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Abstract We review the constructions of two main kinds of generalized cyclotomic binary sequences with length pq (the
product with two distinct primes). One is the White-generalized cyclotomic sequences, the other is the Ding-Helleseth(DH,
for short)-generalized cyclotomic sequences. We present some new pseudo-random properties of DH-generalized cyclotomic
sequences using the theory of character sums instead of the theory of cyclotomy, which is a conventional method for
investigating generalized cyclotomic sequences.

Keywords stream cipher, generalized cyclotomic sequence, pseudo-random binary sequence, character sum, correlation

1 Introduction

Let m be a positive integer. We identify Zm, the
residue ring modulo m, with the set {0, 1, . . . , m − 1}
and we denote by Z∗m the unit group of Zm. A partition
{D0, D1, . . . , Dd−1} of Z∗m is a family of sets with

Di ∩Dj = ∅ for i 6= j; Z∗m =
d−1⋃

i=0

Di.

If D0 is a multiplicative subgroup of Z∗m and there exist
elements g1, . . . , gd−1 of Z∗m such that Di = giD0 for all
i ∈ [1, d − 1], then the Di’s are called classical cyclo-
tomic classes of order d when m is prime and generalized
cyclotomic classes of order d when m is composite.

Using classical cyclotomic classes and generalized cy-
clotomic classes to construct binary sequences, which
are called classical cyclotomic sequences and general-
ized cyclotomic sequences respectively, is an important
method for sequence design. The distinguished work
is due to Whiteman and Ding et al.[1−6] There are
different kinds of classical/generalized cyclotomic se-
quences and most of them have quite good random-
ness properties, which make them significant in crypto-
graphic applications. For example, the most important
classical cyclotomic sequence is the Legendre sequence,
which has ideal periodic and aperiodic autocorrelation

functions and exhibits large linear complexity[7,8]. A
new kind of generalized cyclotomic sequences with re-
spect to pe1

1 . . . pet
t was introduced in [4].

This paper contributes to the generalized cyclotomic
sequences with respect to pq, the product with two dif-
ferent prime numbers.

Let p and q be two distinct primes with gcd(p −
1, q − 1) = d and e = (p− 1)(q − 1)/d. By the Chinese
Remainder Theorem there exists a common primitive
root g of both p and q. There also exists an integer x
satisfying

x ≡ g (mod p), x ≡ 1 (mod q).

Below we always fix the definitions of g and x. Since
g is a primitive root of both p and q, by the Chinese
Remainder Theorem again

ordpq(g) = lcm(ordp(g), ordq(g))

= lcm(p− 1, q − 1) = e,

where ordm(g) denotes the multiplicative order of g
modulo m.

So we have

Z∗pq = {gsxi (mod pq)|s = 0, 1, . . . , e− 1,

i = 0, 1, . . . , d− 1}.
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There are two different generalized cyclotomic classes
over Z∗pq, one is called Whiteman-generalized cyclotomic
classes, the other is called Ding-Helleseth-generalized
cyclotomic classes (DH-generalized cyclotomic classes,
for short). Both generalized cyclotomic classes are
used for designing binary sequences, which are called
Whiteman-generalized cyclotomic sequences and DH-
generalized cyclotomic sequences. See below the de-
tails.

We conclude this section with the definitions of
two important pseudo-random measures, introduced by
Mauduit and Sárközy[9], for finite binary sequences. We
introduce these notions below with a slight modifica-
tion.

For a finite binary sequence of length N (for any
N ∈ N)

SN = {s1, s2, . . . , sN} ∈ {0, 1}N .

