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Abstract It is well known that impredicative type systems do not have set

theoretical semantics. This paper takes a look at semantics of inductive types in

impredicative type systems. A generalized inductive type is interpreted as an omega

set generated by e�ectivizing a certain rule set. The result provides a semantic

justi�cation of inductive types in the calculus of constructions.
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1 Introduction

Constructive type theory has been developed around three principles. The oft-quoted

Curry-Howard's principle[1] may be stated as follows:

Constructive propositions are types.

This is what underlies Girard's work on system F and some recent interest in polymor-

phism and functional programming languages. Here the notion of sets is missing, which

is the prime reason for the limitation of the languages designed with this principle. Per-

haps this is not a serious drawback as far as functional programming is concerned. The

Martin-L�of's principle is on the other end of the pole. It says that

Constructive sets are types.

What is lacking in these calculi is a logic. As a consequence the Leibniz equality is

not expressible. We are therefore forced to internalize the de�nitional equality. Hence the

somewhat odd identity sets[2]. Languages in this group have good mechanism for de�ning

and manipulating data types. But applications to program speci�cations and veri�cations

are limited due to the absence of a logic. From [3], and especially [4] (see also [5]), we now

know that it is perfectly sound to unify these two kinds of languages. We will call Russell's

principle the following:

The range of a constructive signi�cance is a type.

The idea has its origin in Principia Mathematica[6]. To make sensible use of this prin-

ciple, one has �rst of all to answer the following question: what is the relationship between

propositions and sets? Obviously things should be structured. By Russell's principle, there

should be a type Prop of all propositions. There are three obvious choices. (1) The sets sit

on top of Prop, that is Prop : Type; this is the Calculus of Constructions, or CC [3;5;7;8].

(2) The sets sit within Prop, that is Type � Prop. Languages incorporating this design

decision have elimination rules for closed universes, but the usefulness of it is questionable.

(3) The sets and propositions are separated[9]. ECC (Enriched Calculus of Constructions)

is the best representative in the CC-like calculi. Part of the expressive power of ECC comes
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from the fact that Type
i
(i 2 !) are open universes, which is a consequence of Prop : Type0.

The studies carried out in [10] and [11] clarify, both negatively and positively, the role of

propositions in the Calculus of Constructions. In [10], a counter example is given showing

that if we identify sets with propositions, the Calculus of Constructions is not conservative

over HOL, the constructive version of Church's higher order logic[12]. In [11], it is proved

that, when properly separated, it is conservative over HOL. The signi�cance of their work

is in showing that the �rst two principles are di�erent.

There remain many questions about the Calculus of Constructions. To start with, there is

no civilized way of carrying out metatheoretical investigations into various Enriched Calculi

of Constructions. The model theoretic methods such as the \candidates de reductibilit�e"

are doomed to be complicated. The main idea in those methods is to reduce the issue to a

proof of the soundness of some term model, which inherits all the combinatorial complexity

from a case-study approach. Second we don't know the expressive power of such languages.

What we now can do is to interpret various traditional constructive languages in ECC to

have a good understanding of the relationships. In doing so, one should take into account

of the fact that ECC contains a logic. The usual interpretation in Martin-L�of's set theory,

see for example [13, 14], might have a more faithful counterpart in ECC | that is logical,

formulas are interpreted as impredicative propositions while the notion of sets is kept at the

Type-level as it as. See [15, 16] for an initial attempt.

Russell's principle subsumes the other two. As a result, we have this useful slogan:

One can extend the Calculus of Constructions to include whatever

one has in Martin-L�of's set theory.

Two points need to be clari�ed. First, by Martin-L�of's set theory we mean the traditional

one. What has prevented Martin-L�of from calling something type theory should be a good

enough reason for us not to call it Martin-L�of's set theory. Second, one might argue against

the slogan by saying that universes in Martin-L�of's set theory are closed while Type
i
(i 2 !)

are not. This is really a misconception. The closed universes should sit inside each Type
i
.

The Unifying Theory of Dependent Types[17] is a calculus proposed along this line, although

the author's emphasis is on the decidability of the language.

The main purpose of this paper is to reinforce our con�dence in the above slogan by

taking a look at what happens in model theory. In [18], a set-theoretic model is given to

the inductive types de�ned in Martin-L�of's set theory, using Aczel's notion of rule sets[19].

A similar model using �-continuous functors is described in [20]. Neither of them can treat

inductive types in the Calculus of Constructions, which is impredicative. In [18] it was said

that \This interpretation does of course not extend to the full system of the calculus of

constructions extended with inductive types. Having a set-theoretic model is one of the

properties which distinguish predicative from the impredicative type theory.". Of course

nothing prevents us from giving a constructive set theoretical model. In fact, the model

is one version of the recursive set theory. This reects the computational aspect of the

inductive types. Inductive types are by essence computational objects. In this paper we are

going to transplant the classical set-theoretical construction to the category !-Set. The

de�nition of the interpretation follows [18] closely. Our contribution is to e�ectivize the sets

obtained from certain rule sets.

