
Brito PHS, de Lemos R, Rubira CMF et al. Architecting fault tolerance with exception handling: Verification and validation.

JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 24(2): 212–237 Mar. 2009

Architecting Fault Tolerance with Exception Handling: Verification

and Validation
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Abstract When building dependable systems by integrating untrusted software components that were not originally
designed to interact with each other, it is likely the occurrence of architectural mismatches related to assumptions in their
failure behaviour. These mismatches, if not prevented during system design, have to be tolerated during runtime. This
paper presents an architectural abstraction based on exception handling for structuring fault-tolerant software systems.
This abstraction comprises several components and connectors that promote an existing untrusted software element into an
idealised fault-tolerant architectural element. Moreover, it is considered in the context of a rigorous software development
approach based on formal methods for representing the structure and behaviour of the software architecture. The proposed
approach relies on a formal specification and verification for analysing exception propagation, and verifying important
dependability properties, such as deadlock freedom, and scenarios of architectural reconfiguration. The formal models are
automatically generated using model transformation from UML diagrams: component diagram representing the system
structure, and sequence diagrams representing the system behaviour. Finally, the formal models are also used for generating
unit and integration test cases that are used for assessing the correctness of the source code. The feasibility of the proposed
architectural approach was evaluated on an embedded critical case study.
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1 Introduction

The adoption of software components, which used to
be restricted to the construction of enterprise systems,
has expanded to other application areas where the cost
of failure might be unacceptable. Software systems that
can cause risks for human lives or great financial losses
can be made fault-tolerant, so that they are capable of
providing their intended operations, even if only par-
tially, despite the presence of faults. Amongst the sev-
eral existing techniques for building fault-tolerant sys-
tems, exception handling is a well-known mechanism for
structuring error recovery in software systems[1]. Ex-
ception handling complements other techniques for er-
ror recovery, such as atomic transactions[2], and aims to
support the construction of programs that are more reli-
able, concise, and easy to evolve[3]. The use of exception
handling to develop large-scale software systems[4,5], to-
gether with the fact that it is implemented by several
modern object-oriented languages, such as, Java, Ada,

C#, and C++, and component models, such as, CCM,
EJB, Ice, and .NET, confirms its importance to the cur-
rent practice of software development. Furthermore, in
applications where a rollback is not possible, such as
those that interact with physical environments, excep-
tion handling may be the only choice available. On the
other hand, it is also accepted that the exception han-
dling mechanism might have its disadvantages, if we
consider the fact that a large part of a system’s code is
devoted to error detection and handling[1,5].

To cope with the inherent complexity of the excep-
tion handling mechanism, it has been claimed that the
abnormal behaviour should be systematically incorpo-
rated as early as possible in the software development
process, especially during the requirements engineer-
ing and the architectural design[6]. Software archi-
tectures explicitly represent the structure of systems,
and it is one of the earliest artefacts that permits the
analysis of system quality attributes, such as, depend-
ability, including reliability, availability, security, and
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safety[7]. Fault tolerance at the architectural level has
received considerable attention, mostly in the context
of fault handling. In particular, issues related to archi-
tectural reconfiguration that includes replacing, adding,
removing architectural elements, or changing the topo-
logy of the configuration[8]. The same cannot be said
about error propagation and error handling at the ar-
chitectural level. However, recent work has looked
into architectural abstractions as a means for structur-
ing fault-tolerant software systems based on exception
handling[9,10]. If the abnormal behaviour is considered
since the beginning of the software development pro-
cess, other issues have to be considered during the ar-
chitectural design phase, such as the existence of ar-
chitectural mismatches involving different types of ex-
ceptions, the existence of useless exceptions, the asso-
ciation of proper handlers for the exceptions and the
activation of the exception handlers when such excep-
tions are raised.

In a complementary way, in order to identify and re-
move faults related to the system’s abnormal behaviour,
verification and testing techniques should be used dur-
ing the architectural design and implementation. Few
contributions have exploited the verification of excep-
tion handling abnormal behaviour at the architectural
level[11,12]. For instance, the work by Castor et al. pro-
poses a solution for specifying and verifying exception
control flow at the software architecture using the Alloy
specification language. However, their approach does
not consider the behaviour of exception handlers as part
of the verification process. Also, this solution does not
scale very well when the verification process has to deal
with many different types of exceptions[11]. Regarding
the testing activities, the verified software architecture
can be used for generating model-based test cases in or-
der to assess the system’s implementation against the
desired properties of the software architecture. Test
data such as the generation of test oracles are not dis-
cussed in this paper.

In this paper, as a means to overcome some of the
limitations mentioned above, we propose the use of ar-
chitectural abstractions and scenarios. A major ad-
vantage of this approach is that it scopes the model
to be verified, which, consequently, reduces the state-
space, thus improving the overall scalability. In the
proposed rigorous architectural approach, architectural
elements are modelled in a high-level way by instanti-
ating an architectural abstraction based on exception
handling: the idealised fault-tolerant architectural ele-
ment (iFTE). The role of the iFTE in this context is to
abstract away from mechanisms for detecting and han-
dling errors in order to minimise their impact on the

overall system complexity[10]. Based on the architec-
tural abstraction, fault-tolerant software architectures
can be described using stereotyped UML2.0, which can
then be used as a basis for automatically generating the
formal specification of the software architecture. This
formal model allows the formal verification of error han-
dling properties, and the automatic generation of test
cases for assessing the correctness of iFTE-based soft-
ware architectures, thus improving the system depend-
ability. Regarding the formal representation, although
Architecture Description Languages (ADLs) are have
the specific purpose of formally representing software
architectures, these languages usually lack on support
for representing specific aspects of the system. Regard-
ing exception handling, which is essential in the con-
text of our approach, the existing ADLs neither pro-
vide support for verifying the exception control flow
involving architectural elements, nor general properties
related to scenarios of exception handling. Moreover,
for generating test cases from the formal specification it
is necessary to represent the interfaces of the architec-
tural elements with information about their respective
operations. This kind of detailed information is not
usually represented by ADLs. To overcome these limi-
tations, it is necessary to use a formal notation that
allows the representation of types in an explicit way, in
order to distinguish different exceptions. Moreover, for
representing the chaining of exception control flow, con-
version and masking, the formal notation should also
support the specification of scenarios involving archi-
tectural elements. Using B-Method[13], which permits
the specification of different types through mathemati-
cal sets, architectural elements, interfaces and excep-
tion types are explicitly represented. Architectural sce-
narios are modelled using CSP[14], which is a process
algebra indicated to represent sequence of events. The
model checker used in the proposed solution is ProB[15],
which permits the combined use of B-Method machines
and CSP specifications in a complementary way.

Although this paper deals with verification and test-
ing based on architectural properties, it does not de-
tail how the exceptional behaviour can be systemati-
cally specified. This complementary activity has been
addressed in previous work[6,16,17]. In the context of
high confidence systems, the essential contributions
of the paper are in the specification, verification and
testing of fault-tolerant software architectures. The
aim of the proposed approach is the provision of as-
surances that the exception handling based approach
being proposed can be used as a basis for the de-
sign and implementation of fault-tolerant system. For
that, we have, first, formally specified and verified an
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architectural abstraction based on exception handling
for the provision of fault tolerance, second, defined an
integrated approach for the specification and verifica-
tion of software architectures that are based on this
architectural abstraction, including the analysis of ex-
ception propagation and handling at the architectural
level, and finally, defined an approach for testing the
final system against its architectural specification. For
the formal specification, we have defined properties re-
lated to the signalling, propagation and handling of ex-
ceptions. Finally, unit and integration test cases are
generated for assessing the implementation of the soft-
ware architecture.

The rest of this paper is organised as follows. Sec-
tion 2 presents some background regarding the concepts
considered in this paper. Section 3 contextualises the
proposed approach with some related work. Section 4
presents the iFTE abstraction. Section 5 describes the
rigorous development approach proposed for develop-
ing dependable component-based systems. Section 6
describes the case study that will be used throughout
the paper for exemplifying and evaluating our contribu-
tion. Details about the formal verification and testing
of iFTE-based architectural elements, as well as the re-
spective formal specification, are presented in Section 7.
Section 8 describes how we systematise the verification
and testing of the exception flow in a software architec-
ture. Section 9 evaluates the feasibility of the overall
approach through a critical real-time application. Fi-
nally, Section 10 provides some concluding remarks and
future directions of research.

2 Background

2.1 Software Fault Tolerance

Fault tolerance is the ability of a system to con-
tinue its normal operation despite the presence of faults.
Software systems that can cause risks for human lives
or great financial losses should be made fault-tolerant
since they are considered to be critical. Because fault
tolerance has a global system scope, it should be re-
lated to both architectural elements (components and
connectors) and architectural configurations which im-
plement the rules by which they interact.

The provision of software fault tolerance relies on
the existence of redundancy, which can be incorpo-
rated either implicitly or explicitly at the architectural
level. Implicit redundancy refers to extra design ele-
ments associated to architectural elements, which are
activated for handling internal errors. An example of
implicit redundancy is the usage of exception handling
for supporting error recovery. If special care is not

taken when structuring the system, the normal and ab-
normal specifications can be entangled thus increasing
system complexity. Explicit redundancy is an inher-
ent aspect of strongly-structured systems[18] and refers
to extra architectural elements, usually activated to
replace failed elements. Examples of explicit redun-
dancy are N -version programming and N -self-checking
programming, which are two software fault tolerance
techniques[19].

Although the techniques of explicit redundancy deal
with software fault tolerance, the implementation of
these techniques can increase the system cost in a con-
siderable way. As an alternative, techniques of implicit
redundancy can be used. In techniques of implicit re-
dundancy, the redundant code is responsible to imple-
ment error recovery, which is activated after the de-
tection of an erroneous state. One of the most used
ways for implementing implicit redundancy strategy is
through the use of the exception handling mechanism
of programming languages.

2.2 Idealised Fault-Tolerant Component

The idealised fault-tolerant component (iFTC)[20] is
a structuring concept based on exception handling that
makes it possible that normal and abnormal behaviour
can be kept separate. Fig.1 presents the structure of
an iFTC. The normal activity corresponds to those sit-
uations where service is provided as specified, while the
abnormal (or exceptional) activity corresponds to those
situations where errors are detected, and the compo-
nent cannot provide the requested service. Exceptions
can be classified into two different categories: inter-
nal, when they are raised by a component in order to
invoke its own error recovery measures, and external,
when they are signalled to inform that, for some reason,
the component cannot provide the requested service.
External exceptions can be partitioned into interface

Fig.1. Idealised fault-tolerant component (iFTC).
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exceptions, which are due to an invalid service request,
and failure exceptions, which are due to a failure in the
processing of a valid request. In this sense, exceptions
and exception handling provide a suitable framework
for structuring the fault tolerance activities into a sys-
tem. iFTCs may be organized into layers, so that com-
ponents may handle exceptions raised by components
located in other layers.

