Sept. 2006, Vol.21, No.5, pp.790-799 J. Comput. Sci. & Technol.

Beyond Knowledge Engineering

Ru-Qian Lu!'?3* (K1) and Zhi Jin?? (4 2)

! Academy of Mathematics and System Science, Chinese Academy of Sciences, Beijing 100080, P.R. China

2 Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100080, P.R. China

3Shanghai Key Lab of Intelligent Information Processing, Fudan University, Shanghai 200433, P.R. China

*Beijing Key Lab of Multimedia and Intelligent Software, Beijing University of Technology, Beijing 100083, P.R. China
E-mail: rqlu@math.ac.cn; zhijin@amss.ac.cn

Received March 29, 2006; revised July 17, 2006.

Abstract Knowledge engineering stems from E. A. Figenbaum’s proposal in 1977, but it will enter a new decade with
the new challenges. This paper first summarizes three knowledge engineering experiments we have undertaken to show
possibility of separating knowledge development from intelligent software development. We call it the ICAX mode of
intelligent application software generation. The key of this mode is to generate knowledge base, which is the source of
intelligence of ICAX software, independently and parallel to intelligent software development. That gives birth to a new and
more general concept “knowware”. Knowware is a commercialized knowledge module with documentation and intellectual
property, which is computer operable, but free of any built-in control mechanism, meeting some industrial standards and
embeddable in software/hardware. The process of development, application and management of knowware is called knowware
engineering. Two different knowware life cycle models are discussed: the furnace model and the crystallization model.
Knowledge middleware is a class of software functioning in all aspects of knowware life cycle models. Finally, this paper

also presents some examples of building knowware in the domain of information system engineering.

Keywords

1 Challenges to Traditional Knowledge
Engineering

When E. A. Feigenbaum proposed the term knowl-
edge engineering in 1977, nine years have elapsed since
the concept software engineering was born on the NATO
conference in 1968. However, at that time people’s spe-
culation about the scope and dimension of knowledge
engineering was far less ambitious than those of soft-
ware engineering. The typical scenario can be described
as follows: a group of few knowledge programmers (also
called knowledge engineers) finding and visiting some
expert of a well limited domain, listening to the expert’s
introduction, writing down his/her experiences in some
form of protocol, constructing a knowledge base counted
from a dozen till thousands of rules, combining it with
an inference engine. After that, a new expert system is
produced.

Nearly thirty years have passed since the pioneer-
ing work of Feigenbaum and his colleagues. Knowledge
engineering has made immense progress and produced
considerable economic and social benefits. This is also
true in China. First Chinese expert system, working in
the field of traditional Chinese medicine (Dr. You-Bo
Guan’s experience in diagnosis of hepatitis) was devel-
oped in the late 1970s. In the last thirty years, we have
seen countless projects, papers and books reporting ad-
vances of knowledge engineering in China.

Three years ago, a special issue of Journal of ACM

knowledge engineering, knowware, knowware engineering, knowledge middleware, domain knowware

published 15 papers written by Turing award and
Nevalinna prize winners. In one of these papers Feigen-
baum suggested three challenging problems!!:
1) let computer pass the Feigenbaum test, a weak-
ened form of Turing test, limiting it to some field
of domain knowledge;

2)let computer read massive literature and trans-
form it to a huge knowledge base, reducing the
workload of knowledge engineering to 1/10;

3) let computer read massive web pages and trans-
form them to a huge knowledge base, reducing the
workload of knowledge engineering to 1/100.

Open and massive knowledge obviously implies new
research direction. There is enough evidence showing
that knowledge engineering has entered a new era which
is marked by non canonical knowledge processing in
an open and massive framework. With non canonical
knowledge we mean knowledge that is intentionally in-
tractable. Knowledge that is fuzzy, inexact, inconsis-
tent, noisy, context dependent, etc. belongs to this cat-
egory. As a matter of fact, all of them have been studied
by computer scientists since long time ago. The only dif-
ference is that now we must solve real problems involv-
ing a massive amount of such knowledge in an open and
steadily changing environment, while previously only
theoretical research or limited size experiments in closed
and static environment were enough. Examples of mas-
sive size knowledge engineering are Lenat’s CYC[2! and
Cao’s NKI®!. Open knowledge engineering is a theme

Regular Paper

Partly supported by the National Natural Science Foundation of China (Grant Nos. 69733020, 69983010, 60233010 and 60496324),
the National Grand Fundamental Research 973 Program of China (Grant No. 2002CB312004), the Knowledge Innovation Program of
the Chinese Academy of Sciences and MADIS of the Chinese Academy of Sciences.

Ru-Qian Lu et al.: Beyond Knowledge Engineering

that is still relatively young. A typical example is web
knowledge processing. As examples, we can list seman-
tic web[* knowledge gridl®!, P2P researchlf!, etc. All
of them have made remarkable progress, which is nev-
ertheless far from satisfying the requirements of the in-
formation society era.

On the other hand, our research in the past has
shown that focusing on knowledge within a limited do-
main is a reasonable choice, like revealed by Feigen-
baum’s first challenging problem. Lots of domain knowl-
edge bases, or more general domain ontologies have been
built and some knowledge-based or ontology-based solu-
tions have been proposed in many areas for automating
the traditional solutions and making them more intelli-
gent, but few of them could serve as a basis to pass the
Feigenbaum’s test. The difficulties include fully struc-
turing and formalizing the domain knowledge and mak-
ing them operatable in a concordant way with the mean-
ing of the knowledge by computer programs.