The well-distribution measure of SN is defined as

W (SN ) = max
a,b,t

∣∣∣
t−1∑

j=0

(−1)sa+jb

∣∣∣,

where the maximum is taken over all a, b, t such that
a, b, t ∈ N and 1 6 a 6 a + (t − 1)b 6 N , while the
correlation measure of order k of SN is defined as

Ck(SN ) = max
M,D

∣∣∣
M∑

n=1

(−1)sn+d1+sn+d2+···+sn+dk

∣∣∣,

where the maximum is taken over all D = (d1, . . . , dk)
with non-negative integers 0 6 d1 < · · · < dk and M
such that M + dk 6 N .

SN is considered as a “good” pseudo-random se-
quence, if both W (SN ) and Ck(SN ) (at least for small
k) are “small” in terms of N (in particular, both are
o(N) as N → ∞). The Legendre sequence forms
a “good” pseudo-random sequence[9]. Many other
“good” binary sequences were designed in the litera-
ture, see for example[10−13].

2 Constructions of Generalized Cyclotomic
Sequences

In this section, we will introduce two main gener-
alized cyclotomic sequences of length pq. One is the
Whiteman-generalized cyclotomic sequences, the other
is the DH-generalized cyclotomic sequences.

2.1 Whiteman-Generalized Cyclotomic
Sequences

The Whiteman-generalized cyclotomic classes of or-
der d with respect to pq are defined by

Di = {gsxi (mod pq)|s = 0, 1, . . . , e− 1},

where i = 0, 1, . . . , d − 1. Di’s give a partition of Z∗pq,
i.e.,

Z∗pq =
d−1⋃

i=0

Di, Di ∩Dj = ∅ for i 6= j.

Now set

R = {0},
Q = {q, 2q, . . . , (p− 1)q},
P = {p, 2p, . . . , (q − 1)p}.

We also set

C0 = R ∪Q ∪
( d

2−1⋃

i=0

D2i

)
, C1 = P ∪

( d
2−1⋃

i=0

D2i+1

)
,

C00 = R ∪Q ∪
( d

2−1⋃

i=0

Di

)
, C11 = P ∪

( d−1⋃

i=
d
2

Di

)
.

It is easy to see that

Zpq = C0 ∪ C1, C0 ∩ C1 = ∅

and
Zpq = C00 ∪ C11, C00 ∩ C11 = ∅.

Clearly, if d > 2, C0 6= C00 and C1 6= C11.
Now we introduce two kinds of Whiteman-

generalized cyclotomic sequences of order d, the name
comes from the use of Whiteman-generalized cyclo-
tomic classes.

Definition 1. The Whiteman-generalized cyclo-
tomic sequence S = {s0, s1, . . . , spq−1} of order d and
of length pq, which is called W-GCS-I, is defined by

si =
{

0, if i ∈ C0;

1, if i ∈ C1.

Another Whiteman-generalized cyclotomic sequence
T = {t0, t1, . . . , tpq−1} of order d and of length pq,
which is called W-GCS-II, is defined by

ti =
{

0, if i ∈ C00;

1, if i ∈ C11.
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It is easy to see that W-GCS-I can be expressed as

si =





1, if i ∈ P ;

0, if i ∈ Q ∪R;

1−
( i

p

)( i

q

)

2
, if i ∈ Z∗pq;

for 0 6 i 6 pq − 1, where ( ·· ) denotes the Legendre
symbol. So we deduce

(−1)si =





−1, if i ∈ P ;

1, if i ∈ Q ∪R;( i

p

)( i

q

)
, if i ∈ Z∗pq;

for 0 6 i 6 pq − 1. W-GCS-I is also known as Jacobi
sequence[14].

W-GCS-I has several good randomness properties.
All these results make it significant in cryptographic
applications.

When d = 2 (W-GCS-I and W-GCS-II are the
same), exact formulas for the linear complexity have
been determined in [3] and the (periodic) autocorrela-
tion values have been determined by the generalized cy-
clotomic numbers in [5]. The linear complexity takes on
one of pq−1, (p−1)q, (p−1)(q−1), (pq +p+ q−3)/2,
(p − 1)(q − 1)/2 and (p − 1)(q + 1)/2, depending on
the values of p mod 8 and q mod 8. The autocorrela-
tion is at most five-valued depending on the parity of
(p− 1)(q − 1)/4.

