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Abstract Pairwise key establishment is a fundamental security service in sensor networks; it enables sensor nodes to
communicate securely with each other using cryptographic techniques. In order to ensure this security, many approaches
have been proposed recently. One of them is to use key predistribution schemes (KPSs) by means of combinatorial designs.
In this paper, we use the Bush’s construction of orthogonal arrays to present a class of key predistribution schemes for
distributed sensor networks. The secure connectivity and resilience of the resulting sensor network are analyzed. This KPS
constructed in our paper has some better properties than those of the existing schemes.
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1 Introduction

Distributed Sensor Networks (DSNs) have received
a lot of attention recently due to their wide application
in military as well as civilian operations. In the applica-
tions, we often accept the following assumptions on the
model of DSNs: 1) many sensor nodes are dropped, in a
random way, to the target area, so the network topology
is unknown before the deployment; 2) the sensor nodes
are typically low-cost, battery powered, and highly re-
source constrained, hence they should consume as lit-
tle power as possible; 3) the sensor nodes have limited
computation, storage, and communication capabilities,
so that they can communicate with nodes only within
a limited radius. We assume that the radio coverage
area of each sensor node forms a circle of a fixed ra-
dius whose center is that node. We call this circle the
neighborhood of the given sensor node. Once the sen-
sor nodes are deployed, they scan their neighborhoods
and find out their neighbors. The typical parameters
of a sensor node, for example, are as follows: the size is
58mm × 47mm × 40mm, the weight is 35g (115g with
batteries), and the node has a 16-bit microcontroller
with 2Kbyte RAM, 60Kbyte flash–ROM, and 64Kbyte
EEPROM.

In wireless distributed sensor networks, it is impor-
tant for sensor nodes to communicate securely with
each other. Of course, public key infrastructure (PKI)

can be used to establish pairwise secret keys between
sensor nodes. However, the operations, which are based
on the complex arithmetic of big integers, have to be
implemented in the low-level environments. Very re-
cently, implementations of ECC and RSA in low-level
environments such as 8-bit CPUs have been proposed
in a reasonable timing. One may refer to [1–4], for ex-
ample, for detailed results. With the improvement of
hardware technique and the optimization of algorithm
theory, it is possible to implement public key cryptog-
raphy systems in such low-level environments. Yet, by
now, it is not suitable to use PKI due to its expensive
computational cost as well as storage consumption in
each sensor node. Therefore it is natural to use the key
predistribution schemes (KPSs), where a set of secret
keys is installed in each node before the sensor nodes
are deployed. If two adjacent sensor nodes have at least
one common key, they can select it as the secret key and
communicate securely by means of symmetric cryptog-
raphy.

In general, a key predistribution scheme consists of
three phases: key predistribution, shared key discov-
ery, and path key establishment. First, a large pool
of keys is specified, and each key is assigned a unique
identifier. Then, every sensor node is loaded with a
fixed number of keys chosen from the key pool, along
with their key identifiers. After the deployment of the
DSN, the shared key discovery phase comes, where any

Regular Paper
This work was partially supported by the National Natural Science Foundation of China under Grant Nos. 60473017, 90604034

and 10771078.



826 J. Comput. Sci. & Technol., Sept. 2008, Vol.23, No.5

two nodes in wireless communication range exchange
their list of key identifiers to each other, and look for
their common keys. If they share one or more common
keys, they can pick it or one of them as their secret
key/keys for cryptographic communication. The path
key establishment phase works if there is no common
key between a pair of nodes which need to have crypto-
graphic communication. We call a successive sequence
of nodes a path, where any two adjacent nodes (also
in the radio coverage range) have at least one common
key. If the sensor node i wants to communicate securely
with the sensor node j, it needs to find a path between
itself and the sensor node j. Thus messages from the
sensor node i can reach the sensor node j securely.

In [5], Eschenauer and Gligor proposed a probabilis-
tic key predistribution scheme. The main idea was to
assign every sensor node randomly a set of keys from
the given pool of keys before deployment, so any two
sensor nodes have a certain probability of sharing at
least one common key. Extensions and variations of
this approach can be found in [6–8].

