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Abstract Under SOA (Service-Oriented Architecture), composite service is formed by aggregating multiple component
services together in a given workflow. One key criterion of this research topic is QoS composition. Most work on service
composition mainly focuses on the algorithms about how to compose services according to assumed QoS, without considering
where the required QoS comes from and the selection of user preferred composition algorithm among those with different
computational cost and different selection results. In this paper, we propose to strengthen current service composition
mechanism by generation of QoS requirement and its algorithm selection based on the QoS reference vectors which are
calculated optimally from the existing individual services’ QoS by registry to represent QoS overview about the best QoS,
the worst (or most economical) QoS, or the average QoS of all composite services. To implement QoS requirement, which is
determined according to QoS overview, this paper introduces two selection algorithms as two kinds of experiment examples,
one aiming at the most accurate service selection and the other chasing for trade-off between selection cost and result.
Experimental results show our mechanism can help the requester achieve his expected composite service with appropriate
QoS requirement and customized selection algorithm.

Keywords service-oriented architecture, service composition, quality of services, service selection

1 Introduction

Service-oriented architecture (SOA) promises on-
demand creation of new services which are composed of
multiple component services. There has been substan-
tial amount of previous research related to the topic
of service composition. Related standards and refer-
ence architectures are proposed. Languages and pro-
tocols such as SOAP, WSDL, UDDI[1], BPEL4WS[2],
ebXML[3] are available to provide infrastructure sup-
port for Web service composition. Below are some of
the major challenges in the service composition pro-
cess.

Firstly, according to the service design principles,
services should be loosely coupled and autonomous. To-
gether with the fact that services are published before
requesters (with their requirements) come for selection,
individual component services should be independent
of each other. However, in a composite service, this

independency disappears as all the components in-
volved are aggregated together to achieve the same
overall goal, which brings about much work to do[4−7].
There might exist many possible ways of aggregating
component services together to form the required com-
posite service of a given set of functionalities. With
an expected increase in the number of component ser-
vices available in the service registry, service compo-
sition algorithm is being confronted with a large num-
ber of combination choices. This problem has attracted
many researches.

Secondly, before service selection, the required QoS
should be specified. However, much work of service
selection assumes that QoS requirement already exists,
and its generation is ignored. By the definition of “soft-
ware service”, each user should have his own unique
QoS requirement and constraint. For example, some
users might focus on performance issues such as la-
tency, whereas others might demand more on reliability
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of business transaction. But due to the independency
and loose coupling of component services, the overview
of QoS information of all possible composite services,
such as the possible best services, the average services,
or the worst (most economical) services is not known
by a requester. Therefore, how to generate an appro-
priate QoS requirement for the requester is also a major
problem.

Thirdly, although lots of service selection algorithms
have been proposed, few papers discuss how to bind
QoS requirement with the algorithms. Since different
algorithms will consume different computational costs,
resulting in different selection results. For example,
as getting the “best quality” services or “good enough
quality” requires different algorithms, a corresponding
mechanism should be designed for requesters to pick up
his preferred algorithm to reach his required QoS.

The aim of this paper is to strengthen current service
composition mechanism by providing generation of QoS
requirement and its implementation algorithm between
the requester and registry. Firstly, given a workflow
by a requester, lots of composite services with different
QoS composition could be constructed by component
services with QoS information published in registry. If
the requester wants to propose really practical QoS, he
could negotiate with the registry to investigate the over-
all QoS composition information of all possible compos-
ite services until he understands what QoS or what kind
of service he needs. Secondly, the registry negotiates
with the requester about which algorithm to select from
the algorithms stored in registry, followed by executing
service selection. Therefore, the QoS requirement gen-
eration, together with the algorithm customization, lets
the requester fulfill an approving composite service for
a given workflow. To implement the target, this paper
presents an idea of QoS reference vector and improves
SOA framework.

The outline for the rest of this paper is as follows. In
Section 2, related work on service composition is sur-
veyed. In Section 3, we briefly describe the workflow of
composite service, and the improved SOA framework
to support QoS requirement generation. Section 4 dis-
cusses the general service of the QoS model and cal-
culation methods of the best, worst and average com-
posed QoS for different individual metrics. Section 5
presents a mechanism and computation methods to ob-
tain the QoS requirement for a composite service based
on QoS reference vector. Section 6 presents the im-
plementation algorithm selection, two service selection
algorithms are introduced as examples: one for the
most suitable QoS selection with higher execution over-
head and the other for fast service selection through

effective trade-off between the overall quality of com-
posite service and service selection overhead. Exper-
imental study of these two algorithms is presented in
Section 7. Finally, the paper concludes in Section 8.

2 Related Work

Web service composition involving QoS has received
much attention during the recent years. [8] addresses
service composition based on workflow. Its model does
not support parallelism nor branching. It just defines
a composite service as a chain of service operations.
WebQ[9] conducts adaptive selection process and si-
multaneously provides binding and execution for work-
flow. However, their QoS selection only considers ser-
vice load and makes decisions according to individual
component service. A QoS-driven selection algorithm
during the execution of a composite service is given in
[10], it considers multiple QoS criteria such as price,
duration, and reliability. [11] proposes to identify the
best set of services at runtime by using a mixed integer
linear programming. [12] formalizes three kinds of op-
timal service selection problems based on different cri-
teria and studies their complexity and implement solu-
tions. Evaluating on composition algorithms[13] points
out that service composition is a multi-dimensional
optimisation problem which results in an exponential
computation effort for computing an optimal solution.
It is similar to other combinatorial problems — the
knapsack problem and the resource constraint project
scheduling problem, and several possible heuristics are
described for these problems and their efficiency. An
approach to triggering and performing composite ser-
vice replanning is proposed during execution when the
actual QoS values deviate from the QoS requirement, or
the execution path may not be the foreseen[14]. How-
ever, much of the work focuses on composition algo-
rithm, without considering how to help the requester
create his QoS requirement, which is the premise to do
composition. Furthermore, they rarely touch the idea of
customizing preferred selection algorithm to implement
required QoS for the requester. However, the general al-
gorithms of integer programming and exhaustive search
used in [10, 11] are also introduced as our experimental
example.

Some recent proposals face the QoS generation prob-
lem. To solve QoS issues related to security, reliabil-
ity, and performance when implementing “write-once,
reuse everywhere” for component software, authors in
[15] present a middleware-based approach to manag-
ing dynamically the changing of QoS requirements of
components, they provide middleware enhancements
to match, interpret, and mediate QoS requirements of
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clients and servers at deployment time or runtime. QoS
parameters generation is done by asking the service
providers to improve their QoS, when a feasible com-
posite solution does not exist, it demands requester and
provider find a new agreement on QoS parameters[11].
[16] realizes the need of QoS requirement generation,
and it presents an agent-based coordinated-negotiation
generation framework. The basic idea is mapping the
overall QoS requirements onto component service QoS
requirements, i.e., QoS requirements for each service
type within the composition, then negotiating with po-
tential service providers. [17] suggests a policy driven
and multi-agent generation approach to achieving win-
win in the composition and cooperation of the services
according to the rules. The methodology is introduced
in [18] considering how to model a service composition
as a constraint satisfaction problem and how to solve
the problem by a multi-agent negotiation generation al-
gorithm. However, the major work relies on providers
or the agents of the provider to involve in generation of
the individual QoS that each component service should
provide. The goal of our approach is generating QoS
requirement for the requester instead of the provider
about the overall QoS of composite service.

