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Abstract  This paper studies the security of the block ciphers ARIA and Camellia against impossible differential crypt-
analysis. Our work improves the best impossible differential cryptanalysis of ARIA and Camellia known so far. The designers
of ARIA expected no impossible differentials exist for 4-round ARIA. However, we found some nontrivial 4-round impossible

differentials, which may lead to a possible attack on 6-round ARIA. Moreover, we found some nontrivial 8-round impossi-
ble differentials for Camellia, whereas only 7-round impossible differentials were previously known. By using the 8-round

impossible differentials, we presented an attack on 12-round Camellia without FL/FL™* layers.

Keywords
1 Introduction

Both ARIA[ and Camellial?! support 128-bit block
size and 128-, 192-, and 256-bit key lengths, i.e., the
same interface specifications as the Advanced Encryp-
tion Standard (AES). Camellia was jointly developed
in 2000 by Nippon Telegraph and Telephone Corpora-
tion (NTT) and Mitsubishi Electric Corporation (Mit-
subishi). It has now been selected as an international
standard by ISO/IEC, and also been adopted by crypto-
graphic evaluation projects such as NESSIE and CRYP-
TREC, as well as the standardization activities at IETF.
It means Camellia gradually become one of the most
worldwide used block ciphers. Therefore, a constant
evaluation of its security with respect to various crypt-
analytic techniques is required. Camellia was already
analyzed in many papers using various attacks(~19.

ARIA was designed by a group of Korean experts
in 2003. In 2004, ARIA was established as a Ko-
rean Standard block cipher algorithm (KS X 1213)
by the Ministry of Commerce, Industry and Energy.
ARIA is a general-purpose involutional SPN block ci-
pher algorithm, optimized for lightweight environments
and hardware implementation. Its security was an-
alyzed initially by the designers internally, and later
by the COSIC group of K.U. Leuven, Belgium!'!l.
They analyzed the security of ARIA against differen-
tial and linear cryptanalysis'223] truncated and higher-
order differentiall’®!, impossible differentiall*® slide
attack(1617] integral attack!'8!, and other attacks!*9~21].

Impossible differential means a differential that holds
with probability 0, or a differential that does not
exist. Impossible differential attacks use impossible
differentials to derive the actual values of the keys,
which has been used to attack AES and get very good
results!?2~27],

In this paper, we examine the security of ARIA and

block cipher, ARIA, Camellia, data complexity, time complexity, impossible differential cryptanalysis

Camellia against impossible differential attacks. The
initial analysis of the security of Camellia to impossible
differential Cryptanalysis was given in [4]. They pre-
sented some nontrivial 7-round impossible differentials
for Camellia. We found some nontrivial 8-round impos-
sible differentials, which may lead to a possible attack of
Camellia reduced to 12 rounds without FL/FL™!, the
attack having complexity less than that of exhaustive
search to 12-round Camellia without FL/FL~! layers.

As for ARIA, the designers expected that there was
no impossible differentials on 4 or more rounds in [1,
28]. In this paper, we found some 4-round impossible
differentials, which lead to a possible attack of ARIA
reduced to 6 rounds. The attack requires 2'?! plain-
text /ciphertext pairs and 2''? encryptions.

The contents of this paper are as follows. In Section
2 we give a brief description of ARIA and Camellia. In
Section 3 we describe some 4-round ARIA impossible
differentials and the impossible differential attack on 6-
round ARIA. In Section 4, we describe some 8-round
Camellia impossible differentials and present the impos-
sible differential attack on 12-round Camellia without
FL/FL™! layers. Finally, Section 5 summarizes this

paper.

2 ARIA and Camellia

Due to space limitation, we only introduce ARIA and
Camellia briefly. Details are shown in [1, 2].

2.1 Description of ARIA

ARIA is a substitution permutation network (SPN)
and uses an involutional binary 16 x 16 matrix in its dif-
fusion layer. The 128-bit plaintexts are treated as byte
matrices of size 4 x 4 as the following:
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Every round applies three operations to the state
matrix:

Round Key Addition (RKA). This is done by XOR-
ing the 128-bit round key.