2 The Enriched Calculus of Constructions

We present the language in the style of Tarski. This formulation[8;11] has some theoretical
advantages. For instance, the standard !-Set model is perfect for this explicit calculus. The
following rules are the skeleton for the Calculus of Constructions.

` Prop : Type

� ` A : Type

�; x : A ` Prop : Type

�; x : A;�0 ` Prop : Type

�; x : A;�0 ` x : A
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� ` P : Prop

� ` Prf (P ) : Type

�; x : A ` b : B

� ` �x :A:b : �x :A:B

� ` f : �x :A:B � ` a : A

� ` fa : B[a]

�; x : A ` B : Type � ` A : Type

� ` �x :A:B : Type

�; x : A ` P : Prop

� ` 8x :A:P : Prop

�; x : A `M : Prf (P )

� ` �x :A:M : Prf (8x : A:P )

� `M : Prf (8x : A:P ) � ` N : A

� `M �N : Prf (P [N=x])

� ` a : A � ` B : Type A = B

� ` a : B

We have omitted all the nonextensional equational rules de�ning =.

There are many ways to extend the language just described. Here we enrich it with the

generalized inductive types as formulated in [18].

Context

� ` A1 : Type; �; x1 : A1 ` A2 : Type; : : : ; �; x1 : A1; : : : ; xn�1 : An�1 ` An : Type

� ` [x1 : A1; x2 : A2; : : : ; xn : An] Ctxt

Context realization

� ` a1 : A1; � ` a2 : A2[a1]; : : : ;� ` an : An[a1; : : : ; an�1]

� ` (a1; : : : ; an) : [x1 : A1; x2 : A2; : : : ; xn : An]

For a context �
def
= [x1 : A1; : : : ; xn : A

n
], �z : �:C is intuitively `isomorphic' to

�x1 : A1: � � ��xn : A
n
:C. Substitution into contexts is computed componentwise: �[a]

means [x1 : A1[a]; : : : ; xn : A
n
[a]].

Formation
� ` �1 Ctxt; ��1 ` �11 Ctxt; : : : ; ��1 ` �1n1 Ctxt; : : : ;

� ` �n Ctxt; ��n ` �n1 Ctxt; : : : ;��n ` �nnn
Ctxt

� ` �(�1; : : : ;�n):[�11; : : : ;�1n1 ; : : : ;�n1; : : : ;�nnn
] : Type

We will abbreviate �(�1; : : : ;�n
):[�11; : : : ;�1n1 ; : : : ;�n1; : : : ;�nnn

] to �(�):[�] or even

to �.

Introduction

� ` a : �i; � ` bk : �ik[a] ! �(�):[�]; k 2 [1 � �ni]

� ` intro
�

i
(a; b1; : : : ; bni) : �(�):[�]

(i = 1 � �n)

Elimination

�; z : �(�):[�] ` C : Type

� ` di 2 �x : �i:

0
BBB@

�y1 : �i1[x] ! �(�):[�]:

�hi1 : (�z : �i1[x]:C[y1(z)]):

� � �

�yni : �ini
[x] ! �(�):[�]:

�hini : (�z : �ini
[x]:C[yni(z)]):

1
CCCAC[intro

�

i
(x; y1; : : : ; yni)]

for i = 1 � �n

� ` rec�(d1; : : : ; dn) 2 �z : �(�):[�]:C

Computation

�; z : �(�):[�] ` C : Type

� ` di 2 �x : �i:

0
BBB@

�y1 : �i1[x] ! �(�):[�]:

�hi1 : (�z : �i1[x]:C[y1(z)]):

� � �

�yni : �ini
[x] ! �(�):[�]:

�hini : (�z : �ini
[x]:C[yni(z)]):

1
CCCAC[intro

�

i
(x; y1; : : : ; yni)]

for i = 1 � �n

� ` a : �i; � ` b1 : �i1[a]! �(�):[�]; : : : ;� ` bni : �ini
[a] ! �(�):[�]

� ` rec�(d)(intro
�

i
(a; b)) =

�
di(a; b1; �z : �i1[a]:rec�(d)(b1(z)); : : : ;

bni ; �z : �ini
[a]:rec�(d)(bni(z)))

�
: C[intro

�

i
(a; b)]



16 FU Yuxi Vol.16

The formation and introduction rules tell us that the generalized inductive types are two-

dimensional generalizations of the well-known W -types. The elimination and computation

rules describe how functions on these inductive types are de�ned and how they are computed.

In the latter two rules, we have linearized what are completely independent of each other.

3 A Quick Review of the !-Set Model

This section reviews some of the basic facts about the !-Set model[4;5;21]. In the sequel

we will overload the syntax for the type theory and its interpretation in !-Set. For recursion

theory, see [22].

