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Abstract

nition of a person from their gait is a biometric of increasing interest. The proposed work introduces a nonlinear machine
learning method, kernel Principal Component Analysis (PCA), to extract gait features from silhouettes for individual

This paper presents a novel approach for human identification at a distance using gait recognition. Recog-

recognition. Binarized silhouette of a motion object is first represented by four 1-D signals which are the basic image
features called the distance vectors. Fourier transform is performed to achieve translation invariant for the gait patterns
accumulated from silhouette sequences which are extracted from different circumstances. Kernel PCA is then used to
extract higher order relations among the gait patterns for future recognition. A fusion strategy is finally executed to
produce a final decision. The experiments are carried out on the CMU and the USF gait databases and presented based

on the different training gait cycles.

Keywords

1 Introduction

The image-based individual human identification
methods, such as face, fingerprints, palmprints, gener-
ally require a cooperative subject, views from certain
aspects, and physical contact or close proximity. These
methods cannot reliably recognize non-cooperating in-
dividuals at a distance in the real world under chang-
ing environmental conditions. Gait, which concerns
recognizing individuals by the way they walk, is a rela-
tively new biometric without these disadvantages!'~3!.
In other words, a unique advantage of gait as a bio-
metric is that it offers potential for recognition at a
distance or at low resolution when the human subject
occupies too few image pixels for other biometrics to
be perceivable.

Various gait recognition techniques have been pro-
posed and can be broadly divided as model-based and
model-free approaches. Model based approaches!*®!
aim to derive the movement of the torso and/or the
legs. They usually recover explicit features describing
gait dynamics, such as stride dimensions and the kine-
matics of joint angles.

Model-free approaches are mainly silhouette-based
approaches. The silhouette approaches!®:6:7]
terize body movement by the statistics of the patterns
produced by walking. These patterns capture both
the static and dynamic properties of body shape. A
hidden Markov models based framework for individual
recognition by gait was presented in [6]. In [7], they

charac-

biometrics, gait recognition, gait representation, kernel PCA, pattern recognition

first extract key frames from a sequence and then the
similarity between two sequences is computed using
the normalized correlation. The template matching
method in [8] was extended to gait recognition by
combining transformation based on canonical analysis
and used eigenspace transformation for feature selec-
tion. In the work in [3], the similarity between the
gallery sequence and the probe sequence is directly
measured by computing the correlation correspond-
ing time-normalized frame pairs. BenAbdelkader et
al.l! presented self similarity and structural stride pa-
rameters (stride and cadence) used PCA (Principal
Component Analysis) applied to self-similarity plots
that are derived by differencing. In [10], eigenspace
transformation based on on PCA was first applied to
the distance signals derived from a sequence of silhou-
ette images, then classification was performed on gait
patterns produced from the distance vectors. Han et
al.'] used the Gait Energy Image formed by averag-
ing silhouettes and then deployed PCA and multiple
discriminant analysis to learn features for fusion.

In this paper, we present an improved silhouette-
based (model-free) approach and kernel PCA to ex-
tract the gait features. The main purposes and con-
tributions of this paper are summarized as follows.

e An improved spatio-temporal gait representation,
we called gait pattern, is first proposed to characterize
human walking properties for individual recognition by
gait. The gait pattern is created by using the distance
vectors. The distance vectors are differences between
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the bounding box and silhouette, and are extracted by
using four projections of silhouette.

e A Kernel Principal Component Analysis (PCA)
based on a nonlinear extraction method is then ap-
plied. Kernel PCA is a state-of-the-art nonlinear ma-
chine learning method. Experimental results achieved
by PCA and kernel PCA based methods are compar-
atively presented.

e Fourier transform is employed to achieve transla-
tion invariant for the gait patterns which are especially
accumulated from silhouette sequences extracted from
the subjects walk in different speed and/or different
time. Consequently, Fourier transform based kernel
PCA method is developed to achieve higher recogni-
tion for individuals in the database for the cases where
the training and testing sets do not correspond to the
same walking styles.

e A large number of papers in the literature re-
ported their performance without using different train-
ing gait cycles. Here, we provide some quantitative
comparative experiments to examine the performance
of the proposed gait recognition algorithm with differ-
ent numbers of training gait cycles of each person.

