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Abstract This paper investigates the view update problem for XML views published from relational data. We consider
XML views defined in terms of mappings directed by possibly recursive DTDs compressed into DAGs and stored in relations.
We provide new techniques to efficiently support XML view updates specified in terms of XPath expressions with recursion
and complex filters. The interaction between XPath recursion and DAG compression of XML views makes the analysis of
the XML view update problem rather intriguing. Furthermore, many issues are still open even for relational view updates,
and need to be explored. In response to these, on the XML side, we revise the notion of side effects and update semantics
based on the semantics of XML views, and present efficient algorithms to translate XML updates to relational view updates.
On the relational side, we propose a mild condition on SPJ views, and show that under this condition the analysis of deletions
on relational views becomes PTIME while the insertion analysis is NP-complete. We develop an efficient algorithm to
process relational view deletions, and a heuristic algorithm to handle view insertions. Finally, we present an experimental
study to verify the effectiveness of our techniques.
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1 Introduction

As a classical technical problem, view updates have
been studied for relational databases for decades (see,
e.g., [1–4]), and the techniques developed in that area
have been introduced into commercial DBMSs[5−7].
Recently, a number of systems have been developed
for publishing relational data to XML[5−10]. The pub-
lished XML documents can be seen as XML views of
the relational data. For all the reasons that updating
data through its relational views is needed, it is also
important to update relational databases through their
XML views.

In this paper we study the XML view update prob-
lem, which can be stated as follows. Given an XML
view of a relational database, we want to propagate
updates of the XML view to the relational tables, with-
out compromising the integrity of neither the XML nor
the relational data. Formally put, given an XML view
defined as a mapping σ : R → D from relations of a
schema R to XML documents (trees) of a DTD D, a
relational instance I of R, the XML view T = σ(I), and

updates ∆X on the XML view T , we want to compute
relational updates ∆R such that ∆X(T ) = σ(∆R(I)).
That is, the relational updates ∆R, when propagated
to XML via the mapping σ, yield the desired XML
updates ∆X on the view T .

While several commercial systems[5−7] allow users to
define XML views of relations, their support for XML
view updates is either very restricted or not yet avail-
able. Previous work on XML view updates[11] has ad-
dressed the problem by translating XML view updates
to relational view updates and delegating the problem
to the relational DBMS; however, most commercial
DBMSs only have limited view-update capability[5−7].
The state of the art in XML view update research[12,13]

solves the problem by explicitly focusing on non-
recursively defined XML views and XML updates de-
fined without recursive XPath queries. Though it is a
complete solution, the restrictions posed in [13] are un-
fortunate since the recent proposals on XML update
languages[14,15] employ recursive XPath queries while
DTDs (and thus XML view definitions) found in prac-
tice are often recursive[16].
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Fig.1. Example XML view.

In accordance with these requirements, we consider
more general XML views and updates: possibly re-
cursive XML view definitions and XML updates spec-
ified in terms of XPath expressions with recursion
(descendant-or-self “//”) and complex filters, as illus-
trated by an example below.

Example 1. Consider a registrar database I0, which
is specified by the relational schema R0 (with keys un-
derlined):

course(cno, title, dept)

project(cno, title, dept)

student(ssn, name)

enroll(ssn, cno)

prereq(cno1, cno2),

where a tuple (c1, c2) in prereq indicates that c2 is a
prerequisite of c1.

As depicted in Fig.1 (the dotted lines will be ex-
plained shortly), an XML view T0 of the relational
database is published for the CS department by ex-
tracting CS course-registration data from I0. The view
is required to conform to the DTD D0 below (the defi-
nition of elements whose type is PCDATA is omitted):

〈!ELEMENT db (course∗)〉
〈!ELEMENT course (cno, title, prereq, takenBy)〉
〈!ELEMENT prereq (course∗)〉
〈!ELEMENT takenBy (student∗)〉
〈!ELEMENT student (ssn, name)〉

Note that the view is defined recursively since the
DTD D0 is recursive (course is defined indirectly in
terms of itself via prereq). Now consider an XML
update ∆X = insert T ′ into P0 posed on the XML
view T0, where P0 is the (recursive) XPath query
course[cno=CS650]//course[cno=CS320]/prereq, and T ′

is the subtree representing the course CS240. It is to
find all the CS320 nodes below CS650 in T0 and for each

CS320 node v, insert T ′ as a prerequisite of v. To carry
out ∆X , we need to find updates ∆R on the underlying
database I0 such that ∆X(T0) = σ0(∆R(I0)).

Already a hard problem for relational views, the
view update problem for XML views introduces several
new challenges, which previous work[11−13] on XML
view updates cannot handle.

First, update semantics should be revised in the con-
text of XML views of relations. Referring to the exam-
ple above, the operation asks for inserting CS240 as a
prereq of only those CS320 nodes below CS650; how-
ever, CS320 nodes also occur elsewhere below the root.
As the XML view is published from the same rela-
tional database, all the courses, and therefore CS320,
have unique prereq hierarchies. Such an insertion on
selected paths of the hierarchy will result in side effects
that need to be detected. In such a case, the users need
to be consulted and, if they insist on carrying on up-
dating, the semantics of insertion is revised such that
the insertion will be performed at every CS320 node.
Thus the insertion can accommodate side effects while
being consistent with the semantics of the XML view.
Note that such side effects are orthogonal to both the
publishing middleware used and the storage scheme of
the XML views. The details of side effects on deletions
are even more subtle and call for a new semantics (see
Section 2).

Second, the XML view may be compressed by stor-
ing each subtree shared by multiple nodes in the tree
only once, as indicated in Fig.1 (replacing the subtrees
in the dotted triangles by dotted edges). The need for
this is evident: the compressed view becomes a directed
acyclic graph (DAG), which is often significantly (at
times even exponentially) smaller than the original tree.
Furthermore, one may want to store the view (DAG)
in relations itself. This raises another question: how
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should one define relational views that characterize the
compressed XML view? If one is to reduce the XML
view update problem to its relational counterpart, this
question has to be answered. However, this is nontriv-
ial: the XML view is recursively defined, and a näıve
relational encoding may require infinitely many rela-
tional views.

Third, to locate where the updates take place, one
has to evaluate recursive XPath queries on DAGs
instead of XML trees. Added to the complication,
we need to detect if the update will result in side ef-
fects. As observed in [17], it is nontrivial to translate
(recursive) XPath queries (resp. updates) over recur-
sive XML views (stored in relations) to SQL queries
(resp. updates). To our knowledge, no efficient algo-
rithm has been proposed for evaluating XPath queries
with complex filters on DAGs stored in relations and
none of the previous work considers to detect side ef-
fects in the evaluation of XPath.

While these are issues beyond what we have encoun-
tered in the relational realm, automated processing of
relational view updates is already intricate, even under
various restrictions on the views[1−3]. In fact, even the
updatability problem, i.e., the problem of determining
whether a relational view is updatable, w.r.t. given up-
dates, is mostly unsolved and few complexity results
are known[1,18]. This tells us that it is unrealistic to
reduce the XML view update problem to its relational
counterpart and then rely on the DBMSs to do the
rest.

Contributions. This paper is the full version of
[19] with all proofs and additional algorithms. The
paper consists of new techniques for updating com-
pressed and possibly recursively defined XML views
via schema-directed XML publishing, in particular
ATGs[8]. (Our techniques are applicable to XML
views published from relations via other systems (e.g.,
SilkRoute, xperanto) as long as they represent the
XML views in terms of SPJ queries.) Given XML
updates of an XML view which is compressed into a
DAG and stored in relations, we do the followings: (a)
define relational views that characterize the compressed
XML view, such that the number of relational views is
bounded by the size of the XML view, even if the XML
view is recursively defined; (b) translate single updates
at the XML level to group updates of the relational
view representation; (c) translate updates over the rela-
tional views to updates over the underlying (published)
relational database. More specifically, we make the fol-
lowing contributions.
• On the XML Side. (a) We refine the update se-

mantics for XML views of relations to accommodate

XML side effects, based on the semantics of XML
views. (b) We develop an algorithm to translate (recur-
sive) updates on a (possibly recursively defined) XML
view to updates on the relational representation of
the XML view. (c) To detect XML side effects and
translate the updates, we present an efficient algorithm
for evaluating XPath queries with complex filters on
DAGs, based on a new indexing structure to handle
recursion and a new technique for handling filters. (d)
We also develop efficient algorithms to incrementally
maintain the indexing structure.

On the Relational Side. (a) We identify a key-
preservation condition on SPJ views, which is less
restrictive than the conditions imposed by previous
work[1−3]. This condition does not reduce the expres-
sive power of ATGs. (b) We establish complexity re-
sults for the updatability problem. We show that under
key-preservation on SPJ views, while the problem for
tuple insertions is NP-complete, it becomes tractable
for group deletions (which is NP-complete without key
preservation). (c) We propose a PTIME algorithm
for processing group deletions on SPJ views. (d) To
process group insertions we give an efficient heuristic
algorithm.

Experimental Study. Our experimental results verify
the effectiveness and efficiency of our techniques.

These techniques are the first for processing XML
updates with recursion and complex filters on com-
pressed and possibly recursively defined XML views,
without relying on the high-end and mostly unavail-
able view-update functionality of the underlying rela-
tional DBMS. They provide the capability of support-
ing XML view updates within the immediate reach of
most XML publishing systems. On the relational side,
our complexity results and algorithms are a useful ad-
dition to the study of relational view updates.

Organization. Section 2 defines XML updates and
reviews a tool for publishing relational data, namely
ATGs. Section 3 develops algorithms for translating
XML updates to relational view updates, and Section 4
presents our complexity results and algorithms for han-
dling relational view updates. An experimental study
is presented in Section 5, followed by related work in
Section 6. We conclude in Section 7.

2 View Updates Revisited in the XML Setting

In this section we define the syntax and semantics
of XML updates. We review how XML views may be
generated from a relational database and outline our
approach to processing the updates over DAG com-
pression of relationally stored XML views.
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2.1 XML View Updates: Side Effects and
Semantics

Syntax. Following [14,15], we specify XML updates
in terms of XPath expressions: (a) insert (A, t) into p,
(b) delete p. Here, A is an element type, and t is an
instantiation of the semantic attribute $A of A. Given
the instantiation we can uniquely identify the root of a
subtree of type A (see Subsection 2.3). We define p as
an XPath expression:

p ::= ε| A | ∗ | // | p/p | p[q],

q ::= p | p = “s” | label() = A | q ∧ q | q ∨ q | ¬q,

where ε, A, ∗ and “/” denote the self-axis, a label
(tag), a wildcard and the child-axis, and “//” stands
for /descendant-or-self::node()/, respectively; q in p[q]
is called a filter, in which s is a constant (string value),
and “∧”, “∨” and “¬” denote conjunction, disjunction
and negation, respectively. For //, we abbreviate p1/ //
as p1// and // /p2 as //p2.

Side Effects. We next study the side effects of XML
view updates. On detecting side effects, users can
choose either to abort the update, or to carry on under
the semantics we provide. Detection of side effects will
be further elaborated in Subsection 3.2.