In order to construct deterministic key predistribu-
tion schemes for DSN, using combinatorial design is
another strategy in this area. This idea was first pro-
posed in Çamtepe and Yener[9]. Further study in this
context can be found in [10–12].

A combinatorial design is a pair of sets (X, B),
where X = {x1, x2, . . . , xv} is a finite set, the elements
of which are called points, and B = {B1, B2, . . . , Bb}
is a finite set of subsets of X, called blocks. And the
blocks of B satisfy some special intersectional proper-
ties.

Any combinatorial design can be used to establish
a key predistribution scheme for a DSN. Let X =
{x1, x2, . . . , xv} and B = {B1, B2, . . . , Bb}, where each
block Bj has k points of X. Let the sensor nodes be
denoted by N1, N2, . . . , Nb. For every 1 6 i 6 v, a
key Ki is chosen randomly from some special key space.
Hence there exists a 1-1 correspondence between X and
{Ki | 1 6 i 6 v}, and the symbol xi can be called the
label of Ki. Then for 1 6 j 6 b, the sensor node Nj re-
ceives the set of keys {Ki |xi ∈ Bj}, that is, the block
Bj is used for specifying which keys are given to the
node Nj . Thus each node receives k keys.

The following two probabilities can be used to de-
scribe the property of a sensor network. 1) The con-
nective probability p, it is defined by the probability
that any pair of sensor nodes shares a link, i.e., the
nodes of a pair have at least one common key. Suppose
B ∈ B is a block, it is easy to see that the connec-
tive probability p, which is independent of the specified
block B by the symmetry of combinatorial designs, can

be defined as follows:

p =
#{B′ ∈ B |B′ ∩B 6= ∅}

b− 1
.

Of course, this probability is expected to be as large as
possible, since it measures the effectiveness of the sen-
sor network. 2) The probability fail(1). If a sensor node
is detected as being compromised, then all the keys it
possesses should no longer be used by any node in the
sensor network. Suppose the sensor nodes Ni and Nj

have at least one common key (which means that there
is a link between the pair of Ni and Nj). If all the com-
mon keys of the pair of Ni and Nj are contained in the
compromised sensor node, then Ni and Nj no longer
communicate directly, i.e., the link between Ni and Nj

is lost. And the probability of links being affected is
defined as

fail(1) =
the lost connectivities

the original connectivities
.

Generally, we expect fail(1) to be as small as possible,
since it measures the resilience of the sensor network,
when a random sensor node is compromised.

Çamtepe and Yener[9], constructed a key predistri-
bution scheme for sensor network using finite geometry
over projective planes. In [11], Lee and Stinson pro-
vided a key predistribution scheme by using a special
combinatorial design TD(k, N). In this scheme, any
two sensor nodes share at most one common key.

In [13], Dong et al. construct a key predistribution
scheme based on 3-design, where the connective prob-
ability p → 1/2 and fail(1) → 0 as b →∞.

In this paper, we shall construct a class of key pre-
distribution schemes by means of a special type of or-
thogonal arrays, i.e., the orthogonal arrays generated
by the Bush’s construction. The main contributions of
this paper are summarized as follows.

1) We propose a technique that can be used to con-
struct deterministic KPSs from general combinatorial
designs.

2) We construct a new class of key predistribution
schemes. The most attractive feature of this key pre-
distribution scheme is that when the number of sensor
nodes b tends to ∞, we have p tending to some certain
limit value Pr(t) for every t, and fail(1) → 0, hence we
have various choices for different DSN.

3) We provide two theorems (Theorems 3.2 and 3.3),
which are useful in deriving the formulas of the con-
nective probability p and fail(1) of the resulting key
predistribution schemes for DSN.

The rest of this paper is arranged as follows. In Sec-
tion 2, as the preliminaries, we discuss how to construct
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key predistribution designs for DSNs by use of orthog-
onal arrays, and how to compute the connective proba-
bility p and fail(1) of the resulting schemes by means of
the properties of the corresponding combinatorial de-
signs. The key predistribution scheme based on the
Bush construction of orthogonal arrays will be pre-
sented in Section 3, and also the connective probabili-
ties p and fail(1) of the scheme will be computed in this
section. Some issues on implementation will be given
in Section 4. We compare the schemes of this paper
with some other known schemes in Section 5. Finally,
we give the sketch of the proof of Theorems 3.2 and 3.3
in Appendix.