This paper aims to reveal some hints on these two is-
sues by presenting some experiments that we have done
in the past decades. We also try to show that a new
decade of the research on knowledge engineering is com-
ing. To meet the challenge of this era, we propose the
concepts knowware and knowware engineering. In the
rest of this paper, Section 2 reports some experiments on
automatic generation of knowledge-based systems and
proposes the concept knowware. Section 3 illustrates
the process model of knowware engineering. Section 4
presents the knowware on the organization information
systems which we have built for supporting the automa-
tion of the whole process of the knowledge based infor-
mation system development. Section 5 concludes the
whole paper and makes some comments on this research
direction.

2 From Knowledge Base to Knowware

2.1 Experiments in Massive Size and Open
Source Knowledge

In the past 18 years, we have done a series of re-
searches on automatic generation of knowledge based
systems. The main difficulty in these efforts is how to
construct a consistent and relatively complete knowl-
edge base. As it was shown by practice, this job cannot
be done easily by relying only on knowledge elicitation
from some domain expert, or by knowledge acquisition
from technical literature with pure natural language un-
derstanding techniques. We decided to combine both in
the way of making the knowledge acquisition process
a two staged one. For that purpose, we developed a
technique of Pseudo-Natural Language Understanding,
PNLU for short!”. A language is called pseudo-natural
if it is a subset of some natural language and has a well-
defined grammar. Its terminal/non-terminal symbols
are called keywords/parameters. The pattern of key-
word sequence in a sentential form is called a keyword

791

expression. A language parsing is called PNLU, if only
the keywords, but not the other symbol strings between
keywords, are parsed and understood. Given a technical
literature, the semantics of each sentence, each segment
and even the whole text is determined by the keywords
and keyword expressions contained in it. For example,
the sentential form

(A) is classified in (B) and (C)

may recognize the sentence “blood cell is classified in
red blood cell and white blood cell”, where the parser
does not analyze the meaning of the three “blood cell”
parameters. This is enough for constructing a knowl-
edge base. A knowledge compiler from PNL text (con-
sidered as a program) to some knowledge representa-
tion, such as frames, rules or productions was devel-
oped. In the first step, we adapt the given technical
literature to PNL form manually, which requires only a
little work. The PNL text will be then compiled into a
knowledge base automatically. Combining this knowl-
edge base with some existing inference engine, we get
a knowledge based system ready to be run. In the sec-
ond stage, we present this “rough” knowledge based sys-
tem to some domain expert who checks it with a set of
test cases. With repeated knowledge refinement and
improvement the experts can turn the “rough” system
into a refined one. We call this two staged process as
a rational work division between human and computer.
While the former reduces the difficulty of natural lan-
guage understanding, the latter easies the formidable
burden of extracting and summarizing knowledge from
a huge amount of technical literature.

Having got the idea illustrated above, we have per-
formed several experiments to check its feasibility in the
long run of about 15 years. Our experiences coming from
these experiments might be able to answer some of the
challenges proposed by Feigenbaum. It is just based on
these experiences that we have come to the concept of
knowware and knowware reader, which we think may
become a promising direction of computer science re-
search and knowledge industry.

The first experiment was done on automatic con-
struction of expert systems!®!. The PNL is called BKDL
(Book Knowledge Description Language) with a set of
about 250 keywords and basic expressions. They are
divided into three levels: the system level, the domain
level and the user level. Higher level keywords can be
defined with lower level ones. BKDL mainly applies to
classification type of knowledge. The BKDL texts are
transformed to internal knowledge representation char-
acterized by frames, including goal frames, hypothesis
frames and attribute frames, together with a dictionary
of terms and a user interface lexicon. With a built-in
inference engine and some manual work in addition, the
knowledge compiler was able to transform a small med-
ical handbook to an expert system with reasoning and
explanation facilities.

792

The second experiment was done on automatic con-
struction of intelligent tutoring systems (ITS), which re-
quire more technical subtleties than constructing expert
systems. First, the ITS knowledge base must be orga-
nized in the teaching-oriented manner. Second, this or-
ganization is user independent, but user tailored course
material can always be generated based on user require-
ments. Third, during each session, student model can
be automatically generated and dynamically adjusted.
Fourth, the generation of exercises and tests should be
automatic. We have developed an automatic ITS gen-
eration tool, called KONGZI®!, which can work in Chi-
nese or English mode. The PNL for Chinese (or English)
version is EBKDL, i.e., Educational BKDL, (or SELD,
i.e., Scientific English Literature Description). The most
important advantage of our approach is the automatic
generation of ITS knowledge base, which to our knowl-
edge does not exist in other prevalent ITS techniques.
KONGZI has already been used for generating ITSs in
medicine, biology and industry.

The third experiment was the PROMIS project[1?]
targeting at automatic construction of management in-
formation systems. The corresponding PNL is called
BIDL (Business Information Description Language).
This time the knowledge representation mechanism is
a hierarchy of representation languages. The BIDL text
will be first transformed into ONONET (ONtology and
Object-oriented NETwork) form to get a conceptual
model. This language combines the concept of objects
and ontologies with semantic networks, while still keep-
ing the flavor of the object-oriented paradigm. It serves
now as the principal representation of domain knowl-
edge in the knowledge base. Then the automatic plan-
ning of target system architecture takes place and pro-
duces an architecture design in NEWCOM (NEW COn-
ceptual Model. To be exact, NEWCOM is a language
for describing, modeling and implementing software ar-
chitectures based on client/server paradigm. Generally
speaking, a program in NEWCOM is a description of a
local network in client/server style. It consists of a set
of local connective networks and a set of client nodes
and server nodes in each network.