2.3 Formal Notation and Verification

For overcoming the ADLs’ limitations related to ex-
ception handling and discussed in Section 1, it is nec-
essary to use a formal language that makes it possible
to represent types in an explicit way, in order to distin-
guish different exceptions. Moreover, for representing
the chaining of exception propagation, conversion and
masking, the formal notation should also support the
specification of scenarios involving the architectural el-
ements.

B-Method is a general-purpose formal language
based on set theory for specifying and verifying sys-
tem models with explicit representation of the state,
and a modular representation through the concept of
refinement[13]. Refinement allows us to build a model
gradually by making it more precise. The modulari-
sation of the development facilitates the design and im-
proves the scalability of the verification because it is
conducted incrementally. Once the refinement is for-
mally guaranteed, the properties verified at the abstract
level are reused at the refined level, hence do not need
to be re-verified.

A limitation of the B-Method is its inability to easi-
ly restrict the correct order for executing operations.
Communicating Sequential Process (CSP)[14] is a pro-
cess algebra that allows an easy representation of ex-
ecution sequences, and if combined with B-Method, it
compensates the aforementioned limitation[15]. As a
combined solution, ProB[15] is a model checker that uses
B-Method and CSP in a complementary way. In ProB,
a CSP specification can be used to restrict the sequence
of B-Method operations that are executed.

3 Related Work

In this section we review selected publications re-
lated to the three main topics covered in this paper:
structuring of system abnormal behaviour, verification
of system abnormal behaviour, and architecture-based
testing.

The idealised C2 component (iC2C)[9] is another
structuring technique based on the idealised fault-
tolerant component (Subsection 2.2), which focus on
software systems compliant with the C2 architectural

style[21]. The internal protocol followed by the inter-
nal elements of an iC2C enforces error confinement and
makes it possible to define multiple exception handling
contexts at the architectural level. Later work by Cas-
tor et al.[22] defined and implemented an architectural
level exception handling mechanism based on the con-
cept of iC2C. The abstraction presented in this paper
can be seen as an extension of the iC2C for a broader
class of software architectures that adhere to the peer-
to-peer architectural style[23].

Simons and Stafford[24] presented a framework,
called CMEH, for specifying dependable software ar-
chitectures based on Commercial Of The Shelf (COTS)
components. CMEH allows the contextualisation of
exception types, as well as the association of excep-
tion handlers with the architectural connectors. This is
complementary to ours, since it focuses on implementa-
tion, instead of verification and testing. A semantic dif-
ference between this work and ours is that CMEH does
not consider the exception control flow at the software
architecture, but only architectural exception handlers.

Regarding the system verification, several contribu-
tions have proposed static evaluation of source code for
analysing exception flow[25,26]. Exception flow analy-
sis consists of identifying propagation paths in a pro-
gram, for example, to identify uncaught exceptions in
languages with polymorphic types, such as, Java. Re-
cent work by Castor et al.[11], within the Aereal frame-
work, leverages existing languages and tools to support
the description and analysis of exception flow in soft-
ware architectures. Concerning the verification of the
architectural exceptions that work is similar to ours;
however, there are some important differences. Our
work makes it possible the specification of properties
based on scenarios related to the software architecture.
Moreover, in the common verification also conducted
by Aereal, our approach is shown to be more scalable
for the purpose of model checking. Finally, besides the
verification activities, our work also considers the gen-
eration of test cases for assessing the implementation of
the software architecture.

Approaches that generate model-based test cases
from architectural formal specifications have been pre-
viously proposed[28−30]. An example of such an ap-
proach specifies integration test cases using a graph
that represents system behaviour[30]. Starting from a
formal description of the software architecture, the so-
lution is based on the derivation of a graph that repre-
sents the system behaviour in terms of the interactions
between the components. Next, the solution guarantees
that all the graph edges are covered in order to identify
test cases. The main limitation of this approach is the
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high number of test cases that are generated. Moreover,
beyond the generation of test cases, it is also necessary
to specify the order in which they should be executed
for reducing the costs of system integration. There are
a couple of contributions that improve the above men-
tioned integration testing approach[28,29], and in one of
them, the authors adopt a strategy for identifying a
suitable set of reduced graphs, focusing on specific ar-
chitectural properties. This approach is similar to ours
since we have used CSP specifications of the scenar-
ios related to the software architecture for construct-
ing graphs that contain a reduced number of vertices.
In addition to that, our approach determines the best
order for executing test cases by analysing the depen-
dencies amongst the architectural elements. There are
other differences between these approaches and ours,
mainly related to the fact that we focus on architectural
fault tolerance, i.e., we are looking into exception mis-
matches in the context of a software architecture that
is based on a fault-tolerant architectural abstraction.

4 iFTE: Idealised Fault-Tolerant Architectural
Element

The idealised fault-tolerant architectural element
(iFTE) is an architectural abstraction for structuring
fault-tolerant systems. This abstraction enforces the
principles associated with the concept of the idealised
fault-tolerant component presented in Subsection 2.2,
and incorporates mechanisms for detecting errors, as
well as handling and propagating exceptions in a struc-
tured way. The iFTE abstraction can be used for both
components and connectors. The only difference is the
role that each element develops in the software archi-
tecture. While components are considered the places of
computation, connectors are the places of communica-
tion, coordinating the interaction between components.

In order to provide a clear separation of concerns be-
tween the normal and abnormal behaviour, the iFTE
defines four types of interfaces, which are presented in
Fig.2: (i) the Provided Normal interface (I iFTE PN)
defines an access point for the (fault-tolerant) opera-
tions provided by the iFTE, without requesting exter-
nal operations; (ii) the Provided Abnormal interface
(I iFTE PA) defines an access point where iFTE sig-
nals its external exceptions; (iii) the Required Normal
interface (I iFTE RN) specifies operations required by
the iFTE for implementing its normal behaviour or
handling exceptions; and (iv) the Required Abnormal
interface (I iFTE RA) specifies the external exceptions
that the iFTE is able to handle. In other words, while
I iFTE PN and I iFTE RN are responsible for the normal
behaviour, I iFTE PA and I iFTE RA are responsible for

the abnormal behaviour.

Fig.2. Idealised fault-tolerant architectural element (iFTE).

The operations associated with the provided inter-
face have a set of exceptions, which are known as pro-
vided exceptions. The operations of the required inter-
faces have a set of exceptions that can be caught by the
iFTE, which are known as required exceptions. The ex-
ceptions signalled by an iFTE can either be internally
raised, or propagated as a consequence of an exception
caught from a required operation. A raised exception
can either be an interface exception when an operation
is wrongly requested, or a failure exception as a con-
sequence of an internal iFTE error. Finally, for each
provided operation, we may associate a set of required
operations that can be invoked as part of its execution.

4.1 Relations Between Interfaces

As presented in Fig.3, the internal behaviour of the
iFTE can be described in terms of ten relations among
the four types of interfaces. These internal relations
explicitly represent the existing relations between the
interfaces of the iFTE. Although those relations are not
behavioural scenarios, they can be combined in order
to compose them. The first two letters of the relation’s
name means its domain (origin) and the following two
letters means its image (destination): pn for a provided
normal interface, pa for a provided abnormal interface,
rn for a required normal interface, and ra for a required
abnormal interface. The ten internal relations of the
iFTE are: (i) pnpn, which represents the normal re-
sponse of a provided operation without requesting ex-
ternal operations; (ii) pnpai, which represents the sig-
nalling of interface exceptions; (iii) pnpaf, which rep-
resents the signalling of failure exceptions without re-
questing external operations; (iv) pnrn, which repre-
sents the request of external operations; (v) rnpn, which
represents the normal response of a provided operation,
after receiving a normal response of a required opera-
tion; (vi) rnpa, which represents the signalling of an
exception after receiving a normal response of a re-
quired operation; (vii) rapn, which represents a nor-
mal response of a provided operation after receiving an
exception from a required operation; (viii) rapa, which
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represents the signalling of an exception after receiving
an exception from a required operation; (ix) rnrn, which
represents a requesting of a second required operation
after receiving a normal response of a previous request;
and (x) rarn, which represents a requesting of a required
operation after receiving an exception from a previous
request.

Fig.3. Internal relations of iFTE.

4.2 iFTE Behavioural Scenarios

A scenario is a sequence of events expected during
the system operation, which includes environment con-
ditions, expected stimuli and responses[27]. Basically,
scenarios focus on how the system behaves to imple-
ment its functionalities. Since the internal behaviour
of the iFTE is defined through the aforementioned ten
relations, the identification of scenarios consists of com-
bining these relations with requests and responses of
operations, and with the signalling and capturing of
exceptions. Based on these combinations, nine differ-
ent scenarios are identified, which describe the exter-
nal behaviour of an iFTE: (i) internal request/response
scenario, which involves only the pnpn relation, and
consists of a successful execution of a provided oper-
ation; (ii) interface exception scenario, which involves
only the pnpai relation, and consists of a wrong request
of a provided operation, which causes the signalling of
an interface exception; (iii) internal failure exception
scenario, which involves only the pnpaf relation, and
consists of an unsuccessful execution of a provided op-
eration, as a consequence of an internal error; (iv) exter-
nal request/response scenario, which involves the pnrn
and rnpn relations, and consists of a successful execu-
tion of a provide operation that uses external opera-
tions; (v) failure exception scenario, which involves the
pnrn and rnpa relations, and consists of an unsuccessful
execution of provided operations, which raises an excep-
tion after requesting external operations; (vi) masking
scenario, which involves the pnrn and rapn relations,
and consists of a successful execution of a provided
operation after masking an exception caught from a
required operation. In the context of fault tolerance,
this scenario is extremely important, since it explic-
itly represent that a handler has been executed and

successfully recovered the state of the architectural ele-
ment, thus tolerating the fault of its server; (vii) excep-
tion propagation scenario, which involves the pnrn and
rapa relations, and consists of an unsuccessful execution
of a provided operation, after catching an exception
from a required operation, which could not be success-
fully masked; (viii) iterative request response scenario,
which involves the pnrn, rnrn, and rnopn relations, and
consists of a successful execution of a provided oper-
ation after requesting more than one required opera-
tions; and (ix) iterative exception propagation scenario,
which involves the pnrn, rarn, and rnpa relations, and
consists of an unsuccessful execution of a provided op-
eration, after catching an exception and requesting a
further required operation, the exception is not suc-
cessfully masked. These nine scenarios are considered
basic since they can be combined for generating other
more complex normal and abnormal scenarios.