Substitution Layer (SL). Applying the 8 x 8 S-boxes
16 times in parallel on each byte. There are two types of
substitution layers to be used so as to make the cipher
involution.

Diffusion Layer (DL). A linear map A : (F5)' —
(F8)16 is given by

(zolz1|. .- |z15) = (yolyal -~ |y1s),

where

Yo =23 D x4 D6 D 28 D T9 O T13 D T14,
Y1 =22 D25 ® 7 O g © T9 D T12 D X315,
Y2 =21 Dxsa D6 D 10 D 11 D 212 D T15,
Ys =20 D x5 D w7 D x10 D T11 ® T13 D 214,
Ys =2o D T2 ® x5 ® s D 211 © 14 O T15,
Ys =1 D3 Dxs B9 O 10 D 14 D 215,
Yo = To D T2 D7 ® 9 ® T10 D T12 © 713,
Y7 =21 D3 D xe ® 23 D 11 O 212 D 213,
Ys =To D1 Dxs D27 D T10 D T13 D 15,
Yo =ToDx1 D25 D26 D T11 D T12 D T14,
Y10 = T2 D T3 D x5 D w6 D T3 D 13 D *15,
Y11 = 2B 23D x4 Drr g ®T12 D T14,
Y2 =21 T2 D x6 D27 O 9 D T11 D 12,
Y13 = To D x3 D e D 7 D T3 D T10 D T13,
Y14 =0 B 23D x4 D x5 Drg ® 11 D T14,
Y15 =21 D T2 D xy D5 D 28 D 210 D T15-
Note that the Diffusion layer of the last round is re-
placed by a round key addition. We shall assume that

the 6-round ARIA also has the diffusion layer replaced
by a round key addition at the last round.

2.2 Description of Camellia

Camellia is based on the Feistel structure and has 18
rounds (for 128-bit keys) or 24 rounds (for 192/256-bit
keys). The FL/FL~! function layer is inserted at ev-
ery 6 rounds. Before the first round and after the last
round, there are pre- and post-whitening layers which
use bitwise exclusive-or operations with 128-bit round
subkeys, respectively. In this paper, we will consider
Camellia without FL/FL~! function layer and whiten-
ing layers.

Let L,_1 and R,_q be the left and the right halves of
the r-th round input, and k, be the r-th round subkey.
Then the Feistel structure of Camellia can be written as

L,=R, 1® F(erlakr)7 R, =L, 4,
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where F' is the round function defined below:

F :{0,1}%* x {0,1}%* — {0,1}%*
(X, k)= Z=P(S(X ®k,)),
where S and P are defined as follows:
S:(F)® — (F3)®
x| o |ws|zs|Ts|ze| 27 |8 = Y1 |y2|ys|yalys|velyr|ys
y1 =s1(x1), Y2 = s2(x2), y3 = s3(x3),
Yg = 34(1‘4)7 Ys = 32(1‘5), Ye = 33(1‘6),
Yr = 34(2?7), Ys = 31(178)-
where s1, 82,83 and s4 are the 8 x 8 boxes.
P (Fy)? — (Fy)®
Y11Y2|ys|yalys|ys|yrlys — 21|22|23]24] 25| 26| 27| 28

where

21=Y1 QY3 D Ys ® Yo © yr © ys,
22=Y1DY2D Y1 DYs Dyr B ys,
3=Y1DY2DYs DYs D Ys D Ys,
24 =Y2DY3s D Ys D Ys ® ys @ Yr,
z5 =Y1 DY2 D yYs Y7 D ys,
26 =Y2DYs DYs D yr D ys,
21 =Ys D ys © ys © ys O ys,
28 =Y1 DYs D Ys D Ys D yr-
The inverse of P is as follows:
P (B — (Fy)°
21|22|23|24|25|26| 27|28 = y1|y2|yslyalys |ys|yr|ys
Y1 =220 23D 24 D 26 D 27 D 2s,
Yo =21 D 23D 24Dz D2r D zs,
Ys =21 D 22D 24 D25 D 26 D 25,
Ys = 21 D 22D 23D 25 @ 26 D 27,

Ys = 21 D 220 D 25 D 27 D 23,
Yo = 22 D 23 D 25 O 26 D 28,
Yr = 23D 24 D 25 D 26 D 27,
Ys = 21 D 24 D 26 © 27 D 23.