2.2 From X Knowledge Base to Knowware

Summarizing the experiences of the above three
projects shortly reported above, we can learn something
about the rules of constructing knowledge based sys-
tems automatically. Usually we denote an application
program in some domain X as a CAX (computer aided
X) program. Further we call it an ICAX program if its
function shows some intelligence. Actually, a knowledge
based system is an intelligent system and the source of
intelligence is knowledge. Thus we get the equation:

ICAX = CAX + X knowledge base

which proposes a paradigm of intelligent application
software development. This paradigm has the following

J. Comput. Sci. & Technol., Sept. 2006, Vol.21, No.5

consequences:

1) For any ICAX system, its X knowledge base can
be developed separately and independently from the de-
velopment of the CAX system itself.

2) Therefore, they can be produced by different peo-
ple and groups, provided that the standards are ob-
served.

3) In particular, each X knowledge base can play
the role of an independent commodity, as it has been
pointed out by E. A. Feigenbaum: “Knowledge itself
will be a salable commodity like food and oil. Knowl-
edge itself is to become a new wealth of the nations” 1],
A commodity is called independent if it needs not be
sold as a part of another commodity containing it. As a
consequence, the users may buy a CAX platform from
company A and an X knowledge base from company B
separately.

4) Since the knowledge-independent functions of a
CAX system are relatively stable, once the basic archi-
tecture of this CAX system is given, the key of generat-
ing (renewing) its ICAX version automatically is the au-
tomatic generation of the corresponding (new) X knowl-
edge base.

So it is quite worthwhile and interesting to study
the essential properties of X knowledge bases and their
generation procedures. We propose to study and de-
velop knowware—the standardized and commercialized
form of X knowledge base. More exactly, knowware is
a commercialized knowledge module that is computer
operable, but free of any built-in control mechanism (in
particular, not bound to any software), meeting some in-
dustrial standards and embeddable in software and/or
hardware!’?!, Furthermore, a knowware includes a doc-
umentation and is connected to an intellectual property.
Roughly speaking, in some (not all) aspects, the differ-
ence between the concepts of knowware and knowledge
base is similar (or analog) to that between the concepts
of software and program.

There are many examples of knowware, however cur-
rently mainly in their naive forms. Imagine an MP3
player, which is a combination of hardware and soft-
All the songs collected in it can be considered
as knowware. The second example is tax calculating
software. The tax regulations (considered as the declar-
ative part of tax calculation) published by the govern-
ment and operated by this tax calculating software form
a knowware. The third example is economy situation
evaluator whose job is to produce economy situation
evaluation reports. As knowware we need a summarized
account of market quotations and expert reviews and a
knowledge base of economics theory. Let us compare
these three cases of knowware. In the first example,
there is no need to transform the songs to some par-
ticular form of knowware, since their representation is
already standardized. In the second example, the tax
regulation text has to be transformed to being in com-
puter operable form. For this purpose, we need two
standards: the standard of tax regulation texts and that

ware.

Ru-Qian Lu et al.: Beyond Knowledge Engineering

of their knowware representation. We need also a com-
piler for transforming the first standard to the second
one. As a matter of fact, we expect that the governmen-
tal tax departments will publish their tax regulations in
two forms at the same time: a paper version for human
reading and a knowware version for computer use. All
that the system manager has to do is buying this new
knowware and installing it on their tax software. In the
third example we need two kinds of knowware. Besides,
we are encountering a new difficulty: the knowledge
is distributed widely and we even do not know where
the knowledge sources are. To gather such knowledge,
we need tools for knowledge acquisition. For collecting
knowledge from the Internet, the web browser is a pos-
sible candidate. But we will see that we need far more
delicate tools to do this job than the prevalent browsers.

Now we come to the architecture and representa-
tion of knowware itself. Roughly speaking, a knowware
ready for use is a knowledge crystal meeting the needs
mentioned above (see the explanation below). There
are many forms of representation a knowledge base can
take. Consequently, there are equally many forms of
architecture and representation a knowware may take.
For video products like MP3 players, one has to follow
the standard of industry. There is not much space for
innovation. It is simple and strict. For knowware like
tax regulations in the second example, we noticed that
it may be difficult to transform a natural language text
directly into some machine operable knowledge repre-
sentation. In this case, the PNL explained above may be
a good candidate of intermediate representation. Each
time when new tax regulations are given, it is easy to
translate their NL text form into PNL text form with
only minor efforts. Everybody, not just experts, can
do it with a little training. The PNL interpreter then
compiles it to a set of knowledge items in some machine
operable representation. The question is what we should
do with the old knowware representing tax regulations
that are no more in force? Should the new knowware
replace the old one? Or it just revises the old one? In
many cases, a total replacement may present a good
choice, since it is simple and raises no consistency prob-
lems. In case that the new knowledge is just a revision
to the old one, the revision is not made on knowware
itself, but on its semi-finished prototype: the knowledge
crystal.

The knowware mentioned in the third example has a

793

very wide area of application. Its knowledge is collected,
fused and improved continuously over the time. Con-
sider a vast source of knowledge like the World Wide
Web. The knowledge mining process on it is just like
knowledge crystallization from a knowledge solution.
The crystallization core is a knowledge model in the rel-
evant domain. This process is not just a monotonic pil-
ing up of knowledge items. Each time a new knowledge
item is acquired, an evolution of the old crystal follows.
Similar knowledge items may be merged. Complimen-
tary items may be fused. Inconsistent items may be re-
solved. The whole crystal may be reorganized. But all of
this is not a must. Only “knowledge” proved to be false
must be deleted. This shows that a knowledge crystal
is in a state of steady changing. We keep two different
forms of knowledge organization, knowledge crystal and
knowware, due to the following reasons:

1) Since knowledge crystal is always evolving, we
do not require it to be consistent and complete. Every
knowledge item in it is correct under some circumstance.
That is enough.