De�nition 3.1. An !-set (X;`
X
) consists of a set X, the underlying set, and a relation

`
X
� ! � X such that for any a 2 X, there exists some n 2 ! satisfying n `

X
a (every

element of X is witnessed by some recursive function): A morphism from (X;`
X
) to (Y;`

Y
)

is a function f : X �! Y that is tracked (realized) by some recursive function n. By \n

tracks f" we mean that if p `
X
a then n � p `

Y
fa, where n � p is the result of applying the

n-th recursive function to the number p.

Assume � is an !-set and A;A
0 : j�j �! !-Set are two maps. We can de�ne the !-sets �(�; A)

and �(�; A) and two maps A+A
0,A�A

0 : j�j �! !-Set. If B : j�(�; A)j �! !-Set is another

map, we can de�ne two more maps ��(A;B); ��(A;B) : j�j �! !-Set. Notice that a map

f : j�j ! !-Set is de�ned by prescribing f(�) for an arbitrary � 2 j�j.
!-set the underlying set the realizability relation

�(�; A) f(; a) j  2 j�j ^ a 2 jA()jg hm;ni `�(�;A) (; a) if and only if

m `�  ^ n `A() a

f(a; b) j a 2 jA(�)j ^ b 2 jB(�; a)jg hm;ni `��(A;B)(�) (a; b) if and only if

��(A;B)(�) m `A(�) a ^ n `B(�;a) b

ff : j�j !
S

2j�j
jA()j j n `�(�;A) f if and only if

�(�; A) 8 2 j�j:f() 2 jA()j 8 2 j�j:8p 2 !:

^9n 2 !:n `�(�;A) fg p `�  ) n � p `A() f()

ff : jA(�)j !
S

a2jA(�)j
jB(�; a)j j n `��(A;B)(�) f if and only if

��(A;B)(�) 8a 2 jA(�)j:f(a) 2 jB(�; a)j 8a 2 jA(�)j:8p 2 !:

^9n 2 !:n `��(A;B)(�) fg p `A(�) a ) n � p `B(�;a) f(a)

(A+A
0)(�)

f(0; a) j a 2 jA(�)jg [ f(1; b) j b 2 jA0(�)jg hi; ni `(A+A0)(�) (j; c) if and only ifn
i = j = 0 ^ n `jA(�)j c

i = j = 1 ^ n `jA0(�)j c

(A�A
0)(�) f(a; a0) j a 2 jA(�)j ^ a

0 2 jA0(�)jg hm;ni `(A�A0)(�) (a; a
0) if and only if

m `A(�) a ^ n `A0(�) a
0

Notice that ��(A;B)(�) = �(A(�); B(�; )) and ��(A;B)(�) = �(A(�); B(�; )).

Fig.1. Some constructions in !-Set.

IfA is an !-set, we write jAj for its underlying set. The category !-Set is locally cartesian

closed with �nite colimits[23]. Fig.1 summarizes some standard constructions. Perhaps more

importantly, !-Set contains a remarkable internal category[24;25].

De�nition 3.2. A per, partial equivalence relation, is a transitive symmetric relation

A on the set ! of natural numbers. We write mAn for (m;n) 2 A. Q(A) is the set

of equivalence classes of A. [n]
A

is the equivalence class represented by n. Dom(A)
def
=

fnjnAng. n 2 A will mean n 2 Dom(A). A map from a per A to another per B is

the set [l]
A!B

of all natural numbers such that 8m;n 2 [l]
A!B

:8p; q 2 Dom(A):pAq )

(m � p)B(n � q).

Given pers A and B, we can de�ne the usual constructions as follows. The product

A � B is the per such that m(A � B)n i� �0mA�0n and �1mB�1n. The exponential

A ! B contains all the pairs hm;ni such that for any pair ha; bi 2 A, hm � a; n � bi 2 B.

The coproduct A + B contains all the pairs hm;ni such that either �0m = �0n = 0 and

�1mA�1n or �0m = �0n = 1 and �1mB�1n. The initial object is the empty relation while
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the terminal object is the total relation. In fact, the category Per is a locally cartesian

closed category with �nite colimits. But what makes Per particularly useful is the fact that

it is a small complete full subcategory of !-Set. This property enables us to interpret the

Calculus of Constructions in !-Set: types are interpreted as !-sets and propositions are

interpreted as pers.

Therefore to show that the Enriched Calculus of Constructions can be modeled in !-Set,

we only have to explain how the generalized inductive types are interpreted in this category.