Using similar methods, exact formulas for the linear
complexity and the (periodic) autocorrelation values of
W-GCS-I and W-GCS-II have been determined in [15,
16] when d = 4. Results indicate that both sequences
have low autocorrelation and high linear complexity.

Many other properties (for the case of d = 2), such as
pattern distributions of length 2, aperiodic autocorre-
lation and linear complexity profile, have been also de-
termined in [5, 17]. In particular, for any order d(> 2),
exact formulas for the periodic autocorrelation values
have been computed by the theory of character sums
in [17]. A trace representation of W-GCS-I has been
presented in [14].

Similarly, W-GCS-II also can be described with mul-
tiplicative characters of Z∗pq. For any positive integer
m > 1, a group homomorphism

χ : Z∗m → C∗1

is called a multiplicative character modulo m, where C∗1
is the multiplicative group of complex numbers of abso-
lute value 1. A character with χ(u) = 1 for any u ∈ Z∗m
is called the principal character and denoted by χ0 = 1.

Ẑ∗m is denoted by the set of all multiplicative characters
of Z∗m.

The exponential sums enter into our problem by
means of the following well known basic identity.

Lemma 1[18]. Let #Ẑ∗m denote the cardinality of
Ẑ∗m. For any element u ∈ Z∗m,

∑

χ∈Ẑ∗m

χ(u) =
{

0, if u 6= 1;

#Ẑ∗m, otherwise.

And for any character χ ∈ Ẑ∗m,

∑

u∈Z∗m
χ(u) =

{
0, if χ 6= χ0;

#Ẑ∗m, otherwise.

We note that Z∗m and Ẑ∗m in Lemma 1 can be replaced
by any subgroups of Z∗m and Ẑ∗m, respectively.

Now from the construction of W-GCS-II and by
Lemma 1, one can deduce

(−1)ti =





−1, if i ∈ P ;

1, if i ∈ Q ∪R;

2
d

d
2−1∑

j=0

∑

χ∈G∗
χ(i)χ(xj), if i ∈ Z∗pq;

where G = {χ ∈ Ẑ∗pq|χ(gl) = 1, l = 0, 1, . . . , e − 1} is a
cyclic subgroup of multiplicative characters group Ẑ∗pq,
G∗ = G \ {χ0}.

Using certain exponential sums, we estimate the
well-distribution measure and the correlation measure
of order k of W-GCS-II in [19]. We prove below that
the upper bounds of both measures are very close to
that of “truly” random sequences.

Proposition 1[19]. Let T = {t0, t1, . . . , tpq−1} be
the W-generalized cyclotomic sequence of order d de-
fined as in Definition 1. Then the well-distribution
measure of T satisfies

W (T ) < 36p
1
2 q

1
2 log(pq) log(1 + d) + p + q + 1

and the correlation measure of order k (small) of T
satisfies

Ck(T ) < 9k4kp
1
2 q

1
2 logk(1 + d) log(pq) + k(p + q + 1).

2.2 DH-Generalized Cyclotomic Sequences

The DH-generalized cyclotomic classes of order d
with respect to pq are defined by

D′
j =

{
gds+jxl (mod pq)|s = 0, 1, . . . ,

e

d
− 1,
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l = 0, 1, . . . , d− 1
}

,

where j = 0, 1, . . . , d− 1. (See [4] for the general case).
Clearly,

Z∗pq =
d−1⋃

j=0

D′
j , D′

i ∩D′
j = ∅ for i 6= j.

Let P, Q, R be defined as in Subsection 2.1. Define

C ′0 = R ∪Q ∪
( d

2−1⋃

j=0

D′
2j

)
, C ′1 = P ∪

( d
2−1⋃

j=0

D′
2j+1

)
,

C ′00 = R ∪Q ∪
( d

2−1⋃

j=0

D′
j

)
, C ′11 = P ∪

( d−1⋃

j=
d
2

D′
j

)
.