4.3 Detailed iFTE

Fig.4 presents the detailed design of an iFTE, which
contains five architectural elements, each one with a
specific and well-defined role: (i) the Normal compo-
nent implements the normal behaviour of the iFTE;
(ii) the Abnormal component implements the exception
handlers for the exceptions raised by the Normal compo-
nent, and those caught through the I iFTE PA interface;
(iii) the Provided component acts like a bridge between
the operations provided by the iFTE and its environ-
ment, including the signalling of exceptions; (iv) the Re-
quired component also acts like a bridge, but between
the required operations of the iFTE and its environ-
ment; and (v) the Coordinator connector coordinates
the interaction between the four internal components.
For realising the boundary between the iFTE and the
environment, the Provided and Required components are
also responsible for adapting the data interchanged be-
tween architectural elements, in order to prevent archi-
tectural mismatches.

For providing an explicit separation of concerns,
each internal element of the iFTE has a specific role
regarding either the normal behaviour (Normal compo-
nent), the abnormal behaviour (Abnormal component),
or the resolution of architectural mismatches (Required
and Provided components). Moreover, the definition of
separate interfaces for the normal and abnormal be-
haviour facilitates the reuse of the normal part of the
iFTE, even when the exceptions and exception handlers
have to be adapted to a different architectural context.
The Abnormal component is the only one that handles
exceptions; the other elements are only capable of iden-
tifying erroneous conditions of its own state, raise the
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Fig.4. Internal structure of the idealised fault-tolerant architectural element (iFTE).

corresponding exceptions, and propagating it to the Ab-
normal component through the Coordinator. The inter-
nal architectural elements of the iFTE interact through
internal interfaces, and these interfaces also enforce the
separation between normal and abnormal behaviour.

Analysing the interaction amongst the internal el-
ements of the iFTE, we have identified 12 basic sce-
narios. After receiving a request through I iFTE PN,
the Provided component may respond in two differ-
ent ways: (i) signals an interface exception through
I iFTE PA (1st basic scenario); or (ii) requests the
respective operation of the Normal component from
I P RN to I N PN, mediated by the Coordinator con-
nector. When the Normal component receives an op-
eration request, it can behave in three different ways:
(i) returns normally to the Provided from I N PN to
I P RN (2nd basic scenario); (ii) signals an internal
exception through I N PA; or (iii) requests an exter-
nal operation. When the Normal component signals
an exception through I N PA, the Coordinator connec-
tor propagates it to the Abnormal component through
I A RA. After executing the handler, whose behaviour
is not considered here, the Abnormal either signals a
failure exception through I A PA (3rd basic scenario),
or return normally through I A PN, masking the error
(4th basic scenario). When the Normal component re-
quests external operations through I N RN, the Coordi-
nator propagates the request to the Required through
I R PN. After this, the Required requests the opera-
tion for an external element through I iFTE RN and can
receive two different responses: (i) a normal response
through I iFTE RN (5th basic scenario); or (ii) an ex-
ception through I iFTE RA. In the last case, the ex-
ternal exception is propagated to the Abnormal (from
I R PA to I A RA through the Coordinator), which tries
to handle it. The Abnormal can provide either a failure

exception through I A PA (6th basic scenario), or a nor-
mal response through I A PN, masking the external ex-
ception (7th basic scenario).

The other five scenarios where derived from the com-
position of the seven basic scenarios that were pre-
sented. Before the iFTE raises an internal exception,
it could have successfully executed an external oper-
ation (external request followed by an internal excep-
tion). In this case, the iFTE can either mask the ex-
ception (8th basic scenario), or fail (9th basic scenario).
When the Normal requests an external operation after
it had masked an internal exception, it can receive an
abnormal response (masked internal exception followed
by an external exception). In this case, the Abnormal
component tries to handle it. If the external exception
is masked, it constitutes the 10th basic scenario, which
masks both internal and external exceptions. If the ex-
ternal exception could not be successfully handled, the
Abnormal component returns abnormally and the iFTE
crashes (11th basic scenario). Finally, the 12th basic
scenario occurs when although the iFTE had masked
an external exception (Scenario 7), it could not mask a
following internal one.

Since the Normal component is responsible for pro-
viding the functionalities of the iFTE, it might be an ex-
isting component that needs to be incorporated into the
architecture. For using an existing component it might
be necessary to adapt the reused component in order
to make it compatible with the four internal interfaces
of the Normal. As presented in Fig.5, the structure of
the reused Normal component is composed of three el-
ements: the ReusedComponent, which is being reused
and can even be a COTS component; a NormalPro-
vided adapter, which is responsible for converting all
the provided interfaces of the reused component into
the I N PN and I N PA interfaces; and a NormalRequired
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adapter, which is responsible to convert all the required
interfaces of the reused component into the I N RN and
I N RA interfaces.

Fig.5. Adaptation of an existing Normal component.

5 Rigorous Development Approach Using
iFTE

In our approach, the software architecture is con-
sidered a first-level unit, which guides the development
from the specification to the implementation of the ap-
plication. Fig.6 presents an overview of the proposed
approach for developing fault-tolerant software archi-
tectures. Activity 1 specifies the software architecture,
which can be done graphically using a CASE tool. From
the use case abnormal scenarios, two artefacts should
be specified: a UML component diagram with normal
and abnormal interfaces representing the structure of the
software architecture, and a set of UML sequence dia-
grams with abnormal scenarios representing the abnor-
mal architectural scenarios of exception control flows
and handlers. For generating the architectural scenar-
ios, the use case scenarios are refined according to the

Fig.6. Process for developing abnormal behaviour.
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Fig.7. Test case generation and system implementation.

architectural configuration of the system. Activity 2
formally specifies the software architecture (architec-
tural configuration and scenarios). This activity con-
sists of an automatic model transformation from UML
(XMI files) to B-Method and CSP. This transformation
consists of instantiating the formal templates presented
in Subsections 7.1 and 8.1 with the structural and be-
havioural specifications extracted from the UML mod-
els. Activity 3 is the formal verification of the software
architecture, in order to identify design faults related
to the exception control flows and handlers. Activity 4,
which consists of the generation of test cases and the
system implementation, is detailed in Fig.7. This pro-
cess is considered recursive, since it can be executed
either for the entire system, or for the internal struc-
ture of an architectural element.

As presented in Fig.7, the generation of test cases
and the system implementation should be executed
in parallel. For generating unit test cases, the pro-
posed approach uses the formal specification of the
architectural elements in B-Method and CSP. First, in
Activity 4.1.1 the sequences of requests and responses
involving the provided and required interfaces of each
iFTE are graphically represented using sequence graphs,
which uses the notation of UML activity diagrams. Af-
terwards, in Activity 4.1.2 the sequence graphs are used
for generating unit test cases. Sequence graphs can be
seen as UML activity diagrams whose activities repre-
sent events which can be either the execution of oper-
ations or the signalling of exceptions. The sequence of
events is indicated by the edges of the graph, which in
our approach are derived from the behavioural formal

specification in CSP. The generation of integration test
cases, which is conducted in Activity 4.2, follows a sim-
ilar rationale. However, since integration focuses on the
interaction between architectural elements, it is neces-
sary to represent such interactions through interaction
graphs. Interaction graphs are UML activity diagrams
that graphically represent the interactive behaviour in-
volving the provided and required interfaces of differ-
ent architectural elements. The generation of such di-
agrams can be automatised, since they capture the in-
teractions already represented by the architectural con-
figuration (B-Method) and the respective architectural
scenarios (CSP). Finally, in Activity 4.2.2 the inter-
action graphs are used for generating integration test
cases, which assesses the existence of architectural mis-
matches involving exception propagation. It is impor-
tant to stress that both unit and integration test cases
can be automatically generated by using case tools for
supporting model-based test case generation.

With the system properly verified and the test cases
already generated, Activity 4.4 consists of the execu-
tion of test cases in order to assess the correctness of
the source code against the scenarios of the software
architecture. Finally, if any fault is identified during
the test execution, it has to be fixed in Activity 4.5.

5.1 Verification Process

We have defined a single process to be followed
when verifying properties associated with the system
abnormal behaviour. This process is a refinement of
Activity 3 presented in Fig.6, and is composed of four
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sub-activities to be executed sequentially. These sub-
activities should be employed in the verification of both
architectural elements and architectural configuration.
Sub-activity 3.1 (verify integrity consistency) comprises
the syntactical analysis of the model, as well as the in-
tegrity of its state. Sub-activity 3.2 (verify general ab-
normal scenarios violations) verifies whether there ex-
ists violations of the specified scenarios, by checking the
existence of impossible scenarios. Sub-activity 3.3 (ver-
ify specific abnormal scenario violation) tries to find de-
sired patterns of exception control flows and handlers.
Finally, Sub-activity 3.4 (verify user-defined properties)
analyses application specific properties.

The properties of interest associated with Sub-
activities 3.1 and 3.2 are specified as assertions, i.e.,
formal rules that the model should be compliant with.
If one of these rules is violated, an error message
and a counterexample are presented by the model
checker. Differently, the properties associated with
Sub-activity 3.3 are specified as definitions, i.e., for-
mal state patterns that the model checker tries to find
(not their violations). If there is a state that satisfies
those patterns, a warning message and an example are
presented by the model checker. Finally, since the pro-
perties of Sub-activity 3.4 are defined by the user, it is
possible to use both assertions and definitions.

For executing the verification, the ProB model
checker calculates all the possible states of the model
at runtime. For each state, it checks if it violates any
assertion, and if it satisfies any definition. To reduce
the statespace of the model checking, we have adopted
a scenario-based approach, where architectural scenar-
ios in CSP are used to restrict the way that the B-
Method operations change the state of the machine.
To support the verification of behavioural properties,
the B-Method machines define the sequenceHistory
variable, which stores the sequence of events that were
executed to achieve the current state. As presented in
Subsections 7.1 and 8.1, these events consist on requests
and responses of operations.