All the work contributes much to service composi-
tion. However, our approach can be seen as complemen-
tary to them. We propose to generate the required QoS
for users, which is assumed to already exist in above
researches, we also advise to provide a mechanism for
a requester to determine which service selection algo-
rithm he expects registry to use, the algorithm could
be any designed by registry or others provided by the
requester himself.

3 System Model

In this section, we describe the workflow of compos-
ite service and service QoS model, and improve SOA
framework to support QoS requirement generation and
algorithm selection. We assume that the QoS of each
component service is relatively stable without needing
to switch frequently among other services.

3.1 Workflow Model of Composite Service

We define three types of basic relationship among
services in a typical service workflow: “Sequential”
(type S, marked as “∼”), “Parallel Exclusion” (type
PE, marked as “\”), and “Parallel And” (type PA,
marked as “∧”). With S, services are executed in a
sequential order. With PA, services should be executed
in parallel. With PE, services are executed exclusively,

only one parallel service responds to a request execu-
tion.

We construct a probabilistic request execution work-
flow model for composite service based on above three
basic types of workflow. Note that although the given
service workflow is fixed, its execution instance for
a specific request is still dynamic due to the transi-
tion probability of requests among component services.
That is, the workflow process is a stochastic process
with a finite set of component services.

Given a composite service, its request execution
workflow graph (REWG) is constructed recursively us-
ing the above three basic workflow types. To simplify
the discussion, we assume that REWG is acyclic and PE
services or PA services have only one direct predecessor
(or initial vertex) and one direct successor (or final ver-
tex). In REWG, a vertex represents a service or busi-
ness process and an edge expresses the execution order
or precedence constraint. Let graph REWG = 〈V, E〉
denote the workflow model, where V is a set of tasks,
V = {t1, t2, . . . , tn}, and E is a set of directed edges,
E = {〈ti, tj〉|i 6 n, j 6 n, i < j}.

As an example, RUBiS Benchmark[19] implements
an auction site prototype modeled after eBay. It in-
cludes some core tasks: selling, browsing, and bidding,
etc. A composite service is formed only after the service
selection for each task. In general, there exist multiple
service providers to satisfy one task function, and the
goal of service selection is to select the one which can
meet the requester’s QoS requirements.

Fig.1. Workflow graph of RUBiS.

Fig.1 gives an example of RUBiS Benchmark work-
flow. It has eight vertices or tasks (later in our experi-
mental study, we will use it as an example). Its formal
expression is:

t1 ∼ (t2 ∧ t3) ∼ t4 ∼ t5 ∼ (t6\t7) ∼ t8.

Definition 1 (Execution Path (EP)). An execu-
tion path of a workflow consists of a sequence of ver-
tices {t1, t2, . . . , tn}, its similar definition is presented
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in many researches, it represents an execution process
of request in workflow, its connections follow the orig-
inal workflow such that t1 is the start vertex, tn is the
end vertex, and for every vertex ti (1 6 i 6 n):

(1) ti is a direct successor to one or more of the
vertices in {t1, t2, . . . , ti−1};

(2) ti is not a direct successor to any to the vertices
in {ti+1, ti+2, . . . , tn};

(3) There is no vertex tj in EP {t1, t2, . . . , ti, . . . , tn}
such that ti has the relationship of ti\tj. That is to say,
all PE vertices must belong to different EPs;

(4) If tj belongs to EP {t1, t2, . . . , ti . . . , tn}, then
any vertex ti with the relationship of ti∧ tj also belongs
to the EP. That is to say, all PA vertices must belong
to the same EP.

Fig.2. Two EPs of Fig.1.

During the execution process of a given workflow,
the execution path might be uncertain at the begin-
ning because of the vertices of type PE, which branches
the execution flow. However, as the request traverses
through the graph, its path becomes clearer. Finally,
the execution path is formed entirely when requests
execution are finished at the end service of workflow.

An execution path is a subgraph of the original work-
flow graph with only two basic workflow types, type S
and PA. There might be multiple EPs in one workflow.
Any request must be serviced along one and only one
of these EPs. The EPs could be identified based on
the traversal of the workflow graph. Fig.2 shows two
EPs in the workflow of Fig.1. Their formal expressions
are: (a) t1 ∼ (t2 ∧ t3) ∼ t4 ∼ t5 ∼ t6 ∼ t8; and (b)
t1 ∼ (t2 ∧ t3) ∼ t4 ∼ t5 ∼ t7 ∼ t8. In this paper, we
also assume that for each task ti, there are m candi-
date services to be selected, and they are denoted by
Si = {si,1, si,2, . . . , si,m}.

3.2 Improving SOA Framework

The approach to QoS requirement generation and
implementation algorithm selection proposed relies on
the definition to improve SOA framework where QoS
information published by service provider is trustful,
and requester is able to provide composition algorithm
to the registry which is used for his service composition.
The improved SOA framework is depicted in Fig.3.

Let us show how the process of service composition
can be enriched through the QoS requirement genera-
tion and implementation algorithm selection.
• Service publication: during service publication, the

QoS information which will be used for future QoS com-
putation is also provided through some specification,
such as WSDL.
• Service composition: requester submits his com-

posite service workflow structure according to his ap-
plication logic to the registry for future service compo-
sition implementation; registry analyzes this workflow,
starting to compute the composed QoS overview includ-
ing the possible best QoS, the possible worst QoS, and

Fig.3. The improved SOA framework.
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the average QoS based on individual QoS information
and workflow. After getting the QoS overview for his
workflow, the requester needs to determine which one
is his preference. Does he require a best service or the
most economical one, or the average one? If none, he
will continue to determine his real required QoS by as-
signing certain impact factor to them, such as 80% of
the best. During the process of QoS generation, the reg-
istry needs to compute the composed QoS for requester
workflow. After generating the QoS, how to implement
this QoS is related to the problem of composition al-
gorithm. The registry may store multiple selection al-
gorithms, each has its own characteristic, some maybe
execute with fast speed but the result is not exactly ac-
curate, some could get accurate result, but only suitable
for small size environment. Therefore, the requester
must determine his appropriate implementation algo-
rithm, with considering the number of workflow tasks,
the number of component services for each task, the
QoS constraint etc. The requester could provide his
own algorithm to registry to execute selection if he is
satisfied with none in registry. Finally, registry begins
to do service selection according to the generated QoS
requirement and implementation algorithm.
• Service binding: this behavior is similar to tradi-

tional SOA, the component services should be invoked
to execute.

