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Abstract Aspect-oriented programming modularizes crosscutting concerns into aspects with the advice invoked at the
specified points of program execution. Aspects can be used in a harmful way that invalidates desired properties and even
destroys the conceptual integrity of programs. To assure the quality of an aspect-oriented system, rigorous analysis and
design of aspects are highly desirable. In this paper, we present an approach to aspect-oriented modeling and verification with
finite state machines. Our approach provides explicit notations (e.g., pointcut, advice and aspect) for capturing crosscutting
concerns and incremental modification requirements with respect to class state models. For verification purposes, we compose
the aspect models and class models in an aspect-oriented model through a weaving mechanism. Then we transform the
woven models and the class models not affected by the aspects into FSP (Finite State Processes), which are to be checked
by the LTSA (Labeled Transition System Analyzer) model checker against the desired system properties. We have applied
our approach to the modeling and verification of three aspect-oriented systems. To further evaluate the effectiveness of
verification, we created a large number of flawed aspect models and verified them against the system requirements. The
results show that the verification has revealed all flawed models. This indicates that our approach is effective in quality
assurance of aspect-oriented state models. As such, our approach can be used for model-checking state-based specification
of aspect-oriented design and can uncover some system design problems before the system is implemented.

Keywords aspect-oriented modeling, finite state machines, modeling, verification, model checking

1 Introduction

As a new software development paradigm, Aspect-
Oriented Programming (AOP)[1−2] modularizes cross-
cutting concerns into aspects with the advice invoked
at the specified points of program execution[3]. It is ex-
pected to “improve comprehensibility, reuse and ease of
change. . ., increasing adaptability and ultimately creat-
ing more value for producers and consumers alike”[4].
An aspect-oriented system consists of aspects and base
classes (or components) that can be woven into an exe-
cutable whole. The base classes in an aspect-oriented
system can also be executed independently. From the
system architecture perspective, aspects often cross-
cut multiple base classes. From the base class per-
spective, however, aspects are essentially incremental

modifications to base classes with additional operations
and constraints for separate concerns. They provide a
paradigm of “programming by difference”, which con-
structs new components by specifying how they dif-
fer from the existing components[2]. The incremental
modifications of aspects to base classes can impose a
significant impact on the object states of base classes.
For example, an incremental modification aspect can
alter the state transitions defined by the state models
of their base classes[5].

While the ability to modularize crosscutting con-
cerns appears to improve quality, aspect-oriented soft-
ware development does not assure correctness by it-
self. For example, AOP supports a variety of compo-
sition strategies, “from the clearly acceptable to the
questionable”[3]. Aspects can be used in a harmful way
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that invalidates desired properties[6] and even destroys
the conceptual integrity of programs[3]. Therefore, as-
pects must be applied with care. To assure the quality
of an aspect-oriented system, rigorous analysis and de-
sign of aspects are highly desirable. Existing methods
for aspect-oriented modeling have focused on the for-
malisms for aspect specification. Since UML is a widely
applied tool for object-oriented modeling, exploring the
meta-level notation of UML or extending the UML no-
tation has been a dominant approach for specifying
crosscutting concerns[7]. This approach, however, lacks
the ability of rigorous verification due to the informal
or semi-formal nature of UML.

In this paper, we present a rigorous approach to
aspect-oriented modeling and verification with finite
state machines①. Our approach exploits finite state
machines to model objects (classes) and provides ex-
plicit notations (inter-model declaration, pointcut, ad-
vice, aspect) for capturing crosscutting concerns and
incremental modification requirements with respect to
class state models. In our approach, an aspect-oriented
state model consists of class models, aspect models,
and aspect precedence. For verification purposes, we
first compose aspect models into class models through
a weaving mechanism. Then we transform the woven
models and the class models not affected by the as-
pects into FSP (Finite State Process). Finally we ap-
ply the LTSA (Labeled Transition System Analyzer)
model checker[9] to verifying the generated FSP pro-
cesses against the desired system properties. According
to the system requirements, properties are represented
by property processes and/or temporal assertions in lin-
ear temporal logic.

We have applied our approach to the modeling and
verification of three event-based simulation systems:
cruise control, telecommunication and banking. We
have successfully built the aspect-oriented state models
of these systems. To further evaluate the effectiveness
of verification, we created 46 flawed aspect models in
the cruise control and telecommunication systems and
verified them against 95 system requirements. The re-
sults show that the verification has revealed all flawed
models. Therefore, our approach is highly effective in
assuring the quality of aspect-oriented models.

The rest of this paper is organized as follows. Section
2 describes aspect-oriented modeling with finite state
machines. Section 3 discusses how to check aspect-
oriented state models with LTSA. Section 4 presents
the empirical study. Section 5 reviews the related work.
Section 6 concludes the paper.

2 Aspect-Oriented Modeling with State
Machines

In this section, we first introduce class and aspect
models and then illustrate aspect-oriented modeling
through the aspects in an aspect-oriented cruise con-
trol system.

2.1 Class Models

Definition 1 (State Model). A state model M is
a triple (S,E, T ), where:

1) S is a finite set of states;
2) E is a finite set of events;
3) T ⊆ S ×E × Φ × S is a set of transitions, where

Φ is a set of regular logic formula in some language.
(si, e, φ, sj) ∈ T means that action e ∈ E transforms
state si ∈ S to state sj ∈ S under condition φ ∈ Φ. φ
is called the guard condition of the transition.