2 Preliminaries

Suppose that (X, B) is a combinatorial design and
t an positive integer, with the following properties. For
every 1 6 r 6 t− 1, any r-subset of X either occurs in
exactly λr blocks of B or does not occur in any block
of B, and λt = 1. Such combinatorial designs can be
used to construct key predistribution schemes for DSNs
as described in the introduction. We can easily com-
pute the connective probability p and fail(1).

Suppose C ∈ B is a block, and µ′C(r) the number of
blocks in B which intersects with C at some r-set for
1 6 r 6 t− 1.

We have µ′C(t − 1) = λt−1 − 1, since λt = 1. It is
easy to see that the following recursion relation holds
for 1 6 r 6 t− 1:

µ′C(r) = λr − 1−
t−1−r∑

s=1

(
k − r

s

)
µ′C(r + s), (1)

from which we can calculate the number µ′C(t − 2),
µ′C(t− 3), . . . , µ′C(2), µ′C(1) successively.

Then we can calculate the connective probability p
and fail(1) as the following:

p =
µC

b− 1
. (2)

fail(1) =

t−1∑
r=1

(
k

r

)
λrµ

′
C(r)

b
t−1∑
r=1

(
k

r

)
µ′C(r)

, (3)

where

µC =
t−1∑
r=1

(
k

r

)
µ′C(r).

An orthogonal array of size N , with k constraints, s
levels, strength t, and index λ, denoted OA(N, k, s, t),
is an N × k array with entries from a set S of s > 2

symbols, having the property that in every N × t sub-
matrix, every 1×t row vector appears the same number
of λ times.

It is easy to see that λ = N/st. It is customary to say
that the orthogonal array has index unity when λ = 1.
In this paper, we only consider the orthogonal arrays
of index unity, and hence we have N = st. For more
constructions and applications of orthogonal arrays one
can refer to the book, Orthogonal Arrays, Theory and
Application by A.S. Hedayat, N.J.A. Sloane, and John
Stufken[17].

Orthogonal arrays can be used to construct combi-
natorial designs. Regard symbols in different columns
as different points in X, hence X has v = ks elements;
and take each row of the orthogonal array as block, so
that each block has k elements. Therefore, we get a
combinatorial design (X, B), where b = |B| = N .

3 New Scheme

Bush[15] provided a construction of orthogonal ar-
rays of index unity with strength t > 2. We state it as
follows.

Theorem 3.1. If q > 2 is a prime power, then
an OA(qt, q + 1, q, t) of index unity exists whenever
q > t− 1 > 0.

This orthogonal array can be used to construct a
combinatorial design (X, B), with v = |X| = q(q+1) =
q2 + q, b = qt. It is easy to verify that this combinato-
rial design has the following special properties: every r-
subset of X either occurs together exactly in λr = qt−r

blocks or does not occur in any block of B for 1 6 r 6 t.
The correspondences between the parameters of a

combinatorial design (X, B) and the related key predis-
tribution scheme for a DSN are summarized in Table 1.

Table 1. Parameters for Some t

KPS for a Distributed Combinatorial Parameter

Sensor Network Design

Key Pool Point Set X

Sensor Nodes Blocks

Network Size Number of Blocks b = qt

Size of Key Pool Number of Points v = q2 + q

Number of Keys per Node Block Size k = q + 1

Now, we study the connective probability p of the
KPS constructed by the above combinatorial design.
Denote Pr(t), the limit of p as q →∞, since this prob-
ability is relative to t.