In the !-Set model, a context is interpreted as an !-set, a judgement � ` A : Type is

modeled by a map from the underlying set of � to !-Set. The empty context is interpreted

by the terminal !-set (f?g; ! � f?g). The context �; x : A is interpreted by �(�; A), where

A : j�j �! !-Set is the denotation of � ` A : Type. � ` �x :A:B : Type is modeled by

��(A;B) : j�j �! !-Set. And the denotation of � ` [x1 : A1; : : : ; xn : A
n
] Ctxt is given by

��(A1; ��(�;A1)(A2; : : : ; ��(����(�;A1);:::;An�2)(An�1; An
) : : :)). A term � ` a : A is interpreted

by a morphism a : � �! �(�; A) that satis�es the �rst projection property: a;�1 = Id�
where �1 : �(�; A) �! � is the �rst projection. For details, see loc.cit.

4 The Model

De�nition 4.1. A rule on the set U is a pair
u

v
such that u � U and v 2 U . A

rule set on U is a set of rules on U . Given a rule set R on U , a set A is R-closed if

for any rule u

v

2 R, u � A implies v 2 A. The set inductively de�ned by R is the set

I(R)
def
=
T
fAjA is R-closedg, the smallest R-closed set. A rule set R is deterministic if

u1

v

2 R ^
u2

v

2 R) u1 = u2.

Associated with each rule set R is the R-induction: suppose P is a property; if for every

rule u

v

2 R, 8x 2 u:P (x) implies P (v), then P holds for every member of I(R). This is

a natural generalization of the trans�nite induction in set theory[26]. The corresponding

generalization of de�nition by recursion is also available | to de�ne a function on I(R), we

do it in the way the elements of I(R) are generated.

Usually there is a more familiar way of obtaining what we want. We start from the

empty set and keep throwing new elements into it. The trans�nite sequence is bounded

upwards often for simple cardinality reason. Therefore the sequence closes at some ordinal

and the set obtained at this stage is I(R). It is obviously R-closed; on the other hand, each

element of the set must be in all R-closed sets.
Let's look at the formation rule �rst. By assumption, �

i
: j�j �! !-Set for i 2 [1 � �n].

For each � 2 j�j, �
ik
(�; ) : j�

i
(�)j �! !-Set for k 2 [1 � �n

i
]. Let V

�
be a suÆciently large

universe. De�ne R
�
to be the following rule set on V

�
:

[
i2[1��n]

8><
>:

[k2[1��ni]range(�ik)

hnintroi ; Æi; �i1; : : : ; �inii

�������
Æi 2 j�i(�)j^

�i1 2 j�i1(�; Æi)j ! V�

^ � � � ^

�ini 2 j�ini
(�; Æi)j ! V�

9>=
>;

where n
introi

2 ! is a code for intro
i
and range(�

ik
) is the range of the function �

ik
. What

are the requirements on �? The following analysis is again taken from [18]:

� For � 2 !, V
�
is �nite. So � must be no less than !.

� V
�
should be closed under pairing. Because V

�
is the greatest element in V

�+1,

hV
�
; V

�
i =2 V

�+1. We conclude that � must be a limit ordinal.

� j�
ij
(�; Æ

i
)j ! V

�
� V

�
for all possible i and j. This suggests that � is regular.

If �0 > �, we obtain another rule set R0 on V
�
0 by replacing V

�
by V

�
0 in the above

de�nition.

Proposition 4.2. I(R
�
) = I(R0).
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Proof. Clearly R
�
� R0. Suppose u

v

2 R0 and u � I(R
�
). Then u = [

k2[1��ni]range(�ik)

by de�nition. So u = [
k2[1��ni]range(�ik) � I(R

�
) � V

�
. Therefore �

ik
2 j�

ik
(�; Æ

i
)j ! V

�

for k 2 [1 � �n
i
], � 2 j�j and Æ

i
2 j�

i
(�)j. It follows that u

v

2 R
�
. It is concluded that

v 2 I(R
�
). That is I(R

�
) is R0-closed. On the other hand, if B is R0-closed, then by

R
�
-induction, it is easy to show that I(R

�
) � B. Therefore I(R

�
) is the least R0-closed

set. 2

The next proposition collects some properties of R
�
and I(R

�
), which illustrates part

of the reason why I(R
�
) models the inductive type.

Proposition 4.3. (1)R
�
is deterministic. (2) If x 2 I(R

�
), then x = hn

introi
; Æ
i
; �

i1; : : :,

�
ini
i for some i 2 [1��n

i
], Æ

i
2 j�

i
(�)j and �

ik
2 j�

ik
(�; Æ

i
)j ! V

�
where k 2 [1��n

i
]. (3) Sup-

pose hn
introi

; Æ
i
; �

i1; : : : ; �inii 2 I(R�
). Then there exists a unique rule

u

hn
introi

; Æ
i
; �

i1; : : : ; �inii
2 R

�
. Besides, u = [

k2[1��ni]range(�ik). (4) Suppose hn
introi

; Æ
i
; �

i1; : : : ; �inii 2 I(R
�
).