For a state model, we may specify an initial state
s0 ∈ S. Definition 1 does not include the initial state
as part of a state model because state models will also
be used to specify aspects (the state model for an aspect
does not need an initial state). For convenience, we use
α to denote the state before an object is created (as
in [10]) and the new event to represent the constructor
(we often omit α in state diagrams, though). Usually,
a class model includes α in S and new in E. Object
construction transition, (α,new [φ], s0) ∈ T , creates an
object with initial state s0 under condition φ. As an
aspect-oriented program has a number of state models,
we denote the component X ∈ {S,E, T} of state model
M as M.X. In a state model M for class C, events and
transitions are related to methods of class C. Specifi-
cally, we interpret each transition (si, e, φ, sj) ∈ M.T
as follows:
• si and sj are abstract states of objects of class C.
• e is corresponding to a method, say m(τ1ν1,

τ2ν2, . . . , τkνk), in the specification of class C, where
τi (1 6 i 6 k) is the type of parameter νi. τi can be a
fundamental data type or an object type (i.e., class).
• φ is a logical condition constructed by using con-

stants, instance fields of class C, or explicit parameters
νi (1 6 i 6 k) of method m. If τi is an object type and
f is a public function (method with a return value) of
τi, then function call νi.f is allowed to occur in logical
formulas.
• (si, e, φ, sj) is a call to method m under state si

that satisfies guard condition φ and achieves state sj .

①This article is a substantial extension of the conference paper[8]. The new materials include rigorous definitions of the aspect-
oriented state models, new running example throughout the paper, in-depth discussions on aspect verification, and additional empirical
studies.
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2.2 Aspect Models

As in AOP[1−2], aspects in our approach are explored
to modularize concerns that crosscut or are separate
from primary concerns (i.e., classes). Our approach,
however, aims to capture crosscutting features at the
level of abstract finite state machines (as described in
Subsection 2.1; they are similar to the UML 2.0 pro-
tocol state machines[11], except for the post-conditions
of transitions), as opposed to the abstraction level of
programming constructs or control flow graphs. In our
approach, an aspect model consists of inter-model dec-
larations (ID), state pointcuts (SP), transition point-
cuts (TP), and advice models (AM).

Definition 2 (Inter-Model Declaration). An
inter-model declaration is defined as follows:

declare 〈base〉〈transition〉 {,〈base〉〈transition〉}
where 〈base〉〈transition〉 refers to a transition in base
model.

An inter-model declaration introduces one or more
new transition to the base model. For a declared tran-
sition C(si, e[φ], sj), if si, sj , and/or e are not yet in
C, then they become a new state or event in C. The
new transitions, states, and events can be used in sub-
sequent pointcut definitions. A join point is a transition
or state in a base model. A pointcut picks out a group
of join points.

Definition 3 (Pointcut). Pointcuts are defined as
follows:

1) pointcut 〈cutname〉〈transition-variable〉: 〈base〉
〈transition〉 {,〈base〉〈transition〉},

2) pointcut 〈cutname〉 (〈state-variable〉): 〈base〉.
〈state〉{,〈base〉.〈state〉},
where 1) and 2) define transition and state point-
cuts, respectively; 〈cutname〉 identifies a pointcut;
〈transition-variable〉 is a formal transition, (si, e[φ], sj),
where si, e, and sj are variables; 〈base〉〈transition〉
refers to an existing transition (join point) in the base
model; 〈base〉.〈state〉 refers to an existing state (join
point) in the base model. A transition or state vari-
able serves as a unified reference to multiple transitions
or states in one or more base models.

Definition 4 (Advice Model). An advice model
is defined as: advice 〈transition-cut〉 〈state-model〉.

The advice for a pointcut, specified by a state model,
describes the control logic applied to each join point
picked out by the pointcut. An advice model can be
empty, which means removal of the transitions picked
out by the pointcut from the base models.

Definition 5 (Aspect Model). An aspect model
is a structure 〈ID, SP, TP, AM〉, where ID, SP,
TP, and AM are a list of inter-model declarations,
state pointcuts, transition pointcuts, and advice models,

respectively.
Multiple pointcuts in the same aspect may share join

points. The order in which their advice is applied to
the shared transitions depends on their occurrences in
the aspect model. Inter-aspect interference may also
exist when multiple pointcuts in different aspect mo-
dels share join points but provide conflicting advice. To
deal with aspect interference, we can specify an explicit
precedence relation between aspects. It is a partial-
order relation on the given set of aspect models. As
such, an aspect-oriented state model consists of class
models, aspect models, and a precedence relation on
the aspect models.

Definition 6. (Aspect-Oriented State Model).
An aspect-oriented state model with m class models and
n aspect models is a triple ({Ci}, {Aj}, R) where {Ci}
(1 6 i 6 m) is a set of class models, {Aj} (1 6 j 6 n)
is a set of aspect models, and R is an aspect precedence
relation over {Ai}, respectively.