4 General QoS Model and Composition
Calculation

In this paper, we would like to propose a general QoS
model. Items such as price, time, reliability, security
and trust will be considered inside (just like most mod-
els published[10,20,21].) since these are common items
for QoS. Of course our idea will work also for other QoS
metrics. Any QoS element can be added into or deleted
from the vector according to user requirements without
affecting the validity and operation of our model. The
second factor to choose these items is that they repre-
sent two kinds of criteria, one is positive such as trust,
security and reliability. The bigger the value is, the bet-
ter its QoS will be. The other is negative, such as time
and price. They are just the opposite. The bigger the
value is, the worse the QoS will be. The third factor
is that they represent different computation methods
of composing QoS. The price is the sum of all the ser-
vices on workflow, the execution time depends on the
critical path, the reliability is given by the product of
reliabilities, the trust is the average trust, and the secu-
rity is the minimum value of individual security levels.
The computation method aims at the execution of the
whole workflow instead of single request. EP is used to

analyze the execution time.
Ideally, the best composite service requires each

composed QoS is the best. Similarly, the worst or aver-
age composite service means that each composed QoS
is the worst or average. So calculation of different QoS
metrics for composite service is the base for generating
QoS reference vector later.

In theory, if a given workflow has n tasks and each
task has m candidate services, mn possible composite
services could be constructed, independent of the best,
worst or average QoS values. During QoS computa-
tion, registry will keep computing the best or worst
composed QoS metrics from mn composite services. It
is a real problem, especially when n is big. In this sec-
tion, we focus on optimization calculation directly from
the existing individual services’ QoS instead of from the
mn composite services.

Without losing generality, let us define QoS matrix
U to represent QoS values of all candidate service sets
for any given QoS metrics. So there are k QoS matrices
U . Each column in U represents the QoS values of all
candidate services for each task.

UQoS metrics =




u1,1 u1,2 · · · u1,n

u2,1 u2,2 · · · u2,n

...
...

...
...

um,1 um,2 · · · um,n


 ,

where, for example, in Uprice, ui,j represents the price
of service si,j . For better presentation, we also de-
fine fprice(si,j) to present ui,j in Uprice, and similarly,
ftrust(si,j) to present ui,j in U trust, etc.

4.1 Price

• The best:
fprice(REWG) =

∑n
i=1(min{ui,j}| j = 1, 2, . . . , m).

• The worst:
fprice(REWG) =

∑n
i=1(max{ui,j}| j = 1, 2, . . . , m).

• The average value depends on the sum of all com-
posite services, and Gi is the i-th composite service to
do the following:

fprice(REWG) =

mn∑

i=1

fprice(Gi)

mn
=

mn−1 ×
m∑

i=1

n∑

j=1

ui,j

mn
.

Because for each element ui,j , it will appear in mn−1

composite services, we continue to have

fprice(REWG) =

mn−1 ×
m∑

i=1

n∑

j=1

ui,j

mn
=

m∑

i=1

n∑

j=1

ui,j

m
.
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The optimized computation complexity is O(m×n).

4.2 Reliability

Reliability refers to the probability of the system’s
availability that a requester can complete the service
invocation instance on it successfully. In general, its
value ranges from 0 to 1.
• The best:

frelia(REWG) =
n∏

i=1

(max{ui,j}| j = 1, 2, . . . , m).

• The worst:

frelia(REWG) =
n∏

i=1

(min{ui,j}| j = 1, 2, . . . , m).

• The average:
For QoS metrics such as reliability, which depends

on the product of QoS elements, we should pick up an
element from each column in matrix U . So we have:

frelia(REWG) =

mn∑

i=1

frelia(Gi)

mn

=

m∑

in=1

m∑

in−1=1

· · ·
m∑

i1=1

ui1,1ui2,2 · · ·uin,n

mn

=

m∑

in=1

uin,n ×
m∑

in−1=1

uin,n−1 × · · · ×
m∑

i1=1

ui1,1

mn

=

m∑

i=1

ui,n ×
m∑

i=1

ui,n−1 × · · · ×
m∑

i=1

ui,1

mn

=

n∏

j=1

m∑

i=1

ui,j

mn
.

Therefore, getting the average value of reliability that
is dependent on their product is very simple: (i) find-
ing the QoS sum of all candidate services by

∑m
i=1 ui,j ,

(ii) calculating the product of all sums, and (iii) com-
puting its average value. The optimized computation
complexity of this process is O(m× n).

4.3 Trust

Trust measures a service’s trustworthiness. Trust
boosts user confidence and facilitates judgment about

service reputations. In general, we set the value of trust
ranging from 1 to 5.
• The best:

ftrust(REWG) =
n∑

i−1

(max{ui,j}|j = 1, 2, . . . , m)/n.

• The worst:

ftrust(REWG) =
n∑

i−1

(min{ui,j}|j = 1, 2, . . . , m)/n.

• The average:

ftrust(REWG) =

mn∑

i=1

ftrust(Gi)

mn
=

mn−1 ×
m∑

i=1

n∑

j=1

ui,j

mn × n

=

m∑

i=1

n∑

j=1

ui,j

m× n
.

The optimized computation complexity is O(m× n).

4.4 Security

Security focuses on protecting users and businesses
from anonymous intrusions, attacks, vulnerabilities,
etc. Security is measured by the standard security level
which is instituted by authoritative organizations or
government. Examples of such security level standards
include ITSEC[22] and CC[23]. We set the value of se-
curity level ranging from 1 to 5 in our experiment. In
this paper, we take the general assumption that the fi-
nal security level of a composite service is determined
by the minimum value of individual security levels of
its component services.
• The best:

fsec(REWG) = min{{max{ui,j}|j = 1, 2, . . . , m}|
i = 1, 2, . . . , n}.

• The worst:

fsec(REWG) = min{{min{ui,j}|j = 1, 2, . . . , m}|
i = 1, 2, . . . , n}.

• The average:
For the QoS metrics such as security, which depends

on extreme values, do the following:

fsec(REWG) =

mn∑

i=1

fsec(Gi)

mn
=

m∑

i=1

n∑

j=1

ui,j × xi,j

mn
,
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where xij is the occurrence frequencies of ui,j to be se-
lected as fsec(Gi), because the result of fsec(Gi) is one
of m×n elements in the matrix U , and we just need to
find out that how many times each element is selected
as fsec(Gi).