3 Impossible Differential Cryptanalysis on
Reduced-Round ARIA

3.1 Some 4-Round Impossible Differentials

In this subsection, we indicate some impossible dif-
ferentials on 4-round ARIA as shown in Fig.1. In this
figure, we consider the 4-round impossible differential
which is built in a miss-in-the-middle manner. A 2-
round differential with probability 1 is concatenated to
a 2-round differential with probability 1, in the inverse
direction, where the intermediate differences contra-
dict each other. The 4-round impossible differential is

4-round

(a/0/0]0]0|0|0]0]0|0|0[0]0]0]0[0) ——(0]~[0]0|0[0[0]O|A|A|
h|0|0|0|R|0), where a and h denote any non-zero value.
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We use X! and X2 to denote the input and output
of round 7, while X denotes the intermediate values af-
ter the application of Substitution Layer (SL) of round
i. The first 2-round differential is obtained as follows:

The input difference X} = (a|0|0]0/0|0]0]0]|0|0|0|0|0]
0|0]0) is preserved through the AddRoundKey opera-
tion of round 1. This difference is in a single byte,
and thus, the difference after the Substitution Layer
(SL) of round 1 is still in a single byte, ie., X} =
(b/0|0/0]0]0|0|0|0|0]|0]0|0]0]0]0) where b is an unknown
non-zero byte value. After the Diffusion Layer (DL) this
difference becomes X1 = (0]0|0|b|b|0]b]0|b]b|0]0|0]b|b|0).
This difference evolves after AddRoundKey operation
and the Substitution Layer (SL) of round 2 into

Xzs = (0|0|0‘b3|b4‘0|b6|0|b8|b9|0|0‘0|b13|b14|0)a

where b3, by, bg, bg, bg, b13 and by4 are unknown non-zero
byte values. Finally, after the Diffusion Layer (DL) this
difference evolves to X = (colei|ez|es| .. . |e15), where
each byte can be expressed as:
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From the above equations, we get

c7 =ci0 = c13 = b3 @ bg @ bg @ by3,
c11 =c14 = b3 ® by D bg D byg.

Hence, the input difference X| = (a/0|0]0/0|0|0]0|0|0|
0/0/0]0]0|0) evolves with probability one into X5 which
has the same value in bytes 11 and 14, and X3 also has
the same value in bytes 7, 10, and 13.

The second differential ends after round 4 with
difference X = (0]|h|0|0|0|0|0|0|A|A|R|0]0|O|A|0).
When rolling back this difference through the Dif-
fusion Layer (DL), we get the difference X§ =
(h|0]0|0|0]0|0]0|0]0|~|0]0|0|0|A). This difference has non-
zero difference in bytes 0, 10, and 15, thus the
difference evolves after the inverse of Substitution
Layer (SL) and AddRoundKey operation of round 4

into X} = (f0/0]0]0]0|0]0]0|0|O|f10/0]0|0]|0| f15) where
fo, fio and f;5 are unknown non-zero byte val-
ues. When rolling back this difference through the

Diffusion Layer (DL), we get the difference X§ =
(€0|€1|€2|63|€4|€5|€6|€7|€8|€9\€10|€11|€12|€13|€14|€15)7