2.3 Aspect-Oriented Modeling

Aspect-oriented modeling involves identifying and
specifying primary and crosscutting concerns (i.e.,
classes and aspects). As class modeling with state ma-
chines has been well-studied, this paper focuses on as-
pect modeling. The key to state-based modeling of as-
pects is to identify and specify the impacts of aspects on
their base classes and the relations with other classes.
In event-based systems, aspects can lead to a variety of
impacts and relations, such as:
• removing transitions from the state models of base

classes;
• changing the resultant states of transitions in the

state models of base classes;
• modifying the guard conditions of transitions in

the state models of base classes;
• adding new transitions among existing states in

the state models of base classes;
• introducing new states and events and thus tran-

sitions between new and existing states;
• referencing the states/events of other classes

(called integrated classes) for integration.
In addition, a particular aspect can be a complex

combination of different impacts and relations. For
illustration purposes, let us consider different types
of aspects in the aspect-oriented reconstruction of a
legacy cruise control system[9]. Fig.1 shows the ar-
chitecture of the aspect-oriented cruise control sys-
tem, where a small circle represents a crosscutting re-
lationship between a base class and an aspect. Car-
SimulatorGUI, CarSimulator and CarSpeed constitute
an executable subsystem (i.e., car simulator with-
out cruise control facility). The three aspects are
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CarSimulatorFix, CruiseControlIntegrator, and Speed-
ControlIntegrator. CarSimulatorFix is an incremental
modification aspect, enforcing the precondition “engine
is on” of events accelerate and brake in CarSimulator.
If this precondition were not enforced, a safety problem
would occur — the car would start accelerating imme-
diately when, at the initial system state (engine is off),
one first accelerates the car and then turns on the ig-
nition. The CruiseControlIntegrator aspect composes
CarSimulator with such cruise control components as
CruiseDisplay and Controller, whereas the SpeedCon-
trolIntegrator aspect composes SpeedControl with Con-
troller.

Fig.1. Aspect-oriented cruise control system.

Fig.2 shows the state model of CarSimulator class.
The events are engineOn, engineOff, accelerate, and
brake. Cruise control events (i.e., on, off, and resume)
are not included because cruise control is considered as
a separated concern through aspect-orientation (a car
simulator may or may not have a cruise control facili-
ty). The six states capture all the relationships be-
tween three state variables: ignition, throttle level and
brake pedal. Ignition depends on engineOn and engi-
neOff events, whereas throttle level and brake pedal de-
pend on accelerate and brake events. For clarity, a label
with multiple events separated by “,” indicates multi-
ple transitions that share the start and resultant states.
For example, (OFF 10, 〈engineOff, accelerate〉, OFF 10)
refers to two transitions (OFF 10, engineOff, OFF 10)
and (OFF 10, accelerate, OFF 10).

The CarSimulatorFix aspect, as shown in Fig.3,
takes CarSimulator as the base class. Pointcut atIg-
nitionOff crosscuts two transitions (OFF 00, accelerate,
OFF 10) and (OFF 00, brake, OFF 01)). They mean that
when ignition is off, throttle level is 0 and brake pedal is
0, accelerate and brake events update throttle level and
brake pedal in the base model, respectively. The advice
is that these events should not change the state un-
der the given situation. The precondition (i.e., engine
is on) of accelerate and brake is enforced by changing

the resultant states of transitions from OFF 10/OFF 01

to OFF 00 (or by removing original transitions and add
new transitions). In other words, when the engine is off,
accelerate (or brake) will not change the engine state or
the throttle level (or brake padel).

Fig.2. State model of CarSimulator class.

Fig.3. State model of CarSimulatorFix aspect.

Fig.4. Portion of the CruiseControlIntegrator aspect model.
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CruiseControlIntegrator, as partially shown in Fig.4,
is a complex aspect that composes CarSimulator and
Controller while introducing new cruise control events,
on, resume and off, and thus new transitions for cruise
control operations. The declare clauses define the
new events and transitions with respect to the base
model CarSimulator. Some of the new transitions (for
events on, off, resume when engine is on) are fur-
ther refined by the advice of pointcuts cruiseon, cruis-
eresume and cruiseoff. The functionality of integra-
tion is demonstrated by references to the states and
events of Controller. Controller events are prefixed
by “Controller” (e.g., Controller.on in the advice of
cruiseon). An event without such a prefix (e.g., on in
the advice of cruiseon) refers to an event for CarSimu-
lator/CruiseControlIntegrator. For clarity, the prefix
is omitted for all Controller states, such as Cruising,
Standby, Active, and Inactive.

Consider the concern of turning on the cruise con-
trol by the on event. When the state of CarSimulator is
ON 00, ON 01, or ON 10, the on event will lead CarSimu-
lator to ON 10 and Controller to Cruising. In other
words, this concern crosscuts three transitions in the
CarSimulator state model with the same advice. Thus,
in Fig.4, these transitions are picked out by the cruiseon
pointcut. The advice of this pointcut is that the resul-
tant states of the transitions are changed to ON 10 and
the Controller state is set to Cruising through event
Controller.on. Similarly, the concern of turning off the
cruise control also crosscuts three transitions for the
events off, accelerate, and brake. This is captured by
the cruiseoff pointcut, whose advice is that the resul-
tant states of these transitions remain unchanged but
the Controller state is set to Standby.

The CarSimulatorFix and CruiseControlIntegrator
aspects share the base class CarSimulator. To resolve
the interference, CarSimulatorFix has higher prece-
dence since the safety precondition needs to be han-
dled first. Note that Controller is an integrated class
with respect to CruiseControlIntegrator. It is also the
base class of the SpeedControlIntegrator aspect, which
integrates SpeedControl.