Then C ′0, C
′
1 and C ′00, C

′
11 give a partition of Zpq, re-

spectively, that is,

Zpq = C ′0 ∪ C ′1, C ′0 ∩ C ′1 = ∅

and
Zpq = C ′00 ∪ C ′11, C ′00 ∩ C ′11 = ∅.

Clearly, if d > 2, C ′0 6= C ′00 and C ′1 6= C ′11.
Below we define the DH-generalized cyclotomic se-

quences of order d, the name comes from the use of
DH-generalized cyclotomic classes.

Definition 2. The DH-generalized cyclotomic se-
quence U = {u0, u1, . . . , upq−1} of order d and of length
pq, which is called DH-GCS-I, is defined by

ui =
{

0, if i ∈ C ′0;

1, if i ∈ C ′1.

Another DH-generalized cyclotomic sequence V =
{v0, v1, . . . , vpq−1} of order d and of length pq, which
is called DH-GCS-II, is defined by

vi =
{

0, if i ∈ C ′00;

1, if i ∈ C ′11.

Like W-GCS-I and W-GCS-II in Definition 1, DH-GCS-
I and DH-GCS-II also can be described by virtue of
multiplicative characters of Z∗pq.

According to the construction of DH-GCS-I, we de-
duce

(−1)ui =





−1, if i ∈ P ;

1, if i ∈ Q ∪R;( i

q

)
, if i ∈ Z∗pq;

for 0 6 i 6 pq − 1.

When d = 2, exact formulas for the linear complexity
and the (periodic) autocorrelation values of DH-GCS-I
have been presented in [20, 21]. The linear complexity
takes on one of pq − 1, (q − 1)p, (pq − p + q − 1)/2 and
(pq+p+q−3)/2, depending on the value q mod 8. The
sequence is cryptographically attractive as far as linear
complexity is concerned. The autocorrelation is four-
valued or six-valued, depending on the value q mod 4,
while one of the autocorrelation values is “large”. So
these sequences are not fit for some special applications,
such as radar systems, spread-spectrum communication
systems and CDMA systems.

Let H = 〈gd〉 be a subgroup of Z∗pq generated by gd.
Let A = {χ ∈ Ẑ∗pq|χ(h) = 1, for all h ∈ H}. Obviously,
A is a subgroup of Ẑ∗pq with cardinality #A = d2 by
[18, Theorem 5.6]. Let A∗ = A\ {χ0}. It is easy to see
that for any χ ∈ A, there exist χp ∈ Z∗p and χq ∈ Z∗q
such that χ = χpχq with χd

p = 1 and χd
q = 1, where

χp ∈ Ẑ∗p and χq ∈ Ẑ∗q .
According to the construction of DH-GCS-II and by

Lemma 1, for any 0 6 i 6 pq − 1 with gcd(i, pq) = 1,
we have

d−1∑

l=0

d
2−1∑

j=0

∑

χ∈A
χ(i)χ(gjxl) =

{
d2, if i ∈ C ′00;

0, if i ∈ C ′11.

Then, for any 0 6 i 6 pq − 1 with gcd(i, pq) = 1, we
have

d−1∑

l=0

d
2−1∑

j=0

∑

χ∈A∗
χ(i)χ(gjxl) =





d2

2
, if i ∈ C ′00;

−d2

2
, if i ∈ C ′11.

So, we deduce

(−1)vi =





−1, if i ∈ P ;

1, if i ∈ Q ∪R;

2
d2

d−1∑

l=0

d
2−1∑

j=0

×
∑

χ∈A∗
χ(i)χ(gjxl), if i ∈ Z∗pq;

(1)

for 0 6 i 6 pq − 1.