5.2 Validation Process

For allowing the specification of test cases in differ-
ent levels of abstractions without knowing the source
code, our approach implements a grey-box testing strat-
egy based both on the scenarios and on the structure
of the software architecture and iFTEs. The gener-
ated test cases can be used for validating the soft-
ware system against its functional and non-functional
requirements. Regarding the functional requirements,
application-specific behavioural scenarios can be de-
fined for representing the expected behaviour of the

whole application. Moreover, the proposed approach
also uses the structural information of the software
architecture to validate the system against its non-
functional requirements. Validation is supported by
three activities. First, unit test cases can also be gen-
erated for the application, if we consider the whole
system as a single component (Sub-activity 4.1 of
Fig.7). Second, integration test cases can validate
the software system against the existence of architec-
tural mismatches, which can hinder non-functional re-
quirements related to dependability (Sub-activity 4.2
of Fig.7). Finally, the scenario-based strategy also al-
lows us to generate both unit and integration test cases
for specific behaviour related to either functionalities or
error handling using, for instance, architectural recon-
figuration.

6 Case Study: A Mining Control System

Subsection 6.1 presents the description of the case
study used for exemplifying and evaluating the ap-
proach proposed in this paper, including the respective
goals and steps of execution. Subsection 6.2 presents
the specification of the fault-tolerant software.

6.1 Description of the Case Study

In this subsection, it is presented a case study of
a mining control system[31], which was been conducted
by the authors. The extraction of minerals from a mine
produces water and releases methane gas. In addition
to extracting minerals, the mining control system is
used to drain water from the sump, and to remove air
from the mine when the methane level becomes high.
The system is composed by three main sub-systems:
MineralExtractorController, which controls the extrac-
tion of minerals, PumpController, which controls the
level of water, and AirExtractorController, which con-
trols the level of methane. When the water reaches
a high level, the pump is turned on and the sump is
drained until the water reaches a low level. A water
flow sensor is able to detect the flow of water in the
pipe. However, the pump is situated underground, and
for safety reasons it must not start, or continue to run,
when the amount of methane in the mine exceeds a
safety limit. For controlling the level of methane, there
is an air extractor controller that monitors the level of
methane inside the mine, and when the level is high
an air extractor is switched on to remove air from the
mine. The whole system is also controlled from the
surface via an operator console that should handle any
emergencies raised by the automatic system. For im-
proving the reliability and availability of the transac-
tions associated with the system controllers, we have
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defined a fault-tolerant software architecture based on
the iFTE abstraction, following the approach proposed
in this paper.

The main objective of this case study is threefold.
First it aims to assess the feasibility of the proposed
solution in what concerns the verification and testing
of scenarios of exception control flow and handling at
the software architecture. Second, it aims to assess if
the proposed approach helps in finding bugs that would
go unnoticed otherwise. Finally, this case study also
aims to assess if the use of architectural abstractions
improves understandability. Regarding scalability as-
sessment, which was not the focus of this case study,
we have done other case studies with bigger and more
complex applications. In these case studies we have no-
ticed that the proposed solution has shown to be more
scalable than other existing solutions such as the Aereal
framework. Besides, the case studies have also showed
that the main advantage of our solution concerning scal-
ability is the adoption of architectural abstractions to-
gether with architectural scenarios, which considerably
reduces the number of architectural elements as well as
the respective state space.

The system requirements where specified in terms of
use cases abnormal scenarios, according to the MDCE
methodology[6]. Abnormal scenarios are characterised
by the presence of exceptions, e.g., raising, propagation,
and handling of exceptions.

6.2 Specification of the Software Architecture

The software architecture of the mining control
system is presented in Fig.8 through a UML compo-
nent diagram. As it can be seen, the architecture is
composed of eleven architectural elements, four of them
are sensors: (i) MethaneLevel, which detects the level of
methane inside the mine; (ii) AirFlow, which detects
the flow of air inside the pipes; (iii) WaterLevel, which
detects the level of water inside the mine; and (iv) Wa-
terFlow, which detects the flow of water inside the pipes.
It is assumed that in this system all the architectural el-
ements are iFTEs, except for the four sensors (AirFlow,
MethaneHigh, WaterLow, WaterHigh).

The three identified controllers (MineralExtrac-
torController, AirExtractorController, and PumpCon-
troller), have the role of architectural connectors
(¿iFTEConnectorsÀ). Each controller is responsible
for dealing with the normal behaviour of the system,
and handling any exceptions that are propagated by
the components. Depending on the state of the sensors,
one of the controllers will always be activated: (i) wa-
ter low & methane low ⇒ MineralExtractorController;
(ii) water high & methane low ⇒ PumpController; and
(iii) methane high ⇒ AirExtractorController. In case
there is a failure that cannot be handled by the system,
the AirExtractorController notifies the OperatorInterface
element that such a failure has occurred.

Fig.8. Architectural configuration of the mining control system.
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Fig.9. Detailed view of a partial architectural configuration.

For this architectural configuration, a total of 13 ar-
chitectural exceptions were identified related to errors
in the system architecture. For exemplifying the flow
of exceptions, in the following, we consider the case
when an error is detected inside the AirExtractor, and
an internal exception is raised[32]. If AirExtractor fails
to handle this exception locally, it propagates an ex-
ception to the AirExtractorController. Again this archi-
tectural element attempts to handle the exception once
it is caught, but if it fails, it propagates the exception
to the MileralExtractorController. If the concentration of
methane is high and the AirExtractor has failed, there is
nothing that MileralExtractorController can do, except
to propagate an exception to its collaborating archi-
tectural elements. Upon receiving this exception, the
MineralExtractor, the PumpController and the AirExtrac-
torController should shut down their activities, and the
OperatorInterface should raise an alarm for the operator
to take the appropriate measures.

To illustrate the structure of the iFTEs of the soft-
ware architecture, Fig.9 presents the internal details of
the PumpController and Pump architectural elements.
As can be seen, in the Required component of the Pump-
Controller and the Provided component of the Pump
are responsible for enabling the interaction, adapting
the received operation requests (Provided), and the
respective return values (Required).

7 Verification and Testing of iFTEs

Although the iFTE architectural abstraction was al-
ready partially verified using extended timed automata
notation[32], this is not sufficient for verifying its instan-
tiation into architectural elements, and the distinction
necessary between different types of exceptions. In the
following, we present the formal model for representing
iFTE-based architectural elements (in B-Method and
CSP), as well as the properties for verifying the con-
sistency of the architectural element with the proposed

abstraction. An overview of the B-Method and CSP
formal notations used in this paper is presented in Ap-
pendix A.

7.1 Formal Specification of iFTEs

The formal models presented in this paper are gen-
eral, meaning that they can be used as templates for
representing different software architectures. But to
facilitate their understanding, we present them in the
context of the mining control system presented in Sec-
tion 6 (Fig.8).

Fig.10 presents part of the B-Method machine of the
iFTE abstract model for the PumpController connec-
tor (pc). A B-Method machine explicitly represents an
iFTE in terms of three basic features: its interfaces,
through the pc Interfaces set (line 4); its provided
and required operations, through the pc Operations
set (line 5); and its provided and required exceptions,
through the pc Exceptions set (line 6). The B-Method
machine represents three types of events (request, nor-
mal response, and abnormal response) through the
eventType set (line 8). Essentially, these events are
used to define the behavioural scenarios of an iFTE. Af-
ter representing the basic features of the iFTE abstract
model through sets, it is necessary to categorise and
relate them by means of B-Method variables. lines 15
to 18 present the variables that categorise the interfaces
of the pc Interfaces set. The formal model guaran-
tees, through properties, that each interface can only
participate in one of these subsets (details in Section 7).
Depending on whether it is an operation or an excep-
tion, it has to be associated with either a normal or ab-
normal interface, respectively. These associations are
made through relations, which are defined in lines 23,
24, 27 and 28. These relations also capture whether
the operations and exceptions are provided or required.
The first relation (line 23) is from pc pnInterfaces
to a power set of pc Operations. The provided and
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required exceptions are associated to the abnormal in-
terfaces of the iFTE abstract model through the re-
lations presented in lines 27 and 28. Moreover, the
exceptions are also associated to the operations of the

1 MACHINE pc

2 /∗====================∗/
3 SETS

4 pc Interfaces = {i pc pn, i pc rn, i pc pa, i pc ra};
5 pc Operations = {controlPump, getMethaneLevel, . . .};
6 pc Exceptions = {MethaneHighPumpOnException, . . .};
7

8 events = {request, normalResponse, abnormalResponse}
9 /∗====================∗/
10 VARIABLES

11 . . . /∗declaration of variables∗/
12 /∗====================∗/
13 INVARIANT

14 /∗interface category∗/
15 pc pnInterfaces:POW(pc Interfaces) &

16 pc paInterfaces:POW(pc Interfaces) &

17 pc rnInterfaces:POW(pc Interfaces) &

18 pc raInterfaces:POW(pc Interfaces) &

19

20 /∗interfaces — operations∗/
21 pc pnOperations:pc pnInterfaces +−> POW(pc

Operations) &

22 pc rnOperations:pc rnInterfaces +−> POW(pc

Operations) &

23 /∗interfaces — exceptions∗/
24 pc paIntExceptions:pc paInterfaces +−> POW(pc

Exceptions) &

25 pc raIntExceptions:pc raInterfaces +−> POW(pc

Exceptions) &

26

27 /∗exceptions — operations∗/
28 pc pnOpExceptions:pc Operations +−> POW(pc

Exceptions) &

29 pc rnOpExceptions:pc Operations +−> POW(pc

Exceptions) &

30 · · ·
31 /∗====================∗/
32 OPERATIONS

33 exception <– – pc(interface, operation, eventType)=

34 PRE

35 interface : pc Interfaces &

36 operation : pc Operations &

37 eventType : events &

38 · · ·
39 THEN

40 · · ·
41 END

Fig.10. B-Method machine of PumpController iFTE connector.

iFTE abstract model through the relations presented in
lines 30 and 31. Other 16 variables are defined by the
machine: 10 for representing the iFTE abstract model
internal relations defined in Subsection 4.1 (Fig.3), and
6 to store information used during the verification pro-
cess (e.g., the traceability of the events, and the ex-
ceptions that where caught by the iFTE), which are
not shown in Fig.10. Finally, the B-Method machine
defines an operation for representing the occurrence of
an event (lines 39∼47), which is characterised by an
interface and an operation (interface and operation
arguments respectively). The type of the event is repre-
sented through the argument event. The return value
(exception) represents the exception that has been re-
turned by the event. When the event does not pro-
vide an abnormal return (e.g., a request or a normal
response), exception is assigned as an empty set (∅).