2 Gait Pattern Representation

In this paper, we consider individual recognition
by activity-specific human motion, i.e., regular human
walking, which is used in most current approaches of
individual recognition by gait. We first represent the
spatio-temporal information in a single 2D gait tem-
plate (pattern) by using multi-projections of silhou-
ette. We assume that silhouettes have been extracted
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Fig.1. Silhouette representation.
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from original human walking sequences. A silhouette
preprocessing procedurel®12] is then applied on the ex-
tracted silhouette sequences. It includes size normal-
ization (proportionally resizing each silhouette image
so that all silhouettes have the same height) and hor-
izontal alignment (centering the upper half silhouette
part with respect to its horizontal centroid). In a pro-
cessed silhouette sequence, the process of period anal-
ysis of each gait sequence is performed as follows: once
the person (silhouette) has been tracked for a certain
number of frames, then we take the projections and
find the correlation between consecutive frames, and
do normalization by subtracting its mean and dividing
by its standard deviation, and then smooth it with a
symmetric average filter. In the symmetric filter used,
the neighbor values of each center are inspected in
symmetric pairs around the center. The average of
them is determined as a value smoothed for the cen-
ter cost!3]. Further we compute its autocorrelation
to find peaks indicate the gait frequency (cycle) in-
formation. Hence, we estimate the real period as the
average distance between each pair of consecutive ma-
jor peaks[10:13],

2.1 Representation Construction

Gait pattern is produced from the projections of
silhouettes which are generated from a sequence of
binary silhouette images, B;(z,y), indexed spatially
by pixel location (z,y) and temporally by time ¢t.
An example silhouette and the distance vectors corre-
sponding to four projections are shown in Fig.1. The
distance vectors (projections) are the differences be-
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Left: Silhouette and four projections; Middle: gait patterns produced from top and bottom

projections; Right: gait patterns obtained from left and right projections.
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tween the bounding box and the outer contour of sil-
houette. There are four different image features called
the distance vectors: top-, bottom-, left- and right-
projections. The size of 1D signals for left- and right-
projections is the height of the bounding box. The val-
ues in both signals are the number of columns between
bounding box and silhouette at each row. The size of
the 1D signals for both top- and bottom-distance vec-
tors is the width of the bounding box, and the values
of the signals are the number of rows between the box
and silhouette at each column.

Thus, each gait pattern can separately be formed
as a new 2D image. For instance, gait pattern im-
age for top-projection is formulated as P (z,t) =
Zy Bi(z,y) where each column (indexed by time t)
is the top-projections (row sum) of silhouette im-
age Bi(z,y), as shown in Fig.1 (Middle-Top). The
meaning of By(z,y) is the complement of silhouette
shape, that is empty pixels in the bounding box.
Each value of P*(z,t) is then a count of the num-
ber of rows empty pixels between the top side of
the bounding box and the outer contours in that
columns z of silhouette image Bi(z,y). The result
is a 2D pattern, formed by stacking row projections
(from top of the bounding box to silhouette) to-
gether to form a spatio-temporal pattern.
ond pattern which represents the bottom-projection
PB(zt) = >y Bi(z,y) can be constructed by stack-
ing row projections (from bottom to silhouette), as
shown in Fig.1 (Middle-Bottom). The third pattern
PL(y,t) = Y, Bi(z,y) is then constructed by stack-
ing columns projections (from left of the bounding
box to silhouette) and the last pattern P¥(y,t) =
>, Bi(z,y) is also finally constructed by stacking
columns projections (from right to silhouette), as
shown in Fig.1 (Right), respectively. For simplicity of
notation, we write Zy, ny, > .. and Y as short-
hand for 3 Coniou T euctie 5 Centour et
SR R S T e
respectively.

The variation of each component of the distance
vectors can be regarded as gait signature of that ob-
ject. From the temporal distance vector plots, it is
clear that the distance vector is roughly periodic and
gives the extent of movement of different part of the
subject. The brighter a pixel in 2D patterns in Fig.1
(Middle and Right), the larger the value of the dis-

tance vector in that position.