Co=b3 D bs Db D bs Dby B b1z Dbra, c1=Dbs Db, where each byte can be expressed as:
cg =by®bg, c3="013D by, en =0 es = fo® fio® f
0= s = Jo 10 15
ca =bg Dbrg, c5=>b3Dbs Dby ® b4, €1=f,15 o = fo ’
) )
ce = by @ b1z, c7=0b3 Db D bg D b3, es = fi10 D fis, €10 = fis,
cs = by Dbiz, co=bg D bia, es = fo® fio, en =0,
ey = e =0
610263@136@[)8@613, C11263@b4@b9@bl4, 64 ;0 @@f}f}; 612 f7 @f
5 = J10 15 13 = Jo 10
c12 =bg Dby, c13 = b3 D bs D bs ® b1, 66=f069f10’ c1a = fo ’
) )
c1a =b3 Dby Dby O brg, c15=by D bs. er =0, e1s = fio0 D fis.
a b b b
RKA DL b b RKA
SL b b SL
b
by | b . . . 8
4 8 o |ca |8 a2 c11= C]4=b3®b4®b9®b|4
bo b1z DL > c1|es|co |c3
be b1a C2 | C6 [C10| C1a
b3 c3|c7 | el Cs Contradiction!
eo | eq| eg| €12 do|dy|dg | di2
e1| es| e | €3 sL”' | di|ds |do | di3 eh”=0’2'4¢00;l 0
ence a1=v, di4 s
€2| €6 | e0| €14 RKA ™\ g, | d¢| dio| dua and d;;#14
e3| er|eq| €i1s dj d1| dy| dis
fo h h
pL! -1 DL | & h
¢ SL
fio RKA h h | h
fis h

|:| — Zero Difference

a, h — Non-Zero Differences

Fig.1. 4-Round impossible differentials of ARIA.
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Fig.2. 6-round impossible differential attack to ARIA.

From the above equations, we know ej;; =
0 and ey = fy # 0. Therefore, when rolling
back this difference through the inverse of Sub-
stitution Layer (SL) and AddRoundKey opera-
tion of round 3, we get the difference Xi =
(do|d1|dz|d3|da|ds|dg|d7|ds|dg|dioldi1|di2|d13|d14|d1s),
where dy; = 0 and dy4 # 0.

This difference contradicts the first differential as
with probability one c;; = ci4 while the second dif-
ferential predicts dy; # dy4 with probability one. This
contradiction is emphasized in Fig.1.

Similarly, we can get other 4-round impossible dif-
ferentials of ARIA, for example,

(a|0|0]o[o]ojo[o[o[o[o[o[o[o]0]0)

4-round

——(00]A[0]h[0]0]0]0[0[0[0[ 2[R |R|0),
(a|0[0jojo]ojo[o[ofo[ofo[o[o]0]0)

4-round

——(0[R|0/0]0]0]0[0[0[R[0[0[0|A|A[R),
(al0j0j0jojojoj0]o]o]o]o]o]o[o]0)

4-round

———(0]0|0|0|h|0|0|h|k|0|0|0|A|0|R|O).

3.2 6-Round Impossible Differential Attack

In this subsection, we describe an impossible differ-
ential cryptanalysis of ARIA reduced to six rounds. The
attack is based on the above four round impossible dif-
ferentials with additional one round at each of the begin-
ning and the end as in Fig.2. Note that the last round
of ARTA does not have the diffusion layer.

Step 1. Choose structures of 2°¢ plaintexts which dif-
fer only at the seven bytes (3,4,6,8,9,13,14), having all
possible values in these bytes. One structure proposes
256 % 256 x % = 2" pairs of plaintexts.

Step 2. Take 2%* structures (2120 plaintexts, 27 pairs
of plaintexts). Choose pairs whose ciphertext pairs have
zero difference at the eleven bytes (0, 2, 3, 4, 5, 6, 7, 11,

12, 13, 15). The expected number of such pairs is about
9175 o =88 _ 98T

Step 3. Guess the 40-bit value of the last round key k7
at the five bytes (1, 8, 9, 10, 14), and perform the followings:
Step 3.1. For every remaining ciphertext pair (C,C*),
compute Cs ® Ct = SL™(C® ky) ® SL™*(C* @ kr), choose
pairs whose difference Cs @ Cf is the same at the five
bytes (1, 8, 9, 10, 14). Since the probability is about
p = (27%)?* = 2732, the expected number of the remaining
pairs is about 287 x 2732 = 255,

