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Abstract This paper presents an efficient algorithm that implements one-
to-many, or multicast, communication in one-port wormhole-routed cube-connected
cycles (CCCs) in the absence of hardware multicast support. By exploiting the
properties of the switching technology and the use of virtual channels, a minimum-
time multicast algorithm is presented for n-dimensional CCCs that use deterministic
routing of unicast messages. The algorithm can deliver a multicast message to m--1
destinations in [log, m| message-passing steps, while avoidiug contention amonyg the
constituent unicast messages. Performance results of a simuletion study on CCCs
with up to 10,240 nodes are also given.

Keywords multicast, cube-connected cycle, wormhcle routing, dimension-
ordered routing, ona-p,ort architecture

1 Imtroducticn

While the hypercube topology has been a very popular architecture, it has one major
disadvantage: the node degree grows linearly with the hypercube dimension, which makes
the hypercube ill-suited for VLSI implementation. Preparata and Vuillemin{!l considered
a substitutive architecture, known as the cube-connected cycle (CCC) architecture. The
CCC not only preserves all the attractive features of the hypercube, e.g., small diameter,
large bisection width, and symmetry, but also has fewer links and smaller constant node
degree, making it ideal for VLSI implementation. Preparata and Vuillemin also showed
that the CCC can implement efficiently many widely used parallel algorithms, including
merging, sorting, permutations, FFT, and several matrix operations!!]. Recently, a great
deal of research has been conducted on the CCC topology2—4l.

Routing algorithms for CCC have been extensively studied in the context of one-to-one or
unicast communication!®®, in which a source sends its message precisely to one destination.
More powerful communication primitive is multicast (or one-to-many), which involves the
delivery of the same message from a source node to an arbitrary number of destination
nodes. A special case of multicast is broadcast, in which the destination nodes contain
every node in the network. Multicast is an important communication pattern found in
many parallel numerical algorithms, including matrix multiplication, matrix transposition,
Gaussian elimination(”], LU factorization8!, and tridiagonalization!®!.

Most existing parallel computers support only unicast communication in hardware. In
these environments, multicast must be implemented in software by sending multiple unicast
messages. Such implementations are called unicast-based!!®]. Sending a separate copy of the
message from the source to every destination may require excessive time due to a bottleneck
at the source node. An alternative approach is to use a multicast treell% of unicast messages.
In a multicast tree, the source node actually sends the message to only a subset of the

The work of this paper is supported by the National Natural Science Foundation of China under grant
No.69896250.



No.6 An Optimal Multicast Algorithm for Cube-Connected Cycles 573

destinations. Each recipient of the message forwards it to some subset of the destinations
that have not yet received it. The process continues until all destinations have received the
message. Using this approach, the time required for the operation can be greatly reduced!?,

On one-port systems, each node can send only one message at a time, regardless of
the topology. For an implementation of unicast-based multicast, this restriction means
that at least [log, m] message-passing steps are required to deliver the message to m — 1
destinations, since the number of nodes holding the message can at most double with each
step. Achieving this bound is not always simple, however, and requires that an algorithm
must avoid channel contention, in which two or more messages involved in the operation
simultaneously require the same channel. McKinley et al.1% previously developed unicast-
based multicast algorithms for one-port n-dimensional meshes and hypercubes. Robinson
et al.l'!] extended the research to wormhole-routed n-dimensional torus networks. Recently,
Hong Xu et al.l'?! continued the research in multistage networks.

In this paper, we extend the research to one-port wormhole-routed n-dimensional cube-
connected cycles. The remainder of the paper is organized as follows. Section 2 presents the
system model under consideration, and Section 3 describes the unicast routing algorithiu
for CCCs. In Section 4, we develop the theoretical results regarding channel contention in
CCCs. The optimal unicast-based multicast algorithm for CCCs is preserted in Section
5 and the performance results of the proposed multicast algorithm are given in Seciicu 6.
Finally, conclusions are made in Section 7.

2 System Model

Formally, an n-dimensional cube-connected cycle can be defined as follows(!3l:

Definition 1. The n-dimensional Cube-Connected Cycle, denoted as n-CCC, has n(2")
nodes and 3n(2"~!) edges. We can label each node with a pair (i,w), where w is an n-
bit binary address that denotes the cycle of the node and i is the dimension of the node
(0 <i<n—1). Two nodes (i,w) and (i',w') are linked by an edge in the CCC if and only
if either

1) w=w'" and i — i = £1 mod n, or

2) i =1’ and w differs from w' in precisely the i-th bit.

Edges of the first type are called cycle edges in cycle w, while edges of the second type are
referred to as hypercube edges in dimension 1. (0, 110) (0, 111)

As an example, a 3-dimensional cube- Q
connected cycle (3-CCC) is shown in Fig.1.