2) Confronting knowledge items are not necessary
useless. They may be valid under different circum-
stances. Therefore, it would be a lost to force a crystal
to be consistent, since in order to do so one would have
to delete one from two confronting items.

3) Usually, the same knowledge can be used in dif-
ferent domains, different aspects and different ways.
Therefore the content and organization of knowledge
in a crystal should be general purposed. On the other
hand, a knowware may very well be some particular ap-
plication oriented. Its content selection and knowledge
organization may depend very much on this special pur-
pose.

4) Each time when a knowware is to be produced, a
consistent subset of knowledge items is selected from the
crystal according to some knowware specification that
is defined as a set of constraints and transformations on
the crystal’s knowledge items. The resulted knowledge
items will be reorganized and transformed into the final
knowware form. They are complete in the sense that
the resulting knowware is enough for the intended use.

5) Knowware does not evolve. It can only be re-
placed with new knowware.

Table 1 lists the differences among knowware, knowl-
edge crystal and knowledge base.

Table 1. Comparing Knowware with Knowledge Crystal and Knowledge Base

Knowware Knowledge crystal Knowledge base
Equipped with a No No Yes
management system
Is a commodity Yes No Not necessary
Has intellectual property Yes Not necessary Not necessary
Includes a user documentation Yes No Not necessary
Meets industrial standard Yes No No

Mechanism of
knowledge evolvable

Substitute its old
knowledge content with a

Evolution based
on life cycle model

Arbitrary, possibly with
knowledge maintenance

new knowledge crystal

794

3 From Knowledge Engineering to Knowware
Engineering

3.1 Knowledge Middleware and Knowware
Engineering

The development, application and management of
knowware are a complicated process, which is never
less complicate than the development, application and
management of software. It involves knowledge acquisi-
tion, selection, fusion, maintenance and renewing. We
need software tools, called knowledge middleware, for
performing these jobs. For explaining the meaning of
knowledge middleware let us first recall the definition of
middleware in software engineering: “Middleware is the
underlying software based on operating systems with
basic communication protocols, whose function is to
support the effective development, installation, running
and management of application programs”. Thus, tra-
ditional middleware helps application programs to work
cooperatively in a networked environment. The oper-
ation of knowware needs a network in a broader sense
than the communication network controlled by operat-
ing systems. This functional network connects not only
knowware with knowware, but also knowware with soft-
ware, knowware with knowledge source and knowware
with human users. We call it the knowledge broker net-
work, KBN for short. We can then modify the above
definition of middleware to get a definition for knowl-
edge middleware: knowledge middleware is the underly-
ing set of software tools based on KBN and knowledge
transformation and transmission protocols, whose func-
tion is to support the effective development, application
and management of knowware.

Now let us consider the three knowware examples
listed above once again. What kinds of knowledge mid-
dleware could be of use for these knowware? In the case
of MP3 player like video products, the various programs
running on P2P grids for searching and downloading
music pieces are actually knowledge middleware. Fur-
thermore, those programs for controlling and charging
P2P music users belong also to the range of knowledge
middleware. In the example of tax regulation knowware,
the PNL interpreter compiling PNL texts to machine
operable representation is a kind of knowware. In the
example of economy situation evaluator, we need many
kinds of knowledge middleware. For producing knowl-
edge crystal we need, for example, intelligent browser,
knowledge distiller, knowledge fusser and so on. For
producing know-ware itself we need knowledge extrac-
tor, contradiction resolver, knowledge editor and so on.
A knowledge distiller collects knowledge pieces from
distributed, unorganized and even implicit knowledge
sources, while a knowledge extractor acquires structured
knowledge modules from a knowledge crystal. Besides,
knowware users need a software called knowware reader,
whose function includes statistics calculator, diagram
drawer, particular knowledge extractor, etc. A more

J. Comput. Sci. & Technol., Sept. 2006, Vol.21, No.5

detailed illustration will be given in the next section.

Roughly classifying, we have the following kinds of
knowledge middleware (KM for short): KU (Knowware-
User) type KM: those helping the people to make use
of knowware and helping the administrators to man-
age such use; CS (Crystal-Source) type KM: those func-
tioning in the crystallization process of knowledge; CC
(Crystal-Crystal) type KM: those functioning in the
evolution process of knowledge crystal; CK (Crystal-
Knowware) type KM: those transforming knowledge
crystal to knowware; KK (Knowware-Knowware) type
KM: those combining several knowware to a more pow-
erful knowware.

Now we come to the concept of knowware engineer-
ing. We define knowware engineering as the systematic
application of knowledge middleware with the goal of
knowware generation. Knowware engineering has life
cycles, just as software engineering does. Depending on
how one obtains knowledge, to organize it in knowledge
crystals, maintain it, make it evolving and transform it
to knowware, one has different kinds of life cycles for
knowware engineering.