We consider λr and µ′C(r) (1 6 r 6 t) as polyno-
mials of q, and by some more tedious and complex cal-
culation, we can prove the following two theorems (we
provide the sketch of the proofs in Appendix):
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Table 2. Parameters for Some t

p3 p4 p5 p6 f3 f4 f5 f6

q = 11 0.586 466 0.699 454 0.678 982 0.681 591 0.020 979 0.060 886 0.052 424 0.053 777

q = 13 0.573 770 0.694 118 0.671 019 0.674 219 0.015 385 0.052 252 0.043 985 0.045 441

q = 17 0.557 003 0.687 356 0.660 540 0.664 642 0.009 288 0.040 770 0.033 219 0.034 710

q = 29 0.533 869 0.678 543 0.646 121 0.651 711 0.003 337 0.024 635 0.019 085 0.020 346

q = 59 0.516 803 0.672 410 0.635 487 0.642 371 0.000 834 0.012 402 0.009 219 0.010 012

q = 79 0.512 577 0.670 939 0.632 852 0.640 084 0.000 469 0.009 319 0.006 853 0.007 481

q = 109 0.509 132 0.669 753 0.630 703 0.638 226 0.000 248 0.006 788 0.004 947 0.005 424

q = 139 0.507 168 0.669 082 0.629 477 0.637 170 0.000 153 0.005 338 0.003 870 0.004 255

Table 3. Experimental Results of p

q 29 59 79 109 139 179

T = 1000 0.677 047 0.674 985 0.672 533 0.670 681 0.668 899 0.666 657

T = 2000 0.679 295 0.674 217 0.668 439 0.671 441 0.669 170 0.669 315

T = b 0.678 543 0.672 410 0.670 939 0.669 753 0.669 082 0.668 539

Theorem 3.2. Suppose that t > 2 is an integer, we
have

Pr(t) = 1− 1
2!

+
1
3!
− 1

4!
+ · · ·+ (−1)t

(t− 1)!

→ 1− 1
e
∼= 0.632121, when t →∞.

(4)

where e = 2.7182818 · · · is the constant of natural

logarithm.
Theorem 3.3. 1) limq→∞ fail(1) = 0.
2) p/fail(1) ∼= O(q2) if t = 3, and p/fail(1) ∼= O(q)

otherwise, where O(q2) and O(q) means no more than
some certain constant multiple of q2 and q respectively.

Example 1. For t = 2, 3, 4, 5, 6, we compute the
explicit formulas of the connective probability p and
fail(1) as follows:

p fail(1)

t = 2 1 1
q

t = 3 q2+3q+2
2(q2+q+1)

3
q(q+2)

t = 4 2q2+q+3
3q2+3

3q3−3q2+13q−1
4q4+2q3+6q2

t = 5 5q4+10q3+7q2+10q+8
8(q4+q3+q2+q+1)

8q5+18q4−26q3+73q2−15q+2
15q6+15q5+6q4+24q3

t = 6 19q4+16q3+19q2+6q+30
30(q4+q2+1)

45q7+30q6+145q5−230q4+511q3−186q2+51q−6
4(19q8+16q7+19q6+6q5+30q4)

Table 2 lists the connective probability p and fail(1)
for some q, and t = 3, 4, 5, 6, where the subscript
denotes the value of t.

4 Implementation

Suppose that q is a prime in this section. The size
of q is determined by the number of keys k = q + 1 per
node. Since the elements from different columns of the
orthogonal array are considered as different elements of
X, we can denote X to be

X = {aij | 0 6 i 6 q − 1, 0 6 j 6 q}.

To get a block B of B, we generate a polynomial
φ(x) of degree t−1, compute yi = φ(i) for 0 6 i 6 q−1,
and denote the coefficient of xt−1 in φ by yq, and then
we have

B = {ay0,0, ay1,1, . . . , ayq−1,q−1, ayq,q}.
If we generate all the polynomials of degree t− 1 in

Fq[x], we get all the blocks B of the DSN.
We may find all the blocks B by searching if q is not

too large. When q grows larger, the number of blocks
b = qt in B may become too large for application. In
this case we can only use a part of the blocks chosen
randomly from B. If we take t = 4, for example, then
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Table 4. Experimental Results of fail(1)

q 29 59 79 109 139 179

T = 1000 0.024 499 0.012 488 0.009 423 0.006 846 0.005 380 0.004 112

T = 2000 0.024 730 0.012 464 0.009 287 0.006 795 0.005 345 0.004 154

T = b 0.024 635 0.012 402 0.009 319 0.006 788 0.005 338 0.004 155

the experiments (Tables 3, 4, where T is the number
of blocks) show that the parameters p and fail(1) have
only a small disturbance when only a part of blocks is
used.

