A close connection between partial
entanglement recovery and ELOCC exists: if a trans-
formation can be implemented by ELOCC, then the en-
tanglement lost in the transformation can be partially
recovered by a suitable auxiliary state!24. Moreover,
partial entanglement recovery is directly connected to
mutual catalysis. As a consequence, a systematic con-
struction of the instances with mutual catalysis effect
based on partial entanglement recovery was obtained in
[124]. When considering the possibility of partial en-
tanglement recovery in multiple-copy transformations,
we notice a very interesting phenomenon: although an
auxiliary state cannot be used to do partial entangle-
ment recovery for a single-copy transformation, it can
recover some entanglement lost in certain multiple-copy
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transformations/124].

All the results obtained so far are only concerned
with the possibility of partial entanglement recovery,
while the efficiency of this process has not been touched
yet. These results are of limited use in practice, where
one needs to minimize entanglement lost in LOCC trans-
formations. In other words, one requires the resulting
state |w) to be not only more entangled than |x), but
also an “optimal” one that can be achieved in this pro-
cess. How to design efficient algorithms to find such an
optimal state |w) would be a challenging and worthwhile
problem.
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