Again consider the three examples discussed above.
The first example of MP3 player makes use of mature
technology (of coding a song) directly. There is no need
to have a complicated life cycle. In the second example,
we note that tax regulations are only a part of gov-
ernment policies. There are many others, for example
salary regulations, unemployed regulations, insurance
regulations, etc. Each of them becomes a knowledge
crystal. Together they form a big knowledge crystal. It
is possible that some items of the big knowledge crystal
are contradicting each other, and there may be cases,
which are not covered by any combination of the items.
Assume that we have a job to produce a knowware from
this crystal, covering all regulations that affect the life
of all normal city habitants. Then we have to resort to
a series of KM: namely those for knowledge selection,
filtering, fusing, contradiction resolving, reorganization
and so on. Not each of these jobs can be done automat-
ically with some KM. Some manual work, in particular
at current state of art of technology, is often unavoid-
able. Summarizing all these, we get a picture of a smelt-
ing furnace. The governmental regulations of all kinds
are raw material of the furnace. The various kinds of
knowledge processing on the crystal are the process of
smelting. For this reason, we call it a smelting furnace
model of knowware development as shown in Fig.1.

From the model of the smelting furnace we see also
the importance of non-canonical knowledge processing
that was mentioned at the beginning of this paper. The
smelting process is not simple and straightforward. It
deals with processing and fusing of incomplete, fuzzy,
noisy and inconsistent knowledge. As a matter of fact,
non-canonical knowledge processing is not something
imposed on open and massive knowledge engineering.
It is the latter’s inherent and unavoidable property.

The model of developing knowware in the third ex-

Ru-Qian Lu et al.: Beyond Knowledge Engineering

ample is different. The knowledge crystal is not built
from a set of knowledge modules in a batch way, but
is accumulated piece by piece and layer by layer from
distributed knowledge sources. We call it a crystalliza-
tion model of knowware development as shown in Fig.2.
More details will be given with an example illustrated
in the next subsection.

‘ Knowledge Source ‘ ‘ Knowledge Source ‘

‘ Ore Dressing ‘

‘ Knowledge Material

Fusion

‘ Knowledge Furnace ‘

Extraction
Refinement
‘ Knowledge Prototype '<:|

Commercialization

‘ Knowware ‘

Fig.1. Furnace model.

Annealing and

Recrystallization
ﬁ Crystallization
‘ Knowledge Pump
- - -
® o Reuse

Knowledge Sea

Fig.2. Crystallization model.

3.2 Knowware Construction with
Crystallization Model

In this subsection, we will introduce a concrete exam-
ple of knowware under development with crystallization
model. The knowledge crystal to be grown, called KAU,
is on knowledge about American universities. From this
crystal, we want to develop a knowware, called KAUSA,
of International Graduate Student Admission to Amer-
ican universities to help the young Chinese students to
make their choice quickly when applying for a scholar-
ship.

First, we need a knowledge distiller to collect infor-
mation from the web pages of these universities. The
basic technique we use is again PNLU. The PNL is
called UKDL (University Knowledge Description Lan-

795

guage) with a well designed grammar. The following
are some sample sentential forms:
(applicants) must supply records of
(course examination) plus
(additional requirements)
(applicants) should take (course) exams
(time) before (event)
(description) TOEFL score requested is
(number)

(donner) provides scholarships to (receiver)

from (amount) to (amount) per (time)

where the bold faced words are keyword expressions
of UKDL and those in brackets are parameters. The
knowledge distiller is like fishing net consisting of these
sentential forms, where the keyword expressions are
head rope of the net and the parameters are the net
nodes. This net is used to fish knowledge from Internet
web pages about American universities. The denser the
net nodes (i.e., the smaller the meshes) are, the more
knowledge will be fished by the net. We use an onto-
logical model to guide the fishing and to organize the
fished knowledge. The structure of the ontology is like
a semantic network or an ER diagram, where the nodes
are agents and the edges connecting the nodes are re-
lations between agents. More concretely, we use the
Agent-Ontology representation developed in the Pangu
project!!3] for knowledge crystal KAU, which is a com-
bination of agent (i.e., Capability-Belief-Strategy agent
CBS agent for short) and ontological structure with CBS
agents as basic nodes in the ontology. In this example,
university, applicant, record, TOEFL, scholarship, exam,
and so on are all agents; and supply, take, request, pro-
vide, and so on are all relations between agents. Each
sentential form listed above with concrete parameters
will be stored as a proposition in the corresponding
agent. They are “half-finished product” of knowledge
acquisition. In this way, an ontology is established for
each university.

Now we come to knowware construction, i.e.,
KAUSA. As we said before, knowware is special pur-
pose oriented. As an assistant to Chinese students,
KAUSA should only contain knowledge of graduate stu-
dent admission to American universities. Furthermore,
the knowledge should be organized in a way that the stu-
dents will have it easy to find any information needed
for their application process. Therefore we use a Petri
net like structure, different from the ontological struc-
ture used in KAU crystals. The new representation
delineates the application process as a condition event
net. All requests to the applicants are the preconditions,
the fulfillment of requests is denoted with events, and
the results of request fulfilled are the postconditions.
For constructing KAUSA from KAU, a corresponding
knowware specification should be prepared. This knowl-
edge specification consists essentially of two parts: a
list of constraints specifying which knowledge items to
take, and a list of mappings specifying where these items
should be mapped to.