After the deployment of the distributed sensor net-
work, any two nodes in the wireless communication
range exchange their list of key identifiers to each other,
and look for their common keys. If they have common
keys, they can pick one of them as their secret key for
cryptographic communication.

5 Comparisons

In [9], Çamtepe and Yener constructed a key predis-
tribution scheme for sensor network by use of finite ge-
ometry over projective planes. Let q be a prime power,
X the projective plane PG(2,Fq), B the set of projec-
tive lines in PG(2,Fq), then it is easily seen that (X, B)
is a 2− (q2 + q + 1, q + 1, 1) design. Each pair of lines
has exactly one common point, so the connective prob-
ability p = 1. However, sine b = |B| = q2 + q + 1, the
number of keys per node is k = q + 1 ≈

√
b. When the

size of DSN is large, it may be impossible for its heavy
storage requirement.

For example, suppose that we want to construct
a key predistribution scheme, by the Çamtepe and
Yener’s method, for a DSN having 1000000 nodes.
Then the smallest prime power q such that q2 + q +1 >
1000000 is q = 1009. The resulting KPS would assign
1010 keys to every node.

In our schemes, let t = 4, the smallest prime q such
that b = q4 > 1000000 is that q = 37. If we take q = 37,
then the resulting key predistribution scheme for a DSN
can support more than 1000000 sensor nodes and each
node stores k = q + 1 = 38 keys, which is much less
than that in Çamtepe and Yener’s scheme.

In [11], Lee and Stinson constructed a key predistri-
bution scheme by using transversal design TD(k, N).

Let k > 2 and N > 1. A transversal design TD(k, N)
is a triple (X, B,G ) such that the following properties
are satisfied: 1) X is a set of kN elements called points;
2) G is a partition of X into k subsets of size N called
groups; 3) B is a set of k-subsets of X called blocks; 4)
any group and any block contain exactly one common
point; and 5) every pair of points from distinct groups
is contained exactly in one block. For further intro-
duction, or construction to transversal designs, one can
refer to [14, 16].

A class of transversal design TD(k, N), where N is
a prime and k < N , was constructed in [11]. In the
resulting scheme, every two sensor nodes share at most
one common key, the number of nodes b = N2, the
connective probability p′ = k/(N + 1) and Fail(1) =
(N − 2)/(N2 − 2). We compare the scheme based on
this class of TD(k, N) with the scheme of this paper
with t = 3. For a given prime power q, let k = q + 1
and N be the largest prime such that N2 6 q3. The
comparison between these two schemes is given in Table
5.

Table 5 shows that when these two schemes have the
same number k of keys per node and approximately the
same number b of nodes, the scheme of this paper has
greater connective probability p and lower fail(1).

In [13], Dong et al. constructed a key predistribu-
tion scheme based on 3-design. Table 6 gives some basic
parameters of this scheme, where b2, p′′ and FAIL(1)
denote the corresponding parameters of the scheme in
[13].

From Example 1, we know that when t = 2, our
scheme has the maximal connective probability p = 1,
which is similar to that of the scheme in [9]. And from
Tables 2 and 6, we know that, when t = 3, our scheme
has the similar parameters as that of the scheme in [14].

Table 5. Comparison of the Case t = 3 and TD(k, N)

q b v k p3 f3 N p′ Fail(1)

11 1 331 132 12 0.586 466 0.020 979 31 0.375 000 0.030 240

13 2 197 182 14 0.573 770 0.015 385 47 0.318 182 0.022 198

17 4 913 306 18 0.557 003 0.009 288 67 0.264 706 0.014 486

29 24 389 870 30 0.533 869 0.003 337 151 0.197 368 0.006 535

59 205 379 3 540 60 0.516 803 0.000 834 449 0.133 333 0.002 217

79 493 039 6 320 80 0.512 577 0.000 469 701 0.113 960 0.001 422

109 1 295 029 11 990 110 0.509 132 0.000 248 1 129 0.097 345 0.000 884

139 2 685 619 19 460 140 0.507 168 0.000 153 1 637 0.085 470 0.000 610
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Furthermore, by selecting properly parameter t, the
scheme in this paper may have better connective prob-
ability p or lower fail(1) than that of [9], and [13].