3 Checking Aspect Models

In our approach, model checking of aspects is based
on the model checker LTSA. The input to LTSA in-
cludes behavior processes represented by FSP and
system properties represented as property processes
and/or FLTL (Fluent Linear Temporal Logic) asser-
tions. LTSA verifies whether or not the properties are
satisfied by the behavior processes through exhaustive
exploration of the state space of the behavior processes.
To verify aspect models, we first weave them into their

base class models. This results in woven state mode-
ls. Then we convert the woven models and the models
of those classes not modified by the aspects into re-
spective FSP behavior processes and verify if they have
unreachable states. Meanwhile, we formalize the prop-
erties to be verified according to the system require-
ments. The properties are expressed as (safety and
progress) property processes and/or FLTL assertions.
Finally, we compose all behavior and property processes
into a system-level process and feed the resulting pro-
cess into LTSA. LTSA then verifies whether or not the
properties are violated. If violated, LTSA reports a
trace to property violation (i.e., counterexample). This
helps improve the aspect-oriented state model or exam-
ine correctness of system properties.

Fig.5. Model-checking process.

Fig.5 shows the general process for verifying aspect-
oriented state models. In the following, we first give a
brief introduction to LTSA and FSP, then we discuss
the two core components of the verification process:
weaving for checking and converting woven models and
class models into FSP behavior processes. Finally, we
will discuss property formalization issues.

3.1 Introduction to LTSA and FSP

LTSA mechanically verifies whether or not a model
satisfies the particular properties required of a sys-
tem when it is implemented. Through exhaustive ex-
ploration of the state space, LTSA checks for both
desirable and undesirable properties for all possible
sequences of events and actions. The modeling ap-
proach of LTSA is based on labeled transitions systems
(LTS), where transitions in a state machine are labeled
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with action names. Since representing state machines
graphically severely limits the complexity of problems
that can be addressed, LTSA introduces a textual (alge-
braic) notation, FSP, to describe system models. It can
translate FSP descriptions to the equivalent graphical
LTS description.

An FSP process consists of one or more local pro-
cesses separated by commas. The description is termi-
nated by a full stop. A local process can be a primitive
local process (END, STOP, ERROR, a reference to an-
other local process), a sequential composition, a con-
ditional process, or is defined using action prefix (‘Õ’)
and choice (‘|’). For example, the following MAKER
process manufactures an item and then signals that the
item is ready for use by a USER process:

MAKER = (make Õ ready Õ MAKER).

USER = (ready Õ use Õ USER).

MAKER and USER share the action ready; they must
execute it at the same time. Such a shared action
implies synchronization between concurrent processes.
Note that FSP is essentially based on actions and
events. Although every FSP description has a cor-
responding graphical LTS description, the states of a
process are implicit. Consider the MAKER process,
the state after action make or ready is not identified,
or cannot be referenced in the guard of a conditional
local process. The composite process ‖ MAKER USER
= (MAKER ‖ USER) describes the model of a simple
manufacturing system that consists of the two concur-
rent processes MAKER and USER. “‖” refers to paral-
lel composition.

LTSA allows system properties to be defined as
(safety and progress) property processes and/or FLTL
assertions. A safety property process P asserts that any
trace including actions in the alphabet of P is accepted
by P . A progress property asserts that in an infinite
execution of a target system, at least one of the actions
listed in the property will be executed infinitely often
(the progress properties are actually a subset of liveness
properties). FLTL assertions are formed by applying
temporal operators to fluent expressions. They speci-
fy the desired properties that are true for every possi-
ble execution of a system. Fluent expressions can be
constructed by applying normal logical operators (con-
junction, disjunction, negation, implication, and equiv-
alence) to fluents.

3.2 Weaving for Checking

In aspect models, inter-model declarations introduce
new transitions, states, and events to base models.
State and transition pointcuts are a naming mechanism

for mapping state/event variables in advice models to
the counterparts selected from base models by point-
cut expressions. The selected transitions are then re-
placed with corresponding advice models or transitions.
To represent woven state models, we slightly extend
the state models described in Subsection 3.1. Specifi-
cally, a generalized transition in a woven model is of
the form (si, e1[φ1]Õe2[φ2]Õ · · ·Õek[φk], sj) where φl

(l = 1, · · · , k) is the guard for event el. It means the
sequence of guarded events e1[φ1]Õe2[φ2]Õ · · ·Õek[φk]
(called a composite event) results in state sj from si.
Typically, one of these events belongs to the base class
whereas others are events of the integrated classes. If
there is only one event in the sequence, the transition
reduces to a traditional one.

The basic entities of FSP processes are
events/actions. Object states, particularly intermedi-
ate states, are implicit. Consider the advice of pointcut
cruiseon in Fig.4. It states that turning on the cruise
control is handled by two operations: CarSimulator.on
(changing the CarSimulator state to ON 10) and Con-
troller.on (setting the Controller state to Cruising).
An FSP process for this advice would be composed of
the event sequence CarSimulator.on Õ Controller.on
without considering the intermediate state Cruising.
Similarly, we can collapse the advice of cruiseoff point-
cut in Fig.4 into the following two composite transi-
tions: (ON 10, abo[Controller.getState()=Cruising] Õ

Controller.abo, Sj) and (ON 10, abo[Controller. get-
State()!=Cruising], Sj). Note that abo as a variable
can be accelerate, brake, or off.