The next problem to be solved is to find xi,j . We
observe that whether the element ui,j is selected relies
on how many elements in each column in U are bigger
than itself. The combination number of these elements
is just the value of xi,j . Assume that yi elements in
column i are less than ui,j , then xi,j =

∏n
i=1,i 6=j yi. In

this way, the security element could be found.

fsec(REWG) =

m∑

i=1

n∑

j=1

ui,j × xi,j

mn

=

m∑

i=1

n∑

j=1

(
ui,j ×

n∏

i=1,i 6=j

yi

)

mn
.

If the value of ui,j is unique, xi,j could be calculated
easily. However, if the value of elements in other column
is the same as ui,j , the problem will become harder. It
is because the repeated elements will result in incorrect
xi,j . Therefore, we introduce an infinitely small number
ε to remove these repeated elements. Consequently, we
first find the occurrence frequency of the value of each
element appears in U . Then, we add different multi-
ples o ε to these repeated elements. These two steps
are formulated as follows:

(i) Producing tag matrix about occurrence frequen-
cies of elements with the same value existing in U . If
elements with the same value appear in U for some oc-
currence frequency, let ua,k

i,j represent a (i.e., ui,j = a),
and that ui,j is the k-th time the value a appears.

T =




ua,1
1,1 ud,1

1,2 · · · ub,1
1,n

uc,1
2,1 ua,2

2,2 · · · uc,2
2,n

...
...

...
...

uc,3
m,1 ub,2

m,2 · · · ua,k
m,n


 ,

U∗ =




u∗1,1 u∗1,2 · · · u∗1,n

u∗2,1 u∗2,2 · · · u∗2,n

...
...

...
...

u∗m,1 u∗m,2 · · · u∗m,n


 .

(ii) With reference to uak
ij in T , updating U in this

way: u∗i,j = ui,j + (k − 1)ε = a + (k − 1)ε.
After these two steps, a QoS matrix U∗ without re-

peated elements is produced. For any two elements in

U∗ that are different, we have:

fsec(REWG) =

m∑

i=1

n∑

j=1

(
u∗i,j × x∗i,j

)

mn

=

m∑

i=1

n∑

j=1

(
u∗i,j ×

n∏

i=1,i 6=j

y∗i
)

mn

=

m∑

i=1

n∑

j=1

(
(ui,j + (k − 1)× ε)×

n∏

i=1,i 6=j

y∗i
)

mn

=

m∑

i=1

n∑

j=1

(
ui,j ×

n∏

i=1,i 6=j

y∗i
)

mn
.

The optimized computational complexity here is
O((m× n)2).

4.5 Time

Time is the average execution time determined by
the critical paths among all the possible EPs. Let a be
the number of EPs, and ftime(EPk) be the execution
time of the i-th EP.
• The best:

ftime(REWG) =
a∑

i=1

ftime(EPk)/a,

where ftime(EPk) =
∑n

i=1(min{ui,j}|j = 1, 2, . . . , m),
and si,j locates in the critical path of EPk.
• The worst:

ftime(REWG) =
a∑

i=1

ftime(EPk)/a,

where ftime(EPk) =
∑n

i=1(max{ui,j}|j = 1, 2, . . . , m)
and si,j locates in the critical path of EPk.
• The average:
Among our QoS model, time the most complex QoS

metrics, its computation depends on the critical path
in each EP.

Different service combination results in different crit-
ical path. If we find all the critical paths, sum up the
time for each path, and then find their average value,
this process will be an NP-hard problem, because there
are mn composite services.

To solve this problem, we first need to define some
terms. For vertices that appear on each critical path,
we label them as public vertices. Let us assume there
are m candidates for each public vertex. The vertices
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with type PA between two public vertices are defined
as super vertices. Assume that there are i vertices con-
structing a super vertex, then there will be mi candi-
dates for this super vertex. As a result, EP is mapped
onto a vertex sequence of public vertices and super ver-
tices. The critical path is determined by the value of
these two kinds of vertices. And the values of public
vertices are assured to contribute to the critical path
while the values of super vertices depend on the critical
vertices.

Theorem 1. For each EP with the vertex se-
quence being composed of public vertices and super
vertices 〈R1, R2, R3, . . . , Rz〉, assume the numbers of
their candidates are l1, l2, l3, . . . , lz. Let vector Li =
〈c1,i, c2,i, . . . , cli,i〉 represent the time of Si, then:

average time of EP =
ln∑

jn=1

ln∑

jn−1=1

· · ·
l1∑

j1=1

z∑

i=1

cji,i

z∏

j=1

lj

=
z∑

i=1

[
li∑

j=1

cj,i

li

]
.

Proof. The time QoS matrix of all the candidates for
sequence vertices 〈R1, R2, R3, . . . , Rz〉 is given below as
L:

L =




c1,1 c1,2 · · · c1,z

c2,1 c2,2 · · · c2,z

...
...

...
...

cl1,1 cl2,2 · · · clz,z




,

time of EP =
∑i=1
∀ji∈{1,2,3,...,li} cji,i, and average time of

EP =

ln∑

jn=1

ln−1∑

jn−1=1

· · ·
l1∑

j1=1

z∑

i=1

cji,i

z∏

j=1

lj

=

ln∑

jn=1

ln−1∑

jn−1=1

· · ·
l1∑

j1=1

(cj1,1 + cj2,2 + · · ·+ cjz,z)

l1 × l2 × · · · × lz
.

The above equation has the meanings of picking up any
element from each vector in L in order, summing them
up, and then averaging all the sums. Therefore, for any
element cj,i, it will appear l1×l2×· · ·×li−1×li+1×· · ·×
ln times. Based on this analysis, we have the following
equation:

average time of EP =

1
l1 × l2 × · · · × lz

{ z∑

i=1

[(l1 × l2 × li−1 × li+1

× · · · × lz)× (c1,i + c2,i + · · ·+ cli,i)]
}

=
z∑

i=1

[ (c1,i + c2,i + · · ·+ cli,i)
li

]
=

z∑

i=1

[
li∑

j=1

cj,i

li

]
.

Thus, Theorem 1 is proved. ¤
Theorem 1 shows that we can compute the av-

erage critical path by finding the average value of
candidates for each vertex along 〈R1, R2, R3, . . . , Rz〉
through

∑li
j=1 cj,i

li
, where li = m for each public vertex,

and li = mj for each super vertex with j vertices with
type PA. For public vertex, cj,i is known; for super ver-
tex, cj,i can be computed using the above method. The
computation complexity of finding the average time of
EP is O((m × n)2 + m × n). From the above formula,
we see that the fewer the super vertices is, the faster
the computation process will be. In particular, it will
be the fastest if REWG is just a simple sequential com-
posite flow.

The average time of composite service could be com-
puted based on the average time of EP. Assume a EPs
could be decomposed from REWG and there are pi ver-
tices in EP i, then the number of composite services
supported by EP i is λi = mpi .

ftime(REWG)

=
( a∑

i=1

(average time of EP i × λi)
)/( a∑

i=1

λi

)
.