The formal model of the iFTE can be instantiated
according to specific architectural elements, which have
specific interfaces, operations and exceptions. After
that, as shown in Subsection 8.1, the formal models
of various architectural elements are used to compose
the software architecture.

7.2 Verification of iFTEs

The verification of software architectures considers
properties regarding both the architectural elements,
and an architectural configuration. The properties as-
sociated with the architectural elements should enable
to check whether they are consistent against the be-
haviour of the iFTE; while the properties associated
with the architectural configuration should be able to
check whether architectural configuration follows the
composition rules dictated by the architectural ele-
ments. The verification is conducted using model check-
ing, and when a property is violated, an error message
and a counter example are presented by the tool.

The properties to be verified cover four basic goals:
(i) consistency of the formal model, which comprises
the syntactical analysis of the models, as well as the
integrity of the instantiated variables; (ii) scenarios vi-
olations, which amounts to identify possible violations
on the specified scenarios; (iii) extra behavioural infor-
mation, which analyses if the model satisfies all the pos-
sible valid scenarios (behavioural completeness), and
does not satisfy invalid (or undesired) scenarios (be-
haviour consistency); and (iv) user-defined properties,
which verifies particular aspects of an application and
should be defined by the user. Table 1 details the prop-
erties related to each goal in the context of iFTE-based
architectural elements.
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Table 1. Properties of Interest of iFTE

Consistency of the Formal Model

No. Property Name & Description

1 Internal relations integrity property. An operation cannot be considered at the same time as internal and external.

2 Internal exceptions consistency property. Internal exceptions cannot be propagated to other architectural elements.

3 Interface classification property. All the interfaces have to be classified in exactly one of the four types defined by the iFTE
abstract model.

4 Interface and operation consistency. The associations between an interface and its operations have to be consistent with
their types (provided or required).

5 Normal and abnormal interfaces integrity property. Interfaces classified as normal can neither signal nor catch exceptions,
and the interfaces classified as abnormal can neither receive operation requests nor provide normal returns.

6 Cardinality of relations property. Verifies if the cardinalities of the relations remain correct after the iFTE abstract model
instantiation.

7 Provided and required exceptions integrity property. The sets of provided and required exceptions should be disjoint.

8 Interface and raised exceptions integrity property. The sets of interface and failure exceptions should be disjoint.

9 Prevention of unused provided exceptions property. Every provided exception should be signalled by at least one provided
operation.

10 Masking correctness property. Only maskable exceptions can be masked by the iFTE, any other exception that would be
masked is considered a design failure.

11 Abnormal interfaces and operations integrity property. The set of exceptions associated to an abnormal interface has to be
equivalent to the set of exceptions associated to its operations.

Scenarios Violations

No. Property Name & Description

1∼9 One property for each basic scenario.

Extra Behavioural Information

No. Property Name & Description

1 Behavioural completeness property. Verify if the architectural element satisfies all the basic scenarios of the iFTE.

7.3 Testing of iFTEs

Test cases generation follows the model-driven
approach[33,34], and most of which can be automated.
All the testing artefacts can be reused each time the
component is tested: during its development or each
time it is reused. As a consequence, the iFTE compo-
nent testing can be performed in a black-box way, al-
lowing test cases reuse even without component source
code.

For generating test cases for a provided operation of
an iFTE, it is necessary to generate a sequence graph,
which represents the execution of the internal and re-
quired operations that the provided operation requires,
as well as the respective normal and abnormal returns.
The sequence graph consists of a graphical representa-
tion of the formal models of the iFTE (Subsection 7.1),
which is constructed for each one of its provided op-
erations. The nodes of the sequence graph are identi-
fied from the B-Method machine, while the edges are
identified from the CSP specification. The nodes of
the sequence graph are disposed in different partitions
according to the respective interface of the iFTE that
is referred. Thus, four partitions are defined for the

abstract model, and sixteen for the detailed one.
The test cases generated for testing iFTEs can either

take into consideration the internal elements individu-
ally (its detailed structure), or generate test cases for a
higher abstraction, abstracting away its internal struc-
ture and considering only the external interfaces of the
iFTE, which is I iFTE PN, I iFTE PA, I iFTE RN, and
I iFTE RA (Fig.2).

For illustrating the artefacts generated, Fig.11
presents the execution sequence graph for the
controlPumping() operation of the PumpController
connector. This graph represents only the external ex-
ceptions (provided and required) of the iFTE for gener-
ating test cases for a black-box testing. Analysing this
graph, 22 paths are identified by a depth-first search
algorithm, producing 22 test cases. Although in this
case study the test cases have been manually gener-
ated, case tools could use the “interaction graphs” as
input for automatically generating them. In our re-
search group, a prototype tool is being developed for
this purpose[35]. The controlPumping() operation is
represented as an initial node of the I PC PN partition.
In the same way, each required operation that can be
executed by controlPumping() is represented as a node
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Fig.11. Part of execution sequence graph for the controlPumping operation.

of the I PC RN partition. The subset of required op-
erations of controlPumping() is determined by the in-
ternal relations of the iFTE, defined in the B-Method
machine. The exceptions that can be caught by the
PumpController element are represented as nodes of the
I PC RA partition, while the signalled exceptions are
disposed in the I PC PA partition. Finally, it is neces-
sary to define a node to represent the normal return of
the element. This node is disposed in the I PC PA parti-
tion. The outputs of the architectural element (normal
and abnormal) are considered final nodes, representing
the end of an execution scenario.

For exemplifying the stub creation, one of the
test cases simulates the MethaneHighPumpOnException
throwing. In this case, when the pump is turned on,
the stub that simulates the getMethaneLevel() required
operation was prepared to return the highMethaneLevel.
After that, for safety reasons the controller tries to turn
off the pump. The stub of the turnOffPump() operation
was prepared to throw the PumpFailureException excep-
tion when the operations were called. Because it indi-
cates an emergency exception, the controller informs
this warning to the MineralExtractorController connec-
tor through the MethaneHighPumpOnException. After
executing this scenario, the test oracle has to execute
the contract verification, which checks exception class
type and context.

The sequence of operation requests and re-
sponses is derived from the CSP specification,
which represents the architectural scenarios of the

application (details in Subsection 8.1). For exam-
ple, analysing the following CSP (hypothetical) spec-
ification: “pc.i pc pn.controlPump.request − >
pc.i pc rn.ROP.request” it means that the process
pc.i pc pn.controlPump.request comes before pro-
cess pc.i pc rn.ROP.request. In other words, the
controlPump provided operation of the PumpController
connector is always executed before any of its required
operations, represented by the ROP variable.

After constructing the graph, the test cases can be
generated in a straightforward way: each path from the
start to a final node is considered a test-case. Besides
the identification of the test cases (paths of the graph),
the graph is also useful for deriving stub synchronisa-
tion commands, because it illustrates the sequence on
which the required operations are called, as well as the
respective expected returns. During the test execution,
stubs should replace required elements, simulating their
behaviour in a controlled way, and making it possible
to observe behaviour of the component under test in
normal and abnormal situations.

Besides the generation of the test cases, it is nece-
ssary to determine the correct ordering for executing
the test cases of the component’s provided operations.
Analysing the semantic of the provided operations, it
is possible to exist a mandatory logical sequence of ex-
ecution. For example, because the Pump component is
initially turned off, its turnOnPump() operation should
be tested before the turnOffPump() one. For determin-
ing the testing order, we have to generate the execution
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flow graph, which is a dependency graph that illustrates
the sequential dependencies among the provided opera-
tions of an architectural element. Beyond its usefulness
for determine the best order for executing the test, the
execution flow graph also derives test drivers for exe-
cuting test cases.

8 Verification and Testing of iFTE-Based
Software Architectures

Besides the verification of the architectural elements,
it is also necessary to verify the integration of these el-
ements into architectural configurations. The focus of
the architectural verification is to support the analysis
of signalling, handling and propagation of exceptions
in terms of their types and conversions during the flow
between architectural elements. In the following, we
present the formal model for representing iFTE-based
software architectures (in B-Method and CSP), as well
as the properties for verifying the exception flow. The
architectural formal model is presented in the context
of the mining control system presented in Fig.8.

8.1 Formal Specification of iFTE-Based
Software Architectures

A software architecture based on iFTE architec-
tural elements is also specified through a B-Method
machine and a CSP specification. The B-Method ma-
chine represents the structural and behavioural infor-
mation about the software architecture, e.g., architec-
tural elements, architectural configuration, and excep-
tion flows among architectural elements. The CSP
specification defines the possible execution scenarios,
restricting the sequence of events that can occur in the
architecture, and synchronising the occurrence of archi-
tectural events and internal events of each architectural
element.

Fig.12 presents part of the architectural configu-
ration template instantiated according to the min-
eral extraction controller system’s software architecture
(Fig.8). Differently from the specification of the ar-
chitectural elements, the architectural model contains
many architectural elements (iFTEs and non-iFTEs),
which are represented by the mineral ArchElements
set (line 4). Besides, the full specification of each archi-
tectural element is incorporated into the software ar-
chitecture, i.e., the B-Method machines of the iFTEs
and non-iFTEs are imported by the architectural spec-
ification (line 8).