Step 3.2. For every remaining ciphertext pair (C,C")
consider the corresponding plaintext pair (P, P*), for 56-bit
value at the seven bytes (3, 4, 6, 8, 9, 13, 14) of the subkey
k1, calculate SL(P @ k1) ® SL(P* @ k1), and check whether
SL(P®k1)®SL(P*® k1) is the same at the seven bytes (3,
4,6, 8,9, 13, 14). If yes, discard the candidate value of the
seven bytes of k1 and the five bytes of k7.

The procedure is as follows.

Since such a difference is impossible, every key that
proposes such a difference is a wrong key. After an-
alyzing 2% ciphertext pairs, there remain only about
256(1 — 2748)255 ~ 25602 9128 wrong values of the
seven bytes of k;. Unless the initial assumption on the
five bytes of k7 is right, it is expected that we can detect
the whole 56-bit value of k; for each 40-bit value of k7
since the wrong value remains with the probability 2788,
Hence if there remains a value of ky, we can assume the
value k7 is right.

The time complexity of the attack is dominated by
Step 3. For reducing the time complexity of Step 3.1,
we first compute Cis 1) ® C(*5,1) and C(5g) ® 0?578), and
check whether C5 1) ® 0?5,1) =Cs8) @ C(*&S), it needs
only to guess two key bytes. If yes, go on computing
Cs,9) @ C(*5’9), and so on. Thus Step 3.1 requires about
4 % 2103 — (216 X 287 + 224 % 279 + 232 % 271 + 240 % 263)
one round operations. Step 3.2 requires about 6 x 2111 (=
240 x (216 x 255 4 224 % 247 ... 4 256 % 21%) one round
operations.

Similarly, we can derive the other bytes of k7 by us-
ing different impossible differentials. Consequently, this
attack requires about 2'?' chosen plaintexts and 2''2
encryptions of 6-round ARIA.
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4 Impossible Differential Cryptanalysis on
Reduced-Round Camellia

4.1 Some 8-Round Impossible Differentials

In [4], the authors show one impossible differential of
7-round Camellia without input/output whitening, F'L,
or FL~!. In this subsection, we indicate one impossible
differential of 8-round Camellia as shown in Fig.3.

We now show the 8-round differential (0/0/0|0]0|0|0]0,

8-round

a|0|0]|0]0]|0]|0]0) ———(k|0]|0|0]0|0]0|0, 0]0|0|0[0]0]0J0) is
impossible, where a and h denote any non-zero value.
The first 3-round differential is obtained as follows:
The input difference (Lj, R;,) = (0]0/0]0|0|0]0|0,
a|0]0]0]0]0|0]0) becomes (L}, R}) = (a|0/0]0|0|0]0|O,
0/0]0/0]0]0]0]0) through the first round transformation.
After the subkey addition and S layer, L] becomes
(b/0]0]0|0]0|0|0) where b is an unknown non-zero byte
value. After the linear transformation P we have
(L%, R,) = (b|b|bl0]b]0|0|b, a|0]0]0]0]0]0]0). This differ-
ence evolves after subkey addition operation and the
S-box layer of round 3 into (by|b2|b3|0|b5|0|0[bs), where
b1, bs,b3,b5 and bg are unknown non-zero byte values.