The computation complexity of this step is O(n).
Based on the above analysis, the QoS vector of com-

posite service is defined as:

f(REWG) = 〈fprice(REWG), ftime(REWG),

frelia(REWG), ftrust(REWG), fsec(REWG)〉.

The individual QoS vector for each component
service si,j is presented as: 〈fprice(si,j), ftime(si,j),
frelia(si,j), ftrust(si,j), fsec(si,j)〉.

5 Generation of QoS Requirement for
Composite Service

For most service composition algorithms, one of the
most critical assumptions is that the required QoS re-
quirement is ready beforehand. However, it is difficult
for the requester to determine his required SLA, be-
cause he has limited knowledge about all the possible
composed QoS without information from registry.
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To solve this problem, we introduce the concept
of required QoS reference vector (CRV ) to compos-
ite service through which a requester can express his
required QoS. To generate CRV, three other related
QoS reference vectors need to be negotiated and pre-
sented to users. They are the best QoS reference vector
(CHV ), worst QoS reference vector (CLV ), and aver-
age QoS reference vector (CAV ). With the necessary
QoS knowledge, the requester can determine his own
CRV, then registry uses it to do selection.

To explain our idea based on reference vector con-
veniently, Table 1 lists assumed QoS of two candidate
services for each task in Fig.1. The candidate service
set is Si = {si,1, si,2}, the target of composing service
is to select one suitable service from Si. The values in
Table 1 are adopted as examples in the following.

Table 1. Assumed QoS of Candidate Service

Service QoS

Price Time Reliability Trust Security

S1 s11 8 5 0.92 4 2

s12 12 4 0.98 5 2

S2 s21 9 8 0.90 3 2

s22 13 6 0.98 4 3

S3 s31 10 9 0.94 3 2

s32 12 7 0.98 5 3

S4 s41 11 5 0.93 3 2

s42 15 4 0.98 4 2

S5 s51 8 5 0.94 4 3

s52 13 4 0.98 5 3

S6 s61 10 5 0.95 4 3

s62 14 4 0.98 5 2

S7 s71 11 6 0.95 4 3

s72 16 5 0.98 5 2

S8 s81 12 9 0.96 4 3

s82 18 7 0.98 5 3

Before we go to the discussion, let us define the QoS
matrix of candidate services set Si for each task as fol-
lows, and assume there are k items in QoS model.

Qx =




qx
1,1 qx

1,2 · · · qx
1,k

qx
2,1 qx

2,2 · · · qx
2,k

...
...

...
...

qx
m,1 qx

m,2 · · · qx
m,k


 ,

where qx
i,j is the j-th QoS item of candidate service sx,i

for task tx, so there are: Q1,Q2,Q3, . . . ,Qn, for each
task in REWG.

In fact, Qx matrix has the same meaning with
UQoS metrics matrix, both of their elements represent
the value of fQoS metrics (si,j), but each is suitable for
presentation conveniently in different context.

5.1 Computation of the Possible Best QoS

In general, when a requester consults the registry
about what is the best composite service it could pro-
vide, registry will compose services with the best QoS
metrics for each task. For example, select the fastest
services on the critical path and sum up all times in-
volved to be the minimum execution time, then inform
the result to the requester. We define CHV as the best
QoS. CHV investigates the possible best composite ser-
vice, which is the most perfect. This ideal composite
service may never exist since it requires each QoS met-
rics to be the best. However, it helps the requester
understand what the best is, then specifies his required
SLA by referencing CHV.

Definition 2. CHV = 〈chv1, chv2, . . . , chvk〉,
where chv i = fQoSmetric i(REWG), (with best{q1

j,i|1 6
j 6 m}, best{q2

j,i|1 6 j 6 m}, . . . , best{qn
j,i|1 6 j 6

m}), and best= max (or min). The bigger (or smaller)
qx
j,i is, the better the QoS will be. For example, both

higher reliability and shorter time mean better QoS.
According to the calculation method of best QoS for

each metrics in Section 4, the CHV of five common
QoS metrics for Fig.1 with the assumed QoS in Table
1 is given as:

fprice(REWG) =
8∑

i=1

(min{fprice(si,j)|j = 1, 2}) = 79;

ftrust(REWG) =
8∑

i=1

(max{ftrust(si,j)|j = 1, 2})/8

=4.7;

ftime(REWG) =
∑

(ftime(EP1) + ftime(EP2))/2

= (ftime(critical path on EP1)

+ ftime(critical path on EP2))/2

=34.5;

frelia(REWG) =
8∏

i=1

(max{frelia(si,j)|j = 1, 2})

= 0.85;

fsec(REWG) = min{(fsec(si,j)|
j = 1, 2, i = 1, 2, . . . , 8} = 2.

5.2 Computation of the Possible Worst QoS

On the contrary, the worst QoS means registry will
compose services with the worst QoS metrics for each
task, and inform the requester with the result. We de-
fine CLV as the worst QoS. CLV represents the pos-
sible worst composite service, which is the most eco-
nomical. With the same meaning as that of CHV,
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CLV helps requester understand what the worst is,
then specifies his required QoS.

Definition 3. CLV = 〈clv1, clv2, . . . , clvk〉, where
clv i = fQoS metrics i (REWG) (with worst{q1

j,i|1 6 j 6
m}, . . . , worst{q2

j,i|1 6 j 6 m}, . . . , worst{qn
j,i|1 6

j 6 m}), and worst = max (or min). The bigger (or
smaller) qx

j,i is, the worse the QoS will be. For example,
both higher price and smaller trust mean worse QoS.

According to the calculation method of worst QoS
for each metric in Section 4, the CLV of five common
QoS metrics for Fig.1 with the assumed QoS in Table
1 is:

fprice(REWG) =
8∑

i=1

(max{fprice(si,j)|j = 1, 2})

= 113;

ftrust(REWG) =
8∑

i=1

(min{ftrust(si,j)|j = 1, 2})/8

=3.7;

ftime(REWG) =
∑

(ftime(EP1) + ftime(EP2))/2

=
∑

(ftime(critical path on EP1)

+ ftime (critical path on EP2))/2

=38.5;

frelia(REWG) =
8∑

i=1

(min{frelia(si,j)|j = 1, 2})

= 0.6;

fsec(REWG) = min{(fsec(si,j)|
j = 1, 2, i = 1, 2, . . . , 8} = 2.

5.3 Computation of the Average QoS

If it is not enough for the requester to have the
knowledge of the best and the worst QoS, providing
the average QoS to will help him with a deeper inves-
tigation about the QoS of all composite services. We
define CAV as the average QoS.

The generation of CAV is much more complex, be-
cause it needs the QoS sum of all possible mn composite
services. Here, we propose to compute the average QoS
reference vector for all possible composite services us-
ing the optimization computation method in Section 4
rather than listing down them all.