Now we present the weaving algorithm that com-
poses an aspect model with a base model for checking
purposes. Let “:=” be the assignment operator, M.S,
M.E and M.T be the sets of states, events, and transi-
tions of state model M, respectively.

Algorithm 1. Weaving for Checking

Given base model BM and aspect model A =
(ID ,SP ,TP ,AM ). The woven state model, WM, of com-
posing aspect A into base model BM results from the fol-
lowing procedure:

1) Initially, WM :=BM.

2) For each inter-model declaration in ID that is defined
on BM, add each new transition into WM.T. If states (or
events) used in the new transitions have not yet in WM.S
(or WM.E), add them into WM.S (or WM.E).

3) For each advice model in AM that involves integrated
classes, combine the transitions that use states and events
of integrated classes into composite events (leaving out the
states of integrated classes). Let AM ′ denote the new set
of advice models.

4) For each transition pointcut in TP, replace each tran-

sition in WM.T picked out by the pointcut with the corre-

sponding advice model in AM ′. If the advice model uses
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a state variable defined by some state pointcut in SP, then

replace the state variable with the corresponding state in

WM.S according to the state pointcut.

A woven model can further be composed with other
aspect models for the same base. The order in which
multiple aspects are applied is determined by the as-
pect precedence relation. In the cruise control system,
the CarSimulatorFix aspect has higher precedence than
CruiseControlIntegrator. We first weave the CarSimu-
latorFix aspect with its base class CarSimulator. The
weaving result is shown in Fig.6. It is then used as
the base model for weaving CruiseControlIntegrator as-
pect. The final woven model is shown in Fig.7, where
for simplicity all guard conditions are omitted.

Fig.6. Woven model of CarSimulator class and CarSimulatorFix

aspect.

Fig.7. Woven model of CarSimulator class, CarSimulatorFix as-

pect and CruiseControlIntegrator aspect.

For a given aspect-oriented state model, we weave
all aspects with their base classes and transform the
model into a set of woven state models together with the
models of those integrated classes. For verification pur-
poses, the original base class models and aspect models
are not used. For example, the aspect-oriented model of
the cruise control system reduces to three models after
weaving: SpeedControl, Controller, and CarSimulator,
where SpeedControl identifies the model of class Speed-
Control, Controller now refers to the woven model of

Controller class and SpeedControlIntegrator aspect, and
CarSimulator now represents the woven model of Car-
Simulator class, CarSimulatorFix aspect, and CruiseC-
ontrolIntegrator aspect.

3.3 From State Models to FSPs

After aspect weaving, we convert each woven model
and class model into an FSP process. To do so, we
first generate the top-level FSP process named after the
(base) class. This process starts with the initial state of
the (base) class. For example, the woven model of the
aspects CarSimulatorFix and CruiseControlIntegrator
with their base class CarSimulator in Fig.7 is defined
as:

CARSIMULATOR = OFF00,

where OFF 00 is the initial state (local process). A local
process is then created for each state s in the model.
The body of this local process is determined by the
transitions that start from the state s. Each basic tran-
sition (s, e, s′) becomes a local process eÕs′ in the pro-
cess body (composition events and guard conditions are
discussed later). If there are more than one such transi-
tions, they are composed by the choice (“|”) construct.
In Fig.7, the transitions starting with OFF00 include:

(OFF00,CarSimulator.engineOn Õ Controller.engine-
On, ON00),

(OFF00, CarSimulator.engineOff, OFF00),
(OFF00, CarSimulator.accelerate, OFF00),
(OFF00, CarSimulator.brake, OFF00),
(OFF00, CarSimulator.on, OFF00),
(OFF00, CarSimulator.off, OFF00),
(OFF00, CarSimulator.resume, OFF00).
The local process for OFF 00 is thus as follows:
OFF00 = (carSimulator.engineOn Õ controller.engi-

neOn Õ ON00

|carSimulator.engineOff Õ OFF00

|carSimulator.accelerate Õ OFF00

|carSimulator.brake Õ OFF00

|carSimulator.on Õ OFF00

|carSimulator.off Õ OFF00

|carSimulator.resume Õ OFF00),
where the first letter of class names is lowercased. This
is required of the action and event identifiers in FSP.
The general algorithm for transforming a woven (or
class) model into an FSP consists of two procedures:
FSP process generation and recursive FSP local pro-
cess generation. The algorithm is described below.

Algorithm 2. Conversion of a State Model into an FSP.
Generating a complete FSP process for a given state model

Procedure 1. FSP Process Generation

Input: a state model

Output: an FSP process with all local processes
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Steps:

S1.1 Let TraversedStates be all the states whose local
processes are already generated. Initially Tra-
versedStates = ∅;

S1.2 Find the initial state (denoted as initState) from
the object construction transition of the model;

S1.3 The top-level process is modelName = init-
State (the object construction event is abstracted
away), where modelName is the name of the
(base) class;

S1.4 Generate the local process for initState using Pro-
cedure 2 below;

S1.5 Concatenate the top-level process in S1.3 with
the subprocess in S1.4 and replace the last oc-
currence of ‘,

¯
’ with ‘).’, which means the end of

a process;

S1.6 Report unreachable for any state in the state
model but not in TraversedStates;

S1.7 Return the resulting process of S1.5.