Recall the update ∆X from Example 1. The up-
date is to change the subtrees (prerequisite hierarchy)
of only those CS320 nodes below CS650. This update
will result in side effects since CS320 also appears else-
where below the root. The subtree property of XML
publishing tells us that the subtree of a CS320 node
is uniquely determined by the value of its semantic at-
tribute $course, which is in turn determined by the set
of relational records for all CS320 nodes. In other words,
changes incurred to the subtree of any CS320 node must
also be reflected to all CS320 nodes, rather than only to
those below CS650.

The side effect issue is more subtle for deletions.
Consider delete course[cno=CS650]/prereq/course[cno
=CS320] on the XML tree of Fig.1. The deletion aims
to remove course CS320 from the prerequisites of course
CS650. The subtree property instructs that we should
remove all CS320 nodes, not only the CS320 node un-
der the CS650 node. On the other hand, this cannot
be simply performed by physically removing all CS320

nodes as in previous work on XML view updates[11−13]:
CS320 is itself, an independent CS course and, more-
over, may be a prerequisite of other courses. For a
correct deletion we first need to find all the parents of
the nodes to be removed, i.e., those prereq nodes below
CS650 nodes, and then remove CS320 from the children
list of only those parent nodes.

Semantics of XML View Updates. It is obvious that
a new semantics should be developed to cope with side
effects like the ones mentioned. This semantics needs
to respect the hierarchical nature of XML views. Note
that this semantics is different from the semantics of
updates on XML data[14,15]. Given an XML view T
with root r, an insert operation: (a) it finds the set of
all elements reachable from r via p in T , denoted by
r[[p]]; (b) for each element v in r[[p]], it adds the new
subtree ST(A, t) as the rightmost child of v; and more-
over, (c) for each element u that has the same type and
semantic attribute value as v, it adds also ST(A, t) as
the rightmost child of u as required by the semantics of
XML views.

A delete operation on XML views (a) computes r[[p]];
(b) for each node v ∈ r[[p]], removes the subtree ST(A, t)
from the children list of the parent node u of v, where
A is the type of v and t is the value of $A at v; and (c)
for any node u′ that has the same type and semantic
attribute value as the parent u of v, removes ST(A, t)
from the children list of u′.

Compared to previous work[11−13], we support XML
view updates that (a) are defined with much richer
XPath expressions with recursion and complex filters,
(b) operate on (possibly) recursively defined XML
views, and (c) possess a new semantics that captures
side effects, if any, of XML view updates. We also pro-
vide techniques to detect whether there are side effects
and, in those cases, allow the users to cancel the up-
date; otherwise, the operation will carry on with the
semantics described earlier.

2.2 Attribute Translation Grammars (ATGs)

In this subsection, we review XML publishing with
Attribute Translation Grammars (ATGs). It should be
remarked that the proposed techniques in this paper are
applicable to other XML publishing frameworks, e.g.,
SilkRoute and Xperanto.

An ATG can be understood as a mapping σ : R →
D, where R is a relational schema and D is a predefined
(possibly recursive) DTD. Given an instance I of R, σ
produces an XML view T , denoted as σ(I) = T , that
conforms to D. A DTD D is a triplet (E, P, r), where
E is a finite set of (element) types; r ∈ E is called the
root type; P defines the element types: a production,
A → α, is associated with each A in E, where α is an
expression of the form:

α ::= pcdata | ε |B1, . . . , Bn | B1 + · · ·+ Bn | B∗,

where ε is the empty word, B is a type in E (a child type
of A), and “,”, “+”, and “∗” denote concatenation,
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alternation, and the Kleene star, respectively.① A DTD
is recursive if a type is defined (directly or indirectly)
in terms of itself. It is shown in [16] that DTDs found
in practice are often recursive.

Example 2. Consider a relational schema R0 shown
in Example 1. We define an ATG σ0, shown in Fig.2,
for publishing the registrar’s database into an XML
view. The bold text highlights the DTD D0 embedded
in σ0. Note that D0 is recursive as course is indirectly
defined with prerequisite courses. The XML view
generated shall conform to D0. A possible XML view
T0 is illustrated with Fig.1. Consider the course CS320
subtree. It appears at different places in the XML view.
It is more efficient to keep a single copy of the CS320
subtree and use references (the dotted arrows) to rep-
resent multiple occurrences of the subtree. We shall
discuss the details of this representation shortly.

db → course*

$course λ Qdb course

Qdb course : select c.cno, c.title

from course c

where c.dept = ‘‘CS’’

course → cno, title, prereq, takenBy

$cno = $course.cno, $title = $course.title,
$prereq = $course.cno, $takenBy= $course.cno

prereq → course*

$course λ Qprereq course($prereq)
Qprereq course(c1): select c.cno, c.title

from prereq p, course c

where p.cno1 = c1 and p.cno2=c.cno

takenBy → student*

$student λ QtakenBy student ($takenBy)

QtakenBy student (c): select s.ssn, s.name

from enroll e, student s

where e.cno=c and e.ssn=s.ssn

Fig.2. Example ATG σ0.

Given an instance I of R, the ATG σ systematically
extracts portions of I into an XML view as follows.
(a) For each element type A in D, σ defines a semantic
attribute, or simply called tuple, $A, with fixed arity
and type; intuitively, $A governs the generation of an
A-subtree, and is passed to the production of A’s chil-
dren as the view is generated. (b) For each production
p = A → α in D and each type B in α, σ specifies
an SPJ query, rule(p), which extracts data from a re-
lational database; using the data and $A, it generates
the B children of an A node and the tuple for $B. For
example, for the production prereq → course*, the SPJ

query can be specified as Qprereq course($prereq). In all,
σ generates the XML view top-down with reference to
D.

Example 3. Consider a prereq node v with the tu-
ple $prereq. $prereq is used as a constant in the query
Qprereq course to extract data from the source database
I. For each tuple t returned by Qprereq course($prereq),
a course child node vc is generated and t is associated
with vc. Then the production of course is invoked with
vc and t in a similar manner.

2.3 Relational Coding of Recursively Defined
XML Views

Consider an ATG σ : R → D that defines XML
views of relational databases R. To reduce the update
problem for XML views defined by σ to its relational
counterpart, we define relational views Vσ to character-
ize σ. This is nontrivial: (a) σ is possibly recursively
defined; on such views the encoding methods of pre-
vious work (e.g., [11]) may lead to infinitely many re-
lational views; (b) we consider DAG compressions of
XML views, i.e., a DAG representation of σ(I) where
I is an instance of R as opposed to trees assumed in
previous work. To this end we define Vσ by means of
the edge relations in σ(I) as follows.

(a) We assume a compact, unique value associated
with each tuple value of semantic attribute $A in σ(I).
We abstract away the implementation of this identity
value by assuming, w.l.o.g., the existence of a Skolem
function gen id that, given the tuple value of $A, com-
putes id A that is unique among all identities associated
with all semantic attributes. We use gen A to denote
the set of the identities of all $A tuples, which is com-
puted once.

(b) We encode an XML view definition σ in terms
of Vσ as a set of SPJ queries Qedge A B materializing
the edge relations of σ. More specifically, for each pro-
duction A → P (A) in the DTD of σ, and for each child
type B in P (A), we create a relation edge A B with
two columns, id A and id B. Consider productions of
the form A → B∗, where $B ← Q($A) is the asso-
ciated query in σ. Then edge A B is the set of pairs
(ia, ib) such that ia = gen id(a), ib = gen id(b), where
a ∈ gen id(a), b ∈ Q(a). The definition of Qedge A B

is similar for productions of other forms. One example
of an edge-relation query derived from the σ0 ATG of
Fig.2 is Qedge prereq course :

select gen id(gp), gen id(c.cno, c.title)

from gen prereq gp, prereq p, course c

①An arbitrary DTD can be normalized into a DTD in the form defined by introducing additional element types in linear time. A
post-publishing processing then transforms the XML view into one that conforms to the DTD in O(|T |)[20].
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where p.cno1 = gp.cno and p.cno2 = c.cno

Observe the following about Vσ. 1) Vσ encodes the
DAG compression of XML view σ(I). Indeed, for
any subtree ST(A, $A) in σ(I), each edge (ia, ib) in
ST(A, $A) is stored only once in a relation edge A B
no matter how many times ST(A, $A) (and thus the
edge) appears in σ(I). 2) Each Qedge A B in Vσ is de-
fined by an SPJ query. Thus Vσ consists of only SPJ
views. 3) Vσ consists of a bounded number of relational
views even if σ is recursively defined.

It should be remarked that there have been a few
alternative encoding schemes for XML views (possibly
with compression). For example, inlining techniques[21]

were proposed to encode recursive XML in a finite num-
ber of relations. For presentation brevity, we propose
edge-based relations from an ATG but skip the details
of the applications of other particular XML encoding
schemes. Furthermore, as we shall see soon, our DAG
compression supports efficient view updates in XML
settings, e.g., side-effect detection and XPath evalu-
ation. Any alternative encodings employed for XML
view updates must address these issues.

Updates on Relational Views. Given an update ∆X

on a DAG compressed XML view σ(I), we convert it
to updates ∆V on the relational view V = Vσ(I). The
relational view updates ∆V consist of edge tuples of the
form t = (ia, ib) to be inserted into or deleted from an
edge relation edge A B.

Note that a shared tree cannot be simply removed.
Consider again the deletion of Subsection 2.1 on the
XML view of Fig.1. We cannot remove the subtree
of CS320 completely even if all CS320 nodes are in the
prereq subtree of some CS650 nodes. This is because
some subtrees inside CS320 (i.e., certain students) may
be shared and referenced by other nodes outside of the
subtree.

In response to this, we compute the relational view
updates ∆V such that (a) a newly inserted subtree is
only stored once in V no matter how many times it ap-
pears in the updated view, and (b) a deleted subtree is
not physically removed: only the tuple (ia, ib) in V rep-
resenting the corresponding parent-child edge is deleted

from its edge relation edge A B. More specifically, the
tuple corresponding to ia is not removed from gen A be-
cause ia is a parent node in r[[p]] and needs to be kept
in the XML view. To cope with subtree sharing, ib is
not removed from gen B when the edge (ia, ib) is re-
moved from edge A B; instead, upon the completion of
processing ∆V , our incremental maintenance algorithm
runs in the background to remove tuples from gen B’s
that are no longer linked to any node; it is at the com-
pletion of ∆V when gen B’s are updated (similarly for
insertions). Note that gen B’s are not defined as a view;
they are derived from V (i.e., the edge relations Vσ) and
maintained in the background.

2.4 Processing XML View Updates

We propose a framework for processing XML view
updates, as shown in Fig.3. For each ATG (XML
view definition) σ : R → D, we maintain a relational
database I of R, and the relational views V that en-
code the DAG compression of T = σ(I). The users
pose updates on (the virtual view) T . Given a single
XML update ∆X on T as input, we are to generate a
group update ∆R on I such that ∆X(T ) = σ(∆R(I))
if such ∆R exists; otherwise reject ∆X as early as pos-
sible. Specifically, the framework processes an XML
update ∆X on T in three phases, namely, DTD val-
idation, translation from ∆X to ∆V (Section 3), and
translation from ∆V to ∆R (Section 4). If our algo-
rithm detects a side effect, we report it to the user.
After the relational update ∆R is computed, we up-
date the underlying database I using ∆R, update the
relational views V using ∆V , and finally, in the back-
ground, invoke our incremental algorithm to maintain
the indexing structures and to remove from gen A those
node ids that are no longer reachable from the root of
the XML view T .