Definition 4. CAV = 〈cav1, cav2, . . . , cavk〉,
where in theory cav j =

∑mn

i=1 fQoS metrics j (Gi)

mn and Gi is
the i-th composite service. The following results are
achieved according to the optimization calculation in
Section 4.

• Price

fprice(REWG) =

m∑

i=1

n∑

j=1

ui,j

m
=

2∑

i=1

8∑

j=1

ui,j

2
= 96.

• Trust

ftrust(REWG) =

m∑

i=1

n∑

j=1

ui,j

m× n

2∑

i=1

8∑

j=1

ui,j

2× 8
= 4.3.

• Security
The process of computing CAV element for security

is given below. Table 2 lists the number of times that
each QoS element appears in fsec(REWG).

According to the definition of QoS matrix

UQoS metrics, U sec =
[

2 2 2 2 3 3 3 3
2 3 3 2 3 2 2 3

]
, Tag

matrix

T =
[

u2,1
1,1 u2,2

1,2 u2,3
1,3 u2,4

1,4 u3,1
1,5 u3,2

1,6 u3,3
1,7 u3,4

1,8

u2,5
2,1 u3,5

2,2 u3,6
2,3 u2,6

2,4 u3,7
2,5 u2,7

2,6 u2,8
2,7 u3,8

2,8

]
.

Table 2. The number of Times that Elements Appearing

in fsec (REWG)

u∗i,j x∗i,j
3 + 7ε, 3 + 6ε, 3 + 5ε, 3 + 4ε, 0

3 + 3ε, 3 + 2ε, 3 + ε, 2 + 5ε

2 + 4ε 1× 1× 1× 2× 2× 2× 2 = 16

2 + 3ε 1× 1× 1× 2× 2× 2× 2 = 16

2 + 2ε 1× 1× 2× 2× 2× 2× 2 = 32

2 + ε 1× 2× 2× 2× 2× 2× 2 = 64

2 2× 2× 2× 2× 2× 2× 2 = 128

After the update,

U∗
sec =

[
2 2 + ε 2 + 2ε 2 + 3ε 3 3 + ε 3 + 2ε 3 + 3ε

2 + 4ε 3 + 4ε 3 + 5ε 2 + 5ε 3 + 6ε 2 + 6ε 2 + 7ε 3 + 7ε

]
.

By using U∗
sec, the computation steps and result of x∗i,j

is given in Table 2. So we have:

fsec(REWG) = ((2 + 4ε)× 16 + (2 + 3ε)× 16 + (2 + 2ε)

× 32 + (2 + ε)× 64 + 2× 128)/256

=2.

• Reliability

frelia(REWG) =

n∏

j=1

m∑

i=1

ui,j

mn
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=
8∏

j=1

( 2∑

i=1

ui,j

)
/256 = 0.71.

• Time
Continuing with the example in Fig.1 and Table 1,

the computing process for time of CAV is given as fol-
lows:

EP1 = t1 ∼ (t2 ∧ t3) ∼ t4 ∼ t5 ∼ t6 ∼ t8.

The number of composite services supported by EP1

is:

λ1 = 2× 4× 2× 2× 2× 2 = 128.

EP2 = t1 ∼ (t2 ∧ t3) ∼ t4 ∼ t5 ∼ t7 ∼ t8.

Similarly, for EP2: λ2 = 2× 4× 2× 2× 2× 2 = 128.
Average time of EP1 = (5+4)/2+(9×2+8+7)/4+

(5 + 4)/2 + (5 + 4)/2 + (5 + 4)/2 + (9 + 7)/2 = 34.2.
Average time of EP2 = (5+4)/2+(9×2+8+7)/4+

(5 + 4)/2 + (5 + 4)/2 + (5 + 6)/2 + (9 + 7)/2 = 35.2.
ftime (REWG) = (average time of EP1 × λ1+ aver-

age time of EP2 × λ2)/(λ1 + λ2) = 34.7.

5.4 Generation of CRV

After registry informs the requester about CHV,
CLV and CAV, the requester could determine his own
QoS requirement according to these important infor-
mation, and this QoS is defined as CRV which will be
used for the target of service composition.

Definition 5. CRV = 〈crv1, crv2, . . . , crvk〉, where
crv i is the QoS determined by the end user and will be
used for reference to negotiate with the registry for ser-
vice composition implementation in future.

CRV should be produced based on above CHV,
CLV, and CAV. In the above example, the re-
sults of QoS metrics “〈price, time, trust, relia-
bility, security〉” are CHV= 〈79, 34.5, 4.7, 0.85, 3〉,
CLV= 〈113, 38.5, 3.7, 0.6, 3〉, and CAV= 〈96, 34.7,
4.3, 0.71, 3〉. The requester first selects one of them as
his reference vector. This means to let CRV = CHV,
or CLV, or CAV. However, if he is not satisfied, he
could continue to determine his really required QoS by
assigning certain impact factor to CRV. For example,
some demands his required QoS to be better than CAV
(e.g., 1.2 times of CAV), other might need their QoS
to be about 0.8 times of CHV. To describe this kind of
relationship, we introduce impact factor (imf) to influ-
ence the generation of CRV, where crv i = imf × crv i.
The default value of imf is 1. Of course, the impact of
imf cannot exceed the range of CLV and CHV. This
is assured by the following (1) strictly.

Besides the use of imf, the requester also could cus-
tomize each metrics of CRV independently as long as
the value locates between CLV and CHV.

crv i =





clv i, if imf × crv i < clv i;

chv i, if imf × crv i > chv i;

imf × crv i if clv i < imf × crv i < chv i;

if clv i < chv i;

crv i =





chv i, if imf × crv i < chv i;

clv i if imf × crv i > clv i;

imf × crv i, if chv i < imf × crv i < clv i;

if clv i > chv i. (1)

6 Selection of Implementation Algorithm for
Composite Service

Given one workflow, assume there are m candi-
date services for each task, so there are mn compos-
ite services which could be constructed, and selecting
one from them can be simply fulfilled with exhaustive
search when n is small. With the increase of n, selec-
tion algorithm is being confronted with a large number
of combination choices. To solve this problem, some
constraints and user preferences which restrict the com-
posite service are introduced. With the restriction, ser-
vice composition evolves into an NP-hard problem of
constraint satisfaction[24]. Some papers consider it as
complex models, such as multiple dimension Knapsack
model or Multiple Choice Knapsack Problem[25], and
multi-constraint optimal path problem[26]. The widely
used linear integer programming model[10,27] and the
classic genetic algorithm[14,28] are used to solve compo-
sition implementation. [11, 13] gives evaluation about
some solutions, for example, genetic algorithms are
more flexible than integer linear programming, but are
less computationally efficient.