796

Given that a knowware is generated from a crystal
according to a specification, the generated knowware it-
self can be observed from different angles. Each such
angle is called a user requirement. One of KAUSA’s
user requirements could be to “limit the search space to
the top 10 American universities in computer science”,
or to “list the fitness indices of all universities for ap-
plication given my TOEFL and GRE scores”. The user
requirements are met by knowware readers. The an-
swers generated by knowledge readers are also in PNL
form. We call this way of working PNLG (PNL Gen-
eration), which is the opposite of PNLU, and is also
the fastest way of reproducing knowledge acquired with
PNLU. Note that the knowware readers are developed
separately by independent software engineers. For the
same knowware, there may be many different knowware
readers with different powers and different prices. Af-
ter all, knowware and knowware readers are different
commodities. This is also one of the reasons that the
development of knowware and KU type knowledge mid-
dleware should be separated as two industrial branches.
Another advantage of specifying user requirements is to
make the knowware development fitting personal use.
Note that the personal requirements of the students are
quite different. An applicant in chemistry does not need
to buy a KAUSA containing knowledge about biology
faculties. By specifying customer’s requirement, user-
friendly knowware can be ordered and supplied for dif-
ferent private use easily.

4 Knowware in Information System
Engineering

Since the last decade, information systems have been
becoming larger and larger and are embedded more and
more deeply in different organizational environments.
The requirements of this kind of systems are in an
organization-wide view. To obtain an organization-wide
view involved many participants (from stakeholders to
system developers). Many traditional information sys-
tem development methods showed their limitations be-
cause they lack good manners for communicating be-
tween customers and system developers. The impor-
tance of integration and communication is obvious. In-
tegration is one of the necessities for obtaining different
views of the organization and establishing connections
Communication between people
ensures that the organization models are shared within

between these views.

the organization so that information can be used where
it is relevant. An important way to achieve both effec-
tive integration and effective communication is to ensure
that all parties involved have a shared understanding of
the relevant aspects of an organization. In particular,
when terms are used in a certain context, it must be
clear what concept is being referred to.

Experience obviously shows that the system devel-
opers’ knowledge on a particular domain may ease the
tasks of information system development in this do-

J. Comput. Sci. & Technol., Sept. 2006, Vol.21, No.5

main. The domain knowledge plays important role in
the process of understanding the stakeholders’ require-
ments and designing the satisfiable systems. Although
the knowledge-based approach is not very new in in-
formation system engineering!**~17), it would been suc-
cessful applied in a systematic manner by recent work on
ontology!'8:19 Instead of only considering software de-
velopment knowledge, we have paid special attentions
to the representation and reuse of domain knowledge
and built domain knowware for supporting the process
of information system development. That is one of the
distinguishing features of our approach compared with
the other available efforts. In the rest of this section, we
mainly illustrate the domain ontologies which have been
used to facility the automatic information system engi-
neering. These ontologies are in fact a series of domain
knowware for information system engineering.

4.1 Organization Description Knowware

First of all, we introduce organization external on-
tologies as the meta-models for the organization busi-
ness description so that customers can be guided to sup-
ply the relevant information. With these ontologies, me-
chanically understanding of these information becomes
possible as the concepts in these ontologies have well-
defined semantics and all the concepts in customers’
business description are their instances and inherit their
semantics. The top-level of these organization ontologies
is shown in Fig.3 and the concept structure is in Fig.4.

T Atomic_Unit*
Q £ —
Organisation <Comp0siternit*

Internal_Agent*
Agent* -
gen < External_Agent*

Goal
Activity* Atomic_Activity*
Position* Composite_Activity*
-Authority
T Communication*

PhysicalMaterial*

People*
Entity* <Matcrial* Machines*
4« Products™

Resource™ < Form*
Event Information® <Repon*
Statue Date_Element*

. Composite_Operation*
Operation® < P —-P

Atomic_Operation*
Operator

Date_Spec
Fig.3. Top-level organization ontology.

With these ontologies, the process of information
system requirements elicitation becomes a systematical
process with the three features?”! as follows.

1) Customers can be guided to describe the business
information in a systematic manner. In fact, a pseudo
natural language (i.e., BIDL) has been designed for this
purpose. The keywords in this language are the pre-
defined associations of these ontologies and the terms
the customers fill in the sentences are exactly the in-
stances of the corresponding ontological concepts.

Ru-Qian Lu et al.: Beyond Knowledge Engineering

2) Analysts can easily understand the business de-
scriptions with the pre-defined semantics of these on-
tologies. In fact the understanding could be automatic
and the business information described supplied by
customers can be automatically structured as concept
graphs each of which is an instance of a part of organi-
zation concept structure.

3) The resulted concept graphs can be checked and
validated for their completeness and consistency by the
reference closure and the homomorphism between the
expression of the business description and the corre-
sponding knowware.

sub_goal G(ml
P(N[lun
Gual
ntcrn.ll _Agent
sy LuemalAge
Event Operation ‘ Goal P

‘ Authority | Chas_goal>
Atom-Operation

Chas_resourcg II Organisation l

sub_organisation
Operator

structure

Resource

Fig.4. Organization concept structure.

4.2 Organization Modeling Knowware

Organization intensive ontologies contain some ab-
stract models for modeling and analyzing the informa-
tion system problem domains. At present, we consider
three kinds of semantic models, i.e., the organization
structure model, the organization goal model and the
event/activity flow model.

Organization Model. This model makes the organi-
zation structure explicit. It models three kinds of as-
sociations, i.e., the whole/part association, the leading
association and the serving association. The whole/part
association between organization units characterizes the
structural division of an organization and all of the
whole/part associations form a hierarchy of organization
units.

While the whole/part associations form an organiza-
tion hierarchy of subordination relations, the leading as-
sociations constitute another hierarchy of leadership re-
lations between organization positions. While modeling
the organizations according to such a “leading” associa-

797

tion, different organizations may have different shapes.
Examples of common organization leading structures
are hierarchical, matrix and flat.