L7, =(0/0[0jofo[o[0]0)

L} =(al0[0[0[0[0]0j0)

L =(blblploleloolb) |

L =(cy ®dlcalesleslesleslerles)

Further, after the linear transformation P this differ-
ence evolves to (ci|cales|ca|es|cs|er|cs). Thus we get
(L3, Ry) = (c1 @ alcz|es|ea|es|eq|cr|cs, b]b|b|0[b]0]O]D).
The second 3-round differential ends with dif-
ference (Lg, R§) = (h|0]0]|0]0J0|0]0,0]0]0]0|0|0]|0]O).
When rolling back this difference through 2-round
transformation, we get the difference (Lg, R;) =
(h|0]0]0JOJO|O]O, f|f|f|0] f]0|O|f), where f is an unknown
non-zero byte value. After the subkey addition and
S layer, Ly = Rj becomes (eq|ez|es|0]es|0|0es), where
e1,e2,e3,e5 and eg are unknown non-zero byte values.
Further, after the linear transformation P this differ-
ence evolves to (di|da|ds|ds|ds|ds|dr|ds). Thus we get
(L, BS) = (fIF1 101710101, dy & hlds|ds|dalds d el ds).
where dg and d; can be expressed as:
de =exDezsPesDeg, dr=e3DesDes.

If the first 3-round differential and second 3-round
differential can build up the 8-round differential, then

L3, Ls and Rs must satisfy the following:
L4:R5, P(S(R5@k4)):L3@L5

4o =(00pi00)

£ oY 2> (b|b|b|0[b|0]0]b)

------ > X=(c1@ aef|c; of c3 ef [cilcs @f |Colcrlcs of )
i P(X)=(b ef |b, ®alb; ®alalbs ®a|0/0bs ®a)
! 4

»

Ly =(d1®h|d|d3|da|ds|de|d7|d s) —| KS

Ls=(f|f1f0lfl0[0L.f)

Ls =(h|0[0[0[0[0]0] 0)

L3 =(0/0[0]0j0[0[0]0)

L =(h[0[0[0f0[0[0]0)

dg=d,=0, hence e;=0.
ﬂ Contradiction!
eﬂ: 0.

Ry =(0]0]0]0]0[0]0]0)

Fig.3. 8-round impossible differentials of Camellia.
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Ly=P(m{valv0]vs[0[0[vs ) ( w(0[0[00/0[0[0) R,
— ks P>
L, =(u|ufue|0|%]0]0|%)
a0 [ > :
., =(a0]00]0]0|0[0|0 |
L2(|||||||)_KS P ,

>< R, =(@/0/00/0/0]0[0]0)

L,=(0] 0[0[0[0[0]0]0)

8-Round Impossible Differential

l R,,=(0]0]0]0]0]0]0]0)

L,,=(r/0/0]0/0{0|0[0) KS

P —»

L,,=(gl2l201¢(0/0]g)

R, =(h|0]0[0]0[0[0]0)

Fig.4. 12-round impossible differential attack to modified Camellia.

Hence we have S(Rs® ky) = P~1(L3® Ls). Because

P~ is a linear transformation, we have
P (L, @ L) = PN(L}) @ PL(LY)
= P~ !(c1 @ alea|esleales|es|erles) @ P~H(fIf|£10]£10]0] f)
= P! (c1lea|es|ealescsler|es)
@ P~'(al0[0[0]0[0J0J0) @& P~ (f|f|£]0] f|0[O]f)
= (ba[b21bs10]5510/0Jbs) ® (Olalalalal0]0]a)

& (f10/010[0[0]ojo)
= (f @ b1|b2 @ a‘bg EB a|a\b5 @ a|0\0|b3 @ CL).

The S-boxes of Camellia are permutations, so we can
get the sixth and seventh byte difference in Rf equals
zero, i.e., dg = d7 = 0. From the expression of dg and dy
we have dg @ d7 = ey. This contradicts with ey # 0.

Similarly, we can get other 8-round impossible dif-
ferentials of Camellia, for example,

(0|ojo[o]o]o[ofo, 0]a|0]o|o[o[0]0)

8-round

——(0]h[0[0]0]0]0]0, 0[0]0]0J0[0[0]0),
(0]ojofo[o]oo[o, 0]0]a|0]0[0[0]0)

8-round

S-round |0112|0/0]0]0|0, 0/0/0]0|0|0|0]0).

4.2 12-Round Impossible Differential Attack

In this subsection, we describe an impossible differen-
tial attack of 12-round Camellia without whitening and
FL/FL™!. The attack is based on the above 8-round
impossible differentials with additional three rounds at
the beginning and one round at the end as in Fig.4.