Before we end this section, we discuss DTD valida-
tion. The other steps in processing the XML view up-
dates will be discussed in subsequent sections. Given
XML updates ∆X , we first perform static optimization
by validating the predefined DTD D with respect to

Fig.3. Overview of XML view updates.
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∆X , and reject the updates if ∆X(T ) does not conform
to D as required by the schema-directed definition of
σ.

The validation is conducted at the schema level by
leveraging the DTD normalization given in Subsection
2.2, as follows. Let ∆X be defined in terms of an XPath
query p. We first “evaluate” p on the DTD D to find
the types of the elements reached via p. We then check
whether the insertion or deletion of subtrees of these el-
ements (types) violates their productions in the DTD
D. Note that an insertion (resp. deletion) of a B child
under an A element does not violate D only if the pro-
duction of A is of the form A → B∗. Thus updates of
other forms can be immediately rejected. This can be
checked in O(|p| |D|2) time, where |p| and |D| are the
sizes of the XPath query p and the DTD D, respec-
tively.

3 Mapping XML View Updates to Relations

In this section we present a technique for trans-
lating XML updates on an XML view to updates on
relational views representing the DAG compression of
the XML view, derived from the ATG Subsection 2.3.
The technique consists of four parts: (a) indexing struc-
tures for checking ancestor-descendant relationships in
a DAG (Subsection 3.1), (b) an efficient algorithm for
evaluating XPath queries on DAGs and detecting side
effects (Subsection 3.2), (c) algorithms to translate up-
dates on the XML view to updates on its relational
representation (Subsection 3.3), based on the indexing
structures and the evaluation algorithm, and (d) incre-
mental algorithms for maintaining the indexing struc-
tures (Subsection 3.4).

3.1 Auxiliary Structures

To efficiently process “//” and filters on a DAG,
we introduce two auxiliary structures: a topological or-
der and a reachability matrix. The reachability ma-
trix can efficiently support “//” in XPath queries on a
DAG while the topological order is crucial in evaluating
XPath filters as well as in computing and maintaining
the reachability matrix.

Topological Order. Recall from Section 2 the func-
tion gen id(), which generates a unique id for each node
based on the value of its semantic attribute. Given a
representation of a DAG V , we create a list L consist-
ing of all the distinct node identities in V topologically
sorted such that u precedes v in L only if u is not an
ancestor of v in the DAG, i.e., there is no path from u
to v in the DAG.

The list L can be computed in O(|V |) time (see, e.g.,
[22]), where |V | is the size of the relational views. Its
size, |L|, is the number of distinct nodes in the DAG,
denoted by n. Note that L is computed once when V
is created and it is maintained incrementally.

Reachability Matrix. To evaluate the ancestor-
descendant relationship between a pair of nodes in a
DAG, we use an n × n reachability matrix M: a cell
in M is a bit. Given a row i denoting node ni and
a column j indicating node nj , if cell Mij is set, ni

is an ancestor of nj in the XML view (resp. nj is a
descendant of ni).

To store M, we conceptually need as many bits as
n2. The cost for that is prohibitive. To overcome this,
we store only information about the set bits of the
reachability matrix. That is, M is physically stored as
a relation M(anc, desc), where anc denotes an ances-
tor node, and desc a descendant. We use desc(a) (resp.
anc(a)) to denote the descendants (resp. ancestors) of
node a retrieved from M .

Input: the relational view V and topological order L.

Output: reachability matrix M .

1. M := ∅;
2. for (k := |L|; k > 0; k −−) /* backward topological order */

3. d := L[k];

4. Ad := {a2| a2 ∈ anc(a1), a1 ∈ parent(d)};
5. insert (a, d) into M for each a ∈ Ad;

6. return M

Fig.4. Algorithm Reach.

Relation M can be computed in O(|V |2log|V |) time
from V (see, e.g., [22]). Capitalizing on the topological
order L we give Algorithm Reach, shown in Fig.4, that
computes M in O(n |V |) time. It is based on dynamic
programming: it ensures that for a node d the ances-
tors of the nodes in the set of parents of d, denoted by
parent(d), are already known before we compute ances-
tors Ad, such that we can compute Ad by using those
previously computed ancestors (lines 4∼5). This can
be achieved by processing the nodes in the order of L
from right to left (line 2). Note that parent(d) can be
computed from the edge relations in V .

To see that Algorithm Reach runs in O(n |V |) time,
observe the followings: (a) for each node in L we visit
its parents once and thus any node v is visited in(v)
times, where in(v) is the in-degree of v, i.e., the num-
ber of incoming edges to v in the DAG; (b) the sum of
in(v)’s for all v is |V |; and (c) each visit takes at most
O(n) time. In practice, |M | ¿ n2 ¿ |V |2, where V is
typically much smaller than the XML tree T , even up
to an exponential factor.
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3.2 Evaluating XPath Queries on DAGs

To translate updates ∆X on XML views to updates
∆R on relational views and detect whether the update
will yield side effects, we have to evaluate the XPath
expression embedded in ∆X . The DAG compression of
XML views introduces new challenges: previous work
on XPath evaluation has mostly focused on trees rather
than DAGs. While the evaluation algorithms were de-
veloped for path queries on DAGs[23,24], they cannot
be applied in our setting because (a) they do not deal
with complex filters which, as will be seen shortly, re-
quire a separate pass of the input DAG, and (b) they do
not address maintenance of the indexing structures they
employ, which is necessary when the DAG is updated.
Path-query evaluation algorithms were also developed
for semi-structured data (general graphs). However,
these algorithms neither treat DAGs differently from
cyclic graphs (and thus may not be efficient when deal-
ing with DAGs), nor consider XPath queries used in
XML view updates.

To this end we outline an efficient algorithm for eval-
uating an XPath query p on an XML tree T that is
(a) compressed as a DAG, and (b) stored in edge rela-
tions V . The algorithm takes as input an XPath query
p over T , the relational views V , and the reachability
matrix M . It computes (a) a set r[[p]] consisting of, for
each node reached by p, a pair (B, v), where v is the
id and B the type of the node, respectively; (b) a set
Ep(r) consisting of, for each v reached by p, tuples of
the form ((C, u), v), where u is the id of a parent of v in
the DAG (i.e., there is an edge from u to v) such that
p reaches v through u, and C is the type of u; we shall
see that the set Ep(r) is needed for handling deletions;
and (c) the set of nodes S in T which are affected by
the update but are not reachable via p. If the set S is
not empty, the update will generate XML side effects.
Note that for each v there are possibly multiple (C, u)
pairs, since we are dealing with a DAG (in which a
node may have multiple parents) rather than a tree.

For XML data stored as a tree T , [25] developed
an algorithm that evaluates an XPath query p in two
passes (linear scans) of T . The basic idea of [25] is
to first convert T to a binary-tree representation (be-
fore the two-pass process is invoked), and then run a
bottom-up tree automaton on the binary tree to eval-
uate filters, followed by a run of a top-down tree au-
tomaton to identify nodes reached by p. It has linear-
time complexity, the “optimal” one can expect[25]. We
next show that a comparable complexity can be achieved
when evaluating XPath queries on a DAG stored in re-
lations.

Our evaluation algorithm uses the following vari-

ables. (a) A list Q of filters including all the sub-
expressions of filters in p, topologically sorted such that
for any qi, qj in Q, qi precedes qj if qi is a sub-expression
of qj . (b) For each q in Q and each node v in L,
two Boolean variables val(q, v) and desc(q, v) to denote
whether or not the filter q holds at v and at any de-
scendant u of v, respectively.

Using these variables, we present a two-pass algo-
rithm to evaluate p on V : a bottom-up phase that
evaluates filters in p and computes the Boolean vari-
ables associated with each node v in L, followed by a
top-down phase that computes r[[p]] and Ep(r) using the
filters computed. We next outline the algorithm below.

Bottom-Up. The key idea is based on dynamic pro-
gramming. For each node v in the topological order
L, and for each sub-filter q in the topological order
Q, we compute the values of val(q, v) and desc(q, v).
This can be done by structural induction on the form
of q. For example, when q is label() = A, val(q, v) is
true if and only if v is in gen A. When q is q1 ∨ q2,
val(q, v) := val(q1, v) ∨ val(q2, v). When q is a path
expression p, p can be rewritten into a “normal form”
η1/ . . . /ηn, where each ηi is either (a) ε[qi], (b) a la-
bel A, (c) wildcard “∗”, or (d) “//”. The normal
form can be obtained in O(|p|) time by capitalizing
on the following rewriting rules: p[q] ≡ p/ε[q], and
ε[q1] . . . [qn] ≡ ε[q1 ∧ . . . ∧ qn]. For example, if q is
rewritten as //η2/ . . . /ηn with η1 = //, val(q, v) is true
if either val(η2/ . . . /ηn, v) or desc(η2/ . . . /ηn, u) is true
for some child u of v; correspondingly, desc(q, v) is true
if either val(q, v) or desc(q, u) holds. Note that the chil-
dren of v can be efficiently identified by using the in-
dexes on V . In addition, the algorithm proceeds in
the topological orders L and Q. Therefore, the truth
values of val(η2/ . . . /ηn, v) and desc(η2/ . . . /ηn, u) are
already available before assigning a value for val(q, v)
and desc(q, v). Similary val(q, v) can be computed for
all other possible rewrites of q.

Top-Down. Upon completion of the bottom-up
phase, we compute r[[p]], Ep(r) and S as follows. As
mentioned earlier p can be normalized in the form of
η1/ . . . /ηn, in which all the filters have already been
evaluated to be a truth value at each node. Starting
from the root r, we find nodes Ci reached after each
step ηi and meanwhile maintain a set of nodes S in T
that are not reachable via p but will be affected by the
update. When ηi is “/” (resp. “//”), S is extended
with the parent (resp. ancestor) nodes of Ci that are
not reached via p. These nodes can be easily found by
using indexes on the edge relations V when ηi is A or
∗, and by means of the reachability matrix M when ηi

is “//”. The nodes reached by the last step ηn are put
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in r[[p]], along with their types. The parents through
which they are reached via p are put in Ep(r) along
with their types during the traversal. One can verify
that there is a side effect iff S is not empty. As re-
marked in Section 2, users may either abort the update
or carry out the update using our update semantics.

Example 4. Consider the XML update ∆X1 = delete
//course [cno=CS320]//student[sid=S02] on the XML
tree in Fig.1, which is to delete student S02 from the
subtree of course CS320’s subtree. Consider course1

and desc(cno=CS320, course1). The recurrence rela-
tion tells us that desc(cno=CS320, course1) would be
true if desc(cno=CS320, cno1) is true. In a bottom-up
pass, val(cno=CS320, cno1) and desc(cno=CS320, cno1)
have been evaluated to be true before desc(cno=CS320,
course1). Similarly, the two variables val and desc of all
nodes in the DAG can be computed in dynamic pro-
gramming fashion in one bottom-up pass.