In order to reduce network latency and
minimize buffer requirements, the system un-
der consideration uses the wormhole routing
switching strategy!¥l. In wormhole routing, a
message is divided into a number of flits for
transmission. The header flit of a message gov-
erns the route, and the remaining flits follow I\
in a pipelined fashion. An important feature of (0, 000) (0, 001)
Yvor.InhOIe r.mlting. l s that the nethork latency Fig.1. An example of 3D cube-connected
is distance-insensitive when there is no channel
contention!!%]. cyele (3-CCO).

A great deal of research has been conducted in the last few years on the subject of
wormhole routing algorithms!'®—18l. Deadlock avoidance is the essential issue in the design
of such algorithms. A widely used routing technique that can avoid deadlock is dimension-
ordered routing!'®l. Special cases of dimension-ordered routing include E-cube routing and
XY routing for the hypercube and 2D mesh topologies, respectively[lsl. In this paper,
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we adopt a wormhole routing algorithm in CCCs that is referred to as HC routing (‘HC’
for Hypercube edge and Cycle edge) for the purpose of discussion. HC routing is similar
to dimension-ordered routing. In fact, HC routing is a combination of E-cube routing in
hypercubes and XY routing in 1D torus. In order to describe HC routing, we should give
the following definition:
Definition 2. If z and y are two n-bit binary addresses, and if x # y, then the leftmost
bit in which = and y differ is denoted by d,,. That is, dzy = max{i|z; #y;, 0 <i<n—1}.
Given the current node (i, ) and the destination node (7,y), HC routing can be described
as follows:
1) If ¢ = y, then the next node of the rout-
..................... (0, 111) ing path is (k,z), where k — = £1 mod n.
- 2) If ¢ # y and if i = dy, then the
next node of the routing path is (¢,w), where
w differs from x in precisely the i-th bit.
That is, w = ®p_1 - TiYiTir - Tp =
Yn—1"""YiTi—1 " To-
3) If ¢ # y and if ¢ # dgy, then the ront-
(1, 011) ing path consists of twn sub-paths, one from
i node (i,#) to node (dzy,x), the other from

2, 000 / =Y\
( ) “(1, 001) node (dgy. r) to node {(4,u).
©, 000_) ........ » unicast Daik Fig.2 shows (he routing paths taken by
) , ‘ two example unicast messages, one from source
Fig.2. Examples of HC routing in CCCs. node (1, 000) to destination node (0, 111), and

(For simplicivy, mcst nodes are not labeled.) the other from source node (2, 001) to destina-

tion node (0, 011).

3 Unicast Routing Algorithm

We now describe the unicast routing algorithm, which will be considered later in the
context of its support of unicast-based multicast operations. In order to prevent channel
contention in CCCs, single channels on some edges are replaced with multiple virtual chan-
nels, thus allowing the underlying unicast routing algorithm to choose among these virtual
channels in such a way as to eliminate channel contention. Each virtual channel has its own
flit buffer and control[1®],

Virtual channels may be used in a variety of ways to eliminate channel contention, but
how they are used has a significant effect on the design of efficient unicast-based collective
communication operations, such as multicast. In CCCs, channel contention happens more
frequently in a cycle edge than in a hypercube edge. In fact, we need no virtual channels
in hypercube edges, while a bidirectional physical channel (or two unidirectional physical
channels) in a cycle edge is replaced with four unidirectional virtual channels in order to
design a minimum-time contention-free multicast algorithm.

The four unidirectional virtual channels can be divided into two groups. The channels
in h-group (‘h’ for high-direction) are directed towards higher-address neighboring nodes,
while lower-address neighboring nodes are reached through channels in I-group (‘’ for low-
direction). The virtual channels along a single cycle, w, of an n-dimensional cube-connected
cycle are illustrated in Fig.3.

Formally, for each cycle w, 0 < w < 2" — 1, and for each node (¢, w), let (j, w) be the
node such that j =i+ 1, and let (k,w) be the node such that ¥ = i — 1. Then under CCCs,

1) there are two channels in h-group, cy,n, and Cy;n,, from (i,w) to (j,w) whenever

0<i<n-2, and
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2) there are two channels in l-group, cy,, and cy,,, from (i,w) to (k,w) whenever

1<:<n—-1.
Cwoho [ 1 Cwiko Cw(n_g)yho ——Cw(n—2)ho |
Cwohy Cwihy Cwin—3)h1 Cun-h
0 | curtg | 1| cwgto | 2 n—3| Cwi,_zylo n—2| Cwin_1)lo jn—1
Cwily Cwaly Cwin_2)l1 Cu(p-1)l1

Fig.3. Virtual channels in row w of an n-CCC.