In this paper, exhaustive search and linear integer
programming (IP)[29] used in [10, 11] are introduced
to demonstrate the necessarity of algorithm selection
because different algorithms bring about different com-
position results with different costs, exhaustive search
can get the best result but it is feasible only in environ-
ment with small scale and IP is a popular solution in
many research fields due to its better trade-off between
result and cost. In fact, they represent two kinds of
algorithms to execute accurate but slow selection and
limited error permitted but fast selection.

6.1 Accurate Composition Algorithm

If a requester applies for the most accurate im-
plementation of QoS requirement, that means the
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composite service whose QoS is the closest to CRV
is selected, the registry will recommend him the accu-
rate selection algorithm (AS), at the same time, it also
informs him about the long time to consume. Then the
registry will form the QoS matrix of all composite ser-
vices, do QoS normalization, and finally, select the one
whose QoS has the lowest difference with CRV.

The QoS matrix of all composite services is:

Q =




q1,1 q1,2 · · · q1,k

q2,1 q2,2 · · · q2,k

...
...

...
...

qmn,1 qmn,2 · · · qmn,k


 .

6.1.1 QoS Matrix Normalization in Terms of CRV,
CHV and CLV

Accurate service selection relies on service ranking.
In order to rank all possible composite services, the QoS
matrix Q needs to be normalized. This is important,
because the interpretation of QoS semantic description
of each metrics might be different. For some QoS met-
rics, the higher the value is, the higher the QoS will
be; for others, the metrics understanding might be op-
posite. What we need is some uniform measurement
mechanism independent of QoS property to normalize
all metrics. Each element in matrix Q will be normal-
ized using (2) below. It is based on CRV, CHV and
CLV, and the normalized QoS matrix is Q′.

Q′ =




v1,1 v1,2 · · · v1,k

v2,1 v2,2 · · · v2,k

...
...

...
...

vmn,1 vmn,2 · · · vmn,k


 ,

normalizing method:

vi,j =





∣∣∣ qi,j − crv j

chv j − clv j

∣∣∣, if chv j − clv j 6= 0;

0, if chv j − clv j = 0.
(2)

Theorem 2. For any element vi,j in matrix Q′,
there exists vi,j ∈ [0, 1].

Proof. For ∀qi,j , if clv j 6 chv j , there is:

clv j 6 qi,j 6 chv j . (3)

According to (1), clv j 6 crv j 6 chv j . So

−chv j 6 −crv j 6 −clv j . (4)

Combining (3) and (4), the result is:

clv j − chv j 6 qi,j − crv j 6 chv j − clv j .

Hence, there is −1 6 qi,j−crvj

chvj−clvj
6 1, which means

vi,j ∈ [0, 1].

Because of the same reason, for ∀qi,j , if clv j > chv j ,
there is −1 6 qi,j−crvj

clvj−chvj
6 1, that also means vi,j ∈

[0, 1].
Thus, Theorem 2 is proved. ¤
From (2), it is clear that the closer to CRV the qi,j

is, the lower the result vi,j will be. Therefore, the lowest
value of vi,j should be selected preferentially.

6.1.2 Accurate Service Selection

Depending on Q′, accurate selection (AS) algorithm
through exhaust search can always produce the most
optimal solution. Furthermore, any flexible priority-
based selection policy can also be implemented. As an
example, the weight policy version is presented here.
Weight policy is a general decision-making policy used
in many situations, and the requester could express
his preferences about QoS metrics by providing weight.
The weight vector is:

WV = 〈wv1,wv2, . . . ,wvk〉

where wv i ∈ [0, 1] and
∑k

i=1 wvi = 1. The higher the
value is, the more preferable the user will feel. WV
works only after QoS matrix has been normalized. The
following formula can be used to compute the overall
quality score for each composite service:

Score(Gi) =
k∑

j=1

vi,j × wv j .

And the registry will choose one with the lowest
score from the mn possible composite services, that
is min{Score(Gi)|i = 1, 2, . . . , mn}. Although exhaust
search can achieve accurate service selection, the draw-
back is the high overheads. It constructs all possible
composite services and compares their QoS with the
time and memory complexity of O(mn). Hence, it is
only suitable when the numbers of tasks, candidate ser-
vices, and QoS metrics are small. When n is getting
bigger we propose the following integer programming
approach because the problem is known to be NP-hard.

6.2 Fast Composition Algorithm

In this subsection, a fast composition algorithm
based on 0-1 IP is proposed to select a good compos-
ite service without constructing all the possible com-
posite services. There are three inputs in an IP prob-
lem: a set of variables, an object function, and a set



Bang-Yu Wu et al.: QoS Requirement Generation and Implementation 369

of constraints, where both the objective function and
the constraints must be linear. IP attempts to max-
imize or minimize the value of the objective function
by adjusting the values of the variables while enforcing
the constraints. The output of IP problem is the max-
imum or minimum value of the objective function and
the values of variables to get the maximum or minimum
value. The problem of selecting an optimal composition
is mapped into IP problem as follows:

First, for each service si,j , an integer variable xi,j

is used to present whether si,j is selected: xi,j is 1 if
service si,j is selected, and 0, otherwise.

Second, referring back to our QoS metrics, we see
that since the computation of reliability is the product
of all individual reliability, it is nonlinear and cannot
be computed by Integer Programming. As a result, we
propose to transform it into linear function by applying
algorithm ln as follows.

f(REWG) = 〈fprice(REWG), ftime(REWG),

frelia(REWG), ftrust(REWG), fsec(REWG)〉,

where

fprice(REWG) =
m∑

j=1

n∑

i=1

xi,jfprice(si,j);

ftime(REWG) =
a∑

k=1

( m∑

j=1

n∑

i=1

xi,j × ftime(si,j |si,j

is on the critical path of GEPk)
)/

α

ftrust(REWG) =
m∑

j=1

n∑

i=1

xi,jftrust(si,j)/n;

frelia(REWG) = ln
( i=m,j=n∏

j=1,i=1

(xi,jfrelia(si,j)|xi,j = 1)
)

=
m∑

j=1

n∑

i=1

xi,j ln(frelia(si,j));

fsec(REWG) = max{xi,j × fsec(si,j)|
i = 1, 2, . . . , n, j = 1, 2, . . . , m}.

Therefore, the objective here is to find a set of services,
such that Obj = h(f(REWG), CRV) is minimized.

Obj =h(f(REWG),CRV )

=
|fprice(REWG)− crvprice|

chvprice − clvprice

+
|ftime(REWG)− crv time|

chv time − clv time

+
|ftrust(REWG)− crv trust|

chv trust − clv trust

+
|frelia(REWG)− crv relia|

chv relia − clv relia

+
|fsec(REWG)− crv sec|

chv sec − clv sec
. (5)

Finally, the constraints are described in two parts.
The first part of constraint is:





n∑

i=1

xi,j = 1;

m∑

j=1

n∑

i=1

xi,j = n.