In a top-down pass, we can efficiently evaluate
//course by using the index. course1 is selected since
val(cno=CS320, cno1) = true and course1 is reach-
able from the root. course2 is not selected because
val(cno=CS320, cno2) is false. Similarly, we select
student2 for //student. We compute Ep(r) by check-
ing the parent of student2 that is on a path satisfying
//course[cno= CS320]//student[sid=S02]. We obtain
((takenBy, takenBy1), student2).

Complexity. In the bottom-up phase, each node v is
visited at most in(v) times, where in(v) is the in-degree
of v. In the top-down phase, each node is visited only
once except the final step when a node u may be in-
cluded in Ep(r) at most out(u) times, where out(u) is
the out-degree of u. Putting these together, the com-
plexity of the algorithm is O(|p| |V |).

Compared to the algorithm of [25], observe the fol-
lowings. (a) While our algorithm operates on the DAG
representation, it visits the nodes of the corresponding
(uncompressed) tree at most twice, i.e., it has the same
complexity as that of [25]. When dealing with DAGs
that do not have a tree structure, it is necessary to visit
all the edges in the DAGs in the worst case and thus our
algorithm is asymptotically optimal. (b) In contrast to
[25], our algorithm does not require the conversion of
the input data into binary trees and the construction
of tree automata, which are potentially very large. (c)
Our algorithm works on DAGs (including trees) while
[25] cannot work on DAGs.

3.3 Translating Updates from XML to
Relations

On account of the relational representation (DAG)
of XML views, a single XML update may be mapped

to multiple relational updates (a group update) over the
edge tables V (see Subsection 2.3). We next give two
algorithms, Xinsert and Xdelete, for translating XML
view insertions and deletions to relational view updates
∆V , respectively.

Insertion. Algorithm Xinsert is presented in Fig.5.
Given ∆X = insert(A, t) into p on the XML view T ,
the objective is to return the group of insertions ∆V

over V (which will then be tested for acceptance). The
first step is to find the set of edges in the newly in-
serted subtree ST(A, t) with the root rA, which is com-
puted by the algorithm of [8] and the function gen id()
(lines 2∼3). We then generate the relational view up-
dates: for each edge (ui, vi) in the newly inserted sub-
tree, we add (ui, vi) to ∆V (lines 4∼5); moreover, for
each (B, ui) ∈ r[[p]], we add (ui, rA) as a new edge to
∆V (lines 6∼7). The set r[[p]] of nodes (pairs (B, ui)
of node ids along with their types) reached by XPath
p from the root of T (line 6) is computed using the
evaluation algorithm of Subsection 3.2.

Input: an insertion of the form ∆X = insert (A, t) into p over
T , and the relational view V .

Output: a group insertion ∆V over V .

1. ∆V := ∅;
2. EA := {((B, gen id($u)), (C, gen id($v))) | (u, v) is an

edge in ST(A, t), u, v with type B, C resp.};
3. rA := the id of ST(A, t)’s root as generated by gen id(t);

4. for each ((B, ui), (C, vi)) ∈ EA

5. ∆V := ∆V ∪ {insert (ui, vi) into edge B C};
6. for each (B, ui) ∈ r[[p]]

7. ∆V := ∆V ∪ {insert (ui, rA) into edge B A};
8. return ∆V ;

Fig.5. Algorithm Xinsert.

Input: a deletion ∆X = delete p over T and the rel. view V .

Output: a group deletion ∆V over V

1. ∆V := ∅;
2 for each ((C, ui), vi) ∈ Ep(r), where (B, vi) ∈ r[[p]]

3. ∆V := ∆V ∪ {delete (ui, vi) from edge C B};
4. return ∆V ;

Fig.6. Algorithm Xdelete.

Deletion. Algorithm Xdelete is shown in Fig.6.
Given ∆X = delete p, Algorithm Xdelete returns the
group of relation view deletions ∆V over V , which will
be passed to subsequent steps to test for acceptance
(Subsection 4.2). For each node vi in r[[p]] and each par-
ent ui of vi in Ep(r), Xdelete removes the edge (ui, vi)
from V (lines 2∼3). The parent-child relation is com-
puted by using the set Ep(r), whose computation is
coupled with that of r[[p]] (See Subsection 3.2).
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Observe that these algorithms implement the new
semantics of XML view updates given in Section 2.
This is achieved by leveraging the characterization of
the XML view T in terms of relational views V . In-
deed, for two edges (u, v), (u′, v) in T , if two parents
u and u′ of the same node v have the same element
type A and the same value of the semantic attribute
$A, the two edges are represented by a single tuple in
some edge relation edge A B. Thus there is no need
to search V to find different nodes sharing (A, t), i.e.,
XML side effects described in Section 2 do not incur
extra cost. Furthermore, the set semantics of V en-
sures that a newly inserted subtree is stored only once.
In addition, Algorithm Xdelete does not physically re-
move a deleted subtree; instead, only the corresponding
parent-child edge is removed. These naturally comply
with the requirements of DAG update semantics given
in Section 2.

Example 5. Reconsider the XML update ∆X1

= delete //course [cno=CS320]//student[sid=S02]
on the XML tree in Fig.1. Given this
as input, Algorithm Xdelete yields ∆V1 =
{(takenBy1, student2)}. As another example, given
∆X2 = delete //student[sid=S02], we get ∆V2

={(takenBy1, student2), (takenBy2, student2)}.
Complexity. Algorithm Xinsert takes O(|EA|+|r[[p]]|)

time at most, which is the cost of inserting the “inner”
connections of ST(A, t) into V and connecting ST(A, t)
to the rest of V , where |EA| is the number of edges
in ST(A, t). Algorithm Xdelete takes O(|Ep(r)|) time.
Together with the complexity O(|p| |V |) of evaluating
p, this is the cost of generating ∆V from ∆X .

3.4 Maintaining Auxiliary Structures

We next outline how to maintain the reachability
matrix M and the topological order L in response to
updates over V . We should remark that the mainte-
nance of M and L is performed in the background in
parallel with the processing of relational updates ∆R;
as a result, in our framework (Fig.3), maintenance does
not slow down the process of carrying out XML view
updates. The maintenance can be cumbersome, as il-
lustrated by the next example.

Example 6. Recall the XML update ∆X1 from Ex-
ample 5. This entails that all reachability information
to S02 be deleted from the root of the CS320 subtree and
from all nodes on the path to S02. Moreover, this course
may be a prerequisite of other courses, e.g., CS650; since
CS320’s subtree is shared, the reachability information
from CS650 to S02 should be updated.

Recomputing M from the updated V bears a
prohibitive cost. What we ideally would like is

to incrementally update M . Existing incremental
techniques[26,27] for updating reachability information
are not applicable since they rely on special auxiliary
structures which are themselves expensive to construct
and maintain (e.g., [26] requires the computation of a
spanning tree, taking O(n |V |) time for each node in-
sertion). On the other hand, incremental algorithms
of updating topologically ordered lists (e.g., [28]) takes
O(|V |) time per edge insertion. Given these high in-
dividual complexities we follow a hybrid approach by
maintaining both auxiliary structures at once.

We next give two algorithms, ∆(M , L)insert and
∆(M , L)delete, for maintaining auxiliary structures M
and L in response to XML view insertions and dele-
tions, respectively.

Insertion. Algorithm ∆(M , L)insert is shown in
Fig.7. Given ∆X = insert(A, t) into p, it finds the ∆M

over M to maintain the reachability information, and
moreover, updates the topological order L in response
to the insertion of ST (A, t).

Input: an insertion of the form ∆X = insert (A, t) into p over
T , the rel. view V , reachability matrix M and topo-
logical order L.

Output: insertions ∆M over M , and updated list L.

1. compute NA and rA, as lines 2∼4 in Algorithm Xinsert;

2. LA := the topological order of nodes in ST (A, t);

3. ∆M := reachability matrix for ST(A, t); /*using Algori-

thm Reach*/

4. for each a ∈ anc(r[[p]]) and each d ∈ NA

/* computing ∆M */

5. ∆M := ∆M ∪ { insert (a, d) into M};
6. NC := the set of common nodes in lists L and LA;

/*update L*/

7. LNC
:= the topological order of nodes in NC ;

8. for (k = |LNC
|; k > 1; k −−)

/*align LA and L with LNC
*/

9. u := LNC
[k]; v := LNC

[k − 1];

10. if ordLA
(u) < ordLA

(v) then swap(LA, u, v);

11. if ordL(u) < ordL(v) then swap(L, u, v);

12. if rA ∈ L then for each u in r[[p]]

13. if ordL(u) < ordL(rA) then swap(L, u, rA);

14. L := merge LA into L;

15. return (∆M , L);

Fig.7. Maintenance algorithm ∆(M , L)insert for insertions.

It is simple to compute ∆M , which consists of two
parts: (a) the reachability matrix for the newly in-
serted DAG ST(A, t) is computed by invoking Algo-
rithm Reach (line 3); (b) for each a ∈ anc(r[[p]]) (ances-
tors of nodes in r[[p]]) and each d ∈ ST(A, t), we add
(a, d) to ∆M (lines 4∼5).

Maintaining L is a bit cumbersome. As will be
shown, M is useful in maintaining L. Before con-
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sidering inserting a DAG (ST (A, t)), we first consider
how to maintain L when one edge is inserted. For
an edge insertion (u, v), if v is already in front of u
in L, L remains valid without any change; otherwise,
special care is needed to update node positions in L.
We illustrate this by an example. Consider part of
L: 〈. . . , du, u, au1 , a1, dv1 , au2 , v, . . .〉, where au1 and au2

are ancestors of u, dv1 is a descendant of v, du is a de-
scendant of u, and a1 is neither an ancestor of u nor a
descendant of v. After (u, v) is inserted, we can obtain
a correct topological order by moving v and its descen-
dants (dv1) between u and v such that they precede
u. This yields 〈. . . , du, dv1 , v, u, au1 , a1, au2 , . . .〉. Note
that dv1 must be neither an ancestor of u (otherwise
there is a cycle) nor an ancestor of a1. To formalize
this, we denote the nodes between u and v in L as
L[u : v]. Given an edge insertion (u, v), the correct
topological order can be obtained by moving the nodes
in L[u : v] ∩ desc(v) immediately in front of u in L.
The procedure of changing L for reflecting the insertion
(u, v) is denoted as swap(L, u, v), where u precedes v in
L before the move.

We next explain the algorithm for updating L when
inserting ST(A, t) (lines 6∼14). Let LA be the topo-
logical order for ST(A, t) (line 2) and NC be the set
of common nodes in L and LA. The basic idea of the
algorithm is to make the relative orders of nodes in NC

consistent in lists L and LA before we merge L and LA

to obtain the updated L. To do this, we compute the
topological orders LNC

for nodes in NC by consider-
ing the edges that connect nodes of NC in either T or
ST(A, t) (line 7), and then align L and LA with LNC

to
make their positions consistent with LNC

(lines 8∼11).
One subtlety is worth mentioning: when performing the
alignment we follow the order of LNC

from the right to
the left. This processing order ensures that the po-
sition of aligned nodes will not be changed by subse-
quent alignment. To be specific, the aligned nodes are
not descendants of nodes to be aligned and thus will
not be moved any more when swap(L, u, v) is called
in subsequent alignment (they are not descendants of
v). Furthermore, if the root of ST(A, t) is already in
T , we may need to change the order of L in response
to the inserted edge (u, rA), where u ∈ r[[p]](u /∈ LA)
(lines 12∼13). After we obtain two consistent lists L
and LA, we can merge LA into L to generate the up-
dated L (line 14). This can be done by regarding the
nodes in NC as “pivots” and inserting the new nodes
(i.e., LA \NC) into L before their respective “pivots”.