Using two complementary subsets, the archi-
tectural elements are then classified in iFTEs
(mineral ifteArchElements, line 14) and non-iFTEs

(mineral nonIfteArchElements, line 15). An in-
tegrity property was defined for guarantee that min-
eral ifteArchElements ∪ mineral nonIfteArchElements
= mineral ArchElements. The properties verified are
presented in Subsection 8.2. Further, the architec-
tural elements are interconnected in terms of an ar-
chitectural configuration, which is defined through
a relation between required and provided interfaces
(mineral archConfiguration, line 17). In addition,
to contextualise the provided and required excep-
tions during propagations, another relation is defined
(line 18). Finally, there is a B-Method operation for
representing events involving a pair of architectural
elements (lines 20∼28). Besides the three parame-
ters that are also present in the iFTE abstract model
(interface, operation, and eventType), the architec-
tural model also identifies the architectural element

1 MACHINE mineral

2 /∗====================∗/
3 SETS

4 mineral ArchElements = {ui, mec, aec, pc, p, . . .};
5 · · ·
6 /∗====================∗/
7 EXTENDS

8 ui, mec, aec, pc, p, · · ·
9 /∗====================∗/
10 VARIABLES

11 . . . /∗declaration of variables∗/
12 /∗====================∗/
13 INVARIANT

14 mineral ifteArchElements:POW(mineral Arch-

Elements) &

15 mineral nonIfteArchElements:POW(mineral Arch-

Elements) &

16

17 mineral archConfiguration : mineral reqInterfaces +−>

POW(mineral provInterfaces) &

18 mineral provExcep reqExcep : mineral provExceptions

+−> POW(mineral reqExceptions) &

19 · · ·
20 /∗====================∗/
21 OPERATIONS

22 exception <−− mineral (from, to, interface, operation, eve-

ntType)=

23 PRE

24 from: mineral ArchitecturalElements & to: mineral

ArchitecturalElements &

25 · · ·
26 THEN

27 · · ·
28 END

Fig.12. B-Method machine of an architectural configuration.
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1 MAIN = UI ;;

2 · · ·
3 MEC PC = mec.i mec rn.controlPump.request −> mi-

neral.mec.pc.i mec rn.controlPump.request −> mi-
neral.mec.pc.i pc pn.controlPump.request −> PC
(i mec rn, controlPump);;

4 · · ·
5 – – pump controller – –

6 PC(RN1, ROP1) = pc.i pc pn.controlPump.request −>
PC INT (RN1, ROP1, i pc pn, controlPump);;

7 – – pc–ifte – –

8 PC INT (RN1, ROP1, PN1, POP1) = (pc.PA.POP1. ab-
normalResponse?EXP −> MEC PC RETURN (RN1,
ROP1)) []

9 (pc.i pc rn.pumpWater.request −> PC P(RN1, ROP1,
PN1, POP1, i pa rn, pumpWater));;

10 · · ·
11 – – pump – –

12 PC P (RN1, ROP1, PN1, POP1, RN2, ROP2) = pc.
i pc rn.pumpWater.request −> mineral.pc.p.i pc rn.
pumpWater.request −> mineral.pc.p.i p. pn.pump-
Water.request −> P(· · ·);;

13 · · ·
Fig.13. CSP specification of a software architecture.

that have originated the event (from), as well as its
respective destination (to).

In order to define the architectural scenarios of the
application, it is necessary to define a CSP specification
to complement the structural definition of the B-
Method machines. Fig.13 presents the CSP specifi-
cation of the architectural model. According to the
ProB model checker, each B-Method operation cor-
responds to an event in CSP, followed by its proper
parameters (Fig.13). For example, in line 9, the re-
quest pc.i pc rn.pumpWater.request corresponds to
the execution of the pc operation in the B-Method
machine, with the following values of parameters:
“interface = i pc rn”, “operation = pumpWater”,
and “event = request”. For representing the pos-
sibility of occurring many different events, the CSP
specification uses the external choice operator ([]). In
this way, after the PumpController receives an opera-
tion request (pc.i pc pn.controlPump.request), the
execution sequence is defined by the PC INT process
(line 8), which states that the PumpController should
either provide an abnormal response to the MineralEx-
tractionController (mec), or request external operations
to the Pump (p). In the first case, it is important to no-
tice that the response refers to the same operation that
has been previously requested, which is represented by
the ROP1 variable. In the second case, when the Pump-
Controller requests an external operation, the execution
sequence is defined by the PC P process, which should
either provide a normal or an abnormal response to the

PumpController.
Analysing Fig.13 we can also see the scenarios of

CSP are also responsible for synchronising the exe-
cution between events at the architectural level and
internal events of the iFTEs. For example, line 3 states
that the internal events of the PumpController connec-
tor (PC) can only occur after an operation request from
the MineralExtractorController to its provided interface
(mineral.mec.pc.i pc pn.controlPump.request).
After receiving a request through its provided inter-
face, the PumpController either returns abnormally to
the MimeralExtractorController (line 8), or requests an
external operation to the Pump (line 9). These exam-
ple scenarios have two important characteristics to be
highlighted: first, note that PumpController is not able
to provide a normal return without a previous request
to the Pump; second, the sequence of events involves
both internal events of the PumpController connector
and architectural ones representing the interaction be-
tween architectural elements (started by mineral...).
The CSP specification is responsible to synchronise
whenever one of them occurs.

After this instantiation, the iFTE-based architecture
in the context of the mining control system, approxi-
mately 1000 scenarios were identified. These scenarios
were defined by combining different order of execution
for the system functionalities, as well as the respective
returns. For example, different scenarios can be defined
for the mineral extraction, since it is possible to extract
air from the mine before extracting minerals. Moreover,
each execution can provide either normal or abnormal
returns and the abnormal returns can be either success-
fully tolerated or not. Each one of the iFTE architec-
tural elements was verified through the 22 properties
presented in Table 1. For the software architecture,
besides the 14 properties of Table 2, we have specified
three more properties related to the identification of di-
vergences in specific scenarios considered critical to the
business logic. These scenarios occur when the Pump is
turned on, and the MethaneLevel components informs
that the level of methane is high. In this case, the only
sequence of operations that should be possible is turn
off the Pump, and turn on the AirFlow component. If
these operations are successfully executed, the system
continues working. If either the Pump does not turn
off, or the AirFlow does not turn on, an alarm should
be raised into the UserInterface.

8.2 Verification of iFTE-Based Architectures

In the same way as the architectural elements, the
verification of iFTE-based architectures is conducted
using model checking, and when a property is violated,
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Table 2. Properties of Interest of the Software Architecture

Consistency of the Formal Model

No. Property Name & Description

1 Legitimacy of the architectural dependencies property. A required interface cannot depends on a provided interface of the
same architectural element.

2 Normal dependency correctness property. For every required operation, it is necessary to have a correspondent provided
operation to be activated.

3 Operation usage property. Every operation declared in the architectural model should be associated to an interface.

4 Interface usage property. Every interface declared in the architectural model should be associated to an architectural
element.

5 iFTE decomposition property. For each iFTE, an iFTE abstract model should be defined.

6 Operation mapping correctness. The operations associated to iFTEs in the architectural model should have a correspondent
operation into the respective iFTE abstract model.

7 Exception usage property. Every exception should be associated to at least one operation.

8 Abnormal dependency correctness property. There should exist a mapping between the required and provided exceptions
of two connected interfaces.

9 Exception mapping correctness property. Every architectural exception associated to iFTEs should have a correspondent
exception into the respective iFTE abstract model.

Scenarios Violations

No. Property Name & Description

1 Deadlock freedom property. The architectural configuration has to be free of deadlocks.

2 Communication uniformity property. The architectural elements have to communicate each other in a call/return way
(response after request).

3 Dependence integrity property. An architectural element a can only request operations of another architectural element b
if a depends on b.

4 Request/response property. Every response event should refer to the same source and destination elements, as well as the
same operation that was immediately requested.

5 Exception propagation property. When an exception is propagated from an architectural element to another, the provided
exception of the first element should be mapped to an equivalent required exception of the second element.

Extra Behavioural Information

No. Property Name & Description

– Scenario patterns. Application-specific properties for identifying specific patterns of exception propagation. Usage examples
of these properties are: verify if the software architecture is compliant with specific strategies of exception propagation, and
obtain the trace of an exception in a specific scenario.

an error message and a counter example are presented
by the tool. The properties to be verified for the
software architecture also cover the same four basic
goals: (i) consistency of the formal model; (ii) scenarios
violations; (iii) extra behavioural information; and
(iv) user-defined properties. Table 2 details the proper-
ties related to each goal in the context of IFTE-based
software architectures.

The behavioural properties specified for the sys-
tem define patterns containing a sequence of requests
and responses (normal and abnormal) of operations.
These patterns specify sequences of exception propaga-
tion, exception mapping, and exception handling that
are expected during the system execution. If there is
an application’s scenario that is inconsistent with any
pre-specified behavioural pattern, the model checker
presents a counterexample that shows the violation.

During the verification of the software architecture,
the model checker has detected deadlocks, and the

violation of properties. An example of the former
was the deadlock caused by omitting at the architec-
tural design the declaration that the PumpController is
able to propagate the exception MethaneLevelSensor-
FailureException. Since PumpController is not able to
fully mask this exception, a deadlock occurs whenever
it catches this exception from the MethaneLevel sen-
sor. Concerning the violation of exception propagation
properties, one of the identified violations was caused
by the absence of two handlers (required exceptions) in
the MineralExtractorController.

In addition to identify faults introduced during the
process of instantiating the architectural abstractions,
other two faults were identified related to the violation
of the verification properties: one for the MineralExtrac-
torController connector, and another for the software
architecture. In the following, we present the formal
specification of these two properties.

Property 10 of the iFTE (Table 1), which states that
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only maskable exceptions can be masked by the iFTE,
is specified for the MineralExtractorController connector
as follows: mec maskedExceptions ⊆ dom(mec rapn),
where mec maskedExceptions stores all the exceptions
that the MineralExtractorController has masked during
the model checking, and mec rapn is a relation from
a required exception to a subset of the respective pro-
vided operations that can mask it. The violation of such
a property reveals that the MineralExtractorController
connector should propagate the RaiseAlarm exception,
but this exception has been previously handled and
swallowed. Since this error was caused by a human
mistake during the system specification (in extended
UML), it characterises a design fault that would go un-
noticed if the proposed rigorous architectural approach
was not used. Although it is a simple error, it could be
expensive to correct in further phases of the software
development.

Property 8 of Category 1 of the software architec-
ture (Table 2), which states that there should exist a
mapping between the required and provided exceptions
of two connected interfaces, is specified for the mining
control system as follows: ∀provEx ,∃reqEx |provEx ∈
mining providedExceptions ∧ reqEx ∈ mining required -
Exceptions ∧ reqEx ∈ mining provExcep reqExcep(prov-
Ex), where mining providedExceptions is the set of
the system provided exceptions, mining required-
Exceptions is the set of the system required exceptions,
and mining provExcep reqExcep is a relation from a
provided exception to a subset of required exceptions
to which it can be converted during the exception prop-
agation. The violation of such a property characterises
either an architectural mismatch or a human mistake
during the architectural design. Since it can compro-
mise the efficacy of the exceptional behaviour and the
system dependability, it should be fixed before gener-
ating the source code of the application.