We present two pseudorandom measures for DH-
GCS-II in the following section.
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3 Pseudorandom Measures for
DH-Generalized Cyclotomic Sequences

Theorem 1. Suppose V = {v0, v1, . . . , vpq−1} is the
DH-generalized cyclotomic sequence of order d defined
as in Definition 2. Then the well-distribution measure
of V satisfies:

W (V) < 36pq
1
2 log(q) log(1 + d) + p + q − 1.

Theorem 2. Suppose V = {v0, v1, . . . , vpq−1} is the
DH-generalized cyclotomic sequence of order d defined
as in Definition 2. Then the correlation measure of or-
der k (small) of V holds:

Ck(V) < 9k4kpq1/2 log(q) logk(1 + d) + k(p + q − 1).

In order to prove Theorems 1 and 2, we need the
following statements.

We recall that A = {χ ∈ Ẑ∗pq|χ(h) = 1, for all,
h ∈ H} and A∗ = A\ {χ0}. For any χ ∈ A, there exist
χp ∈ Z∗p and χq ∈ Z∗q such that χ = χpχq with χd

p = 1
and χd

q = 1, where χp ∈ Ẑ∗p and χq ∈ Ẑ∗q . Let

A∗∗ = {χpχq|χd
p = 1, χd

q = 1, χp 6= 1, χq 6= 1,

χp ∈ Ẑ∗p, χq ∈ Ẑ∗q},
A∗∗p = {χpχq|χd

p = 1, χp 6= 1, χq = 1, χp ∈ Ẑ∗p},
A∗∗q = {χpχq|χd

q = 1, χp = 1, χq 6= 1, χq ∈ Ẑ∗q}.

So A∗ = A∗∗ ∪ A∗∗p ∪ A∗∗q .
Lemma 2. With notations as the above, let g and

x be defined as in Section 1. Then we have
(i)

∑d−1
l=0 χ(xl) = 0 for any χ ∈ A∗∗ ∪ A∗∗p ;

(ii)
∑d−1

l=0 χ(xl) = d for any χ ∈ A∗∗q ;

(iii)
∑

χ∈A∗∗q

∣∣ ∑d
2−1

j=0 χ(gj)
∣∣ < 2d log(1 + d).

Proof. By the definitions of x and g in Section 1, we
have

d−1∑

l=0

χ(xl) =
d−1∑

l=0

(χpχq)(xl)

=
d−1∑

l=0

χp(xl)χq(xl) =
d−1∑

l=0

χp(gl).

Then χp 6= 1 yields (i), while χp = 1 yields (ii). Now
we prove (iii). Since

∑

χ∈A∗∗q

∣∣∣
d
2−1∑

j=0

χ(gj)
∣∣∣ =

∑
χq 6=1

χd
q=1

∣∣∣
d
2−1∑

j=0

χq(gj)
∣∣∣

6
∑
χq 6=1

χd
q=1

2
|1− χq(g)| ,

then the result follows from [12, Lemma 3]. ¤
Lemma 3[9]. Suppose that q is a prime, χq is a

non-principal multiplicative character modulo q of or-
der d, f(x) ∈ Zq[x] has s distinct roots in Zq and it is
not a constant multiple of a d-th power of a polynomial
over Zq. Let y be a real number with 0 < y 6 q. Then
any x ∈ R:

∣∣∣
∑

x<n6x+y

χq(f(n))
∣∣∣ < 9sq1/2 log(q).