Then �
ik

(k 2 [1 � �n
i
]) is a function from j�

ik
(�; Æ

i
)j to I(R

�
).

Proof. (1) This is just the extensionality of functions. (2) The set of all conclusions of

the rules in R
�
is R

�
-closed. (3) Immediate from (1), (2) and the de�nition of R

�
. (4)

Suppose [
k2[1��ni]range(�ik) 6� I(R

�
). There must exist some s 2 [

k2[1��ni]range(�ik)

that is not in I(R
�
). Consider I(R

�
) n fhn

introi
; Æ
i
; �

i1; : : : ; �iniig. For any u

v

2 R
�

such that u � I(R
�
) n fhn

introi
; Æ
i
; �

i1; : : : ; �iniig, u � I(R
�
). So v 2 I(R

�
). But v

cannot be hn
introi

; Æ
i
; �

i1; : : : ; �inii for otherwise u = [
k2[1��ni]range(�ik) by (3), which

is impossible because s is in [
k2[1��ni]range(�ik) but certainly not in u. It follows that

v 2 I(R
�
)nfhn

introi
; Æ
i
; �

i1; : : : ; �iniig and the latter is R
�
-closed. It is a contradiction.

Hence [
k2[1��ni]range(�ik) � I(R

�
). 2

We are now going to construct an !-set !(I(R
�
)) from I(R

�
). The construction proceeds

by �rst constructing a series of functions r� : I(R
�
) �! P (!), where � is an ordinal and

P (!) the power set of !, and a series of !-sets !0 � !1 � � � � derived from the functions.

1) The function r0 associates an empty set with each element of I(R
�
). !0 def

= (;; ;).

2) r�+1(hn
introi

; Æ
i
; �

i1; : : : ; �inii)
def
= S

i
where

Si
def
=

8>>>>>>>>><
>>>>>>>>>:

hnintroi ; nÆi ; n�i1 ; : : : ; n�in
i

i

���������������

Æi 2 j�i(�)j^

�i1 2 j�i1(�; Æi)! !
� j

^ � � � ^

�ini 2 j�ini
(�; Æi)! !

� j

^nÆi `�i(�) Æi
^n�i1 `�i1(�;Æi)!!�

�i1

^ � � � ^

n�in
i

`
�in

i
(�;Æi)!!�

�ini

9>>>>>>>>>=
>>>>>>>>>;

:

!�+1 def
= (j!�+1j;`

!
�+1) where x 2 j!�+1j i� r�+1(x) 6= ;, n `

!
�+1 x i� n 2 r�+1(x).

3) For a limit ordinal �, let

r
�
(x)

def
= [�<�r

�
(x) for all x 2 I(R�);

!
� def
= ([�<�j!

�
j;[�<� `!� ):

Given s; t : I(R
�
) �! P (!), de�ne s � t i� 8x 2 I(R

�
):s(x) � t(x). Obviously, for

ordinals �0 2 �00, r�
0

� r�
00

. By simple cardinality argument, we know that there exists

an ordinal � such that for all � � �, r� = r� . By the least ordinal theorem[26], we can

choose the least such �. De�ne !(I(R
�
)) to be !�. We can now interpret �(�1; : : : ;�n

).

[�11; : : : ;�1n1 ; : : : ;�n1; : : : ;�nnn
] by �� : j�j:!(I(R

�
)). The interpretation of the elimina-

tion rule will be accommodated by Proposition 4.5.

The eliminators on �(�):[�] should usually be interpreted in the way the elements of

j!(I(R
�
))j are generated. This can be done because of the next proposition.
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Proposition 4.4. Let _R
�
be obtained from R

�
by removing all the rules whose conclu-

sions are in I(R
�
) n j!(I(R

�
))j. Then j!(I(R

�
))j = I( _R

�
).

Proof. (1) j!(I(R
�
))j is _R

�
-closed. Suppose u

v

2 _R
�
and u � j!(I(R

�
))j. Clearly

v 2 I(R
�
). If v 62 j!(I(R

�
))j, then v 2 I(R

�
) n j!(I(R

�
))j. But this would imply that

u

v

62 _R
�
. (2) Suppose A is _R

�
-closed. By induction in the way the elements of j!(I(R

�
))j

are constructed, one can easily show that !� � A for all ordinal �. 2

We have de�ned the !-set that is the interpretation of the inductive type. We need also
of course to interpret the elimination and computation rules. For that purpose, we de�ne an-
other rule set whose least closed set is the graph of the underlying function modeling the elim-
inator. Suppose � 2 j�j and Æ

i
2 j�

i
(�)j. By assumption, C : j�(�; �� : j�j:!(I(R

�
)))j �!

!-Set and �
i1 : j�

i1(�; Æi)j �! j!(I(R
�
))j. Therefore C[(�; )] : j!(I(R

�
))j �! !-Set.