Deletion. Maintenance of auxiliary structures in re-
sponse to XML view deletions takes place in the form
of Algorithm ∆(M , L)delete, shown in Fig.8. The al-

gorithm efficiently produces the followings by scanning
the elements of an XML deletion ∆X : (a) deletions
∆M over M , (b) an updated L, and (c) as a bonus,
the set of edges ∆′

V in the deleted subtree that are no
longer connected to any nodes in the DAG and are to be
passed to the garbage collector for background process-
ing (see Section 2). The set ∆′

V is a direct consequence
of deletions ∆V computed by Algorithm Xdelete. The
need arises when a node d ∈ ∆V is to be completely re-
moved from the subtree. This happens when either all
its incoming edges are in Ep(r) (described in Subsection
3.2), or all its parent nodes are deleted.

Input: a deletion of the form ∆X = delete p over T , the
rel. view V , reachability matrix M and topological
order L.

Output: deletions ∆′V over V , ∆M over M , and updated
list L.

1. ∆′V := ∅; ∆M := ∅;
2. LR := the sorted list desc(r[[p]]) according to topolog-

ical order L;
3. keep(d) := true for each d ∈ T ; /*initialize state*/

4. for each d in a backward traversal of LR

5. Pd := ∅;
6. for each a ∈ parent(d)

7. if ((C, a), d) /∈ Ep(r) and keep(a) = true

8. then Pd := Pd ∪ {a};
9. Ad := {a2 | a2 ∈ anc(a1), a1 ∈ Pd};
10. for each a ∈ anc(d) \Ad

11. ∆M := ∆M ∪ {delete (a, d) from M};
12. if Pd = ∅ /*compute ∆′V and update L*/

13. then keep(d) := false;

14. delete d from list L;

15. for any child d′ (of type H) of d (of type G)

16. ∆′V := ∆′V ∪ {delete (d, d′) from edge G H};
17. return (∆′V , ∆M , L)

Fig.8. Maintenance algorithm ∆(M , L)delete for deletions.

The algorithm progresses by populating deletions
∆M while, at the same time and whenever applicable,
removing elements from L and populating ∆′

V . The
first step is arranging all nodes in all deleted subtrees in
a list LR (line 2). To do so, we compute desc(r[[p]]), i.e.,
the descendants of all nodes in r[[p]]; we then sort LR

according to L; this is always possible since LR ⊆ L.
For each node d in T we associate a state keep(d), ini-
tialized to true, and keeping track of whether or not
the node should be deleted in the end (line 3). LR is
then traversed backwards (line 4); this processing order
of LR ensures that each d in LR is processed after its
ancestors. Thus it guarantees correct deletion seman-
tics. For each d in LR we compute its undeleted par-
ents (lines 6∼8) Pd (i.e., any node a in its parent set
for which keep(a) is true) and then its new ancestors
Ad (line 9). If there is a node in d’s current ancestors
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anc(d) that is not in Ad, it should be removed from
M (lines 10,11). If d does not have any parents (i.e.,
Pd = ∅) we set its keep state to false and delete it from L
(lines 13,14). Observe that according to the semantics
of L, an element removal does not affect the topological
order of the rest of its elements. In addition, all out-
going edges from a deleted node d are deleted from V
(lines 15,16); children d′ of d can be readily identified
from d’s type.

Example 7. Recall ∆X1 from Example 5. Given
∆X1 , Algorithm ∆M , Ldelete returns 1) ∆′

V1
= ∅, 2)

unchanged L, and 3) ∆M1 = {(prereq2, student2),
(prereq2, sid2), (prereq2,name2), . . .}, i.e., the reach-
ability information from nodes prereq2, course1 and
takenBy1 to nodes in the S02 subtree (student2,
sid2 and name2). Note that {(takenBy2, student2),
(takenBy2, sid2), (takenBy2,name2), . . .}, i.e., the con-
nection between node takenBy2 (and thus course2) and
the S02 subtree still holds and is not included in ∆M1 .

Complexity. The worst-case time complexity of Al-
gorithm ∆(M , L)insert is O(|EA| + |ENC

| + (|NC | +
|r[[p]]|)n+|NA||EA|+|NA|n), where (a) |NA| is the num-
ber of distinct nodes, and |EA| is the number of edges
in the inserted subtree ST(A, t), (b) |NC | is the number
of common nodes in L and LA, |ENC

| is the number
of those edges that connect nodes of NC in either T
or ST(A, t), and (c) n is the number of distinct nodes
in T . In practice |NC | < |NA| < |EA| ¿ n ¿ |V |.
The first and second factors are the cost of comput-
ing LA and LNC

, respectively, and the third factor is
the cost of maintaining L, where swap() is called at
most 2|NC |+ |r[[p]]| times and each takes at most O(n)
time. Note that swap(L, u, v) is in O(|L[u : v]|) time,
which is usually much smaller than n. The fourth fac-
tor is the cost of computing the reachability matrix for
ST(A, t), while the last factor is the cost of maintain-
ing the reachability between nodes in ST(A, t) and the
nodes in T . The worst-case time complexity of Algo-
rithm ∆(M , L)delete is O(n |V |), which is the cost of
computing new ancestors for nodes in LR. For each
node in LR we visit its parents once, which in total
takes O(|V |) time in the worst-case (in practice it is of-
ten much smaller than |V |); at each visit, the algorithm
takes O(n) time.

We make the following observations on the analy-
sis. (a) The analysis given above is the worst-case com-
plexity. While it seems no better than the complex-
ity of re-computing M and L from scratch, in practice
the updated XML view ∆X(T ) typically differs slightly
from the old view T , and |r[[p]]| and |anc(r[[p]])| are of-

ten far smaller than n. (b) LA and LR are typically
much smaller than L; this makes the fourth factor of
the complexity of ∆(M , L)insert and the complexity of
∆(M , L)delete much smaller than n |V | in practice. (c)
As mentioned earlier, the computation of ∆M and up-
dating of L is in fact conducted in the background. (d)
Our experimental study verified that the incremental
approach is far more efficient than the batch counter-
part.

4 Updating Relational Views

In this section, we extend the study of relational view
updates by providing complexity results and techniques
for processing SPJ view updates under key preserva-
tion. These results are not only important for updat-
ing XML views, defined in terms of ATGs, but are also
useful for studying relational view updates.

4.1 Key Preservation and Relational View
Updates

Foremost, we propose a mild condition on SPJ
views. Then we show that this condition simplifies the
analysis of relational view updates.

Key Preservation. Consider an SPJ query
Q(R1, . . . , Rk) that takes base relations R1, . . . , Rk of
R as input, and returns tuples of the schema R(a). We
say that Q is key preserving if for each Ri the primary
key of Ri is included in a (with possible renaming).
That is, the primary keys of all the base relations in-
volved in Q are included in the projection fields of (the
SPJ query) Q.

Next, we make a couple remarks on key preservation.
First, key preservation is far less restrictive than other
conditions proposed in earlier work for handling rela-
tional view updates (e.g., [2, 3]; see Section 6). Second,
every SPJ query in the definition of an ATG view σ
can be made key-preserving by extending its projection-
attribute list to include the primary keys. The exten-
sion does not affect the expressive power of ATGs. For
example, Q3 in σ0 of Fig.2 can be made key-preserving
by adding e.cno to its select clause. Third, key preser-
vation is a property of a view. This property does not
assume how the base relations are defined or specified.
The key attributes on the view would be useful for
translating the view update efficiently. Thus, in the
sequel we assume w.l.o.g. that all the queries in ATGs
are key-preserving.

Analysis. We consider the following decision prob-
lem:
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PROBLEM: SPJ View Updatability Problem

INPUT: A collection of views V defined as SPJ
queries under key preservation, a rela-
tional database I of schema R, and a
group view update ∆V .

QUESTION: Is there a group update ∆R on the
database I such that ∆V (V(I)) =
V(∆R(I))?

Here ∆V consists of either only tuple deletions or only
tuple insertions, as produced by the translation algo-
rithm of the last section. These deletions and insertions
in ∆V are translated to deletions and insertions in ∆R,
respectively. We use V to denote the view V(I).

It is known[18] that without key preservation, the
updatability problem is already NP-hard for a single
deletion and a single PJ view, i.e., when ∆V consists
of a single deletion and V is a view defined with projec-
tion and join operators only. In contrast, we show that
key preservation simplifies the updatability analysis for
a collection of SPJ views and group deletions.

Theorem 1. For group view deletions ∆V , the SPJ
view updatability problem is in PTIME.

In Subsection 4.2 we present a PTIME algorithm for
computing database deletions ∆R from view deletions
∆V which suffices to prove Theorem 2.

However, the problem is intractable for insertions
under key preservation; the lower bound can be verified
by reduction from the non-tautology problem, which is
NP-complete (cf. [29]).

Theorem 2. The SPJ view updatability problem is
NP-complete when ∆V has a single insertion and V has
a single view.

Proof. An NP algorithm for checking CQ view up-
datability works as follows: it first guesses a group
insertion ∆R and then checks whether V(∆R(I)) =
∆V (V ), which can be done in PTIME (data complex-
ity).

We next show the problem is NP-hard, by reduction
from the non-tautology problem. Consider an instance
of the problem: φ = C1∨· · ·∨Cn, where all the variables
in φ are x1, . . . , xk, Cj is of the form lj1 ∧ lj2 ∧ lj3 , and
lji

is either xs or x̄s, s ∈ [1, k]. The problem is to de-
termine whether there is a truth assignment such that
φ is false, i.e., φ is not valid. This problem is known to
be NP-complete.

Given φ, we define a relational database I, a single
CQ view V under key preservation, and a single view
insert ∆V on V = V(I), such that φ is not valid iff there
exists ∆R and V(∆R(I)) = ∆V (V ).

Relational Database I. The database consists of
three base relations, R, Rφ and RE , defined as follows.
• R(A,B), where A is the key of the relation and B

is a Boolean. Intuitively, A is to hold a number in [1, k]
encoding a variable, and B is a truth value (T or F ).
That is, R(A,B) is a truth assignment for φ. Initially
R(A,B) consists of a single special tuple (0, T ).
• Rφ(j, j1, X1, j2, X2, j3, X3), where j is the key of

the relation. Initially, for each Cj = lj1 ∧ lj2 ∧ lj3 , there
is a tuple (j, lj1 , X1, lj2 , X2, lj3 , X3) in Rφ such that lji

is s if lji
= xs or lji

= x̄s, Xi is T if lji
= xs, and Xi

is F if lji = x̄s. Intuitively, each of these tuples in Rφ

codes a clause in φ. A special tuple (0, 0, T, 0, T, 0, T )
is also in Rφ.
• RE(e1, e2, . . . , ek), where e1, . . . , ek are the key. In-

tuitively ei is to code i in [1, k]. Initially, RE consists
of a single special tuple (0, . . . , 0).