The unicast routing algorithm is described formally by the function Recc: N x N —= C,
which maps a pair (current node, destination node) into the next channel of the routing
path. In order to define Rocc((i, ), (4,y)), let

k_{dzy, if z#y;
7 fx=y
and let A =%k —i. If x # y and ¢ = dyy, then Reec((é, ). (J.w)) 1s che physical chaiwel in
the hypercube edge between nodes (%, z) and (¢, %}, wacre w difters from z in roecisely the
i-th bit. That is, w = Tp—1 -+ - Tip1Y:Tio1 - T = Yn—1 ' Yiili1 - - Tg. Otherwise,
(Cgiky, W A>0and z<y;

Czihy, if A>0andz>y;

Czilpy, f A<0and xz <y;

Czily, fA<Oandz>y.

RCCC((i’ (L'), (.7: y)) =

A message is routed from a source node to a destination node by applying the Rccc
function, first at source, and then at each node through which the message travels, until the
destination is reached. Implementing the Rocc function in a router is straightforward.

4 Contention in CCCs

The unicast routing algorithm directly affects the design of multicast algorithm in
wormhole-routed systems, because it determines how the constituent messages must be
scheduled in order to avoid channel contention. Before formally studying the contention
between messages, we present some notations. The path from a source node a to a destina-
tion node S resulting from HC routing in an n-CCC is denoted by P{«, ). A unicast from
node a to node § occurring at step ¢ is denoted by (&, 8, P(a, 8),t). If the path from node
(4,x) to node (j,y) traverses a cycle edge (r,w) — (s,w), then the path can be denoted by
P((3,2),(4,y) = (G,z) = (k,w) = (r,w) = (s,w) = (t,w) = (J,y), where (k,w) and (t,w)
are the first node and the last node of the path in cycle w, respectively, and the mark ‘=’
denotes zero or more hops that a path traverses, and ‘—’ denotes one hop.

Definition 3['° formally describes a dimension order, denoted by <4, which is a lexico-
graphical ordering (and thus, a total ordering) on the node labels of a CCC network. For
example, given nodes (0, 00001), (3, 10000), (1, 01100) and (4, 00001) in a 5-CCC, we have
(0, 00001) <4 (4, 00001) <4 (1, 01100) <4 (3, 10000).

Definition 3. The binary relation dimension order, <4, is defined between two nodes
(4,x) and (j,y) in CCCs as follows: (i,2) <4 (J,y) if and only if either

z<y, or

2)z=yandi<j.
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The reachable setl'® of a node, say node a, in a multicast implementation is defined to
be the set of nodes in the multicast that receive the message, either directly or indirectly,
through node a. If the multicast is viewed as a tree of unicast messages, then the reachable
set of node a is the set of nodes in the subtree rooted at a. We now formally define the
concept of reachable set(1%:

Definition 4. A node 3 is in the reachable set of node a, denoted as R, if and only if
one of the following holds:

1) B=a; or

2) the multicast implementation contains a unicast (v, 3, P(v,8),t) such that v € R,.

We now present several theorems regarding the contention in wormhole-routed CCCs.
These theorems are important in verifying that the proposed multicast algorithm, presented
in Section 5, produces only multicast operations whose constituent unicast messages are
depth contention-freell® or pairwise contention-free. McKinley et al. previously presented
the following theorem![19l:

Theorem 1. Given a multicast implementation, if at least one of the following four
conditions holds for every pair of resultant unicasts (o, 3, P(a, 3),t) and (7,94, P(v,6),7),
where t < T, then the multicast is depth contention-free.

1) v € Rg;

2) P(a,B) and P(%,8) are arc-disjoint,

3) Y=o

4) v € R, and (a,n, P(a.7n;,.t 4-1) is a product of the 'nullicast, for some node n and
positive intecei .

Before developing Theorem 2 thav identifies the situation in an n-CCC, in which pairs
of unicast messagzas are contention-free, we first give some lemmas. Note that throughout
the paper, we wili assume that addresses are resolved from higher to lower bits.

Lemma 1. For any two n-bit binary addresses z and y, if T} # yr for some integer k,
then dgy > k.

Lemma 2. For any two n-bit binary addresses x and y, if x < y and = > yi for some
integer k, then dgy > k.

Above two lemmas are obvious.

Lemma 3. If there is a hypercube edge (t,u) — (t,v) in path P((i,z),(4,y)), then
Te # Yt

Proof. Since (t,u) — (,v) is a hypercube edge in path P((f,u), (j,¥)), then according
to HC routing, t = d,,. That is, us # y;. Since the addresses are always resolved from
higher to lower bits, then we have z; = u;. Therefore, we have z; #y;. O

Lemma 4. For any two nodes (i,z) and (7,y) in an n-CCC, if there is a cycle edge
e = (r,w) — (s, w) in path P((i,3), (j,)), then let path P((i,), (j,9)) = (i-7) = (k,w) =
(r,w) 2 (s,w)= (t,w) = (J,y). fwHez thenzy £y Ifw#y thenzy £y Ifw#c
and w#y, thenk>r>s>t.

