Wang XD, Wu YJ. An improved HEAPSORT algorithm with nlogn —0.788928n comparisons in the worst case. JOUR-
NAL OF COMPUTER SCIENCE AND TECHNOLOGY 22(6): 898~903 Nov. 2007

An Improved HEAPSORT Algorithm with nlogn — 0.788928n
Comparisons in the Worst Case

Xiao-Dong Wang (F %) and Ying-Jie Wu (RIER)

College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350002, China
E-mail: wangxd@fzu.edu.cn; yjwu@fzu.edu.cn

Received September 30, 2006; revised May 8, 2007.

Abstract A new variant of HEAPSORT is presented in this paper. The algorithm is not an internal sorting algorithm
in the strong sense, since extra storage for n integers is necessary. The basic idea of the new algorithm is similar to the
classical sorting algorithm HEAPSORT, but the algorithm rebuilds the heap in another way. The basic idea of the new
algorithm is it uses only one comparison at each node. The new algorithm shift walks down a path in the heap until
a leaf is reached. The request of placing the element in the root immediately to its destination is relaxed. The new
algorithm requires about n logn — 0.788928n comparisons in the worst case and nlogn — n comparisons on the average
which is only about 0.4n more than necessary. It beats on average even the clever variants of QUICKSORT, if n is not
very small. The difference between the worst case and the best case indicates that there is still room for improvement

of the new algorithm by constructing heap more carefully.

Keywords

1 Introduction

Sorting is one of the most fundamental problems
in computer science. In this paper only general and
sequential sorting algorithms are studied. All results
should be compared with the simple lower bound!!

log(n!) =nlogn — nloge + 6(logn)
~nlogn — 1.442695n,

for the worst and average case numbers of compar-
isons of general sorting algorithms. With respect
to this lower bound, sorting by merging and sort-
ing by insertion and binary search are very efficient.
HEAPSORT!23] needs 2nlogn comparisons. HEAP-
SORT is in almost all cases less efficient than QUICK-
SORT. All versions of QUICKSORT are inefficient in
the worst case but efficient in the average case.

Let H(n) = 141/24---4+1/n be the n-th harmonic
number, Q(n) the average number of comparisons of
QUICKSORT, and CQ(n) the average number of com-
parisons of the best-of-three variant of QUICKSORT
called CLEVER-QUICKSORT. Then!*!

Q(n) =2(n+1)H(n) — 4n ~ 1.386nlogn — 2.846n
and for n > 6

CQ(n) ~ 1.188nlogn — 2.255n.

data structures, analysis of algorithms, heaps, HEAPSORT

Because of these results HEAPSORT has been
considered for a long time only for theoretical rea-
sons. Carlsson!® presented a new variant of HEAP-
SORT whose average and worst-case complexity is
nlogn + 6(nloglogn). This algorithm does not beat
CLEVER QUICKSORT on average for n < 10'6. An-
other variant of HEAPSORT is called BOTTOM-UP-
HEAPSORTI*S!. The worst-case number of compar-
isons of the algorithm is about 1.5nlogn — 0.4nl4.

In this paper a new variant of HEAPSORT algo-
rithm is presented. The new algorithm is not an inter-
nal sorting algorithm in the strong sense, since extra
storage for n integers is necessary. The basic idea of
the new algorithm is similar to the classical sorting al-
gorithm HEAPSORT, but the algorithm rebuilds the
heap in another way. The idea of the new algorithm
is it uses only one comparison at each node. With one
comparison we can decide which child of the node just
considered contains the larger element and this child
is promoted directly to the position of its parent. In
this way, the algorithm shift walks down a path in the
heap until a leaf is reached. In the new algorithm, the
request of placing the element in the root immediately
to its destination is relaxed. Therefore the algorithm
saves the comparisons for rebuilding the heap.

In Section 2 we present the algorithm and dis-
cuss some details of its implementation.
3 we prove that the worst-case number of comparisons

In Section

Short Paper

Supported by the Natural Science Foundation of Fujian under Grant No. A0510008.