View. We define a single view V = V1 × V2 in terms
of conjunctive queries and under key-preservation as
follows.
• V1 = πj,j1,j2,j3σC(R1 ×R2 ×R3 ×Rφ), where R1,

R2, R3 are renaming of R, and C is a Boolean condition
c1 ∧ c2 ∧ c3, in which ci is Ri(A) = Rφ(ji) ∧ Ri(B) =
Rφ(Xi) (i = 1, 2, 3). Intuitively, C holds if and only if
one of the Cj ’s is true.
• V2 = πe1,e2,...,ek

σD(RE×R1×R2×· · ·×Rk), where
R1, R2, . . . , Rk are renamings of R, and D is a Boolean
condition

∧k
i=1 Ri(A) = RE(ei).

Initially V = V(I) has a single tuple (0, . . . , 0)
(k + 40’s).

View Insert. We define ∆V to insert a single tuple
(0, 0, 0, 0, 1, . . . , k) into V .

We next verify that ∆V is side-effect free iff φ is
not a tautology. Indeed, if φ is not a tautology, then
there is a truth assignment µ such that φ is false, and
thus Cj is false w.r.t. µ. We define ∆R based on µ
as follows: insert tuples to R(A,B) such that (i, T ) is
inserted into R(A,B) iff µ(xi) = T , and (i, F ) is in-
serted into R(A,B) iff µ(xi) = F ; furthermore, insert
(1, . . . , k) into RE . Then obviously ∆V is side-effect
free. Conversely, suppose that there is ∆V that is side-
effect free. Then (1, . . . , k) needs to be inserted into
RE , and a unique tuple of the form (i,X) needs to be
inserted into the base relation R for each i ∈ [1, k] due
to the key constraint on R, such that ∆V is indeed an
update on the view V . Here X is either T or F , and
thus after the insertion of ∆V , R(A,B) contains a valid
truth assignment for φ. Since ∆V is side-effect free, V1

will remain (0, 0, 0, 0) after ∆V is performed. That is,
Cj remains false. Thus φ is not a tautology.

4.2 Processing Group Deletions

We give a PTIME algorithm for computing database
tuple deletions ∆R from a group of view deletions ∆V .
Let VQ be the view Q(I), and consider a tuple t in ∆V
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that is to be deleted from VQ. The key preservation
condition allows us to identify, for each Sj , a unique
tuple tj via its key in t, such that t1, . . . , tl produce t
via Q. Let us use Sr(Q, t) to denote the set consist-
ing of all the pairs (Sj , tj), referred to as the deletable
source of t in VQ. Observe the followings. (a) Delet-
ing any tj from Sj suffices to remove t from VQ. (b)
Deletion of a source tuple tj from VQ is side-effect free
if and only if (Sj , tj) is not in the deletable source of
any tuple t′ ∈ V(I) \∆V that is to remain in the view
after ∆V is carried out. From these one can see that
t can be deleted from VQ if and only if there exists
(Sj , tj) ∈ Sr(Q, t) such that for all Q′ ∈ V and all
t′ that are in Q′(I) but not in ∆V , (Sj , tj) is not in
Sr(Q′, t′). Note that as far as the updatability problem
is concerned, deleting any of such tj suffices, i.e., one
can choose an arbitrary tj from Sr(Q, t) satisfying the
condition (b) given above, if there exists any.

Input: a view definition V, a relational database I, the view
VQ = Q(I) for each Q ∈ V, and a group deletion ∆V .

Output: a group update ∆R on I if it exists.

1. ∆R := ∅;
2. for each (Q, t) in ∆V

3. compute Sr(Q, t), the deletable source of t in VQ;

4. for each Q′ in V and each t in VQ′ but not in ∆V

5. compute Sr(Q′, t′);
6. for each (Q, t) in ∆V

7. if there exists (Sj , tj) in Sr(Q, t) such that
(Sj , tj) is not in Sr(Q′, t′) for any Q′ in V and
any t′ in VQ′ but not in ∆V

8. then ∆R := ∆R ∪ {(Sj , tj)};
9. else reject ∆V and exit;

10. return ∆R

Fig.9. Algorithm delete.

On this basis, we give Algorithm delete in Fig.9,
which is self-explanatory. The worst-case complexity
of Algorithm delete is in O(|∆V |(|V(I)| − |∆V |)) time.

Minimal Deletions. Algorithm delete does not ad-
dress which ∆R to select if multiple valid ∆R’s exist.
In the presence of multiple ∆R’s it is natural for one
to choose the smallest set ∆R of tuples to delete, i.e.,
a set ∆R such that |∆R| is the smallest. The minimal
view deletion problem is thus to find, given a collection
V of view definitions, a database I and view deletions
∆V , the smallest set of tuple deletions ∆R such that
∆V (V(I)) = V(∆R(I)). However desirable, the min-
imal view deletion problem is intractable, even under
the key preservation condition. The lower bound can be
verified by reduction from the minimal set cover prob-
lem, which is known to be NP-complete (cf. [29]).

Theorem 3. For SPJ views under key preservation,
the minimal view deletion problem is NP-complete.

Proof. We show the problem is NP-hard by reduc-
tion from the minimal set cover problem. An instance
of the minimal set cover problem consists of a collec-
tion C of subsets of a finite set S; it is to find a subset
C ′ ⊆ C such that every element in S belongs to at least
one member of C ′ and moreover, |C ′| is minimal.

Given S and C, we define an instance of the mini-
mal view deletion problem. Let S = {xi | i ∈ [1, n]}.
We construct |C| many base tables, n CQ views and a
group view deletion, as follows.

1) For each Sj ∈ C, we define a base relation Rj

consisting of a single column.
Let Ij , the instance of Rj , be {j}, and let the

database instance I be the collection of all Ij ’s defined
above.

2) For each xi, let Ti be the collection of all the sub-
sets in C that contain xi. Enumerate the elements of
Ti as (Si1 , . . . , Sini ). Define Vi = Ri1×· · ·×Rini . Note
that Vi(I) = (i1, . . . , ini). Let V be the collection of
Vi’s for i ∈ [1, n].

Obviously, the views defined as above are key-
preserving.

3) The group deletion ∆V is to remove all tuples
from all the views.

Note that the tuple is removed from Vi without side
effect if and only if the tuple from any Rij is removed.

The minimum view deletion problem is to find a
smallest set of the base relations R1, . . . , R|C| from
which tuples are removed, while ensuring that the view
tuples from Vi for i ∈ [1, n] are deleted without side
effect.

We next verify that the construction above is in-
deed a reduction from the minimum set cover problem.
First suppose that C ′ is a minimal cover of S. We de-
fine ∆R such that it consists of deletion of the tuples
from each base relation in {Rj | Sj ∈ C ′}. Clearly,
V(∆R(I)) = ∆V (V(I)) = ∅ since C ′ is a cover of S.
Furthermore, ∆R is minimal since C ′ is minimal. Con-
versely, suppose that ∆R is a solution to the minimal
view deletion problem. Then let C ′ be the subset of C
such that an element Sj of C is in C ′ if and only if ∆R

involves deletion of the tuple from the corresponding
relation Rj . To see that C ′ is a cover of S, note that
V(∆R(I)) = ∆V (V(I)) = ∅, and thus for each i ∈ [1, n],
some set Rij is in C ′. Moreover, C ′ is minimal since
∆R is minimal. ¤

4.3 Processing Group Insertions

Theorem 2 shows that any practical algorithm for
handling group view insertions is necessarily heuristic.
We approach this by reducing the SPJ view insertion
problem to SAT, one of the most studied NP-complete
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problems. This allows us to leverage a well-developed
SAT solver[30] to efficiently compute ∆R if it exists.

An instance of SAT (cf. [29]) is φ =
∧

i∈[1,n] Ci,
where Ci is a disjunction of literals, i.e., propositional
variables or their negation. It is to find a truth assign-
ment µ that satisfies φ, if such a µ exists.

Below we outline our heuristic algorithm, referred to
as Algorithm insert. The algorithm takes the same in-
put as that of Algorithm delete given in Fig.9, namely,
V, I, VQ(I) for each Q ∈ V, and ∆V , except that tuples
in ∆V are to be inserted into the views. It either finds a
set of insertions DR such that ∆V (V(I)) = V(∆R(I)),
or it rejects ∆V . The major steps of the algorithm can
be described as follows.
• Compute a propositional logic formula φ (i.e., a

SAT instance) from V, I, VQ(I)’s, and ∆V , such that
φ is satisfiable if and only if there exists DR such that
∆V (V(I)) = V(∆R(I)).
• Utilize an existing heuristic tool[30] for SAT to

process φ.
• If the tool returns a truth assignment µ that sat-

isfies φ, compute ∆R from µ; otherwise reject the view
updates ∆V as well as ∆X .

We next illustrate each of the three steps in detail.
Deriving φ. The encoding is a little involved. It

takes four steps.
First, we derive tuples that have to be present in

base relations so that ∆V can be computed through
queries in V. Consider (Q, t) in ∆V , which indicates
that tuple t is to be inserted into the view Q(I), as
illustrated in Subsection 4.2. For each t and each rela-
tion Ri involved in Q, we derive an Ri tuple template
ti = (ai, bi,zi) from t and Q, where ai corresponds
to the (primary) key of Ri, bi to the other columns of
Ri whose values can be determined from t, and zi to
variables whose values are unknown. Note that ai is
known due to the key preservation condition. If there
is no tuple t′ in the instance Ii of Ri with the key ai,
we add ti to a set Xi. Note that there are no more than
|Q| |∆V | many tuple templates in these Xi’s.

Example 8. Consider two relations R1, R2 and an
SPJ view Q given below, where keys are underlined:

R1 = (A : int, B : bool), R2 = (C : int, D : bool),

Q = πA,C (σB=D(R1 ×R2)).

Suppose that tuples (a, c) and (a, c′) are to be inserted
into Q(I). Then X1 contains a tuple template (a, x1)
and X2 contains (c, x2) and (c′, x3), if no tuple bear-
ing the key a is already in I1 and no c, c′ tuples are
in I2. For (a, c), (a, c′) to be inserted into the view, it
is necessary that (a, x1) is inserted into I1 after x1 is

instantiated to a truth value, and that (c, x2), (c′, x3)
are added to I2.

Second, we “evaluate” each view query Q on the
database I incremented by adding Xi to Ii. For suc-
cinctness of presentation, we present the details of the
evaluation in Appendix A. In the evaluation we “instan-
tiate” variables in the tuple templates, as well as the
selection (conjunctive) condition in Q. In Example 8,
for instance, the evaluation yields view tuples (a, c) with
condition x1 = x2, and (a, c′) with condition x1 = x3.
We then inspect the result of Q to determine whether
or not tuple templates may yield side effects. Specifi-
cally, for each tuple t in the result, if it is in neither the
view nor ∆V , we consider the following cases.

(a) If t is not associated with any condition, i.e., it
certainly has some side effects, then we reject the view
updates ∆V and ∆X immediately.

(b) If t has a condition in which at least one variable
represents an attribute with an infinite domain, we can
always pick a distinct value for the variable that makes
the condition false. This eliminates t from the result
and thus t does not yield a side effect.

(c) If t has a condition φt in which all variables cor-
respond to attributes with a finite domain, we add the
negation ¬φt as a conjunct to the logic formula φ that
we are constructing.
Furthermore, for each t that is in ∆V , we also add its
associated condition φt as a conjunct to φ. Observe
that these conjuncts are bounded by |∆V |, and those
in case (c) involve only attributes with a finite domain
(with a fixed cardinality, a constant).