Proof. By the notasion described above, we know that (k,w) and (t,w) are the first
node and the last node of path P((i,z), (j,y)) in cycle w, respectively. If w # z, then
since (k,w) is the first node of path P((i,z), (4,y)) in cycle w, so the last edge of path
P((i,z), (k,w)) is a hypercube edge. By Lemma 3, we have x; # yi. Similarly, if w # y,
then since (t,w) is the last node of path P((i,z), (4,y)) in cycle w, so the first edge of
path P((t,w),(j,y)) is a hypercube edge. By Lemma 3, we have z; 7# y:. Since the HC
routing resolves addresses from higher to lower bits, then k& > t. Since all the edges in path
(k,w) = (r,w) > (s,w) = (t,w) are cycle edges, then we have k >r >s>¢. 0O

Lemma 5. For any four nodes (ki,u), (k2,v), (k3,z) and (k4,y) in an n-CCC, if
(k2,v) <a (ks,z) <a (ks,y), then paths P((ky,u), (k2,v)) and P((ks,z),(ks,y)) have no
common hypercube edges.
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Proof. The proof is done by contradiction. Assume that there exists a hypercube edge e
in dimension k shared by paths P((k;,u), (k2,v)) and P((ks,z), (ks,y)). Let e = (k,p) —
(k,q). Since the edge e is in the path P((ki,u), (kz2,v)), then according to HC routing, we
have ¢; = v; for k < ¢ < n — 1. Similarly, ¢; = y; for k < i < n—1. Thus, v; = y; for
k <i<n-—1. Since (k2,v) <4 (ks3,z) <4 (ks,y), then by the definition of dimension order,
v<z<y Thusv;=x; =y; fork <i<n-—1 Soz, = yx. But since e is a hypercube
edge in the path P((ks,z), (k4,y)), then by Lemma 3, =1 # y&, which contradicts the result
that zx = yi. Therefore, the assumption that there exists a common hypercube edge e in
paths P((ki1,u), (k2,v)) and P((ks,z), (kq,y)) does not hold, and the lemma is proved. O

Lemma 6. For any four nodes (ki,u),(k2,v), (ks,z) and (k4,y) in an n-CCC, if
(k2,v) <a (k3,z) <4 (ks,y), and paths P((ky,u), (kz,v)) and P((ks,z), (ks,7)) have a com-
mon cycle edge e = (r,w) — (s,w), and r < s, then w < y and w > v.

Proof. Since r < s, then by Lemma 4, w =z or w = y.

Assume that w > y. Since (k2,v) <q (k3,2) <4 (k4,y), then v < z < y. Thus w # =
and w # y, which contradicts the result that w =z or w = y.

Assume that w < v. Since v € z < y, then w # z and w # y, which contradicts the
result that w =z or w = y.

Assume that w =v. Sincew =z orw =y, and v <z < y, so wz bave w = v = x. Since
(k2,v) <g (k3,z), then k; < k3. Since w = v = z, then we can let path P((ky,u). (kz,v)) =
(k1,u) = (k,w) = (r,w) = (s,w) = (k,w), and let path P({k3,2), (ky,y)) = (ka,w) =
(r,w) = (s8,w) = (t,w) = (ks,3’. Since r < s, then s < k~ 2nd k3 <7 < 5. Thus ks < ko,
which contradicts the result that kg < 3.

Since each of the avove three assumptions leads to a contradiction, then we can conclude
that w<yandw >w» 0O

Lemma 7. For any four nodes (ky,u),(ks,v),(ks,z) and (kg,y) in an n-CCC, if
(k2,v) <q (k3,x) <4 (ks,y), and paths P((ky,u), (k2,v)) and P((ks,z), (ks,y)) have a com-
mon cycle edge e = (r,w) — (s,w), and r > s, then w > v.

Proof. The proof is done by contradiction. Assume that w < v. Let path P((ky,u), (k2,v))
= (k1,u) = (k,w) = (r,w) — (s,w) = (t,w) = (k2,v), and let path P((ks,z), (ks,%)) =
(k3,x) = (k' ,w) = (r,w) = (s,w) = (t',w) = (kg,y). Since (k2,v) <q (k3,z) <4 (kq,7),
then v < ¢ < y. Thus, by the assumption of w < v, we have w # v and w # y. Then,
according to HC routing, we have

W=VUn—1 " V41Ut " U0 = Yn—1""Yt'41T¢ - - Tg (1)

Since w < v, then from (1), we have _
U < U (2)

There are two cases to be considered with regard to ¢: t >t/ and t < ¢'.