The procedure is as follows:

Step 1. Choose structure of plaintexts as follows:

Lo = P(z1|x2|zs|ou|zs|as|ar|zs)

© (x|B2|B5164|85|8s167|8s) s

Ro = (y1ly2lys|yalys|ye|yz|ys)-

where z; (1 = 1,2,3,5,8), yv; (1 < 72 < 8), and z takes
all possible values in F5, a; and §; are constants in Fy. For
each possible value of (z1, z2, T3, =5, Ts, T, Y1, . . . , ys ), We can
get a unique 128-bit string (P(z1|zz2|zs|as|zs|as|ar|zs) &
(x]B2185184|B8s| Bs|B7|Bs), (y1lyzlyslyalys|ye|yr|ys)). Also, for
a different value of (z1, z2,z3, 5, s, , Y1, - - -, Ys), the corre-
sponding 128-bit string is also different. Hence, a structure
includes 2''2 plaintexts, one structure proposes 2112 x 2112 x
1 _ 9223

5 pairs of plaintexts.

Step 2. Take 2% structures (2'?° plaintexts, 22%! pairs
of plaintexts). Choose pairs whose ciphertext difference
(L2, Ri5) satisfy the following:

Li> = (glgl9/0]g|0[0]g), Ri» = (R|0]0]0]0]0]0]0),

where h and g are unknown non-zero values. There are 26
(L%2, Ri2), so the probability is about p = 2'¢ x 27128 =
2712 Hence, the expected number of such pairs is 223! x
9—112 _ 9119

Step 3. Guess the 8-bit value at the first byte of the
subkey ki2, for every remaining pair, calculate s1(Ri2,1 @
k12,1) ® s1(Ri21 @ ki2,1), and choose pairs which satisfy
s1(Ri2,1 Dki2,1) ®s1(Ri2,1 ®ki2,1) = Li2,1 @ Liy ;. Since the
probability is about p = 278, the expected number of the
remaining pairs is 211% x 278 = 2111,

Step 4. Guess the 64-bit value of the first round key k1,
for every remaining plaintext pair (Lo, Ro) and (Lg, Rp),

Lo :P(m1|zg|a:3|a4|m5‘a6|a7|arg)
@ (x|B2|Bs|B4|Bs| 86|51 Bs),

Ro = (y1ly2lys|yalys|ys|yz|ys),

Ly = P(z1 |25 x5 | ca |zt |as | ar|zs)
@ (7182185841851 861 8718s),

Ry = (1 lyalys lvalys |yslyz |vs)-

Compute (L1, R1) and (L7, R7), and choose pairs whose
difference satisfies L1 @ L] = (u|u|u|0|u|0|0|u) where u is not
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zero. Since the probability is about p = 28 x27%% = 27%¢ the
expected number of the remaining pairs is 2! x 2756 = 255,
Step 5. Guess the 40-bit value of the second round key
ks at the five bytes (1, 2, 3, 5, 8), perform the following:
Step 5.1. For every remaining pair (Lo, Ro) and
(Lg, Rj), and the corresponding output of the first round
(L1, R1) and (Lf, R1),

L1 = (z1]22]23]v4l25 76|77 ]28),
Ry = P(z1|x2|zs|aslzs|as|ar|es) @ (x| 8218384185186 18718s),

Ly = (212223 [yal 25 |vs 7 23),

R} = P(x7|z5| 23| asls|os|ar|zs) @ (27|B2]8s]84185186|687|8s).

Compute s1(z1 ® k2,1) @ s1(27 @ k1) = vi, s2(22 @
k2,2) ® s2(25 @ ka2) = v2, s3(z3 @ ka,3) @ s3(25 D ka,z) = vs,
s2(25@k2,5)Ds2(25 Bkas) = vs, s1(z8Dka,s)Ds1(zg Pkas) =
vg. Choose pairs whose difference satisfy (v1|vz|vs|vs|vs) =
(z1 ® zl|z2 ® 5|73 B 3|75 B 5|78 D *3) and = # x*. Since
the probability is about p = 27%°, the expected number of
the remaining pairs is 2°% x 2740 = 215,

Step 5.2. Further guess the 24-bit value of the second
round key k2 at the three bytes (4, 6, 7), for every remaining
plaintext pair, calculate L2 1 and L3 ;.