Proof of Theorem 1. According to (1), for any non-
negative integers a, b, t with 0 6 a 6 a+(t−1)b 6 pq−1,
we have at most δ = p + q− 1 elements i(0 6 i 6 t− 1)
with a + ib ∈ P ∪Q ∪R. Hence, we get

∣∣∣
t−1∑

i=0

(−1)va+ib

∣∣∣ 6
∣∣∣

t−1∑
i=0

a+ib∈Z∗pq

(−1)va+ib

∣∣∣ + δ

=
2
d2

∣∣∣
t−1∑
i=0

a+ib∈Z∗pq

d−1∑

l=0

d
2−1∑

j=0

∑

χ∈A∗
χ(a + bi)χ(gjxl)

∣∣∣ + δ

=
2
d2

∣∣∣
∑

χ∈A∗

d−1∑

l=0

d
2−1∑

j=0

χ(gjxl)
t−1∑
i=0

a+ib∈Z∗pq

χ(a + bi)
∣∣∣+ δ

=
2
d2

∣∣∣
∑

χ∈A∗

d−1∑

l=0

χ(xl)

d
2−1∑

j=0

χ(gj)
t−1∑
i=0

a+ib∈Z∗pq

χ(a + bi)
∣∣∣ + δ

=
2
d2

∣∣∣d
∑

χ∈A∗∗q

d
2−1∑

j=0

χ(gj)
t−1∑
i=0

a+ib∈Z∗pq

χ(a + bi)
∣∣∣ + δ

6 2
d

∑

χ∈A∗∗q

∣∣∣
d
2−1∑

j=0

χ(gj)
∣∣∣
∣∣∣

t−1∑
i=0

a+ib∈Z∗pq

χ(a + bi)
∣∣∣ + δ.

We note that the set {a + ib ∈ Z∗pq|i = 0, . . . , t − 1}
can be divided into at most p blocks, and each block
modulo q is contained in Z∗q . So for χ ∈ A∗∗q

∣∣∣
t−1∑
i=0

a+ib∈Z∗pq

χ(a + bi)
∣∣∣ =

∣∣∣
t−1∑
i=0

a+ib∈Z∗pq

χq(a + bi)
∣∣∣

< 9pq
1
2 log(q)
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by Lemma 3. Hence by Lemma 2(iii) we have

∣∣∣
t−1∑

i=0

(−1)va+ib

∣∣∣ 6 4 log(1 + d) · 9pq
1
2 log(q) + δ.

¤
Proof of Theorem 2. According to (1), for integers

D = (d1, . . . , dk) and M with 0 6 d1 < · · · < dk 6
pq − M , there are at most kδ, where δ = p + q − 1,
elements m (0 6 m 6 M < pq − 1) such that at least
one number m + dj ∈ P ∪ Q ∪ R, where 1 6 j 6 k.
Hence, we got

∣∣∣
M−1∑
m=0

(−1)vm+d1+vm+d2+···+vm+dk

∣∣∣

6
∣∣∣

M−1∑
m=0

m+dj∈Z∗pq

16j6k

(−1)vm+d1+vm+d2+···+vm+dk

∣∣∣ + kδ

=
2k

d2k

∣∣∣
M−1∑
m=0

m+dj∈Z∗pq

16j6k

k∏

j=1

( d−1∑

l=0

d
2−1∑

i=0

∑

χ∈A∗
χ(m + dj)χ(gixl)

)∣∣∣ + kδ

=
2k

d2k

∣∣∣
M−1∑
m=0

m+dj∈Z∗pq

16j6k

k∏

j=1

( ∑

χ∈A∗
χ(m + dj)

d−1∑

l=0

χ(xl)

d
2−1∑

i=0

χ(gi)
)∣∣∣ + kδ

=
2k

dk

∣∣∣
M−1∑
m=0

m+dj∈Z∗pq

16j6k

k∏

j=1

( ∑

χ∈A∗∗q

χ(m + dj)

d
2−1∑

i=0

χ(gi)
)∣∣∣ + kδ

=
2k

dk

∣∣∣
∑

ψ1,...,ψk∈A∗∗q

d
2−1∑

i1=0

ψ1(gi1) · · ·

d
2−1∑

ik=0

ψk(gik)
M−1∑
m=0

m+dj∈Z∗pq

16j6k

k∏

j=1

ψj(m + dj)
∣∣∣ + kδ

=
2k

dk

∣∣∣
∑

ψ1∈A∗∗q

d
2−1∑

i1=0

ψ1(gi1) · · ·
∑

ψk∈A∗∗q

d
2−1∑

ik=0

ψk(gik)
M−1∑
m=0

m+dj∈Z∗pq

16j6k

k∏

j=1

ψj(m + dj)
∣∣∣ + kδ.