Write C[(�; �
i1( ))] for the composition of �

i1 and C[(�; )]. F
�
is de�ned as follows:

[
i2[1��n]

8>>><
>>>:

[k2[1��ni] fh�ik(x); hik(x)i j x 2 j�ik(�; Æi)jg

hhnintroi ; Æi; �i1; : : : ; �inii; di(�)(Æi; �i1; hi1; : : : ; �ini ; hini)i

����������

Æi 2 j�i(�)j^

�i1 2 j�i1(�; Æi)! !(I(R�))j

hi1 2 j�(�i1(�; Æi); C[(�; �i1( ))])j

^ � � � ^

�ini 2 j�ini
(�; Æi)! !(I(R�))j

hini2 j�(�ini
(�; Æi); C[(�; �ini( ))])j

9>>>>=
>>>>;
:

Proposition 4.5. I(F
�
) is the graph of a function in j�(!(I(R

�
)); C[(�; )])j.

Proof. By induction in the way the elements of !(I(R
�
)) are generated, we will construct

a collection of sets G0 � G1 � � � � � I(F
�
). Suppose we have constructed the sets up to �

such that they satisfy two conditions:

(i) G� (� � �) is the graph of some function whose domain is a subset  � of j!(I(R
�
))j and

for each element x of  �, fG�g(x) 2 jC[(�; x)]j.

(ii) If hhn
introi

; Æ
i
; �

i1; : : : ; �inii; di(�)(Æi; �i1; hi1; : : : ; �ini ; hini)i 2 G
�+1, then for k 2 [1��n

i
],

the equation h
ik
= �x : j�

ik
(�; Æ

i
)j:fG�g(�

ik
(x)) holds.

Now suppose the following rule is in F
�
, and [

k2[1��ni] fh�ik(x); hik(x)i j x 2 j�ik
(�; Æ

i
)jg

� G� .
[k2[1��ni] fh�ik(x); hik(x)i j x 2 j�ik(�; Æi)jg

hhnintroi ; Æi; �i1; : : : ; �inii; di(�)(Æi; �i1; hi1; : : : ; �ini ; hini)i
(1) By de�nition, hhn

introi
; Æ
i
; �

i1; : : : ; �inii; di(�)(Æi; �i1; hi1; : : : ; �ini ; hini)i 2 I(F
�
).

By the assumption (i), we know that for every x 2 j�
ik
(�; Æ

i
)j, h

ik
(x) = fG�g(�

ik
(x)) for k 2

[1 � �n
i
]. The extensionality enables us to conclude that h

ik
= �x : j�

ik
(�; Æ

i
)j:fG�g(�

ik
(x))

for k 2 [1 � �n
i
].

(2) By the assumption on G� , (1) and the de�nition of d
i
(i 2 [1 � �n]), it is obvious that

d
i
(�)(Æ

i
; �

i1; hi1; : : : ; �ini ; hini) 2 jC[(�; hnintroi ; Æi; �i1; : : : ; �inii)]j.
(3) Suppose hhn

introi
; Æ
i
; �

i1, : : : ; �inii, di(�)(Æi; �i1; h
0

i1; : : :, �ini ; h
0

ini
)i 2 G�, � � �,

then by induction hypothesis,

h
0
ik = �x : j�ik(�; Æi)j:fG

�
g(�ik(x)) = �x : j�ik(�; Æi)j:fG

�
g(�ik(x)) = hik

for every k 2 [1 � �n
i
].

From (1), (2) and (3), we conclude that

G
�+1 def

= fhhnintroi ; Æi; �i1; : : : ; �inii; di(�)(Æi; �i1; hi1; : : : ; �ini ; hini)ig[G
�

is a subset of I(F
�
) and satis�es the conditions (i) and (ii). The case for a limit ordinal is

handled as usual. We therefore have a sequence

G
0
� G

1
� � � � � G

�
� G

�+1
� � � � :
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The cardinality restriction implies that the sequence must close at some stage, say, �. But

G� is clearly F
�
-closed. So G� = I(F

�
). That is I(F

�
) is the graph of some function.

To show that I(F
�
) is in j�(!(I(R

�
)); C[(�; )])j, we must show that it is tracked by

some recursive function. Suppose r `� �. De�ne a function as follows:

case (m)0 of

nintro1 : (nd1 � r) � ((m)1; (m)2;�l:f � ((m)2 � l); : : : ; (m)n1+1;�l:f � ((m)n1+1 � l));
...