Case 1. t > t'. Then from (1), u; = y; and v; = y; for t < ¢ < n — 1. Thus, from (2),
Yyt < vg. Since v; = y; for t < i <mn—1 and y; < vy, we have y < v, which contradicts the
condition that (kz,v) <4 (kg,y).

Case 2. t < t'. Then from (1), v; = y; fort’ + 1 <i < n—1. Since v < z < y, then
v; =¢; = y; for ' +1 < i < n—1. Then from (1), we have w = z. Thus, by the assumption
of w < v, we have ¢ < v, which contradicts the condition that (kz2,v) <4 (k3,z).

Since each of the above two cases leads to a contradiction, then the assumption that
w < v does not hold. O

Lemma 8. For any four nodes (ky,u),(k2,v),(ks,z) and (ks,y) in an n-CCC, if
(k2,v) <q (k3,z) <q (ks4,y), and paths P((ky,u), (k2,v)) and P((ks,z), (k4,y)) have a com-
mon cycle edge e = (r,w) = (s,w), and r > s, then w < y.

Proof. The proof is done by contradiction.

Assume that w > y. Let path P((k1,u), (k2,v)) = (k1,u) = (k,w) = (r,w) = (s,w) =
(t,w) = (k2,v), and let path P((k3,z),(ks,y)) = (k3,z) = (K',w) = (r,w) > (s,w) =
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(t',w) = (ka,y). Since (k2,v) <q (k3,z) <q (kg,y), then v < x < y. Thus, by the
assumption of w > y, we have w # v and w # y. Then, according to HC routing, we have

W=VUp_1"" " Vgp1Ug U = Yn—1" " Y'4+1T¢ "~ T0 (3)

Since w > y, then from (3), we have =4 > yy. Thus, by Lemma 2, we have dgy > t'. From
(3), we have v; = y; for max(t,t') < i <n—1. Since v < z < y, then v; = z; = y; for
max(t,t') < i < n— 1. Thus, dzy < max(¢,t'). If t < ¢/, then d;y, < t', which contradicts
the result that d;y, > t'. Thus ¢t > t’ and dgy < t. Since w > y > z, then by Lemma 4,
Ty # yr. Thus, by Lemma 1, we have d,, > k’. By the results that d;y <t and dy > ¥/,
we have k' < t. Since e is a cycle edge in path P((kq,u), (k2,v)) and r > s, then according
to HC routing, we have k > r > s > t. Similarly, we also have k' > r > s > t'. Thus, k¥’ > t,
which contradicts the result that &' < t. Thus, the assumption that w > y does not hold.

Assume that w = y. If w = z, then P((ks, z), (ke,y)) = (ks,w) = (r,w) = (s,w) =
(k4,w). Since r > s, then according to HC routing, we have k3 > r > s > k4. That
is, ks > k4, which contradicts the condition that (k3,z) <4 (k4,y). Thus, w # z. Since
v<z <y w=yand w # z, then w > z > v. Let path P((ky,u}, (k2,v)) = (k1. u) =>
(k,w) = (r,w) = (s,w) = (t,w) = (kg,v), and let path £((ks,z),{ks,y)) = (k3,z) =
(K',w) = (r,w) = (s,w) = (kq,w). Since e is a cycle edge in path P{(ky,u), (k2,v)) and
r > s, then according to HC routing, we have » > r > s > ¢ Similarly, we also have
Kk >r>s>t. Thus, ¥ > t. Since w # =z, then by Lewma 4, zxr # yr. Thus, by
Lemma 1, we have d,., > k. Sc dgy, > & Since w >z > v,w # v. Then according to HC
routing, we Lhave w = v,_ -+ v, 41Uz - - Ug. By the assumption of w = y, we have v; = y;
fort+1<i<n-1 Sncev <z <y, thenv;=xz; =y, fort+1 <i<n—-1 Thus, dyy <1,
which contradicts the result that d, > t. Thus, the assumption that w = y does not hold.

Since neither of the above two assumptions holds, then we can conclude that w < y. O

Paths with no common channels are said to be arc-disjoint. We now present the theorem
that gives sufficient conditions under which unicast message paths will be arc-disjoint in a
cube-connected cycle using the unicast routing algorithm described in Section 3.

Theorem 2. For any four nodes (ki,u), (k2,v),(ks,z) and (ks,y) in an n-CCC, if
(k2,v) <q (ks,z) <q (ka,y), then paths P((ky,u),(kz,v)) and P((ks,z),(ks,y)) are arc-
disjoint.