Procedure 2. FSP Local Process Generation

Input: a state model and a state s in the model

Output: an FSP local process

Steps:

S2.1 The initial process text: s = (;

S2.2 Find all transitions in the model that start with
state s. Suppose E is the set of events involved
in the transitions;

S2.2.1 For the first transition, (s, ce, s′), transform
it to a clause ce Õ s′;

S2.2.2 For each of other transitions, say (s, ce, s′),
transform it to a clause |ce Õ s′, where “|”
is the choice construct;

S2.2.3 For each event e in E, if there is
one or more conditional transition
(s, e[φ1], s1), . . . , (s, e[φk], sk) (suppose
φ1 ∨ · · · ∨ φk is not always true), generate a
clause |e Õ s;

S2.2.4 Concatenate the initial process text, the
clauses in the above steps, and “,” (end of
a local process);

S2.3 Add s into TraversedStates;

S2.4 For each transition, (s, e[φ], s′), such that the lo-
cal process for s′ is not generated yet, repeat Pro-
cedure 2 for s′.

S2.5 Return the local process obtained in S2.2.4.

For clarity, Algorithm 2 does not deal with the nam-
ing convention. In fact, it has to follow the naming
convention of LTSA. Specifically, we capitalize process
(i.e., model) and local process (i.e., state) names and
use a lower case for the first letter of each event name.
To differentiate the events of different classes, we al-
ways prefix an event with its class name (starting with
a lower case letter according to the LTSA naming con-
vention, though).

Finally, we need to define the system-level process
for an aspect-oriented state model. To do so, we com-
pose the FSP processes for all woven state models and
class models not affected by aspects. For the cruise
control system model, aspects CarSimulatorFix and
CruiseControlIntegrator are woven into CarSimulator;
SpeedControlIntegrator is woven into Controller; Speed-
Control remains unchanged. Thus the system-level pro-
cess is:

‖CruiseControl =CarSimulator‖
Controller‖SpeedControl.

where “‖” means parallel composition. Putting this
together with the FSP processes for the CarSimula-
tor and Controller woven models and the SpeedControl
class model, we obtain the complete FSP specification
for the cruise control system.

3.4 Aspect Verification

After the woven models and class models are trans-
formed into FSP processes, we formalize system prop-
erties according to the system requirements and verify
the FSP processes against the properties. As mentioned
earlier, LTSA allows properties to be expressed as prop-
erty processes and/or FLTL assertions.

We can verify an aspect-oriented state model in an
incremental manner, that is, check the class models first
and then the aspect models together with their base
models and related class models. The incremental veri-
fication can determine aspect problems if the classes are
already proven correct. Katz[6] has discussed how spec-
tative, regulative, invasive aspects affect the properties
of their base programs. This aspect category is helpful
for identifying the properties that aspects should pre-
serve or invalidate. In the cruise control system, for
example, the requirement “OFF00 should be reached
eventually after engine is turned on” must be met no
matter whether the aspects are applied.

To verify correctness of aspects, we are also intere-
sted in the particular properties that are changed or in-
troduced by aspects. Depending on the application, an
aspect can be expected to validate or invalidate a spe-
cific property of its base classes. For example, when an
aspect is used to enforce the contract of the base classes,
it implies that the base classes have not yet enforced the
contract. We can define properties that should be vio-
lated (or satisfied) by the base classes alone but satisfied
(or violated) after the aspect is composed. Consider the
CarSimulator model in Fig.2. It violates the following
safety property:

property SAFETY= (
{carSimulator.engineOn, carSimulator.engineOff,
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carSimulator.brake, carSimulator.on,
carSimulator.off, carSimulator.resume} Õ SAFETY
| {carSimulator.accelerate} Õ SAFETYCHECK),

SAFETYCHECK= (
{carSimulator.engineOff, carSimulator.brake,
carSimulator.on, carSimulator.off,
carSimulator.resume} Õ SAFETY
|{carSimulator.accelerate} Õ SAFETYCHECK
|{carSimulator.engineOn} Õ ERROR).

The following is part of the LTSA output when the gen-
erated FSP process for the CarSimulator model in Fig.2
is checked against the above property:

Trace to property violation in SAFETY:
carSimulator.accelerate
carSimulator.engineOn.

The trace to property violation reflects the safety prob-
lem discussed in Subsection 2.3. The corresponding
sequence of states and events in the class model is
〈OFF00, accelerate, OFF10, engineOn, ON10〉. The
above safety property, however, is satisfied after the
CarSimulatorFix aspect is woven into CarSimulater if
the aspect disables the event CarSimulator.accelerate
at the initial state (i.e., if the advice of atIgnitionOff
has an empty advice model, which means removal of
the selected transitions in Fig.3). Note that the advice
model in Fig.3 allows the CarSimulator.accelerate event
to be received, yet without changing the state. Thus,
〈carSimulator.accelerate, carSimulator.engineOn〉 is a
safe event sequence. In this case, the above property
specification does not apply to the aspect model in
Fig.3. In general, aspect verification may require mod-
ifying the concrete property specification of its base
classes even for a similar property if the property re-
lies on the ordering of events or states.

Properties with respect to an aspect may not make
sense to the individual base classes. For instance,
the CruiseControlIntegrator aspect in the cruise con-
trol system involves two classes. To verify its correct-
ness, the cruise control properties are defined over the
two classes, other than each individual class. They are
in essence inter-class invariants enforced by the aspect.
Obviously, they are meaningless when only an indivi-
dual class is checked. This is similar for the SpeedCon-
trolIntegrator aspect. In addition to safety/progress
property processes, FLTL assertions can be defined to
express various system properties including safety and

liveness. LTSA automatically verifies the given proper-
ties and checks to see if deadlock exists.