Table 6. Some Parameters from [13]

q b2 p′′ FAIL(1)

11 1 342 0.630 872 0.021 625

13 2 210 0.611 589 0.015 788

17 4 930 0.586 123 0.009 475

29 24 418 0.551 050 0.003 376

59 205 438 0.525 271 0.000 838

79 493 118 0.518 903 0.000 471

109 1 295 138 0.513 718 0.000 249

139 2 685 758 0.510 765 0.000 153

6 Conclusions

In this paper, we construct a class of key predis-
tribution schemes by using the Bush construction of
orthogonal arrays. Compared with the schemes from
[11], our scheme has higher connective probability and
lower fail(1). And compared with schemes from [13],
by selecting properly parameter t, our scheme can
have higher connective probability p. Furthermore, our
schemes can provide various choices for different DSN’s,
since there are various choices of t.
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[4] Guajardo J, Blümel R, Krieger U, Paar C. Efficient implemen-
tation of elliptic curve cryptosystems on the TI MSP 430x33x
family of microcontrollers. In Proc. PKC2001, LNCS 1992,
2001, pp.365–382.

[5] Eschenauer L, Gligor V B. A key management scheme for
distributed sensor networks. In Proc. the 9th ACM Confer-
ence on Computer and Communications Security, Washing-
ton DC, USA, 2002, pp.41–47.

[6] Chan H, Perrig A, Song D. Random key predistribution
schemes for sensor networks. In Proc. the IEEE Symposium
on Security and Privacy, Washington DC, 2003, pp.197–213.

[7] Du W, Deng J, Han Y, Varsheney P. A pairwise key pre-
distribution scheme for wireless sensor networks. In Proc.

the 10th ACM Conference on Computer and Communica-
tions Security (CCS), Washington DC, USA, October 2003,
pp.42–51.

[8] Liu D, Ning P. Establishing pairwise keys in distributed sensor
networks. In Proc. the 10th ACM Conference on Computer
and Communications Security (ACMCCS), Washington DC,
USA, 2003, pp.52–61.
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Appendix. Proofs of Theorems 3.2 and 3.3

Proof of Theorem 3.2 (Sketch). Suppose t > 2 is an
integer, we consider λr = qt−r and µ′C(r) (1 6 r 6 t)
as polynomials of q. By (1), we have

deg
(
µ′C(r)

)
=

{
t− r, r 6= t− 2;

1, r = t− 2;
(A1)

for 1 6 r 6 t − 1. Furthermore, we have µ′C(t − 1) =
q − 1, and µ′C(t− 2) = (t− 2)(q − 1).

For every 1 6 r 6 t, let ar be the leading coefficient
of µ′C(r). Then we have the following relation of the
leading coefficients ar of µ′C(r):

at−r +
at−r+1

1!
+

at−r+2

2!
+

at−r+3

3!
+ · · ·+ at−2

(r − 2)!
+

at−1

(r − 1)!
= 1.

(A2)

Finally, by induction on r, we can prove that

at−r =





1, if r = 1,

0, if r = 2;
1
2!
− 1

3!
+ · · ·+ (−1)r−1

(r − 1)!
, if r > 3;

(A3)

for every 1 6 r 6 t− 1.
By (A1), the degrees of the numerator and denom-

inator of the connective probability p are equal. Since
the limit of connective probability as q → ∞, denoted
by Pr(t) as above, it can be calculated by

Pr(t) =
at−1

(t− 1)!
+

at−2

(t− 2)!
+

at−3

(t− 3)!
+ · · ·+ a2

2!
+

a1

1!
,

(A4)
which will complete the proof of Theorem 3.2. ¤

Proof of Theorem 3.3 (Sketch). If t = 3, we can com-
pute the formulas of the connective probability p and
fail(1) as in the table of Example 1, and the theorem
holds in this case.

If t 6= 3, by computing the degrees of the numera-
tor and denominator of Fail(1), we get that the degree
of the numerator equals the degree of the denominator
−1. As to the connective probability p, the degree of
the numerator equals the degree of the denominator,
which will complete the proof of Theorem 3.3. ¤