Proof. The proof is done by contradiction. Assume that paths P((ki,u), (k2,v)) and
P((ks, ), (k4,y)) have a common channel e. By Lemma 5, e can’t be a channel in hypercube
edges. Thus, e should be a channel in a cycle edge. Let e = (r,w) — (s, w). There are four
cases to be considered with regard to e.

Case 1. e is an hg-channel. Since e is in path P((r,w), (k2,v)), then by the definition of
function Rccc, we have » < s and w < v, which contradicts Lemma 6.

Case 2. e is an hj-channel. Since e is in path P((r,w), (ks4,y)), then by the definition of
function Rccc, we have r < s and w > y, which contradicts Lemma 6.

Case 3. e is an lp-channel. Since e is in path P((r,w), (kz2,v)), then by the definition of
function Rccc, we have r > s and w < v, which contradicts Lemma 7.

Case 4. e is an [;-channel. Since e is in path P((r,w), (k4,%)), then by the deﬁmt1on of
function Rccc, we have » > s and w > y, which contradicts Lemma 8.

Since each of the above four cases leads to a contradiction, then the assumption that
paths P((ki,u), (k2,v)) and P((ks, ), (ks,y)) have a common channel e does not hold. O

5 Optimal Multicast Algorithm

In this section, we use the theorems in Section 4 to develop a unicast-based multicast al-
gorithm for wormhole-routed cube-connected cycles. We show that this algorithm produces
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pairwise contention-free unicast messages and completes the multicast in the minimum pos-
sible number of steps.

As shown in Fig.4, the algorithm uses a recursive doubling procedure. We assume for
simplicity that m, the number of nodes involved in the multicast, is a power of 2. Fig.4 shows
all unicasts occurring in the first three steps (labeled “[1],” “[2],” and “[3],” respectively),
as well as two unicasts occurring in the final step (labeled “{log, m]”). As shown, the source
node, dy, sends the message to destination node d,,/2 during the first step. This operation
partitions the multicast problem of size m into two problems, each of size m/2, with source
nodes do and d,,/3, respectively. This process continues recursively until all destination
nodes have received the message.

[logy m]

do dy drns  dmsa 9mys dmyz Gsmys damsa drgys dmo28m-t1
Fig.4. An optimal multicast for CCCa.

The key to avoiding contention among the constitusat messages is the ordering of the
destination nodes. Given a set of nodz labels, they can be arranged iu a unique, ordered
sequence according to the <4 relation.

Definition 5%, A sequence of nodes {ao,a1,0az,...,0m-1} is a dimension-ordered
chain if and only if oll the elements are distinct and a; <q ;41 for0<i<m—1.

In order to develop a minimum-time, contention-free multicast algorithm for CCCs, we
nfe? to arrange the nodes involved in the multicast in the order described by Definition
611,

Definition 6. If & = {ag,a1,2,...,am—_1} is a dimension-ordered chain and a, is an
element of ®, then {as, @st1,. .., 0¥m—1,00,0Q1,...,0s_1} 15 an R-chain with respect to a,.

An R-chain is an end-around rotation of a dimension-ordered chain. Note that, for any
dimension-ordered chain & = {ag,a1,02,...,am_1}, ¢ is an R-chain with respect to ap.
That is, any dimension-ordered chain is also an R-chain with respect to the first element.
As an example of the construction of an R-chain, we consider the following nodes involved
in a multicast from source node (3, 01010) in a 5-CCC.

& = {(3,01010), (1,00101), (0, 10000), (4,01011), (2, 10101), (3,00000), (1,01011), (0, 11000) }
First, we arrange & according to the < relation, to obtain the dimension-ordered chain:
&' = {(3,00000), (1,00101), (3,01010), (1,01011), (4,01011), (0, 10000), (2,10101), (0, 11000)}

Next, we rotate the ¢chain ¢’ so that the source node, (3, 01010), appears at the head of
the list. This procedure results in the following R-chain:

¢" = {(3,01010), (1,01011), (4,01011), (0, 10000}, (2, 10101), (0, 11000), (3, 00000), (1,00101)}

The U-CCC algorithm
Input: R~chain {dieft, dicft+1, ..., dright}, Where dieg; is the local address.
Output: Send [logy(right — left + 1)] messages
Procedure:
while left < right do
center = left +[(right — left + 1}/2];
D= {dcenterv deenter+1y«-+» dright}?
Send a message to node dcenter With the address field D;
right = center — 1
endwhile

Fig.5. The U-CCC algorithm.
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Fig.5 gives the U-CCC algorithm, which implements the recursive doubling process de-
scribed above in a cube-connected cycle. The algorithm takes an R-chain as input. The
application of the U-CCC algorithm to the R-chain é” from the previous example is illus-
trated in Fig.6.