Moreover, our approach automatically inspects if
there are unreachable states in an aspect-oriented state
model. Consider the states OFF 10 and OFF 01. They
are reachable from the initial state OFF 00 in the base
model CarSimulator (Fig.2), but unreachable in the wo-
ven models (Figs. 6 and 7). It is the CarSimulatorFix
aspect that makes them unreachable so as to avoid the
unsafe situation. As a matter of fact, reachability ana-
lysis is conducted when a state model is converted into
an FSP process (refer to step 1.6 of Algorithm 2). A
generated FSP process contains no unreachable states.
If a generated FSP process has missed an expected
state, it indicates that the original aspect-oriented state
model is incorrect. For the expected unreachable states,
it is safe to remove them and the transitions associated
with them. The removal does not lose any information
for further verification. For example, Fig.6 can be re-
duced to Fig.8. The generated FSP processes for the
two models are the same. Similarly, the model in Fig.7
is reduced when it is transformed into an FSP process.

Fig.8. Reduced model of Fig.6.

4 Applications and Evaluations

We have fully implemented our approach in the Java-
based tool MACT②. With the tool support, we have
been able to apply our approach to three non-trivial
event-based systems — the aspect-oriented cruise con-
trol system[8], telecom (a sample program in the AJDT
toolkit③), and banking④.

To evaluate the effectiveness of verification, we have
applied our approach as a heavyweight formal method
to the cruise control and telecom systems — we have
modeled all aspects and related classes and formalized
and verified a comprehensive set of requirements for
each subsystem (each subsystem consists of aspects of

②MACT (Model-based Aspect Checking and Testing) accepts textual specifications of aspect-oriented state models. We have also
implemented a separate tool for the graphical notation of aspect modeling with state machines based on the open source UML tool
ArgoUML (http://argouml.tigris.org). It can export the graphical representations of aspect and class state models to MACT.
③AspectJ Development Toolkit: http://www.eclipse.org/ajdt/. AspectJ is the representative AOP language built upon Java.
④http://www. manning.com/laddad/.
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interest and related classes for modeling and verifica-
tion). Such heavy-weight applications of formal metho-
ds have been a significant challenge. On one hand, it
was difficult to define a comprehensive set of system
requirements for each aspect and related classes. On
the other hand, it was not easy to formalize every re-
quirement (in fact property formalization can be more
difficult than modeling). In practice, our approach can
be used as a light-weight method, focusing on the mode-
ling and verification of critical system components and
requirements. This is the case for the banking system,
which consists of 282 classes and 12 aspects (27 K lines
of code). The application of our approach to the bank-
ing system has focused on the modeling and checking of
the aspects for concurrency control of read/write access
to the database and related classes.

Table 1. Subjects of the Empirical Study

Subjects Cruise Telecom

control

Number of classes 9 10

Number of aspects 3 3

Number of system properties formalized 63 32

Number of aspect model mutants created 33 13

Table 1 lists the metrics of the cruise control and
telecom systems. The underlying logic of the cruise
control system is much more complex than telecom ac-
cording to their aspect-oriented models and number of
formalized requirements. For example, the former has
twice as many formalized properties.

For each subsystem consisting of an aspect and re-
lated classes, we first built an aspect-oriented state
model, formalized the properties according to the sys-
tem requirements, and checked the aspect-oriented
model against the properties. In this way, we obtained
the correct model for each of the subsystems. This
indicates that our approach has successfully verified
the correct models. However, it is also interesting to
know whether or not our approach can detect flaws in
aspect-oriented state models. To further evaluate our
approach, we created mutants (variations) of the cor-
rect aspect-oriented state models according to the fault
category of aspect design and checked each model mu-
tant to see if any property was violated.

The fault category of aspect models implies the vari-
ous ways an aspect model can go wrong (as our focus
is on aspects, we do not consider the potential faults of
class model). It consists of the following fault types:

FT1: Incorrect pointcut with a missing join point.
The consequence is that the desired advice is not ap-
plied to the join point.

FT2: Incorrect pointcut with an extra join point.
The consequence is that extra advice is applied to the

join point.
FT3: Incorrect advice where a transition has a

wrong starting (ending) state or event/action.
FT4: Incorrect advice with a missing transition

(state).
FT5: Incorrect advice with an extra transition

(state).
FT6: Incorrect advice with a missing guard for a

guarded transition or with an extra guard condition for
an unguarded transition.

FT7: Incorrect aspect or advice precedence.
The above fault category is similar to the fault model

of AOP[5,12]. They cover incorrect pointcuts, incorrect
advice and incorrect aspect precedence, yet at different
development phases (design vs. programming). The
above fault category is specific to the aspect-oriented
state models.

A model mutant of a correct aspect-oriented state
model is a variation of the model. We create a model
mutant by seeding one potential fault of the above cate-
gory into an aspect model. It indicates a particular way
that the aspect may be modeled incorrectly. We have
created 33 and 13 mutants for the two applications, re-
spectively. All of them were determined to be flawed
because they either led to a deadlock or violated some
property. This demonstrates that our approach is in-
deed effective for assuring the quality of aspect models.