Besides the violation of two properties, we have in-
jected other three real design faults in the UML model
in order to assess if the proposed approach could iden-
tify them during verification. The design faults injected
were: (i) omission that the Pump component raises the
PumpFailureException; (ii) deletion of the connection
between I MEC RN and I AEC PN interfaces; (iii) ad-
dition of a new exception (Exp1) to be raised by the
PumpController connector, but no component is able
to catch it (a useless exception). After the automatic
generation of the formal model in B-Method and CSP
and the verification of the specified properties, the in-
jected faults have been identified. The omission of the
PumpFailureException exception raised by components

has been automatically detected by the ProB model
checker as an inconsistency of the B-Method machine
(undefined type). The absence of connection between
interfaces I MEC RN and I AEC PN was detected by the
violation of Property 1 of Category 2 of the software
architecture (Table 2), which states that the architec-
tural configuration has to be free of deadlocks. Finally,
the addition of the Exp1 has violated Property 9 of the
PumpController connector (Table 1), which prevents the
existence of useless exceptions.

8.3 Testing of iFTE-Based Software
Architectures

Regarding the testing of software systems against
their architectural specification, this paper is focused
on integration testing. In the following, we provide de-
tails about how to conduct a dependency analysis for
determining the integration testing order. After that,
we present how integration test cases are identified from
the specification of the software architecture.

8.3.1 Dependency Analysis

The existence of dependencies between architec-
tural elements, in terms of their provided and required
operations, should impose an order on how these com-
ponents are integrated, thus facilitating fault localisa-
tion. The basis for establishing this order is obtained
from the dependency analysis between components. In
our work, the order for executing test cases is defined
in such a way to reduce the effort of stub creation and
consequently the cost of test. A complementary tech-
nique for reducing the effort of stub creation was pro-
posed by Zhang and Ryder, which uses program anal-
ysis technology to reduce the number of unnecessary
nodes and dependencies in the dependency graph. One
big challenge in integration testing of component-based
systems is how to obtain enough information for de-
pendency analysis given that we cannot assume source
code availability. The approach presented here uses the
specifications of the architecture and of the iFTEs to
apply dependency analysis. At this level an abstract
view of the system is considered, but when architectural
elements are instantiated by physical components, this
analysis can be updated.

For the dependency analysis, we use the chaining
approach[36], which relates the architectural elements
by chaining the existing dependencies between them.
Links represent dependencies among these elements and
connect elements that are directly related. Analysing
those dependency chains, it is possible to support dif-
ferent interests. For example, to know the components



Patrick H. S. Brito et al.: Architecting Fault Tolerance with Exception Handling 231

which are affected by changes in another component. In
the context of this work, we use dependency analysis to
identify the best order for integrating the architectural
elements in order to facilitate the execution of integra-
tion test cases.

The features considered in the dependency analysis
rely on the notation used to specify the architecture.
In the B-Method and CSP specifications presented in
Subsection 8.1, the architecture is described in terms
of architectural elements, interfaces, operations, excep-
tions and events. These features are used to construct a
matrix representing the direct dependences among the
architectural elements. From this matrix it is possi-
ble to obtain, for a given architectural element c, three
types of chains: affected-by, affects and related. The
affected-by chain consists of a set of architectural ele-
ments that could potentially affect an architectural el-
ement c. The affects chain is the set of architectural
element that can be affected by c. The related chain
is a combination of the affected-by and affects chains
for c. To determine the integration order, we use two
metrics, called influence factor (IF) and late integration
factor (LIF)[37]. These metrics were proposed to help in
determining the integration order when testing of ob-
ject oriented systems and in our work it was adapted
for testing component-based systems.

8.3.2 Constructing the Dependency Matrix

The dependency matrix (DM) represents the rela-
tionships among architectural elements. The columns
of a DM represent the dependency in the relationship,
and its rows represent the depended-on element. A cell
DM[a, b] = 1 indicates that b depends on a. Both struc-
tural and behavioural dependencies are indicated in the
matrix, and this information could be obtained from the
architectural model. For example, in our case, since we
are using B-Method and CSP to describe the architec-
ture, we can obtain structural dependencies from B-
Method notation (architectural configuration), and the
behavioural ones from CSP (scenarios of use).

The rows and columns of the matrix can represent
the architectural elements, interfaces, operations and
signalling of exceptions. Events from and to the ex-
ternal environment should also be added, such as, a
start event provided by the user to initiate the system.
Then the dependencies between these elements, as de-
scribed in the B-Method specification, are inserted into
the cells. It is also possible to represent the internal re-
lationships among interfaces of an iFTE, as described
by their respective B-Method specifications. After in-
serting the structural relationships, the matrix is com-
pleted with behavioural information obtained from the

CSP model. Taking the example of the mining con-
trol system (Fig.13), if the MineralExtractorController
(MEC) connector requests services to the PumpCon-
troller (PC), which requests services to the Pump (P).
So, MEC depends on PC, and PC depends on P.

Once the DM is constructed, we can determine the
affects(c) and the affected-by(c) chains. The affected-
by(c) is determined by the column of the matrix that
is related to c. The affects(c) is determined by the row
of the matrix that is related to c. Although in the
context of this work the dependency matrix was man-
ually generated, the CSP specification of the software
architecture could be used as input for automatically
generating it.

8.3.3 Determining the Integration Order

As already mentioned, the integration order is ob-
tained based on two metrics: the influence factor (IF)
and the late integration factor (LIF)[37]. The first one
computes the number of architectural elements that
should be integrated after the architectural element of
interest c. It is obtained by counting the number of
elements that c directly affects. In other words, it is
the number of c′ 6= c such that DM[c, c′] = 1. The
second factor is LIF(c) = Σ IF(c’) for all c’ 6= c such
that DM[c’, c] = 1. The LIF is proportional to the total
number of elements that an element depends on. Af-
ter calculating the LIF of all the elements, we proceed
to determine the integration order by performing the
following steps.

Step 1. Select the elements with the least LIF. It
means that in our strategy the fewer elements an ele-
ment depends on, the sooner it should be integrated.
This rationale is motivated by the reduction of effort
for creating stubs. We designate the selected elements
by a set, selectedi, where i, in this case, is 1, to indicate
that they should be integrated in the first step.

Step 2. Recalculate the LIF of the remaining el-
ements. For each c’ 6∈ selectedi and for each c ∈
selectedi|c ∈ affected-by(c’) then LIF(c’) = LIF(c’) −
IF(c).

Step 3. Return to Step 1 until all the elements were
integrated.

If there are various elements with the same LIF, this
indicates the existence of a cycle in the dependency,
that is, if LIF(c) = LIF(c’) in one step of the integra-
tion order determination, then we can conclude that
c depends on c’ and c’ depends on c. They are also
designated as strongly connected elements[36]. In this
case, whichever the element is integrated first, a stub
is necessary to substitute the other. Some heuristics
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were proposed by Lima and Travassos to decide which
element to select first[37].

For exemplifying our approach, Table 3 presents the
two first matrices. To improve the readability, the first
column only presents an acronym of the architectural
element’s name, and the columns that have no depen-
dency were omitted. Following the algorithm already
presented, the influence factor (IF), and the late inte-
gration factor (LIF) of the first integration step were
calculated. After each step of integration, we have de-
fined the better integration order of the architectural
elements, which is presented in the last column of Ta-
ble 3. Notice that in the first step of integration, seven
architectural elements have no dependencies (LIF =
0, not presented in Table 3). Those are the first el-
ements to be integrated. Then in Step 2, two other
elements had LIF = 0 (AEC and PC), which were the
next components to be integrated. Finally, the order for
integrating the UserInterface (UI) and MineralExtractor-
Controller (MEC) is defined only in the third step of
integration, which is not presented in Table 3.

Table 3. Dependency Matrix Among Architectural Elements

of the Mining Control System

Integration

Step 1 Step 2 IF Order

UI MEC AEC PC UI MEC AEC PC

UI 0 0 0 0 0 0 0 0 0 11th (Step 3)

MEC 1 0 0 0 1 0 0 0 1 10th (Step 3)

AEC 0 1 0 0 0 1 0 0 1 8th (Step 2)

PC 0 1 0 0 0 1 0 0 1 9th (Step 2)

ML 0 1 1 1 – – – – 3 1st (Step 1)

AF 0 0 1 0 – – – – 1 2nd (Step 1)

AE 0 0 1 0 – – – – 1 3rd (Step 1)

ME 0 1 0 0 – – – – 1 4th (Step 1)

P 0 0 0 1 – – – – 1 5th (Step 1)

WF 0 0 0 1 – – – – 1 6th (Step 1)

WL 0 1 0 1 – – – – 2 7th (Step 1)

LIF 1 8 5 7 1 2 0 0 – –

8.3.4 Generating Integration Test Cases

In this study our concern is to show how architec-
tural formal models can be used for generating test
cases. For the sake of conciseness, we sketch here how to
use existing techniques to obtain integration test cases.
In the particular point of view of this paper, the ob-
jective of these test cases is to exercise the interactions
between the implementation of architectural elements,
through the operations at their interfaces, to identify
mismatches related to the flow of exceptions between
architectural elements.

First, we need to identify the invocation sequence of
operations associated to different interfaces. This can
be obtained from the CSP specification, which gives the
synchronization sequence of internal and architectural
events. From this information we can construct an in-
teraction graph from which test cases can be derived for
each integration step, as identified in Subsection 8.3.3.

In this graph, operations and the respective possible
returns (normal return and exceptions) are represented
as nodes. The internal and architectural events (re-
quests and responses) that refer to these operations
are represented as edges. When it is an operation
request (ifte...request in CSP), the edge points
to the operation that is being requested; when it
is an operation response (ifte...normalResponse or
ifte...abnormalResponse), the edge points to the re-
turned value. The interaction graph also has a start
node, which requests the first operation that starts the
interaction, and many final nodes, which represent the
possible responses of the operation under test. After the
interaction graph has been constructed, the test cases
can be identified: each path (from the starting node
to a final node) is considered a test case for integration
testing. But since we focus on the system abnormal be-
haviour, only the paths that have at least one exception
node are considered.

9 Case Study Evaluation

Overall, this case study has shown how a fault-
tolerant architectural abstraction based on exception
handling can be used to formally specify software ar-
chitectures. The proposed approach has provided the
means to apply model checking to verifying key prop-
erties of the architecture, and to generate architecture-
based integration test cases for assessing the correctness
of the source code against the architectural specifica-
tion. The rigorous process has helped to identify and
correct design faults of the architecture in earlier stages
of the software development. Although most of these
problems were simple to correct, if they were left to
be corrected in the later phases of the development, it
would have been much harder.