A sec-

3 Human Recognition Using Gait Patterns

In this section, we describe the proposed approach
for gait-based human recognition.
ettes are first produced by using motion segmentation

Binarized silhou-
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which is achieved via background modeling using a
dynamic background frame estimated and updated in
time, for details see [14]. In the training procedure,
each gallery (training) silhouette sequence is divided
into cycles by gait cycle estimation. Training gait pat-
terns are then computed from each cycle. Once gallery
and probe silhouette sequences are obtained from the
subjects walking in different speed and/or at differ-
ent time, there can be translation variant in the gait
patterns extracted from that sequences. To achieve a
translation invariant approach, the 2D gait patterns
are transformed to the frequency domain by applying
fast Fourier transform (FFT). Next, we perform ker-
nel PCA based nonlinear feature extraction procedure
on the normalized gait patterns transformed into the
frequency domain. As a result, training gait transfor-
mation matrices and training gait features that form
feature databases are obtained. This is independently
repeated for each gait pattern produced from the pro-
jections (left-, right-, top-, bottom-projections). In the
recognition procedure, each probe (testing) silhouette
sequence is processed to generate the gait patterns
used as testing set. These patterns are then trans-
formed to the feature space by transformation matri-
ces to obtain gait pattern features. Testing features
are compared with training features in the database.
This is separately performed for the gait pattern fea-
tures constructed by each projection. Finally a fea-
ture fusion strategy is applied to combine gait pattern
features at the decision level to improve recognition
performance. The system diagram is shown in Fig.2.

3.1 Kernel PCA

Kernel PCA is a technique for nonlinear dimension
reduction of data with an underlying nonlinear spatial
structure. A key insight behind kernel PCA is to trans-
form the input data into a higher-dimensional feature
spacell®l, The feature space is constructed such that a
nonlinear operation can be applied in the input space
by applying a linear operation in the feature space.
Consequently, standard PCA can be applied in feature
space to perform nonlinear PCA in the input space.

Given k class for training, and each class represents
a sequence of the distance vector signals of a person.
Multiple sequences of each subject can be added for
training, but we use a sequence, which includes one
gait cycle. Let P;‘,’j be the j-th distance vector sig-
nal in the i-th class for w projection to silhouette and
M; the number of such distance vector signals in the
i-th class. The total number of training samples is
M = MY + M3 + -+ + M}, as the whole training
set can be represented by [Py, PY,, .., PY )y, Py,
-y P}y, ] For ease of understanding, we denote the
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Fig.2. System diagram of human recognition using the proposed approach.
training samples, P}’;, as x; € RN, i=1,.., M, where of Gram matrix written as (see [15]),
M 1is the total number of samples.
Thus, given a set of examples x; € RV, i = MAA=KA, (4)

1,..., M, which are centered, Zf\il x; = 0, PCA finds
the principal axis by diagonalizing the covariance ma-
trix:

1 M
_ T
C = M;Xixj" (1)

Eigenvalue equation, Av = Cwv is solved, where v is
eigenvector matrix. First few eigenvectors are used as
the basic vectors of the lower dimensional subspace.
Eigen features are then derived by projecting the ex-
amples onto these basic vectors['6l.

In kernel PCA, the data, x, from input space is
first mapped to a higher dimensional feature space by
using a map @ : RY — F, and then performing a
linear PCA in F. The covariance matrix in this new
space F' is,

— 1 M T
C = Vi ; P(x;)P(x;) " - (2)

Now the eigenvalue problem becomes \V = CV.
As mentioned previously we do not have to explicitly
compute the nonlinear map @. The same goal can
be achieved by using the kernel function k(x;,x;) =
(2(x;) - 2(x;)), which implicitly computes the dot
product of vectors x; and x; in the higher dimen-

[15] The most often used kernel functions

sional space
are Gaussian kernel, polynomial kernels, and sigmoid
kernels!'®]. Gaussian kernel was used for the experi-

mentation in this work, and it is defined as,

B lIx; — Xj||2)
202 '