Finally, the serving association means that an orga-
nization or position does something for another organi-
zation or position. No hierarchy exists for the serving
associations. The structure of the organization struc-
ture ontologies could be formalized as:

Ontology OrganizationModel
Concepts: Organization|Agent|Position
Associations:
whole-part: Organization—Organization,
Organization—Agent
leading: Position— Position
serving: Organization— Position,
Position—Position,
Position—Organization

Organization Goal Model. This model tries to cap-
ture various semantic links between organization goals.
There are several kinds of semantic links:

e a goal and-reduction means that a goal could be
reduced into a conjunction of a set of its sub-goals;

e a goal or-reduction means that a goal could be re-
duced into a disjunction of a set of its sub-goals. In
the goal and-reduction and the goal or-reduction,
the goal reduction is in fact the goal assignment;

e the mean-ends link means an organization goal
could be accomplished by an activity goal;

e the goal dependence means that a goal depends
on the dependee, i.e., the achievement of the de-
pendee is the prerequisite for achieving this goal;

e the goal conflict means that a goal may interfere
in the interferee, i.e., it prevents from the achieve-
ment of the interferee.

The goal model is represented as:

Ontology GoalModel
Concepts: Goal(:=
|Activity
Associations:
andReduction: Goal— PGoal
orReduction: Goal— PGoal
conflict: Goal—Goal
depend: Goal—Goal
assignment: OrganizationGoal—+RoleGoal
meanEnds: RoleGoal— Activity

OrganizationGoal | RoleGoal)

Event/Activity Model. This model is for model-
ing the flows of events and activities in an organiza-
tion. Here, we assume that any activity is activated
by an event and has an enable state (enable) and re-
sults in another state (effect), which may inversely cause
other events. Suppose that we use concept Connector=
{V,A,—,=} to represent the connectors between states
and between state and activity. Then we have the fol-
lowing formulation:

798

Ontology EventActivityModel
Concepts: Event|State|Activity|Connector
Associations:
flow: State—Activity, Activity—State,
State— Connector, Connector— State,
Activity—Connector, Connector— Activity,
Connector— Connector
trigger: Event— Activity
occur: State—Event
Notice that all of the concepts of Organization, Posi-
tion, Goal, Agent, Fvent, State and Activity are coming
from the expression of the business description. With
these knowware, the process of organization modeling
and analysis can be automatically completed by using

ontological graph reconstruction algorithms/2!.

4.3 Information System Modelling Knowware

Having got the organization models, the next step
of information system engineering is information sys-
tem modeling. Some knowware have been developed to
facilitate the construction of these models.

Information system model refers to roles, activities
and data. These basic types are the role objects, the
activity objects and the data objects. Each role object
corresponds to an organization concept, such as an or-
ganization, an agent, or a position. The features of the
role objects include that each of them can perform some
activities and has visiting authority to some data. Each
activity object is a data processing procedure which has
a set of input data, a set of output data and a set of
functional mappings from input data to output data.
Each data object has a set of attributes describing its
structure. The information system modeling knowware
is represented as:

Ontology InformationSystemModel
Concepts: RoleObject|DataObject|ActivityObject

Associations:
assignment: RoleObject—ActivityObject,

authority: RoleObject—DataObjectx AUTH ®,
input,output: ActivityObject—DataObject,
leading: RoleObject— RoleObject,
subConcept: DataObject—DataObject,
ActivityObject— ActivityObject,
entityRelation: DataObject—DataObject
In which, each RoleObject comes from an instance of
an organization concept and a position/agent concept.
each DataObject comes from an instance of a resource
concept. And each ActivityObject comes from an in-
stance of an activity concept.

4.4 Summary on Information System
Knowware

Above knowware are some of the domain knowware
special for the organization information systems. Other
knowware also include knowware of software develop-
ment, such as the knowware on software architecture as
well as those on the application implementation (please
refer to [10] for detailed description).

J. Comput. Sci. & Technol., Sept. 2006, Vol.21, No.5

With these knowware, the information system de-
velopment becomes a process knowware-driven informa-
tion extraction and model reconstruction. This process

The

whole framework can be depicted as shown in Fig.5.

might be iterative and of step-wise refinement.

Customers

Business
Description Elicitation
Knowware

Business

Description

Organization Organization

Modelling Modelliong and
Knowware Analysis

Organization
Models

I |

Information
System
Modelling

L

Information
Systen Model
Knowware

i ay

Information
System
Models

I

Information
System
Generation

L

Archetecture and
Pre-defined
Implementation

Information
System

Fig.5. Knowware-driven information system engineering.

5 Conclusions

Knowware is proposed for separating the knowledge
component from software and making knowware and
software two different research topics and salable com-
modities. When they could be delimited with a clear
boundary, a client could buy software tools from a soft-
ware developer and knowware from a knowledge devel-
oper. In this sense, knowware and knowware engineer-
ing call forth a new industry, i.e., the knowledge indus-
try. For growing this new industry, many issues should
be further addressed which include methodologies, tech-
niques and tools of knowware development. The com-
parative study with the software development is worth-
while. And from our experience until now, ontologies
seem to be a solution as the basic knowware structures.

@ AUTH={RO, WO, RW}, which stand for read-only, write-only and read-write respectively.

Ru-Qian Lu et al.: Beyond Knowledge Engineering

If that is true, the ontology relevant theories and tech-
niques should be systematically studied and a unified
knowledge modeling framework will be very appealing.
By the way, a variety of different domain knowware
should be developed and make their own contributions
to different applications.