nintron : (ndn � r) � ((m)1; (m)2;�l:f � ((m)2 � l); : : : ; (m)nn+1;�l:f � ((m)nn+1 � l))

end

�l:f � ((m)2 � l) � � � are obtained by s-m-n theorem. Here are some observations. (i)
By Church thesis, the function is e�ective on the variables f and m. (ii) It is e�ective to
construct the above function from �, the reason being that given � 2 j�j and r `� �, one can
obtain n

d1
� r, . . . , n

dn
� r e�ectively from n

d1
,. . . ,n

dn
. (iii) As (!; �) is a partial combinatory

algebra, there exists an e�ective procedure that computes an index e such that e � (f;m) '
the above function. Here ' is de�ned as follows: x ' y i� 8n:(x � n #, y � n #) ^ (x � n #)
x � n = y � n). Using s-m-n theorem again, we can compute a G�odel index �f�m:e � (f;m)
for �f�m:e � (f;m) from e. The recursion theorem then says that there is an (index of an)
e�ective function R(�) such that the following holds:

R(�)(�f�m:e � (f;m)) ' �m:e � (R(�)(�f�m:e � (f;m));m) (1)

Notice that by (i), (ii), (iii) and the e�ectiveness of the recursion theorem, R(�)(�f�m:e �

(f;m)) is e�ectively computed. This point is important for the interpretation of the elimi-

nators.
There remains one important thing to be proved | for any c 2 j!(I(R

�
))j and any

n `
!(I(R�)) c, R(�)(�f�m:e � (f;m)) � n is de�ned and

R(�)(�f�m:e � (f;m)) � n `C[�;c] I(F�)(c): (2)

This is proved by induction in the way the elements of !(I(R
�
)) are generated. An element

of j!(I(R
�
))j must be of the form hn

introi
; Æ
i
; �

i1; : : : ; �inii and any of its realizers must be,
by de�nition, of the form hn

introi
; n

Æi
; n

�i1
; : : : ; n

�in
i

i. So we have to show that

R(�)(�f�m:e � (f;m)) � hnintroi ; nÆi ; n�i1 ; : : : ; n�in
i

i

`C[(�;hnintro
i
;Æi;�i1;:::;�in

i
i)] I(F�)(hnintroi ; Æi; �i1; : : : ; �inii): (3)

Suppose it is added to the de�nition of !(I(R
�
)) at the stage � + 1. Then by (1)

R(�)(�f�m:e � (f;m)) � hnintroi ; nÆi ; n�i1 ; : : : ; n�in
i

i

'(�m:e � (R(�)(�f�m:e � (f;m));m)) � hnintroi ; nÆi ; n�i1 ; : : : ; n�in
i

i

'(ndi �r)�(nÆi ; n�i1 ;�l:R(�)(�f�m:e�(f;m))�(n�i1 �l); : : : ;

n�in
i

;�l:R(�)(�f�m:e�(f;m))�(n�in
i

�l))

We want to show that the expression at the third and forth lines of the above partial equation
is de�ned. We know that �

i1 2 j�
i1(�; Æi) ! !� j implies �

i1 2 j�
i1(�; Æi) ! !(I(R

�
))j.

So by the structural de�nition of the interpretation on the elimination (and computation)
rule(s), n

di
� r is de�ned on n

Æi
, n

�i1
,. . . ,n

�in
i

. Now if l `�i1(�;Æi) �, then n�i1 � l `!� �i1(�),

which implies n
�i1

� l `
!(I(R�)) �i1(�). This is added to the de�nition of !(I(R

�
)) in

a stage prior to � + 1. So by induction hypothesis R(�)(�f�m:e � (f;m)) � (n
�i1

� l) is
de�ned and R(�)(�f�m:e � (f;m)) � (n

�i1
� l) `

C[�;�i1(�)] I(F�)(�i1(�)). It is concluded

that �l:R(�)(�f�m:e � (f;m))(n
�i1

� l) `
�(�i1(�;Æi);C[(�;�i1( ))]) ��:I(F�)(�i1(�)). Therefore

n
di
�r is de�ned at �l:R(�)(�f�m:e �(f;m)) �(n

�i1
� l). It follows that R(�)(�f�m:e �(f;m))
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is de�ned at hn
introi

; n
Æi
; n

�i1
; : : : ; n

�in
i

i. By the assumption, the de�nitions of !�+1 and

I(F
�
) and the property (ii) that I(F

�
) satis�es, we have

(ndi �r)�(nÆi ; n�i1 ;�l:R(�)(�f�m:e�(f;m))�(n�i1 �l); : : : ; n�in
i

;

�l:R(�)(�f�m:e�(f;m))�(n�in
i

�l))

`C[�;hnintro
i
;Æi;�i1;:::;�in

i
i]

di(�)(Æi; �i1; ��:I(F�)(�i1(�)); : : : ; �ini ; ��:I(F�)(�ini(�)))

= I(F�)(hnintroi ; Æi; �i1; : : : ; �inii):

We conclude that (3) holds. That is I(F
�
) is tracked by R(�)(�f�m:e � (f;m)). 2

Theorem 4.6. The above construction gives a sound interpretation to inductive types

in the Calculus of Constructions.