Xiao-Dong Wang et al.: An Improved HEAPSORT Algorithm 899

of the new algorithm is remarkably small: it can be
bounded by nlogn — 0.788928n. In Section 4 we es-
timate the average complexity of the new algorithm.
The number of comparisons of the new algorithm is
about nlogn — n on average. The new algorithm is
compared with other practical sorting algorithms. We
finish the paper with conclusions in Section 5.

2 New Algorithm

Let a[l..n] be an array of n elements of a key and
some information associated with this key. This ar-
ray is a (maximum) heap if, for all ¢ € {2,...,n}, the
key of element a[i/2] is larger than or equal to that of
element afé]. That is, a heap is a pointer free repre-
sentation of a binary tree, where the elements stored
are partially ordered according to their keys. Element
a[1] with the largest key is stored at the root. Elements
ali/2],a[2i] and a[2i+1] (if they exist) are respectively
stored at the parent, the left child and the right child
of the node at which element a[i] is stored. If a node
has no children then the node is a leaf, otherwise the
node is an internal node.

HEAPSORT is a classical sorting algorithm that
is described in almost all algorithmic textbooks. Gen-
erally the HEAPSORT algorithm can be divided into
two phases: the heap creation phase and the selec-
tion phase. HEAPSORT sorts the given elements in
ascending order with respect to their keys as follows:

Input: Array a[l..n] of n elements.
Output: The elements in a[l..n] in sorted order.
void HEAPSORT()
{ buildheap();
for (int i =n;i>1;i——) {
swap(al1], fil):
reheap(z — 1);
}

}

In the heap creation phase, the algorithm build-
heap rearranges the input array a[l..n] into a heap. In
the selection phase, the algorithm reheap starts at the
root and stops if the element at the node just consid-
ered is not smaller than the elements at its two chil-
Otherwise it interchanges the element at the
node just considered with the larger element of the
two children elements and considers the correspond-
ing child. Algorithm reheap needs two comparisons at
each node in order to compute the maximum of the

dren.

three elements at the node and its two children.

The basic idea of the new algorithm is similar to
HEAPSORT, but the algorithm reheap in another way.
The new heapsort algorithm RANK_HEAPSORT can
be described as follows:

void RANK_HEAPSORT()
{ buildheap();
for (int i = n; ¢ > 1; ¢ — —) shift(i);

rearrange();

}
}

The core of the new algorithm is the algorithm
shift. The algorithm reheap uses two comparisons at
each node, while the algorithm shift uses only one com-
parison at each node. With one comparison we can de-
cide which child of the node just considered contains
the larger element and this child is promoted directly
to the position of its parent. In this way, the algo-
rithm shift walks down a path in the heap until a leaf
is reached. This path will be called special path, and
the last element on this path will be called special leaf.
When the special leaf a[k] is reached in the algorithm
shift (i), the elements in a[0] and a[k] are swapped and
the rank of the element in a[k] is now i. To record the
rank of the element in a[k], an extra array rank[l..n
is used. In the new algorithm, the request of placing
the element in a[0] immediately to its destination ali
is relaxed. The element in a[0] is placed in a[k] in-
stead and its rank is stored in rank[k]. The values of
rankl[i], i € {1,...,n}, are initialed with value 0. Once
the value of rank[i], i € {1,...,n}, is set to a value
larger than 1, then the element in a[i] is no longer an
element of the current heap. In this way, the array
rank[l..n] is also used to indicate the elements of the
current heap. The value of rank[0] is set to n + 1 and
hence the element in a[0] is always not an element of
the current heap.

In the classical algorithm HEAPSORT, elements
ali/2], a[27] and a[2i+1] (if they exist) are respectively
stored at the parent, the left child and the right child
of the node at which element a[i] is stored. In our
new algorithm RANK_HEAPSORT, the relations are
no longer hold. The unranked elements of the array
still have the property that the key of an element is
larger than or equal to that of its children. That is
a[rank[i/2]] > a[rank[i]] for all i. We call unranked
elements of this array a pseudo heap.

The algorithm shift can be described as follows:

void shift(int indez)
{ int : = 0;
while(internal(7)){
¢ = maxchild(¢); a[i/2] = al7];}
ali] = a[0]; rank[i] = index;

}

In the algorithm, the function internal(z) is used to
test whether the node a[i] is an internal node or not.