Regarding the iFTE architectural abstraction, the
modelling of the mining control system was made eas-
ier because the building blocks of its architecture were
based on the iFTE. The reuse of the formal mod-
els for specifying architectural elements and configura-
tions have been facilitated, since only 13% of their for-
mal specification, approximately, is affected by changes.
So, 87% of the templates presented in Subsections 7.1
and 8.1 were reused straight forward during specifica-
tion of the application. For example, the information
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updated for the architectural elements were the names
of interfaces, operations and exceptions (lines 4∼6 of
Fig.10) and initialization of variables (lines 23∼31 of
Fig.10). The pre-conditions and behaviour of the B-
Method operation (not presented in Fig.10) where pre-
served. Moreover, most of the formal properties were
also reused and the modified properties where instan-
tiated from a template, in order to represent specific
interfaces, operations and exceptions.

Besides the reuse of the formal model, it was also
clear that the explicit separation between the structural
(B-Method) and behavioural (CSP) specifications has
facilitated the specification of architectural elements
based on the iFTE. Since the architectural elements
have their own B-Method machines, this enabled to
represent a software architecture containing elements
based on different abstractions, e.g., the explicit inclu-
sion of B-Method machines for iFTEs and non-iFTEs
as shown in Fig.12. On the other hand, the use of CSP
for specifying scenarios has allowed to represent com-
plex abnormal architectural scenarios, e.g., the propa-
gation of the MethaneHighPumpOnException exception
from the PumpController to the MineralExtractorCon-
troller, followed by an exception handler that forces a
second try to turn the pump off before raising an alarm.

Regarding the adaptability of the software architec-
ture, if we reuse an architectural element into another
architecture, the impact of change varies from a case to
another. For example, the system’s functionalities (nor-
mal behaviour), which can be related to the business
domain, would be completely reused; though changes
might be necessary in the way exceptions are propa-
gated and handled (abnormal behaviour). The iFTE
abstraction used in this paper make this kind of adap-
tation easier. First, the explicit separation of concerns
between normal and abnormal interfaces concentrates
the focus of change on abnormal interfaces. Second,
the existence of a component with the role of imple-
menting the exception handling (Abnormal component)
facilitates the update of exception handlers. Third, the
Provided and Required components can be used as in-
ternal adapters in order to reuse the Normal component
with no modifications.

Regarding the formal verification of the software ar-
chitecture, first of all, we notice that the properties
of interest initially identified for the architectural ab-
straction could be re-used on different architectural el-
ements, thus facilitating the verification process. More-
over, since each architectural element can have an in-
ternal architecture, the software architecture can be in-
crementally specified and verified, which helps to con-
trol the complexity and improves the scalability of the

verification approach. Another advantage comes from
the combination of B-Method and CSP, which facili-
tates the verification of both structural and behavioural
properties, e.g., properties regarding the exception con-
trol flow and handling. Regarding the verification of
the abnormal behaviour, the existing approaches can-
not handle certain properties which are handled by
the proposed approach, especially properties related to
architectural scenarios of exception control flow and
exception handling involving architectural reconfigura-
tion.

Finally, for evaluating the scalability of the proposed
solution, we have compared our results with the re-
sults obtained when verifying the same system using
the Aereal framework[11]. Although in both cases the
verification of the software architecture has been con-
cluded, the approach presented in this paper has used
approximately 50% less memory. The scalability im-
provement was a consequence of two characteristics of
the proposed solution. First, the explicit behavioural
specification in CSP restricts the architectural scenar-
ios in which the formal model is verified, thus reducing
the state space used during verification. Second, the use
of architectural abstractions has reduced the number of
architectural elements, since it allows the specification
of composed architectural elements as single elements.

10 Conclusions and Future Work

This paper has presented a rigorous development ap-
proach for developing and testing fault-tolerant soft-
ware architectures. The focus of the paper is on an
integrated solution involving formal specification, veri-
fication and test of exception control flows and handlers
at the software architecture. This approach is built
around the concept of architectural abstractions, which
intends to improve the control of the architecture com-
plexity and the scalability of the proposed solution. An
architectural abstraction has been presented: the ide-
alised fault-tolerant architectural element (iFTE), an
architectural abstraction based on exception handling
mechanism, which is used for structuring dependable
systems at the architectural level.

Regarding the formal representation, the proposed
approach combines the use of B-Method and CSP for
representing exception types, exception control flows
and handlers in terms of architectural scenarios. The
architectural scenarios and properties are also used for
generating unit, integration and robustness test cases,
which aims to assess the consistency between the ver-
ified software architecture and the final source code of
the application. This assessment is necessary, since
even when the software architecture is formally verified,
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the consistency of the final source code with the soft-
ware architecture is not guaranteed.

The case study used for evaluating the overall ap-
proach has showed that the proposed approach provides
an appropriate solution for modelling, analysing and
testing fault-tolerant software systems at the architec-
tural level.

A limitation of the proposed solution is the assump-
tion that the communication between architectural el-
ements follows a call-return protocol. Although this
assumption simplifies the specification of software ar-
chitectures, it lacks concurrency, which is essential in
the context of a wide range of applications. To over-
come this limitation, current work is looking on how
to adapt our solution to support the specification of
event-based software architectures. For this, the new
formal template should resolve concurrent exceptions
and coordinate scenarios involving the execution of
concurrent components. Moreover, the concepts of
architectural abstractions and scenarios presented in
this paper should provide considerable benefits in the
context of Model-Driven Architecture (MDA). First,
since abstractions and scenarios can be specified in dif-
ferent levels of details, their refinement can guide the
transformation from a platform-independent model to
a platform-specific model. To support MDA, it is neces-
sary to develop tools for automatic model transforma-
tion, including the generation of source code. Regard-
ing model-based testing, the proposed approach lacks
on the generation of testing data. In order to supply
such limitations, it would be necessary to use comple-
mentary approaches such as mutation testing[38].
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nce by École Nationale Supé-
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Appendix A Overview of the Formal Notations

This section presents an overview of the formal no-
tations used in this paper.

A.1 B-Method Machines

B-Method is a state-based method developed by
Abrial for specifying, designing and coding software sys-
tems. It is based on set theory with the axiom of choice.
Sets are used for data modelling, thus allowing the def-
inition of personalised types according to what is being
modelled. B-Method has been used in industry with
some success, in a number of applications ranging from
the development of control systems to smart cards. As
all formal methods, the B-Method provides a formal
language to describe systems, allowing for analysis and
verification of certain system properties prior to imple-
mentation. An important characteristic of B is that it
covers the whole development process, from specifica-
tion to implementation. In the context of this paper,
we have used only the specification and verification of
B-Method, not the implementation.

1 MACHINE counter

2

3 VARIABLES

4 value

5

6 INVARIANT

7 value : INT

8 INITIALIZATION

9 value : =0

10

11 OPERATIONS

12 inc() =

13 BEGIN

14 value := value +1

15 END;

16

17 add(number)=

18 PRE

19 number : INT

20 THEN

21 value := value + number

22 END;

23

24 output < −− getValue()=

25 BEGIN

26 output := value

27 END

28 END

Fig.A. Example of a B-Method machine.

B-Method specifications are centred on the notion of

abstract machine. Abstract machines are the units of
modularisation of specifications in B-Method, and re-
semble modules of imperative languages. An abstract
machine encapsulates data and behaviour. Data are
stored in terms of variables, and behaviour in terms
of operations. Fig.A presents an example of an ab-
stract machine in B-Method. This machine has a sin-
gle variable (value), and three operations: (i) inc(),
which increments one in the value of the value variable;
(ii) add(number), which increments “number” in the
value of the variable, and (iii) output ← getValue(),
which returns the value of the variable. The type of the
variable is defined in terms of invariants. Besides defin-
ing the variable types, invariants might contain other
statements in order to indicate which properties must
be maintained throughout the lifecycle of the abstract
machine.

Operations are specified by means of pre-conditions
and multiple assignments. Pre-conditions can be used
to define general rules that should be valid before ex-
ecuting the operation. When there is no precondition
(operations inc() and getValue()), it is assumed a
“true” value (logical tautology). Assignments are used
to change the value of variables, thus updating the state
of the machine. For example, lines 14 and 21 of Fig.A
changes the value of the machine’s variable. When exe-
cuting an operation, it is required that it preserves the
invariants specified for the machine. Operations might
have parameters and provide a return. While the types
of parameters are specified as pre-conditions (line 19 of
Fig.A), the type of return is defined as an assignment
into the operation (line 26 of Fig.A). In the example
of the add(number) operation in Fig.A (line 17) a pa-
rameter is passed containing an integer value (INT).
Examples of other symbols for defining more complex
types are presented in Table A. These definitions can be
used into invariants and preconditions, in order to de-
fine logical expressions, mathematical relations, power
sets, etc.

Table A. Some Symbols for Defining Types in B-Method

Symbol Meaning Symbol Meaning

POW(A) Powserset of A A −−> B Total Function

from A to B

A +−> B Partial Function A B A union B

from A to B

A ∗ B Cartesian Product seq(A) Sequence of

of A and B Elements of A

A.2 Communicating Sequential Processes
(CSP)

Communicating sequential processes (CSP) is a
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process algebra that describes patterns of communica-
tion by algebraic expressions. The basic element of be-
haviour and communication in CSP is an event. Events
may be atomic, or they can have associated data. For
example evt1 and evt2 are atomic events, while evt3!5
and evt4?x represent events that output the value 5
and input a value represented by x respectively. A pro-
cess is the unit which associate related events. The
simplest process, STOP, is the one that engages in no
events. Another useful process is SKIP, representing
successful termination.

When associating events together, processes can de-
fine either sequential execution or alternative execu-
tions. A process can define sequential events by us-
ing the arrow operator (−>), in such a way that if
PROCESS1 = (evt1−> evt2−> evt3!7), PROCESS1 de-

fines an exact sequence of events: first evt1, followed
by evt2 and then evt3 outputting the number 7. A
process can also define sequences of other processes; for
this, it is necessary to define a list of processes sep-
arated by the semicolon operator (;). For example,
process PROCESS2 = (P1;P2) behaves like P1 until P1
executes a final successful event (SKIP), at which point
it behaves like P2.

Besides specifying sequential execution, CSP also al-
lows the specification of alternative choices. For this,
the alternative sequences should be separated by the
choice operator ([]). For example, if PROCESS3 =
(PROCESS1 [] (evt5 −> evt6)), the first event to
be executed could be either evt1 or evt5; but after
choosing one of them, the respective sequence would be
followed.