Acknowledgements The authors are very thank-
ful to Profs. Fei-Yue Wang, Hong Mei, Jian Li, Xiao-
Guang Yang and Dr. Lin Liu for their fruitful discus-
sions on knowware. The authors also thank the anony-
mous referees for their valuable comments, which have
helped to improve the manuscript.

References

[1] Feigenbaum E A. Some challenges and grand challenges for
computational intelligence. Journal of ACM, 2003, 50(1): 32—
40.

[2] Lenat D B, Guha P V. Building Large Knowledge Based Sys-
tems: Representation and Inference in the CYC Project. Ad-
dison Wesley, 1990.

[3] Cungen Cao et al. Progress of national knowledge infrastruc-

ture. Journal of Computer Science and Technology, 2002,

17(5): 523-534.

Yolanda Gil, Enrico Motta, V Richard Benjamins, Mark A

Musen (eds.). The Semantic Web—ISWC 2005: 4th Interna-

tional Semantic Web Conference. Lecture Notes in Computer

Science 3729, Berlin/Heidelberg: Springer, 2005.

[5] Cannataro M, Talia D. Knowledge grid: An architecture

for distributed knowledge discovery. Communications of the

ACM, January 2003, 46(1): 89-93.

Lois M L Delcambre, Christian Kop, Heinrich C Mayr et al.

(eds.) Conceptual Modeling — ER 2005, 24th International

Conference on Conceptual Modeling. Lecture Notes in Com-

puter Science 3716, Berlin/Heidelberg: Springer, 2005.

Rugian Lu. Pseudo-Natural Language Understanding and

Knowledge Acquisition. Some Important Issues of Chinese

Information Processing, Bo Xu, Maosong Sun, Guangjin Jin

(eds.), Science Press, 2003, pp.229-245.

[8] Rugian Lu, Cungen Cao. Towards Knowledge Acquisition

From Domain Books. Current Trends in Knowledge Acquisi-

tion, IOC, Amsterdam, 1990, pp.289-301.

Rugian Lu, Cungen Cao, Yonghong Chen, Zhangang Han. On

automatic generation of intelligent tutoring systems. In Proc.

7th Int. Conf. Al in Education, 1995, pp.67-74.

[10] Ruqian Lu, Zhi Jin. Domain Modeling Based Software En-
gineering: A Formal Approach. Kluwer Academic Publisher,
2000.

[11] Rugian Lu.
third liberation?
2005, pp.82-85.

[12] Feigenbaum E A, McCorduck P. The Fifth Generation, Ar-
tificial Intelligence and Japan’s Challenge to the World.
Addison-Wesley, 1983.

[13] Ru-Qian Lu et al. Agent-oriented commonsense knowledge
base. Science in China (Series E), 2000, 43(6): 641-652.

[4

6

[7

9

From hardware to software to knowware: IT’s

IEEE Intelligent Systems, March/April

799

[14] Loucopoulos P, Champion R E M. Knowledge-based support
for requirements engineering. Journal of Information and
Software Technology, 1989, 31(3): 123-135.

[15] Mylopoulos J, Borgida A, Jarke M, Koubarakis M. Repre-
senting knowledge about information systems. ACM Trans.
Office Information Systems, 1990, 8(4): 325-389.

[16] Lu R, Jin Z, Wan R. PROMIS: A knowledge-based tool for
automatically prototyping management information systems.
In Proc. AVION’9/, Paris, France, 1994, pp.325—330.

[17] Sutcliffe A, Maiden N. The domain theory for requirements
engineering. IEEE Trans. Software Engineering, 1998, 24(3):
pp.760-773.

[18] Gruber T R. Towards principles for the design of ontologies
used for knowledge sharing. Technical Report KSL-93-04,
Knowledge Systems Laboratory, Stanford University, 1993.

[19] Uschold M, King M, Moralee S, Zorgios Y. The enterprise
ontology. The Knowledge Engineering Review, 1998, 13(1):
31-89.

[20] Zhi Jin, David A Bell, F G Wilkie, D G Leahy. Automated
requirements elicitation: Combining a model-driven approach
with concept reuse. International Journal of Software Engi-
neering and Knowledge Engineering, 2003, 13(1): 53-82.

[21] Zhi Jin, Rugian Lu, David A Bell. Automatically multi-

paradigm requirements modeling and analyzing: An ontology-
based approach. Science in China (Series F), 2003, 46(4):
279-297.

Ru-Qian Lu is a professor of
computer science of the Institute of
His
research interests include artificial in-
telligence, knowledge engineering and
knowledge based software engineer-
ing. He has won two first class awards
form the Academia Sinica and a Na-
tional second class prize from the
Ministry of Science and Technology.
He has also won the sixth Huo Lookeng Prize for Mathemat-
ics.

Mathematics, Academia Sinica.

Zhi Jin was awarded a B.S.
degree in computer
Zhangjiang University in 1984, and
studied for her M.S. degree in com-
puter science (expert system) and
her Ph.D. degree in computer sci-
ence (artificial intelligence) at Chang-
sha Institute of Technology. She was
awarded the Ph.D. degree in 1992.
She is a senior member of China Com-
puter Federation. Her research interests include knowledge-
based systems, artificial intelligence, requirements engineer-
ing, ontology engineering, etc. Her current research focuses
on ontology-based requirements elicitation and analysis. She
has got about 80 publications, including co-authoring one

book.

science from