SinceA∗∗q ∪{1} is a cyclic subgroup of Ẑ∗q , let φ be a gen-
erator of A∗∗q ∪{1}. Then for each ψj , 1 6 j 6 k, there
exists an integer αj ∈ [1, d−1] such that ψj = φαj . So,
by Lemma 3 we obtain

∣∣∣
M−1∑
m=0

m+dj∈Z∗pq

16j6k

k∏

j=1

ψj(m + dj)
∣∣∣ =

∣∣∣
M−1∑
m=0

m+dj∈Z∗pq

16j6k

k∏

j=1

φαj (m + dj)
∣∣∣

=
∣∣∣

M−1∑
m=0

m+dj∈Z∗pq

16j6k

φ((m + d1)α1 · · · (m + dk)αk)
∣∣∣

6 9kpq1/2 log(q).

Hence, we have

∣∣∣
M−1∑
m=0

(−1)vm+d1+vm+d2+···+vm+dk

∣∣∣

6 2k

dk
· 9kpq

1
2 log(q) ·

∣∣∣
∑

ψ1∈A∗∗q

d
2−1∑

i1=0

ψ1(gi1) · · ·
∑

ψk∈A∗∗q

d
2−1∑

ik=0

ψk(gik)
∣∣∣ + kδ

6 2k

dk
· 9kpq

1
2 log(q) ·

k∏

j=1

∣∣∣
∑

ψj∈A∗∗q

d
2−1∑

ij=0

ψj(gij )
∣∣∣ + kδ

6 2k

dk
· 9kpq

1
2 log(q)

k∏

j=1

∑

ψj∈A∗∗q

∣∣∣
d
2−1∑

ij=0

ψj(gij )
∣∣∣ + kδ

6 2k

dk
· 9kpq

1
2 log(q) · (2d log(1 + d))k + kδ

6 9k4kpq
1
2 log(q) logk(1 + d) + kδ. ¤

The bound in Theorem 1 is of order
O(pq1/2 log(q) log(d)) and the bound in Theorem 2
is of order O(pq1/2 log(q) logk(d)), where the implied
constant only depends on k. While in the most in-
teresting case, when |p − q| is small, the bound in
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Theorems 1 and 2 is of order O(q3/2 log(q) log(d)) and
O(q3/2 log(q) logk(d)), respectively.

4 Final Remarks and Conclusion

To the best of our knowledge, W-GCS-I, W-GCS-II,
DH-GCS-I and DH-GCS-II are the main generalized
cyclotomic sequences of length pq. Many slight modi-
fications based on these four sequences are introduced
in the literature.

1) In [22], the generalized cyclotomic sequence X =
{x0, x1, . . . , xpq−1} of order d = 2 has been defined
based on DH-GSC-I (or DH-GSC-II), that is, let Q =
Q0 ∪Q1 and P = P0 ∪ P1, where

Q0 = {g2s (mod q)|s = 0, 1, . . . , (q − 1)/2− 1},
Q1 = {g2s+1 (mod q)|s = 0, 1, . . . , (q − 1)/2− 1},
P0 = {g2s (mod p)|s = 0, 1, . . . , (p− 1)/2− 1},
P1 = {g2s+1 (mod p)|s = 0, 1, . . . , (p− 1)/2− 1}.

Then (we note that d = 2),

C ′′0 = R ∪ pQ0 ∪ qP0 ∪D′
0, C ′′1 = pQ1 ∪ qP1 ∪D′

1,

and the sequence is defined by

xi =
{

0, if i ∈ C ′′0 ;

1, if i ∈ C ′′1 .