(1]

(3, 01010) (1, 01011) (4, 01011) (0, 10000) (2, 10101) (0, 11000) (3, 00000) (1, 00101)
Fig.6. An example of multicast using the U-CCC algorithm.

Theorem 3 guarantees that the U-CCC algorithm is a minimum-time and contention-free
multicast algorithm.

Theorem 3. If ¢ = {dy,d1,...,dm-1} is an R-chain, then the U-CCC algorithm applied
to &, under CCCs, performs a minimum-time, contention-free multicast from source node
dp to destinations {dy,...,dm_1}.

Proof. It’s known that the lower bound on the number of messuge-passing steps requized
to multicast data to m — 1 destinations is [log, m]. From the above discussion and the U-
CCC algorithm, it is easy to see that the =algorithm produces a muliicast from the source to
the intended destinations, and ttat if contention iz avoided, oniy [log, m] steps are required
to complete a multicasi to m-- | destiniations. The more difficult task is to show that unicast
messages proauced by the algorithm are always pairwise contention-free.

Let (a, 83, F{«, §),t) and (v, 8, P(v,d),7) be any two unicasts produced by an invocation
of the U-CCC algorithm, and assume, without loss of generality, that ¢ < 7. As shown in
Fig.7, there are three possible relationships between the two unicasts. In case 1, v = ¢, so
by 3) of Theorem 1, the unicasts are contention-free. In case 2, 4) of Theorem 1 holds, so
again, the unicasts are contention-free.

[t] [t]
4 o 4 o b
o,y ) B a ¥ § B a Jél Y 4
Case 1 Case 2 Case 3

Fig.7. Possible relations between unicasts produced by U-CCC.

We now show that the unicasts represented by case 3 are arc-disjoint, and hence, by 2) of
Theorem 1, contention-free. We note from Definition 6 that an R-chain, & = {a,, as4q,.- -,
Qm_1,Q0,Q1,...,Qs_1}, consists of two concatenated sub-chains, $, = {a,, @s+1,-- - Am-1}
and @, = {ap,ay,..., ay_1}. Since nodes «, 3,7, and & appear in the given order (o, 3,7, )
in the R-chain, there are five possible subcases: 1) a, 3,7, € &,, 2) , 8,7 € $,; § € B,
3) a,IB € ¢a; 7’6 € Py, 4) ae ¢a;ﬁ,7’6 € Py, 5) a,ﬂ,’)’,5 € By. )

Note that node a occurs before 3 in the R-chain. If @ and 3 belong to the same sub-chain
(that is, if either a,8 € &, or a,B € &), then a <4 3. Also, if the two nodes belong to
different sub-chains (that is, if @ € &, and 8 € &), then 8 <4 a. The situation is similar
to the nodes v and §. Thus, we can conclude, for each of the above subcases, respectively,
the following: 1) a@ <¢ 8 <g4 7 <a6,2)d <aa <48 <q7, 3)7<ad <qa<qp4
B<av<ab<g0,5) a<qgf <qv<a4d.

Since Theorem 2 applies to each of the above five subcases, we can conclude that, in
case 3 of Fig.7, paths P(a, 3) and P(v,$) are arc-disjoint, and hence, by 2) of Theorem 1,
contention-free. O
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6 Performance Evaluation

In Section 5, we have shown that the U-CCC algorithm completes in a minimum number
of steps, and the unicasts produced by the algorithm are pairwise contention-free. As a
practical consideration, however, we note that it is possible for the U-CCC algorithm to
generate pairs of unicasts that simultaneously use two different virtual channels joining the
same pair of neighboring nodes. If each virtual channel of a CCC corresponds to a distinct
physical communication link, then the above situation does not affect the performance of
U-CCC algorithm. However, we must also consider CCCs in which pairs of parallel virtual
channels are multiplexed onto a single physical communication link[3l.

When two virtual channels are multiplexed onto a physical link, they share the bandwidth
of that link. If one of the virtual channels is idle, then a message traversing the other virtual
channel will use all the bandwidth of the physical link. If two messages simultaneously use
the virtual channels that are multiplexed onto a single physical link, however, the speed at
which these messages are delivered to their destinations is reduced by half.

In order to study the effect of virtual channel multiplexing on the performance of the
U-CCC algorithm, we examined its behavior when executed on destination seis in which
the nodes are randomly distributed throughout a network. A randzm distribuvion. of desti-
nation nodes is consistent with many aspects of parallel comiputation, including supori for
barrier synchronization, implementation cf distributed shared-meimory, and in cases where
processing nodes are allocated r«rdomly tc jobs.