3)

Pairwise similarity between input examples are cap-
tured in a matrix K which is also called Gram matrix.
Each entry K ; of this matrix is calculated using ker-
nel function k(xi,xj). Eigenvalue equation in terms

with A = (aq,...,apy) and A = diag(Ay,..., An).
A is an M x M orthogonal eigenvector matrix and
A is a diagonal eigenvalue matrix with diagonal ele-
ments in decreasing order. Since the eigenvalue equa-
tion is solved for A’s instead of eigenvectors V; of
kernel PCA, we will have to normalize A to ensure
that eigenvalues of kernel PCA have unit norm in the
feature space, therefore a; = aj/\//Tj. After normal-
ization the eigenvector matrix, V', of kernel PCA is
computed as follows,

V = DA (5)

where D = [®(x;)P(X3)--- P(Xxy)] is the data ma-
trix in feature space. Now let x be a test example
whose map in the higher dimensional feature space is
&(x). The kernel PCA features for this example are
derived as follows:

F=VTd(x)= A"B, (6)

where B = [#(x,) #() #(x,) #(x) ... B(xs7) &()]T.
3.2 Similarity Measurement

Weighted Euclidean Distance (WED) measuring
has initially been selected for classification!”), and is
defined as follows:

N
WED:dk:Z

i=1

(£() — £1())?

02 (7)
Sk)
where f is the feature vector of the unknown gait pat-
tern, f, and s; denote the k-th feature vector and its
standard deviation, and N is the feature length. In or-
der to increase the recognition performance, a fusion
task is developed for the classification results given by
each projections.
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3.3 Fusion

Two different strategies were developed. In Strat-
egy 1, each projection is separately treated. Then the
strategy is to combine the distances of each projec-
tion at the end by assigning equal weight. The final
similarity using Strategy 1 is calculated as follows:

4
Di = ij X dji (8)
j=1

where D; is the fused distance similarity value, j is
the algorithm’s index for projection, w is normalized
weight, d; is single projection distance similarity value,
and 4 is the number of projections (left, right, top, bot-
tom). In conclusion, if any 2 of the distance similarity
values in the 4 projections give maximum similarities
for the same person, then the identification is deter-
mined as to be positive. Therefore, fusion strategy 1
has rapidly increased the recognition performance in
the experiments.

In the experimental studies, it is seen that some
projections can give more robust results than others.
For example, while a human moves in the lateral view,
with respect to image plane, the back side of the hu-
man gives more individual characteristics of gait. The
projection corresponding to that side can give more
reliable results, and in such a case, it is called the
dominant feature. As a result, Strategy 2 has also
been developed to further increase recognition perfor-
mance. In Strategy 2, if the dominant projection, or
at least 2 projections of others are positive for an indi-
vidual, then the final identification decision is positive.
The dominant feature in this work is automatically as-
signed by estimating the direction of motion objects
under tracking!'?.

4 Experiments and Results

We evaluate the performance of the method on
CMU’s MoBo databasel'®], and USF databasel®!.

4.1 CMU Database

This database has 25 subjects (23 males, 2 females)
walking on a treadmill. Each subject is recorded per-
forming four different types of walking: slow walk, fast
walk, inclined walk, and slow walk holding ball. There
are about 8 cycles in each sequence, and each sequence
is recorded at 30 frames per second. It also contains
six simultaneous motion sequences of 25 subjects, as
shown in Fig.3.

We did mainly two different types of experiments
on this database: in type I, all subjects in the train-
ing and testing sets walk on the treadmill at the same
walking type; in type II, all subjects walk on the tread-
mill at two different walking types, and it is called that
fast walk and slow walk. We did two experiments for
each type investigation. They are: I.1) train on fast
walk and test on fast walk; 1.2) train on slow walk and
test on slow walk. Type II: IL.1) train on slow walk
and test on fast walk; I1.2) train on fast walk and test
on slow walk.