900

bool internal(int 7)

{int k =2xq;
return (k < n) && lrank[k])||(k < n)
&& (lranklk + 1]);

}

The function maxchild(7) returns the index of the
child of the node alé] with the larger key. Obviously,
only when the node a[i] has both its left and right
children the function maxchild(¢) performs one com-
parison.

int maxchild(int ¢)
{int k = 2x*73;
bool left = (k < n) && (lranklk]),
right = (k < n) && (lrank[k + 1]);
if (Yeft||left && right &&
alk] < alk + 1))k + +;
return k;

}

After n — 1 calls of function shift, all elements get
their right ranks. The algorithm rearrange rearranges
the elements in an ascending order according to their
ranks as follows.

void rearrange()
{for (inti=2;:<n;i++)
while(rank[:]! =) {
swap(a[i], a[rank[t]]);
swap(rank[i], rank[rank[z]]); }

}

The correctness of the new algorithm is obvious,
since after each call of function shift the elements re-
main unranked forms a pseudo heap.

3 Worst Case Analysis

Let the number of comparisons of the new algorithm
for n elements be T'(n) = build(n) + sort(n), where
build(n) is the number of comparisons of the heap cre-
ation phase and sort(n) is the number of comparisons
of the selection phase.

Let f(n) denote the sum of the depths of the
pseudo heap considered during the selection phase.

Lemma 1. f(n) = (n+1)|logn| — 2llegnl+1 4 2,

Proof. In a pseudo heap, the depth of the element
ali] equals |log¢]. The sum of all |logi|, 2 < ¢ < n,
equals

Z 2 + |logn|(n — 2t°s™) 4 1)
1<i<|logn]—1

= ([logn| — 2)2lles™] 4 2

J. Comput. Sci. & Technol., Nov. 2007, Vol.22, No.6

+nllogn| — [logn|21°8™ + |logn|
= (n+1)|logn| — 2lleenl+1l 4 o

We estimate sort(n) in the worst case first.
Theorem 1. In the worst case, sort(n) is bounded

by
f(n)—|n/2] < (n+1)logn —2.413928n + 3.

Proof. The algorithm shift uses only one compari-
son at each node with two children. During the selec-
tion phase, each path form a[1] to afi], 2 < i < n, is
searched as a special path once. If every node in the
special path has two children, then the number of com-
parisons is equal to the depth of the special path. The
sum of the depths of the pseudo heap considered dur-
ing the selection phase is f(n). From the beginning of
the selection phase, there are exactly [(n—1)/2] nodes
with two children. It is clear that these nodes will
eventually become single child nodes in at least one
special path. Consequently, there are at least |n/2|
single child nodes on the special paths during the se-
lection phase. Therefore sort(n) is bounded above by
F(n) — In/2).

For all integers n, there is an « in [0, 1] with

f(n) = [n/2] = (n+1)|logn| — 2™ 12— |n/2)]
=(n+1)(logn —z) — glogn—z+1

+2—|n/2|
=(n+1)logn— (z+2""")n
+2—-|n/2| — .

It is easy to see that the function g(z) = = + 2172
takes its maximum 2 for z = 0,1, and g(z) takes its
minimum for z = log(21n2) = 0.471234, where

g(log(21n2) =log(2In2) + (In2)~* > 1.913928
Therefore in the worst case,

sort(n) < f(n) — |n/2]
<(n+1)logn—1.913928n —0.5n+2 —x + 4§
<(n+1)logn — 2.413928n + 3.
|

Previously, the fastest algorithm for building heaps
was due to Gonnet and Munrol”!. This algorithm takes
about 1.625n 4 o(n) comparisons in the worst case. If
buildheap() uses this algorithm, then in the worst case
T'(n), the number of comparisons of the new algorithm
for n elements is about nlogn — 0.788928n.

The number of element moves during the selection
phase is obviously

f(n) < (n+1)logn —1.913928n + 2.

Xiao-Dong Wang et al.: An Improved HEAPSORT Algorithm 901

4 Experiments

Theorem 1 is of course also an upper bound, on the
average case complexity of the new algorithm. Our
worst-case analysis in Section 3 implies that the new
algorithm can save comparisons only because the sin-
gle child nodes on the special paths during the selec-
tion phase can be reduced. The number of the single
child nodes on the special paths during the selection
phase can be reduced substantially in the best case.