Step 6. For 8-bit value at the first byte of the subkey
ks, for every remaining plaintext pair, calculate s1(L2,1 ®
k31) @ s1(L31 ® ks,1), and check whether s1(La1 @ k3 1) ®
s1(L3,1 @ k31) = L11 @ L1 ;. If yes, discard the candidate
value of (k1, k2, k31, k12,1).

Since such a difference is impossible, every key that
proposes such a difference is a wrong key. After an-
alyzing 2'° ciphertext pairs, there remain only about
21441 — 2_8)215 ~ 214627 & 2750 wrong candidate
value of (kl, k‘271, kll,la klg).

In Step 2, the cost to check all the possible pairs
of ciphertext in 2% structure require 223!, that is larger
than the value of 2192, However, this procedure does
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not require any encryption function. So the complexity
can be ignored.

The time complexity of Step 3 requires about
28 x 2119 one-round operations. Step 4 requires about
2183 — 964 5 98 % 2111 gne-round operations. Step 5.1
requires about 2167 = 28 x 264 % 240 x 255 one-round oper-
ations. Step 5.2 requires about 2151 = 28 x 264 % 264 215
one-round operations. Step 6 requires about 2!%9 =
272 % 272 % 2'% one-round operations.

Consequently, this attack requires about 2'2° chosen
plaintexts and less than 28! encryptions of 12-round
Camellia.

2127 —

5 Concluding Remarks

In this paper, we examine the security of ARIA and
Camellia against impossible differential attacks. The de-
signers of ARIA expected no impossible differentials ex-
isting on 4-round ARIA. However, we found some non-
trivial 4-round impossible differentials, and then pre-
sented an attack to 6-round ARIA with data complex-
ity 2121 and 2!'2 encryptions. As for Camellia, we
found some nontrivial 8-round impossible differentials
for Camellia, whereas only 7-round impossible differen-
tials were previously known. By using the 8-round im-
possible differential, we presented an attack on 12-round
Camellia with data complexity 2'2° and 2'®! encryp-
tions, the attack having complexity less than that of ex-
haustive search to 12-round Camellia without F'L/FL™!
layers.

Since ARIA is a new cipher published in 2004, all
we know about its security is limited to the designers’
analysis and that of [11]. Here we only compare the
complexities of our attack with those of previous work
on Camellia in Table 1.

Table 1. Summary of Known Attacks on Camellia

Rounds FL/FL™T Methods Data Time  Notes

7 X Impossible DC - — Ref.[4]

8 X Truncated DC 283.6  955.6 Ref.[3] (128-bit key)

9 Vv Boomerang 2124 2170 Ref.[7] (192/256-bit key)
9 X Collision Attack 213 21756 Ref.[9] (192/256-bit key)
9 Vv Integral Attack 260.5 9202.2  Ref [8] (256-bit key)

9 Vv Square Attack 260 2202 Ref.[6] (256-bit key)

10 Vv Rectangle 2127 9241 Ref.[7] (256-bit key)

10 X Collision Attack 214 22399 Ref.[9] (256-bit key)

10 X Variant Square Attack — 2186 Ref.[10] (192/256-bit key)
11 x DC 2104 9232 Ref.[7] (256-bit key)

11 X Variant Square Attack — 2250 Ref.[10] (256-bit key)

11 X Higher Order DC 221 2255 Ref.[5] (256-bit key)

11 v Higher Order DC 293 2256 Ref.[5] (256-bit key)

12 X Linear Attack 2119 9247 Ref.[7] (256-bit key)

12 X Impossible DC 2120 2181 This paper (192/256-bit key)
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