5 Related Work

There is a growing body of work on aspect-oriented
modeling with UML[13−21]. It exploits the meta-level
notation of UML or extends the UML notation for
specifying crosscutting concerns. Most of the work,
however, is not concerned with aspect verification due
to the informal or semi-formal nature of UML. A recent
survey can be found in [7].

Since finite state models have long been in use
for rigorous specification of object-oriented software[10],
state-based aspect modeling is of particular interest.
Elrad et al. have proposed an approach to aspect-
oriented modeling with Statecharts[13,21]. Base state
models and aspect state models are represented by dif-
ferent regions of Statecharts. An aspect first intercepts
the events sent to the base state models and then broad-
cast the events to the base state models. Composition
of base models and aspect models relies on a specific
naming convention as the weaving mechanism is im-
plicit. In comparison, our work uses a rigorous formal-
ism for capturing crosscutting elements (inter-model
declaration, join point, pointcut, and advice) with re-
spect to the state models of classes. Aspects and classes
are composed through an explicit weaving mechanism.
Xu and Nygard[22] have developed aspect-oriented Petri
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nets for threat-driven modeling and verification of se-
cure software. The intended functions, threat scenarios,
and security features of a system are all formalized by
Petri nets. Verification is conducted with respect to the
correctness and absence of threat scenarios, as opposed
to desired system properties.

Several methods for model-checking aspect-oriented
programs have been proposed. Ubayashi and Tamai[23]

use model-checking to verify whether the woven code
of an aspect-oriented program contains unexpected be-
havior. They also propose a model-checking frame-
work that allows crosscutting properties to be defined
as an aspect and thus separated from the program body.
Denaro and Monga[24] report a preliminary experi-
ence with model-checking a concurrency control aspect.
They manually build the aspect model in PROMELA
(the input language of the SPIN model checker) and
verify the deadlock problem of the synchronization po-
licy. Since the transformation is done by hand, the
conformance between the PROMELA program and as-
pect code remains an open issue. Nelson et al.[25] use
both model checkers and model-builders to verify wo-
ven programs. The above work does not involve aspect-
oriented modeling.

Krishnamurthi et al.[26] adapt model-checking for
verifying properties against advice modularly. Given
a set of properties and a set of pointcut designators,
this approach automatically generates sufficient condi-
tions on the program’s pointcuts to enable verification
of advice in isolation. It assumes that the programs and
advice are given as state machines, which represent the
control-flow graphs of program fragments. In a series
of papers, Katz and his group have addressed various
issues of model-checking aspect-oriented code. In [27–
28], model checking tasks are automatically generated
for the woven code of aspect-oriented programs. This
approach takes the advantage of the Bandera system[29]

that generates input to model checking tools directly
from Java code, and hence the woven code of AspectJ
programs. In [30], they treat crosscutting scenarios as
aspects and use model checking to prove the confor-
mance between the scenario-based specification of as-
pects and the systems with aspects woven into them.
In [31], they propose an approach to generic modular
verification of code-level aspects. They check an aspect
state machine against the desired properties whenever
it is woven over a base state machine that satisfies the
assumptions of the aspect. A single state machine is
constructed using the tableau of the LTL description
of the assumptions, a description of the joinpoints, and
the state machine of the aspect code.

Our work is different from the above methods
for model-checking aspect-oriented programs. The

crosscutting notions (pointcuts, advice, and aspects)
of the aspect-oriented state models in our approach
are specified with respect to the design-level state
models, as opposed to the programming constructs or
control flow graphs of aspect-oriented programs. In
the cruise control system model, for instance, the ab-
stract state OFF00 (ignition=OFF && throttle=0 &&
brakepadel=0) involves three instance variables in the
implementation. Aspect models are allowed to intro-
duce new states, events, and transitions. Nevertheless,
the approaches to modular verification of aspects[26,31]

can be adopted to enhance our work.
Among the efforts to define formal semantics of as-

pects, some have been accompanied by proposals on
employing the semantics for verification. For instance,
Andrews[32] uses process algebras to offer a foundation
for AOP. This work places emphasis on the correctness
proofs of program weaving. It uses program equivalence
to establish the correctness of a particular weaver. Xu
et al.[33] reduce aspect verification to prior work on rea-
soning about implicit invocation systems. They suggest
using model- rather than proof-theoretic techniques. It
is not clear whether verification works in a way that is
meaningful to aspects and what the formal properties
about implicit invocation verification mean in the con-
text of aspects. The above approaches to the aspect
semantics are essentially orthogonal to our work.

6 Conclusions

We have presented the approach to aspect-oriented
modeling and verification with finite state machines.
The applications of our approach have demonstrated
that aspect-orientation can provide an effective mecha-
nism for dealing with crosscutting concerns and in-
cremental modification requirements. Aspect-oriented
verification through model checking can uncover sys-
tem design problems before the system is implemented.
This will reduce overall development costs due to ear-
lier detection of problems.

Aspect-oriented modeling and verification can also
facilitate detecting programming faults through model-
based testing. For example, the model-based testing
method[5] generates test cases from an aspect-oriented
state model for exercising the resultant aspect-oriented
program. When correctness of the model is assured by
the model-checking method, each failure of test exe-
cution implies that the code is faulty (as long as the
test oracle including test result evaluation is reliable).
Therefore, combination of verification and model-based
testing can assure high-quality system implementation.
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