Theorem 2. In the best case, sort(n), the number
of comparisons of the new algorithm during the selec-
tion phase can be as large as f(n)/2 when n = 2F —1,
and k > 1.

Proof. The idea for constructing a best case in-
stance of the algorithm is balancing. Let best(:) be
the number of comparisons required at node ¢ in the
best case. Then it can be proved by induction that for
any integer ¢ < [(n — 1)/2] we have,

best(i) > min{size(2i), size(2i + 1)}
+ best(21) + best(2i + 1)
= size(21 4+ 1) + best(27) + best(2i + 1).

where size(i) is denoted as the size of the sub-tree
rooted at node 1.

From the above recursive inequality we can con-
clude that best(1), the number of comparisons of
the new algorithm durmg the selection phase can be
bounded below by ZL n-1)/2] size(2i 4+ 1).

For any integer j > O, let n0(j) be the number of
zeros in the binary representation of j, and nl(j) be
the number of ones in the binary representation of j.
If the binary representation of j is viewed as the path
label from root of the heap to the node j, then a travel
from root to the node j goes into right exactly n1(j)—1
times and left exactly n0(j) times. Therefore the con-
tribution of node j to the sum Z}g_l)/zj size(2i+1)
is n1(j) — 1. That is,

[(n=1)/2]

1) n
Z size(2i + 1) = Z(nl 1) —
i=1

= nl(i) -
=1 i=1
For integer set S(n) = {1,2,...,n}, the following
algorithm constructs a special heap achieving the best
case.

void best(int ¢, int z)

{ ali] = =
if (size(z) > 1){
if (size(2%i+ 1) > 0) best(2*i+ 1,z — 1);
best(2 4,z — size(2x1+ 1) — 1); }

}

The best(1,n) the
ZL n=1)/2] size(21 + 1) comparisons during the selec-
tion phase. Therefore we can conclude that in the best
case, the number of comparisons of the new algorithm
during the selection phase is

call creates heap with

L(n—1)/2]
szze 22 + 1 Z nl

i=1
Since for any integer j, n0(j) +nl(j) = |logj| +1,
we have,

n n

> (n0(i) + n1(i)) =Y ([logi] +1) =

i=1 i=1

f(n)+n.

It can be easily seen that for any integer n,
Yo n0(i) > > | nl(i)—n. The equality holds when
k—Lk_Lz”“

Therefore

n)+n= ZnO(z)

That is,

L f(n)
;nl(z)—né —

The equality holds when n =2 -1, k=1,2,.... O

We cannot compute the average case complexity
exactly, since the new algorithm does not construct
random heaps during the selection phase. Table 1
presents data of our implementation of the new al-

+ an(i) > 2Zn1(i) -

(n+1)logn — 0.95696n.

N | =

gorithm on some random sets of floating point data.

Table 1. Number of Comparisons (in the best case,

worst case and on random data averaged over 30 runs)

n 100 1000 10000 100 000 1000000
Best
219 3938 54613 715030 8884999
Case
Worst
430 7487 108631 1418946 17451445
Case
Average
c 405 7317 106963 1402241 17 336 960
ase

The presented data reveals an average number of
comparisons of the new algorithm during the selection
phase is about nlogn — 2.55n.

The McDiarmid and Reed’s variant of BOTTOM-
UP-HEAPSORT algorithm!®! uses, on average, about
1.52n comparisons to build a heap. If buildheap()
uses this algorithm, then the average number of com-
parisons of the new algorithm for n elements can be
nlogn — n.