The experimental results for Type I are summa-
rized in Table 1. This table also shows the perfor-
mance of the proposed work with the increase in the
number of training gait cycles of each person. In cases
I.1) and 1.2), we conducted seven tests which used 25,
50, 75, 100, 125, 150 and 175 templates correspond-
ing to one, two, three, four, five, six and seven gait
cycles from each training sequence for training. The
remainder gait cycles were used for authentication, re-
spectively. There are totally 200 gait cycles, 8 cycles
for each person. PCA-based method was employed to
extract the features from gait patterns, and then the
WED based nearest neighbor (NN) classifier was used
for the similarity measurement. The fusion was finally
performed to achieve the final decision. The compari-
son of recognition performance is also shown in Table
1. The experimental results reveal that the recogni-
tion rate is increased when the more gait cycles are
used as training set. We did not need to apply kernel
PCA-based feature extraction for Type I experiment,

because PCA-based method had achieved the high

View 3

Fig.3. Six viewpoints in CMU database.
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recognition rate (100%). The recognition performance
was improved by increasing the number of training
samples, but the performance was temporarily becom-
ing a bit worse then increased for some view points.
This can be due to the fact that some strong noisy
in the gait patterns may heavily change the distribu-
tion of the data in the feature space. However, the
more training samples are considered, the better data
distribution in the feature space will significantly be
achieved.

The next experiment, called Type II, was also done
for the gait sequences extracted from the subjects walk
on the treadmill with different speeds. It is called as
slow walk and fast walk. For the case of training with
fast walk and testing on slow walk, and vice versa, the
dip in performance is caused due to the fact that for
some individuals as biometrics suggests, there is a con-
siderable change in body dynamics and stride length
as a person changes his speed. The results for Type II
experiments are also summarized in Table 2. Table 2
shows experimental results obtained by different fea-
ture extraction methods presented in this paper. In
this table, rankl performance means the percentage

J. Comput. Sci. & Technol., Nov. 2007, Vol.22, No.6

of the correct subjects appearing in the first place of
the retrieved rank list and rank5 means the percent-
age of the correct subjects appearing in any of the first
five places of the retrieved rank list. The performance
in this table is the recognition rate under these two
definitions.

For each person, there are 8 gait cycles at the slow
walking and fast walking data sets in each viewpoint.
The 8 cycles in one walking type are used as train
set, the 8 cycles in other walking type are used as test
set. The gait patterns are produced as explained in
Subsection 2.1. The features in the gait patterns are
extracted by using four different features extraction
methods given in Table 2. When it is considered, it
is seen that kernel PCA-based feature extraction gives
better performance than PCA-based method. There
is a quite possible translation variant problem be-
tween two gait patterns extracted from the subjects
walk with different walking styles and/or at different
times. To achieve translation invariant for the pro-
posed method, the gait pattern in the spatial domain
is first transformed to the spectral domain by using one
dimensional (1-D) FFT. 1-D FFT process is indepen-

Table 1. Classification Performance with Training Number of Gait
Cycles for the CMU Dataset for Different Viewpoints

Experiment Number of Gait Pattern Used CMU Database View Points
Type 1 Train Set Test Set View 1 View 3 View 4 View 5 View 6
1 gait cycle 7 gait cycles 97.7 99.4 98.8 100 98.8
2 gait cycles 6 gait cycles 100 100 100 99.3 98.6
3 gait cycles 5 gait cycles 99.2 99.2 100 100 99.2
1.1 4 gait cycles 4 gait cycles 99 100 100 100 99
5 gait cycles 3 gait cycles 100 100 100 100 98.6
6 gait cycles 2 gait cycles 100 100 100 100 100
7 gait cycles 1 gait cycle 100 100 100 100 100
1 gait cycle 7 gait cycles 97.7 90.8 97.1 100 98.2
2 gait cycles 6 gait cycles 98 93.3 98 100 98
3 gait cycles 5 gait cycles 97.6 94.4 98.4 100 99.2
1.2 4 gait cycles 4 gait cycles 97 97 100 100 99
5 gait cycles 3 gait cycles 97.3 98.6 100 100 98.6
6 gait cycles 2 gait cycles 100 100 100 100 100
7 gait cycles 1 gait cycle 100 100 100 100 100
Table 2. Experiments for Two Different Walking Styles with Different Viewpoints
Train Rank1 Performance Rank5 Performance
Test Method View 1 View 3 View4 Viewb View6 Viewl View3 View4 Viewb View6
PCA 31.5 44 27 29 46 46 64.5 58.5 44 64.5
Slow KPCA 33 46.5 34.5 35 48 54 68.5 60.5 54 63.5
Fast FFT+PCA 65 80 63 64.5 67 89 91.5 91 87 87.5
FFT+KPCA 73 76.5 71.5 64 76 89 92.5 94 89 91.5
PCA 27 52 28 26 49 50.5 68.5 67.5 47.5 65
Fast KPCA 39.5 53.5 31.5 24.5 49 62 69 59 51 65
Slow FFT+PCA 61.5 74.5 62.5 64 73.5 85 88 90.5 85 88
FFT+KPCA 66.5 79.5 61 67 74 89.5 91.5 89.5 90 88.5