Example 9. Referring to Example 8, the conjuncts
added to φ in the second step are x1 = x2 and x1 = x3.

Third, to complete the construction of φ, for each
variable x bounded to a finite domain, we add the fol-
lowing formula to φ as a conjunct: x = c1∨· · ·∨x = ck,
where c1, . . . , ck are all the values in that domain. In
Example 8, for instance, we add xi = true ∨ xi = false
for i ∈ [1, 3].

Finally, we convert φ to a propositional formula (i.e.,
a SAT instance). We use propositional variables and
their negation to code variables introduced in the en-
coding: p for x = c and p̄ for y 6= c. We also add
conjuncts (p̄ ∨ p̄′) to ensure that p and p′ cannot be
both true if, e.g., p codes for x = c, p′ for x = c′, and
c 6= c′.

The correctness of the reduction is ensured by the
following.

Theorem 4. If ∆V is not rejected during the cod-
ing, then φ is satisfiable iff there is ∆R such that
∆V (Q(I)) = Q(∆R(I)).

Proof. We verify that if ∆V is not rejected during
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the coding of an instance Q,∆V and I of the CQ view
insertion problem, then there exists a truth assignment
µ that satisfies φQ if and only if there exists ∆R such
that ∆V (Q(I)) = Q(∆R(I)).

Assume that there exists a truth assignment µ that
satisfies φQ. Then we define ∆R as follows. For each
Xj and each tuple template t in Xj , we assign a value
to each variable z in t based on µ. If z is bounded in φQ

by (z = c) for some constant c and (z = c) ↔ x, then
we let z = c if µ(x) is true; after this process if z is not
assigned any value, z must be a free variable that ranges
over an infinite domain τi and thus we can always pick
a value c′ for z without violating φ. Indeed, our coding
distinguishes (bounded) variables with a finite domain
from those (free) variables with an infinite domain, and
encodes possible value selections of those variables hav-
ing a finite domain in terms of additional clauses; the
coding ensures that the value of z can be picked without
causing side effects. For each relation Ii, let ∆i

R consist
of all these instantiated tuple templates from all Xj ’s
that are a renaming of Ri. Let ∆R be the collection of
∆i

R’s for i ∈ k. Then ∆V (Q(I)) = Q(∆R(I)). Indeed,
these newly inserted tuples do not produce view tuples
that have a key of Ri that is not already in ∆V , since
otherwise this had been caught in the coding process
and ∆V would have been rejected. Furthermore, these
newly insertions do not yield tuples that are not in ∆V

but share keys of ∆v, as ensured by the coding φQ.
Finally, all the tuples in ∆V are coded in φQ and are
guaranteed to be produced by ∆R(I). Thus ∆R carries
out the desired view insertions without side effects.

Conversely, assume that there exists a group update
∆R to I such that ∆V (Q(I)) = Q(∆R(I)). Then by re-
versing the derivation of ∆R given above we can define
a truth assignment µ to propositional variables in φQ;
indeed, we let µ(x) be true iff (z = c) and (z = c) ↔ x
are in φQ, if z has the value c in ∆R. It is easy to verify
that µ satisfies the formula φQ. ¤

Processing φ. We invoke Walksat[30] with φ as the
input. Walksat, an extension of GSAT, employs an ef-
ficient approximation algorithm to solve the maximum
satisfiability problem. If φ is satisfiable, it finds a truth
assignment µ for φ above a certain percentage.

Computing ∆R. If µ is found, we derive ∆R, i.e., the
set of tuples to be inserted into each Ii, by instantiat-
ing variables in the tuple templates in Xi’s based on µ
and the interpretation of propositional variables given
above. More specifically, for each tuple template t in
Xi, we assign a value to each variable z in t based on
µ: if z is bounded in φ by (z = c) for some constant
c and (z = c) ↔ x, then we let z = c if µ(x) is true.
After this process if z is not assigned any value, then

either (a) z ranges over an infinite domain and thus we
can always pick a value c′ for z that is not in the active
domain of the database, or (b) the value of z does not
have any impact on the satisfaction of φ; in both cases
we can find a value for z without violating φ. Then
∆R consists of query templates instantiated by these
values.

If µ is not found, we reject ∆V and ∆X . Note that
Walksat[30] may not find a truth assignment for φ even
if φ is satisfiable, since SAT is intractable and so is
the view insertion updatability problem (Theorem 2).
However, this only happens within a certain percentage
given the excellent performance of Walksat[31].

Complexity. From the construction of φ one can
see that its size |φ| depends on |∆V |,R and |Q| only,
whereas the size of the database I is irrelevant. Our
algorithm has a low (data) complexity, and is effective
in practice as verified by our experimental study.

5 Experimental Study

We conducted an experimental study of our pro-
posed view update mechanism in order to verify its ef-
fectiveness. The reported numbers are warm numbers
and are the average of five runs per query. The stan-
dard deviation of the reported numbers is no greater
than 5%.

All experiments were conducted on a synthetic
dataset. It allows us to produce highly nested XML
views with diverse structure and to have more con-
trol over the experimental settings (e.g., data size).
(We have not found any real highly-recursive rela-
tional dataset to perform our experiment.) The
dataset consists of four base relations: C(c1, . . . , c16),
F (f1, . . . , f16), H(h1, h2) and CU (c′1, . . . , c

′
16), where

underlined attributes indicate keys. The domain of f1

is equal to the domain of c1 and c′1. The remaining C
and F attributes were used to control how many join-
ing C and F tuples were filtered out. The domains of
h1 and h2 are the same as the domain of c1. The gen-
erator ensured that 1) for each c ∈ C ∪CU there would
be on average three tuples h ∈ H, where c1 = h1, and
2) h1 < h2, where (h1, h2) ∈ H. The universe of C,
namely CU , consisting of 100M C-tuples, ensured that
whenever h2 joined with c1 it always yielded a C-tuple.
The sizes of F and H were proportional to the size
of C, which we use for reporting the size of the syn-
thetic database; more specifically, the size we report is
|C|, which ranges from 1 000 to 1 000 000 tuples, while
|F | = |C| and |H| ' 3|C|. We defined an ATG view of
the relations C, F and H; as indicated in Fig.10(a), the
C nodes in the view were recursively defined, and a
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Fig.10. Description of the datasets. (a) XML view. (b) Statistics of the datasets.

Fig.11. Update performance as a function of the size of the underlying relational database and the view update size. (a) W1 deletion.

(b) W2 deletion. (c) W3 deletion. (d) W1 insertion. (e) W2 insertion. (f) W3 insertion. (g) Varying |r[[p]]| or |EP (r)|. (h) Varying

|ST(A, t)|.
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recursion of C in the view can be understood as

πc1,f1,h1,h2(σc1=f1∧f1=h1∧h2=c′1∧c2=f2∧c3=f3∧c4=f4

(C × F ×H × CU )).

Recall that [11,13] cannot handle recursions of C
in the view. Compression was achieved by sharing
C subtrees; in our dataset subtree sharing accounted
for 31.4% of C instances. Fig.10(b) lists some statis-
tics on the number of published C subtrees and their
compressed DAGs, and the corresponding sizes of the
reachability matrix M and topological order L.

Varying Database Size. We generated two random
update workloads over the XML view, one for inser-
tions, and one for deletions; each workload consisted
of three update classes, each class including ten op-
erations. The classes were characterized by the XPath
queries used for defining the updates. Specifically, class
W1 involved XPath queries using “//” and value-based
filters; XPath queries in W2 used “/” and value-based
filters; finally, W3 contained XPath queries with “/”,
and both structural and value filters. The times we
report include the followings: (a) the time to evalu-
ate XPath queries (Subsection 3.2); (b) the time to
translate ∆X to ∆V (Algorithms Xinsert and Xdelete)
and subsequently ∆V to ∆R (Section 5), and the time
to execute the update; and (c) the time to maintain
the auxiliary structures (Algorithms ∆(M , L)insert and
∆(M , L)delete). Note that (c) is executed in the back-
ground.

Figs.11(a), 11(b) and 11(c) show the performance
of the deletion algorithms for W1, W2 and W3, respec-
tively. We plot the runtime of performing the updates
broken into their (a), (b) and (c) above constituents
for various relational database sizes. Note that both
x- and y-axes use a logarithmic scale. As shown, the
algorithms scale linearly with the size of the relational
database. It is evident that deletion time is dominated
by XPath evaluation. Observe that although the cost
for (c) is relatively high, it is performed in the back-
ground. W1(b) is the highest reported time among the
three workloads since its XPath queries generate more
edges (i.e., Ep(r)), which are then examined by Algo-
rithm delete.

Similar results are reported for insertions, as shown
in Figs.11(d), 11(e) and 11(f) for W1, W2 and W3, re-
spectively (again, using logarithmic scales). The size of
the inserted subtree was fixed. The SAT solver[30] we
used returned a truth assignment in 78% of the cases
and we only report the time for insertions where the
SAT solver successfully returned a truth assignment.
As in the case of deletions, our insertion algorithms
also scale linearly with the size of the database.

Varying Update Size. For these experiments, we
fixed |C| to be 100K tuples. Fig.11(g) shows the perfor-
mance of each algorithm as we varied |Ep(r)| (see Sub-
section 4.2) for deletions and |r[[p]]| for insertions, while
keeping ST (A, t) a constant single C-subtree. The run-
times for Algorithms Xinsert, Xdelete, delete and insert
are measured on the left y-axis, while the runtimes for
algorithms ∆(M , L)insert and ∆(M , L)delete are mea-
sured on the right y-axis. The translation time from
∆X to ∆V for Algorithm Xinsert (resp. Algorithm
Xdelete) increases slightly as |r[[p]]| (resp. |Ep(r)|) in-
creases, as expected. The slope of the curve for Algo-
rithm delete is large, as the increase of |Ep(r)| involves
more database queries to determine the source tuples
to be deleted. The performance of Algorithm insert,
which models the translation of ∆V to ∆R for insertion
workloads, is dominated by the coding time. As |C| is
far larger than |ST (A, t)| and |r[[p]]|, and the number
of database queries required remained fixed, the coding
time remains roughly constant, though the size of the
resulting coding increases; however, that only results in
a non-observable increase in the SAT solver’s runtime
keeping the curve relatively flat. The performance of
Algorithm ∆(M , L)insert and Algorithm ∆(M , L)delete
is almost unaffected by |r[[p]]| (resp. |Ep(r)|) since
|ST(A, t)| is fixed.

Similar results are shown in Fig.11(h) where we var-
ied the size of |ST(A, t)| while fixing |Ep(r)| = 1 and
|r[[p]]| = 1. The performance of Algorithm Xdelete re-
mains unchanged and its runtime is negligible as it
nearly overlaps with the x-axis for a fixed |Ep(r)|. Al-
gorithm Xinsert scales linearly with the update size
|ST(A, t)| as it needs to process ST(A, t) to generate
∆V . Algorithms ∆(M , L)insert and ∆(M , L)delete evi-
dently scale linearly w.r.t. the update size for reasons
similar to the ones outlined above.