902

J. Comput. Sci. & Technol., Nov. 2007, Vol.22, No.6

Table 2. Number of Comparisons of Different Algorithms on Random Data Averaged over 30 Runs

Comparisons 100 1000 10000 100 000 1000000
QUICKSORT 728 11831 161165 2078841 25632211
CLEVER-QUICKSORT 648 10325 143138 1825988 22290858
BOTTOM-UP-HEAPSORT 693 10303 136511 1698252 20281354
MDR-HEAPSORT 655 9883 132311 1656 355 19863 034
WEAK-HEAPSORT 615 9511 128 565 1618686 19487753
RELAXED-WEAK-HEAPSORT 571 8971 123 547 1568623 18948 426
RANK-HEAPSORT 568 8963 123403 1567563 18928516

Given a uniform distribution of all permutations
of the input array, QUICKSORT!! reveals an average
number of at most 1.386nlogn — 2.846n + O(logn)
comparisons. In CLEVER-QUICKSORT, the median-
of-three variant of QUICKSORT!", this value is ap-
proximately

1.188nlogn — 2.255n + O(log n).

BOTTOM-UP-HEAPSORT* is a variant of HEAP-
SORT with 1.5nlogn + 6(n) key comparisons in the
worst case. The idea is to search the path to the
leaf independently to the place for the root element
Since the expected depth is high, this
path is traversed bottom up. The average num-
ber of comparisons in BOTTOM-UP-HEAPSORT is
about nlogn + O(n). A further refinement MDR-
HEAPSORT performs less than nlogn+1.1n compar-
isons in the worst casel®). WEAK-HEAPSORT pro-
posed by Dutton*?! uses less than nlog n + 0.086013n
comparisons. RELAXED-WEAK-HEAPSORT is a
WEAK-HEAPSORT!" variant which consumes at
most O(nlogn) extra bits and executes exactly nk —
2% + 1 comparisons in the best, worst, and average
cases if k = [logn].

to sink.

Our new algorithm is compared with the 6 prac-
tical sorting algorithms above. In Sections 3 and 4,
we consider the selection phase of the new algorithm.
Let the number of comparisons of the new algorithm
for n elements be T(n) = build(n) + sort(n), where
build(n) is the number of comparisons of the heap cre-
ation phase and sort(n) is the number of comparisons
of the selection phase. Different heap construction al-
gorithms will infect the total time required by the new
algorithm. The classical algorithm of Floyd for build-
ing heaps from the bottom- up yields an upper bound
of 2n comparisons. The McDiarmid and Reed’s vari-
ant of BOTTOM-UP-HEAPSORT algorithm![8:12~15]
uses, on average, about 1.52n comparisons to build a
heap. If buildheap() uses this algorithm, then the av-
erage number of comparisons of the new algorithm for
n elements can be nlogn —n.

Table 2 presents data of our implementation of var-
ious performance sorting algorithms on some random
sets of floating point data. The O(nlogn) bits for

storing the index in RELAXED WEAK-HEAPSORT
matches the amount of n integers in [1,...,n] needed
for storing rank in RANK-HEAPSORT.

5 Conclusions

We have presented a new variant of HEAPSORT
algorithm. The new algorithm requires about nlog n —
0.788928n comparisons in the worst case and nlogn —
n comparisons on the average which is only about
0.4n more than necessary. Reinhardt[*®! shows that
MERGESORT can be designed in-place with nlogn —
1.3n + O(log n) comparisons in the worst case. How-
ever, for practical purposes the algorithm is too slow.
The big difference between sort(n) in the worst case
and in the best case indicates that there is still room
for improvement of the new algorithm by constructing
heap more carefully. Concerning the layered memory
and cache structure within a modern personal com-
puter, a better prediction requires meticulous analysis,
which, in turn, can lead to more efficient algorithms.

References

[1] Knuth D E. The Art of Computer Programming — Sorting
and Searching. 2nd Edition, New York: Addison Wesley,
1998.

[2] Floyd R W. Algorithm 245: Treesort 3. Communications
of the ACM, 1964, 7(4): 701.

[3] Williams J W J. Algorithm 232: HEAPSORT. Communi-
cations of the ACM, 1964, 7(4): 347~348.

[4] Wegener I. BOTTOM-UP-HEAPSORT, a new variant of
HEAPSORT, beating on an average, QUICKSORT (if n
is not very small). Theoretical Computer Science, 1993,
118(1): 81~98.

[5] Carlsson S. A variant of HEAPSORT with almost optimal
number of comparisons. Information Processing Letters,
1987, 24(3): 247~250.