Note: Each walking style includes 8 gait cycles.
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Table 3. Comparison of Several Algorithms on MoBo Dataset

. Slow Slow Fast Fast Slow Fast Fast Slow

Train Test
View 1 View 3 View 1 View 3 View 1 View 3 View 1 View 3

Proposed Method 100 100 100 100 73 76.5 66.5 79.5
BenAbdelkader et al.[®] 100 926 100 100 54 43 32 33
UMDI619,20] 72 - 70 - 32 - 58 -
UMDI4] 72 - 76 - 12 - 12 -
cMmul? 100 - - - 76 - - -
Baselinel3! 92 - - - 72 - - -
MIT[21] 100 - - - 64 - - -

Fig.4. Some sample images in the database described in [3, 22].

dently performed in horizontal or vertical directions
for the gait patterns produced from both the left and
right-projections or for the gait patterns produced
from both the top- and bottom-projections, respec-
tively. Then PCA- and kernel PCA-based feature
extraction methods are employed to achieve higher
recognition rates, as illustrated in Table 2. Conse-
quently, highest recognition rates for most view points
were achieved by using FFT4+KPCA based feature ex-
traction method.

Table 3 compares the recognition performance of
different published approaches on MoBo database.
Several papers have published results on this dataset,
hence, it is a good experiment dataset to benchmark
the performance of the proposed algorithm. Table 3
lists the reported identification rates for seven algo-
rithms on eight commonly reported experiments. The
first row lists the performance of the proposed method.
For seven experiments the performance of the pro-
posed algorithm has always highest score. The num-
bers given in Table 3 are read from graphs and tables
in the cited papers. The number of the subjects in
the training set and test set is 25. In the experiments
for training on fast walk and testing on slow walk,
or vice versa, 200 gait patterns (25 persons x 8 gait
cycles) in each dataset were used to represent the per-
formance of the proposed method. It can be seen from
Table 3 that the right person in the top first matches
100% of times for the cases where training and testing
sets correspond to the same walking styles. The pro-

posed algorithm has achieved significantly better re-
sults than the other approaches on experiments which
training and testing samples were extracted from dif-
ferent walking styles.

Table 4. Classification Performance for
the USF Dataset, Version 1.7

Experi- PCA Kernel PCA

ments Strategy 1 Strategy 2 Strategy 1 Strategy 2
C,A,L (71) 78.8% 85.9% 84.5% 90.1%
C,A,R (71) 85.9% 88.7% 85.9% 87.3%
C,B,L (43) 74.4% 86.04% 81.3% 90.6%
C,B,R (43) 83.7% 93.02% 79.06% 88.3%
G,AL (68) 86.7% 92.6% 88.2% 92.6%
G,A R (68) 79.4% 82.3% 80.8% 85.2%
G,B,L (44) 90.9% 93.1% 93.1% 95.4%
G,B,R (44) 77.2% 86.3% 86.3% 90.9%

Note: The number of subjects in each subset is given in

parenthesis.