(6)

Besides the selection constraint, each element should
not deviate from the CRV too much. In other words,
another constraint of error variable vector needs to be
defined as δ = 〈δprice, δtime, δrelia, δtrust, δsec〉. It is
noted that some error variables can be set to zero if
necessary. The second part of constraint inequalities is:





|fprice(REWG)− crvprice| 6 δprice;

|ftime(REWG)− crv time| 6 δtime;

|frelia(REWG)− crv relia| 6 δrelia;

|ftrust(REWG)− crv trust| 6 δtrust;

|fsec(REWG)− crv sec| 6 δsec.

(7)

7 Experimental Confirmation

Exhaustive search will consume much longer time
with more accurate results than integer programming
— everybody would expect that. In order to confirm
this conclusion and demonstrate the necessity for users
to choose suitable composition algorithms by them-
selves, we conducted experiments to compare how the
numbers of QoS metrics, tasks, candidate services af-
fect the selection cost and compare their service com-
position results.

The first four elements in (5) are linear and they
could be expressed as 0-1 in the Integer Programming.
However, the last element cannot be done in this way,
so the algorithm we adopt is mixed IP. In our simula-
tion, we still could get the approximate solution, not
the total minimization of sum of five elements. We first
remove the absolute sign in (5) by dividing the solution
space into 16 sub-spaces, then the 16 sub-minimums
associated with the first four elements are obtained. In
this way, 16 composite services are found. Next, consid-
ering the security QoS by adding |fsec(REWG)−crvsec|

chvsec−clvsec
to

the 16 sub-minimums, and selecting the one with the
smallest value, we can obtain the result. Hence, our
final objective is the minimum of 16 sub-minimums.
This linear minimization can be calculated using MILP
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function of Matlog, which is used for solving 0-1 inte-
ger planning in Matlab. All QoS values are generated
randomly using Matlab.

7.1 Comparison of Composition Cost

In our first set of simulation, we study the effect of
three different parameters on the selection cost. The
service selection cost here is defined as the duration
used to select services.

Fig.4. Impact of different parameters on execution cost. (a) For

accurate selection. (b) For fast selection.

We change one parameter while fixing the other two
to find out the parameter impact. Fig.4 shows the
result, where the x-axis represents the parameter and
y-axis means the corresponding selection cost. It is
clearly shown that the service selection cost increases
when each of the three parameters increases. The main

difference is that the impact of the number of candidate
services is much larger than that of the other two.

From Fig.4, we also see that the computation of ac-
curate search is much higher than that of the fast se-
lection. For example, when the number of candidate
services is 16, the consumed selection time is less than
9s for fast selection but more than 20s for accurate se-
lection.

7.2 Comparison of Composition Result

The second set of experiments aims at evaluating
the QoS of composite service with a given CRV. AS
will find the most appropriate composite service whose
QoS is the closest to CRV while IP will find a solution
under the given constraints. The dimension of QoS vec-
tor studied here is 5. We also assume that there are 10
candidate services for each task. The QoS values of all
candidates are randomly generated. The experiment
is repeated six times, the element values of CRV are
generated each time, and δ is also set each time.

The result is shown in Table 3. The last row lists
the CRV for the 6th result. The columns with label
AS represent each element of composite QoS which is
achieved by accurate selection, and the columns with la-
bel IP represent each element of composite QoS which
is achieved by fast selection. The last two columns are
the values of Obj = h(f(REWG), CRV), which is com-
puted by (5) according to the distances between CRV
and the composite QoS vector of AS and IP respec-
tively.

Table 3 shows that AS gives better QoS of compos-
ite service than IP. The distance between QoS via AS
and the CRV is less than that via IP for the given
CRV. This is expected, because AS performs exhaus-
tive search in the entire solution space. On the contrary,
the IP method only aims at achieving an approximate
solution with each element in composite QoS to be con-
strained to a range. It still could be inferred that the
distances of AS and IP are equal to each other when the
solution corresponding to the global minimum is fitted

Table 3. Comparison of Composite QoS

Gi
fprice ftime ftrust frelia fsec Obj

AS IP AS IP AS IP AS IP AS IP IP AS

1 159 206 0.4 0.7 4.4 2.1 0.2 0.3 4.0 5.0 1.38 0.70

2 269 207 0.8 0.8 4.2 2.2 0.2 0.3 1.0 5.0 1.45 0.67

3 136 179 0.9 0.7 2.6 1.6 0.1 0.3 1.0 5.0 1.44 0.54

4 140 200 0.8 0.8 4.2 1.9 0.2 0.4 2.0 5.0 1.46 0.59

5 150 208 0.6 0.8 3.7 1.8 0.3 0.4 1.0 5.0 1.38 0.57

6 59.7 136 0.6 0.8 2.4 1.9 0.3 0.2 3.0 5.0 1.43 0.56

CRV 68.7 68.7 0.34 0.34 5.00 5.00 0.39 0.39 1.00 1.00
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into constrains of the IP method. Hence, for single QoS
metric, the results of AS and IP will be very close to
each other.

Performing exhaustive search is NP hard and the
cost is high, especially when the number of candidate
service increases. Though IP policy might not give the
optimal answer, it does good trade-off between the com-
position cost and composite QoS, as is shown in the
table.

The error variable vector δ = 〈δprice, δtime, δrelia,
δtrust, δsec〉 also affects the result. For example, the
global minimization of Obj is assured when elements
in δ increase. And no solution might be found if they
are too small (because no result satisfying (5), (6) and
(7)). Under this situation, requester and registry can
keep negotiating to tune δ higher until one solution is
found.

8 Conclusion and Future Work

In this paper, we propose to strengthen current ser-
vice composition mechanism by adding QoS require-
ment generation and its composition implementation
algorithm selection mechanism based on the QoS ref-
erence vectors which are generated to represent QoS
overview of all possible composite services with the
given workflow. The computation methods of CHV,
CLV, CAV are presented and studied in detail. The
mechanism is described and embedded in the improved
SOA framework. Two selection algorithms which repre-
sent two kinds of algorithms are introduced to execute
experiment and compared. The accurate selection leads
to better QoS with higher execution duration, which is
more consistent with the requester required SLA. Just
the opposite, the fast selection composes a service satis-
fying QoS constraints with trade-off between result and
cost.

Note that the approach proposed in this paper is to
construct composite service before it runs, we would like
to keep the stabilization of composite service, so even
if some QoS problems happen, frequent, and dynamic
component service switch should be avoided. There-
fore, our focus will turn to enhancing QoS for runtime
composite service for future research. This is impor-
tant, because composite service published on the In-
ternet will often confront with many QoS challenges
dynamically. This includes non-deterministic overload
such as Hot-Spot and DDoS attack.
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