For this study, we assume that whenever ¢wo unicast messages in the same step use
virtual chaniieis that are multiplexed onto the same physical link, one of them will be
blocked. If a unicast message is blocked, then it requires time equivalent to at least two
message-passing sieps, rather than one. We also assume that whenever a unicast message
delivered to destination node u is blocked, or delayed by one step, all the unicast messages
delivered by the nodes in the reachable sets of node u will be delayed by one step. Note that
a delayed message may result in new physical link contention with the messages produced
in the next step.

For a CCC network, we assume that virtual channels in the same direction between a
particular pair of neighboring nodes are multiplexed onto a single unidirectional physical
link. For example, in Fig.3, nodes 0 and 1 are connected by two unidirectional physical
links: one link supports virtual channels cyohn, and cy,h,, the other link supports virtual
channels cyo1, and Cyy, - . _

Given the above assumption, Fig.8(a) plots the average physical link contention in a
U-CCC multicast operation, while Fig.8(b) shows the average number of message-passing
steps required to complete a U-CCC multicast operation. Each point in these plots was
produced by averaging over a large number of uniformly distributed destination sets. Both
896-node 7D and 2048-node 8D CCCs are considered. Multicast set sizes from 8 through 64

19 L —m— 7D, 896-node CCC 8
g —&— 8D, 2048-node CCC 2
| 2 6
g w
£0.8 5 4
8 %D —&— Lower bound
:“;"0.4 £ 9 —=—7D, 896-node CCC |
5 < —a— 8D, 2048-node CCC
> J
< 0 0 1 1 1 1 1 1
8 16 24 32 40 48 56 64 8 16 24 32 40 48 56 64
Multicast size Multicast size
(a) Average link contention. (b) Average steps.

Fig.8. Link contention and message-passing steps for
U-CCC multicast operation (896- and 2048-node CCC).
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nodes were examined. The plotted lower bound in Fig.8(b) is calculated as the number of
steps required when physical link sharing is not considered.

We also examined the effects of virtual channel multiplexing on larger CCC networks.
Figs.9(a) and 9(b) plot the average physical link contention and the average number of
message-passing steps for 4608-node 9D and 10240-node 10D CCC networks. For these
larger configurations, multicast set sizes from 64 through 512 nodes were examined.

12
§ 19| —®—9D, 4608-node CCC
;;3 —&—10D, 10240-node CCC 2
2 28
= w
g ® %
© ) —o—Lower bound
) 2 4F  _s—9D, 4608-node CCC
2 r —&—10D, 10240-node CCC 1

0 L L )
64 128 192 256 320 384 448 512

Multicast size

Multicast size

0 1 1 1 1 L 1
64 128 192 256 320 384 448 512

(a) Average link contention. (b) Average steps.

Fig.9. Link contention and message-passing steps for
U-CCC multicast operation (4608 and 10240-node CCC;.

As illustrated in Figs.8(b) and 9(b), the effect of virtiual chamnel nmitiplexing on the
average number of steps is small. In all cases, the number cf steps is close to the theoretical
lower bound.

—%-Lower bound

500 | —a~ J-CCC p [

& (worst observed case) 10 y ;

2 —&—Separate addressing o 1

© 400 k 84 )

=] @

2 g r 1

" 300 1 w6t A

2 @

= ® | L

3 200 . 2 al -
@

é 100 l 2T —a—U-CCC y

&} 4 2r —&— Lower bound T

0

0 1 1 1 4 1
192 320 448 576 704 832 896
Multicast size

64 128 192 256 320 384 448 512
Multicast size

Fig.10. Communication steps for
U-CCC and separate addressing.

Fig.11. Communication steps for
U-CCC (896-node CCC).

Fig.10 compares the worst-case observed performance of U-CCC with the number of
steps required in separate addressing, in which the source directly sends a copy of message
to every destination. The worst observed case occurred with a 4608-node 9D CCC network.
As Fig.10 demonstrates, the difference between the performances of the U-CCC algorithm,
with and without the practical consideration of link sharing, is extremely small compared
to the performance of separate addressing.

As shown in Fig.11, if multicast set size is great enough, the performance of the U-CCC
algorithm approaches the theoretical lower bound as the multicast set size increases. When
the destination set contains every node in the network, the U-CCC algorithm completes a
broadcast operation, and the number of steps is equivalent to the theoretical lower bound.

Fig.11 is observed with an 896-node 7D CCC network.

7 Conclusions

This paper has presented an efficient algorithm for multicast communication on one-port,
wormhole-routed cube-connected cycles. The algorithm produces multicast trees in which
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the constituent unicast messages do not contend for the same channels in spite of the use of
deterministic routing. Moreover, the number of message-passing steps required to multicast
data to m — 1 destinations is [log, m], which is optimal for one-port architectures.
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