4.2 USF Database

The USF databasel® is finally considered. This
database consists of persons walking in elliptical paths
in front of the camera. Some samples are shown
in Fig.4. For each person, there are up to five co-
variates: viewpoints (left/right), two different shoe
types, surface types (grass/concrete), carrying condi-
tions (with/without a briefcase), and time and cloth-
ing. Eight experiments are designed for individual
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recognition as shown in Table 4. Sarkar et al.l3 pro- The experiments in this section begin with these
pose a baseline approach to extract human silhouette extracted binary silhouette data. These data are noisy,
and recognize an individual in this database. e.g., missing of body parts, small holes inside the obje-
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Fig.5. Illustration of the recognition performance variation with different training gait cycles of each person.
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Table 5. Comparison of Recognition Performance Using Different Approaches on USF Silhouette Sequence Version 1.7

Experiments Proposed Method Baselinel22! NLPRI0] UMBD-Indirect!®! UMD-Directl6] GEIl1
G,A,L (68) 92.6 79 70.42 91 99 100
G,B,R (44) 90.9 66 58.54 76 89 90
G,B,L (44) 95.4 56 51.22 65 78 85
C,AR (71) 87.3 29 34.33 25 35 47
C,B,R (43) 88.3 24 21.43 29 29 57
C,A,L (69) 90.1 30 27.27 24 18 32
C,B,L (43) 90.6 10 14.29 15 24 31

cts, severe shadow around feet, and missing and adding
some parts around the border of silhouettes due to
background characteristics. In Table 4, G and C in-
dicate grass and concrete surfaces, A and B indicate
shoe types, and L and R indicate left and right cam-
eras, respectively. The number of subjects in each sub-
set is also given in brackets.
4~5 gait cycle sequences. The experimental results
on the standard USF HumanID Gait database ver-
sion 1.7 are summarized in Table 4. In this table, the
performance of PCA- and kernel PCA-based feature
extraction methods are comparatively illustrated.

Each one also includes

The matching is also conducted independently
based on weighted Euclidean distance classifier. The
decision results based on the fusion strategies, ex-
plained in Subsection 3.3, are additionally given in
Table 4. Fusion 1 and Fusion 2 indicate that the re-
sults are produced by using Strategy I and Strategy
II, respectively.

To analyze the relationship between the perfor-
mance of the proposed method and number of training
gait cycles of each person, four kinds of experimental
types were designed: one (two, three, or four) train-
ing gait cycle(s) of each person was randomly selected
for training, and the other gait cycles were used for
authentication, respectively. These experimental re-
sults are given in Fig.5. Kernel PCA- and PCA-based
features extraction methods are comparatively illus-
trated, as well. In Fig.5, y-axis indicates recognition
rate (%), and z-axis indicates the number of train-
ing gait cycles of each person. When the plotted re-
sults in Fig.5 are considered, it can be seen that kernel
PCA-based feature extraction approach achieves bet-
ter performance than PCA-based approach. From the
results we can report that the accuracy can be greatly
improved with the growth of the training gait cycles.
For instance, when the proposed algorithm is trained
using 1 gait cycle in the experiment GBL, an accuracy
of 72.1% is achieved. When 4 gait cycles are used for
training, a higher accuracy of 95.4% can be gotten. It
is evident that training gait cycle number can play an
important role in the matching process. More training
gait cycles lead to a high recognition rate.

Table 5 finally compares the recognition perfor-

mance of different published approaches on the USF
silhouette version 1.7. The performance of the pro-
posed algorithm is better than other approaches in
GBR, GBL, CAR, CBR, CAL, and CBL, and slightly
worse in GAL.

5 Conclusions

In this paper, we first propose to improve the
spatio-temporal gait representation, which is multi-
projections of silhouettes developed by our previous
work!®3! for individual recognition by gait. As the
other contributions and novelties in this paper, 1) ker-
nel PCA based features extraction approach for gait
recognition was then presented, 2) FFT-based pre-
processing was also proposed to achieve translation in-
variant for the gait patterns which are produced from
silhouette sequences extracted from the subjects walk
in different walking styles, and 3) the experimental
results were finally submitted to examine the perfor-
mance of the proposed algorithm with different train-
ing gait cycles. The proposed approach achieves highly
competitive performance with respect to the published
major gait recognition approaches.
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