Table 1. Incremental Maintenance of L and

M vs. Recomputation

Sizes Incremental (s) Recomputation (s)

|C| Insertion Deletion L M

1K 1.0 1.0 6.3 9.8

10K 4.6 3.1 86 288

100K 22.7 16.9 631 3 600

1M 84.2 61.5 8611 14 000

Effectiveness of Incremental Maintenance. The cost
of incrementally maintaining the reachability matrix M
and the topological order L as opposed to recomputing
them is shown in Table 1. The first column presents the
size of the relational datasets. The total time needed for
incrementally maintaining both auxiliary structures is
given in the second column for Algorithm ∆(M , L)insert
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and in the third column for Algorithm ∆(M , L)delete.
The time for recomputing each structure is shown in the
last two columns. As expected, the advantages of in-
cremental maintenance become more prominent as the
size of the data increases.

6 Related Work

Commercial database systems[5−7] provide support
for defining XML views of relations and restricted view
updates. For example, IBM DB2 XML Extender[5]

supports limited view maintenance. It supports only
propagation of updates from relations to simple XML
views but does not support updates through XML
views. Oracle XML DB[6] provides XMLType views to
wrap relational tables in XML views using SQL state-
ments. It does not support recursive XPath queries
and update operations. It does not allow updates on
XML ( XMLType) views. In SQL Server[7], updates of
XML views generated by an annotated schema are rep-
resented in an updategram, a data structure for users
to express changes in XML data, by specifying the dif-
ference of the images of the data before and after a
change. Then, the system generates the SQL update
statements that correspond to the updategram. How-
ever, the views supported are very restricted: only key-
foreign key joins are allowed; neither recursive views
nor updates defined in terms of recursive XPath ex-
pressions are supported.

There have been recent studies on updating XML
views published from relational data[11,13]. In [11],
XML views are defined as query trees and are mapped
to relational views. XML view updates are translated
to updates of relations only if XML views are well-
nested (i.e., joins are through keys and foreign keys),
and if the query tree is restricted to avoid duplication.
Existing technique on relational view updates is reused
for the update translation. [32] studies a round-trip
mapping that shreds XML data into relations in or-
der to ensure that XML views are always updatable.
More general XML views where duplication is allowed
is considered in [33]. A detailed analysis on deciding
whether or not an update on XML views is translat-
able to relational updates and the decision algorithms
are presented in [13]. A framework for [13] is demon-
strated in [12]. The limitations of previous work, e.g.,
[11–13], have been discussed in Section 1.

There has been a host of work[1−7] on relational
view updates. [2] provides algorithms for translating
restricted view updates to base-table updates without
side effects in the presence of certain functional de-
pendencies. The algorithm in [3] handles translation

(which may allow side effects) for a restricted class of
SPJ view: base tables may only be joined on keys and
must satisfy foreign keys; a join view corresponds to a
single tree where each node refers to a relation; join at-
tributes must be preserved; and comparisons between
two attributes are not allowed in selection conditions.
Clearly, our key preservation condition is less restric-
tive than those considered in [2, 3]. There has also
been work[1,4] on relational view complements. An up-
date of a view can be correctly translated into updates
of base relations if and only if there exists at least one
complement that is not changed by the view update,
i.e., a constant complement exists. Obviously, it is eas-
ier to decide the translatability of a view update with
a small view complement. However, finding a minimal
view complement is NP-complete[1]. Furthermore, the
problem of constructing an update translator given a
complement view remains largely unexplored.

An algorithm for deletion translation using data lin-
eage is given in [34], which is very different from Al-
gorithm delete of Fig.9. The algorithm runs in expo-
nential time in the worst case. However, if the view is
key-preserving, the computation of data lineage is sim-
plified and the algorithm can determine a side-effect
free deletion in PTIME.

Commercial DBMSs[5−7] allow updates on very re-
stricted relational views (while users may specify up-
dates manually with INSTEAD OF triggers). For ex-
ample, for views to be deletable, IBM DB2[5] restricts
the FROM clause to reference only one base table.

Few complexity bounds are known for (relational)
view updates. The complexity of deletion on views is
given in [18]. To the best of our knowledge, this work
and the work on annotation propagation in [35] are the
only work that establishes complexity bounds for both
deletion and insertion on views under key preservation.

A number of XPath evaluation algorithms have been
proposed (e.g., [25, 36]) for trees and cannot answer
XPath queries on DAGs. Path query evaluation has
been studied in [23, 24] for DAGs. However, they can-
not be directly used in the context of XML view up-
dates as discussed in Subsection 3.2.

7 Conclusions

We have proposed new techniques for updating
XML views published from relational data. The nov-
elty of our technique consists of (a) the ability to han-
dle XML updates defined with recursive XPath queries
over (possibly) recursively defined XML views; (b) the
first method to rewrite XML updates into group up-
dates on relational views that represent a DAG com-
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pression of an XML view, capturing XML view-update
side effects; (c) a key-preservation condition on SPJ
views that is less restrictive than constraints imposed
by previous work but simplifies the analysis of relational
view updates; and (d) efficient (heuristic) algorithms for
handling relational SPJ view updates under key preser-
vation, along with complexity results. Our results con-
tribute to the study of view updates in both an XML
and a relational setting. On the XML side, these yield
an effective approach to dealing with XML view up-
dates without relying on the limited view-update sup-
port of relational DBMSs. On the relational side, our
complexity results and algorithms extend the line of
research for processing relational view updates.
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Appendix Query Evaluation on Database
with Variables

Given the original database Ii (i = 1, . . . , n), the set
of relational tuples to be inserted Xi (i = 1, . . . , n) and
the conjunctive query Q = πP (σC(T1, . . . , Tn)), where
C is a conjunction of equalities and P is a set of pro-
jected attributes, the problem is how to evaluate query
Q on database Ii incremented by Xi that contains vari-
ables to capture whether insertions Xi will yield side
effects. The challenge here is that the selection condi-
tions of Q cannot be evaluated on tuples with variables
and thus SQL queries cannot work directly on tuples
enriched with variables.

Before analyzing how side-effects are generated and
discussing how to evaluate Q to capture side-effects, we
will do some preprocessing in order to 1) guarantee that
∆R can be generated from the conjunctive query (view)
on Ii ∪Xi for any instantiation of the variables in Xi;
and 2) reduce the number of variables. The preprocess-
ing consists of several steps: 1) if there is a selection
condition such that zik = zjl, zik ∈ zi, zjl ∈ zj , we use
one variable to rename zik and zjl; 2) if a variable is not
involved in selection conditions, it can be filled with a
dummy value because the instantiation of the variable
is not relevant to side-effects; and (3) If there already
exits a base tuple r′ sharing key with r in Xi, we fill
the missing values in r according to r′.

We observe that there are only two types of side-
effects.

1) A view tuple is a side effect if it contains at least
one key from Ii \Xi and at least one key from Xj \ Ij .

2) A view tuple is a side effect if it is gener-
ated from Xi (i = 1, . . . , n), but is not a tuple in
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∆R ∪Q(I1 ∩X1, . . . , In ∩Xn).
The above two kinds of side effects cover all possible

side effects raised by the insertion of ∆R while other
possibility, such as Q(I1, . . . , In), will not generate any
side effect tuples. For convenience of presentation, we
divide Ii ∪ Xi into three non-overlapping subsets for
each i ∈ [1, n]:
• Ui = Xi \ Ii, i ∈ [1, n],
• Ai = Ii \Xi, i ∈ [1, n],
• Bi = Xi ∩ Ii, i ∈ [1, n].
To capture the first kind of side effect, for all possi-

bilities of T1, . . . , Tn, where Ti ∈ {Ui, Ai, Bi}, such that
there exist an i, j ∈ [1, n], Ti = Ui and Tj = Ai, we
rewrite Q to accommodate the variables in Ui and thus
to capture side effects. More specifically, we rewrite
the selection conditions and projected attributes. We
illustrate the rewriting using an example: given Q :=
πP (σC(R1, R2, R3)) and one combination (U1, U2, A3),
to capture the side effects from the combination we
rewrite the Q into Q′ = πP1(σC2(U1, U2, A3)). The se-
lection conditions C in Q are discomposed into C1 and
C2, where C1 only contains equality conditions involv-
ing variables (must be in U1 and U2 in this example)
while C2 contains the other selection conditions. P1

contains only the attributes contained in C2. Observe
that 1) the selection conditions in C2 that do not con-
tain variable can be imposed on Q′, and 2) the projec-
tion on P1 ensures that any two of generated side effect
tuples produce different encoding. The second kind of
side effect is captured similarly.

The algorithm is given in Fig.A. Its input consists
of 1) a set of base relations {I1, . . . In}, 2) a view V
defined in terms of conjunctive query V = πP (σC(R1×
. . .× Rn)), and 3) a group insertion ∆R = {t1, . . . , tk}
against V . The first kind of side-effect is encoded in
lines 7∼16. If a returned tuple does not contain any
variable, it is a side-effect tuple (line 13); if it contains
some variables, we need to instantiate the variables such
that the selection conditions in C1 are not satisfied in
order to avoid side-effect. More specifically, for each
return tuple tk containing variable, we construct for

each condition cj in C1 one inequality xkj
6= zkj

, where
xkj

is a variable and zkj
can be either a constant or a

variable. Side-effect tuple tk can be avoided only if at
least one of the above inequalities holds. Similarly, we
encode the second kind of side effect (lines 17∼25).

Input: relations I1, . . . , In, view V , a group insertion ∆R, the
view definition πP (σC(R1 × . . .×Rn)),

Output: side-effect encode or reject (exception)

1. Compute Xi from ∆R w.r.t. Ri, for i ∈ [1, n];

2. Preprocess Xi;

3. Θ := ∅ /* SAT instance */

4. Ui := Xi \ Ii, i ∈ [1, n]

5. Ai := Ii \Xi, i ∈ [1, n]

6. Bi := Xi ∩ Ii, i ∈ [1, n]

/* detect the first type of side-effect */

7. for each combination of T1, . . . Tn, s.t., ∃i∃j [Ti = Ui ∧
Tj = Aj ], ∧∀k [(k 6= i ∧ k 6= j) → (Tk = Uk ∨ Tk =
Rk)]

8. C1 := selection conditions involving variables in Ti

9. C2 := C \ C1

10. P1: = attributes involved in conditions in C1

11. ∆V1 := πP1 (σC2 (T1, . . . , Tk))

12. for each t′ ∈ ∆V1

13. if t′ does not contain variable then reject ∆R

return

14. else Θ := Θ ∧ (
∨

cj∈C1
((xkj

6= zkj
)))

15. endfor

16. endfor

/* detect the second type of side-effect */

17. for each combination of T1, . . . Tn, s.t., ∃i [Ti = Ui]

∧ ∀ k [(k 6= i) → (Tk = Xk)]

18. C1 := selection conditions involving variables in Ti

19. C2 := C \ C1

20. ∆V2 := σC2 (T1, . . . , Tk)

21. for each t′ ∈ ∆V2 ∧ t′ /∈ U

22. if t′ does not contain variable then reject ∆R

return

23. else Θ := Θ ∧ (
∨

cj∈C1
(xkj

6= zkj
))

24. endfor

25. endfor

26. return Θ

Fig.A. Algorithm insert.