[6] Wegener I. The worst case complexity of McDiarmid and
Reed’s variant of BOTTOM-UP HEAPSORT is less than
nlogn + 1.1n. Information and Computation, 1992, 97(1):
86~96.

[7] Gonnet G H, Munro J I. Heaps on heaps. SIAM Journal
on Computing, 1986, 15(6): 964~971.

[8] McDiarmid C J H, Reed B A. Building heaps fast. Journal
of Algorithms, 1989, 10(3): 352~365.

[9] Hoare C A R. Quicksort. Computer Journal, 5(1): 10~15.

[10] Dutton R D. Weak heap sort. BIT, 1993, 33(3): 372~381.

Xiao-Dong Wang et al.: An Improved HEAPSORT Algorithm

[11]

(12]

(13]

[14]

[15]

[16]

Edelkamp S, Stiegeler P. Implementing HEAPSORT with
nlogn—0.9n and QUICKSORT with nlogn+0.2n compar-
isons. ACM Journal of Ezxperimental Algorithmics (JEA),
2002, 7(1): 1~20.

Cantone D, Cincotti G. QuickHeapsort, an efficient mix of
classical sorting algorithms. Theoretical Computer Science,
2002, 285(1): 25~42.

Carlsson S, Chen J. The complexity of heaps. In
Proc. the Third Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SIAM, Philadelphia, PA, October 1992,
pp-393~402.

Ding Y, Weiss M A. Best case lower bounds for Heapsort.
Computing, 1992, 49(1): 1~9.

Z Li, Bruce A Reed. Heap building bounds. LNCS, 2005,
3608(1): 14~23.

Reinhardt K. Sorting in place with a worst case complexity
of nlogn — 1.3n+ O(logn) comparisons and enlogn+ O(1)
transports. LNCS, 1992, 650(6): 489~499.

Xiao-Dong Wang is a profes-
sor and chair of the College of Math-
ematics and Computer Science,
Fuzhou University, P.R. China. His
research interests are in design,
analysis, and computational evalu-
ation of algorithms and data struc-
tures for solving large-scale prob-
lems motivated from information
assurance and security, the Internet,

information visualization, and geometric computing, par-

allel and distributed algorithms, and complexity theory.
His books within the last three years are “The Design and
Analysis of Algorithms” (2005), “The Design and Experi-
ments of Algorithms” (2006) and “Data Structures in C”
(2007). Professor Wang is a senior member of China Com-

puter Federation and chair of Fujian Computer Federation

of China.

Ying-Jie Wu received his B.S.
and M.S. degrees in computer sci-
ence from Fuzhou University in
2001 and 2004, respectively. Now
he is a lecturer at the College of
Mathematics and Computer Sci-
ence, Fuzhou University. He is cur-
rently a Ph.D. candidate in com-
puter science at Southeast Univer-
sity. His research interests are in al-

gorithms design and data mining.

Appendix A

A.1 C Code for McDiarmid/Reed’s Heap Building

Algorithm.

void build()

{
for(int i=n/2; i>1; i—)
mcdiarmid_reed(i);
}

void mcdiarmid_reed(int i)

{

bubble_up(i, trickle_dowm(i));

}

//trickle down an empty position to the bottom of the

heap.

int trickle_dowm(int i)
{
a[0] = a[i];
ix = 2;
while(i < n){
if(i <n && afi] < a[i+1])i+ +;
a[i/2] = a[i];
ix = 2;
count++;
}
a[i/2] = a[0];
return i/2;

}

//bubble up a[c] to its correct position.

void HEAP::bubble up(int i, int c)
{

al0] = a[c];

while(c > i && a[0] > a[c/2]){

afc] = a[c/2]; ¢/ =2; count++;

A2. Min-Max Intervals, and Statistical Variance of Experimental Data.

N Mean Std Dev Minimum Maximum
Heap 1 102 52.509 8039 29.764336 8 1.000 0000 101.000000 0
Heap 2 1002 497.967065 9 286.983 435 8 2.0000000 1001.00
Heap 3 10002 5013.61 2877.60 2.0000000 10001.00
Heap 4 100002 50070.39 28 847.73 1.000 0000 100 001.00
Heap 5 1000002 424925.49 92216.30 1.000 0000 1000001.00