The sequence has (pq − 1)/2 1’s and (pq + 1)/2 0’s,
which is of optimum balance. It has large linear com-
plexity, which takes on one of pq, pq−1, pq− (q−1)/2,
pq − (q − 1)/2− 1, (pq + 1)/2 and (pq − 1)/2, depend-
ing on the values p mod 8 and q mod 8[22]. It also has
three-valued, or four-valued, or five-valued autocorrela-
tion values[23]. But the values are not low.

2) Similarly, [24] introduces a modification of DH-
GCS-II of order d = 4. The sequence Y =
{y0, y1, . . . , ypq−1} is defined by

yi =
{

0, if i ∈ C ′′′0 ;

1, if i ∈ C ′′′1 ,

where

C ′′′0 = R ∪ pQ′
0 ∪ pQ′

1 ∪ qP ′0 ∪ qP ′1 ∪D′
0 ∪D′

1,

C ′′′1 = pQ′
2 ∪ pQ′

3 ∪ qP ′2 ∪ qP ′3 ∪D′
2 ∪D′

3,

where

Q′i = {g4s+i (mod q)|s = 0, 1, . . . , (q − 1)/4− 1},
P ′i = {g4s+i (mod p)|s = 0, 1, . . . , (p− 1)/4− 1},

for i = 0, 1, 2, 3. It also has large linear complexity[24].
These results have been extended to the case of any
even number d[25].

3) [26] introduces a modification Z =
{z0, z1, . . . , zpq−1} of DH-GCS-I of any order d by defin-
ing

zi =
{

0, if i ∈ C̃0;

1, if i ∈ C̃1,

where

Q′′i = {gds+i (mod q)|s = 0, 1, . . . , (q − 1)/d− 1},
P ′′i = {gds+i (mod p)|s = 0, 1, . . . , (p− 1)/d− 1}

i = 0, 1, . . . , d− 1, and

C̃0 =R ∪
( d

2−1⋃

j=0

pQ′′
2j

)
∪

( d
2−1⋃

j=0

qP ′2j

)
∪

( d
2−1⋃

j=0

D′
2j

)
,

C̃1 =
( d

2−1⋃

j=0

pQ′′
2j+1

)
∪

( d
2−1⋃

j=0

qP ′2j+1

)
∪

( d
2−1⋃

j=0

D′
2j+1

)
.

The trace representation of Z has been determined in
[26]. By Key’s method, a different idea from [3, 8, 15,
20, 22–24], the linear complexity is derived from the
trace representation. Although the linear complexity is
large, the autocorrelation values may not be low since
(−1)zi = (i/q) for any i ∈ Z∗pq.

We see that all these modifications are obtained only
by re-dividing P and Q into different sub-sets, which do
not change the constructions of corresponding general-
ized cyclotomic sequences (DH-GCS-I or DH-GCS-II)
essentially.

From the known results, we see that both
Whiteman-generalized cyclotomic sequences and DH-
generalized cyclotomic sequences have large linear com-
plexity, but the former seems somewhat superior to the
latter due to the autocorrelation.

From the construction, DH-GCS-II seems somewhat
superior to DH-GCS-I. But it needs to study further,
such as the linear complexity and autocorrelation of
DH-GCS-II. It is also interesting to consider the linear
complexity and the autocorrelation of W-GCS-II.

We also remark that in [13] the well-distribution
measure and the correlation measure of order k of W-
GCS-I are also estimated and other two families of bi-
nary sequences of length pq are constructed in different
ways. In fact, an extension of W-GCS-I is considered
in [13].
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[9] Mauduit C, Sárközy A. On finite pseudorandom binary se-
quences I: Measures of pseudorandomness, the Legendre sym-
bol. Acta Arithmetica, 1997, 82: 365–377.

[10] Cassaigne J, Mauduit C, Sárközy A. On finite pseudorandom
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