Proof. The generalized inductive type �(�):[�] is interpreted as �� : j�j:!(I(R
�
)) :

j�j �! !-Set. The eliminator is taken care of by the e�ective function ��:(�;I(F
�
)) :

� �! �(�; ��(��:j�j:!(I(R�
)); C)) and the equation rule is sound by the very de�nition of

R(�)(�f�m:e � (f;m)) and (1). 2

Example 4.7. Some of the basic sets in Martin-L�of's set theory can be de�ned as follows:

Unit
def
= �([]):[]

A+B
def
= �([x : A]; [y : B]):[]

N
def
= �([]; []):[; []]

List(A)
def
= �([]; [x : A]):[[]; []]

Ord
def
= �([]; []; [O : Type]):[; []; [O : Type]]

�x : A:B
def
= �([x : A; y : B]):[]

Wx : A:B
def
= �([x : A]):[[y : B]]:

Notice the di�erence between an empty context, which is inhabited by (), and no context
at all. If we apply the previous constructions to �([]; []):[; []], what we get is as follows: [] is
interpreted as (f?g; !�f?g). Suppose we code the intro0 and intro1 by 0 and 1 respectively
and simplify a function f?g �! V to an element of V . Then the rule set is

RN

def
=

n
h0; ?i

o
[

8>>><
>>>:

fh

iz }| {
1; : : : ; 1; h0; ?i � � �ig

h1; : : : ; 1| {z }
i+1

; h0; ?i � � �i

���������
i 2 !

9>>>=
>>>;
:

The smallest R
N
-closed set is N

def
= fh

iz }| {
1; : : : ; 1; h0; ?i � � �iji 2 !g. We have to e�ectivize the

set obtained. N0 is the initial !-set. N1 is the !-set (fh0; ?ig; ! � fh0; ?ig). N2 is the

!-set (fh0; ?i; h1; h0; ?iig; ! � fh0; ?i; h1; h0; ?iig) and so on. It is concluded that !(N) is

(N;!�N). So according to our interpretation, the denotation of �([]; []):[; []] is (isomorphic

to) the standard natural number object in !-Set.

Similarly the interpretations of the �rst, second and sixth of the above de�ned types are

isomorphic to those given by the well-established interpretation.

5 Models of Some Other Variants

We now briey discuss models of inductive types in related type systems.
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5.1 Inductive Families

In [18], a class of types, that of inductive families, is introduced, which bear some re-

semblance to the combination of the two variants of tree types proposed in [27]. The !-set

semantics of the inductive families can be similarly given.

5.2 The Recursive Model

The method described in Section 4 can also be applied to Per. What we get is a model of

Martin-L�of's set theory extended with the generalized inductive types. To model universes,

we must associate a name with each per that is the interpretation of some type in ML1,

the Martin-L�of's set theory with an in�nite hierarchy of universes. Then a type appearing

on the left hand side of `:' is interpreted as a name; and the same type is modeled by the

corresponding per when it appears on the right side of `:'. This is basically the extension of

the recursive model given in [28, 29].
In the per-setting, two points are worth mentioning: (i) because of the double role a

type plays in Martin-L�of's set theory with small universes, there is a tremendous amount of
encoding involved; if we want to model the eliminators for the universes, the problem is even
more severe; (ii) the universe V

�
in the de�nition of the rule sets can always be taken to be

the terminal per !�!, which is the largest element in the set (Obj(Per);�). So typically
a rule set R

�
is de�ned as follows:

[
i2[1��n]

8><
>:

[k2[1��ni]range(�ik)

hnintroi ; Æi; �i1; : : : ; �inii

�������
Æi 2 �i(�)^

�i1 2 �i1(�; Æi)! !�!

^ � � � ^

�ini 2 �ini
(�; Æi)! !�!

9>=
>; :

Notice that in the above de�nition all the elements and the tuples are natural numbers. A

trans�nite induction should be used to de�ne a partial equivalence relation on I(R
�
). This

process produces a per P(I(R
�
)). For details, see [30{32].

5.3 Inductive Types De�ned Using a Logical Framework

One of the advantages of using a logical framework is the possibility of separating the

computational content of a language to be de�ned from the extensional properties of the

meta calculus. The language proposed in [33] is designed to maximize this gain. To be able

to de�ne the generalized inductive types, the Martin-L�of's logical framework is extended

with kind schemata. These schemata are `small' in the sense that they only talk about the

small universe Set. The generalized inductive types, which reside in Set, are then de�ned

in terms of the kind schemata.

From a model theoretic point of view, Set is an internal category of the ambient category

within which the logical framework is interpreted. So as usual we can interpret Set as the

!-Set and kinds as objects of the category 
-Set of !-sets de�ned on a large universe.

The rule sets as de�ned in Section 4 live in 
-Set. The `smallness' of the kind schemata

implies that the least closed sets of these rule sets are in !-Set. For more about categorical

semantics of logical frameworks, see [34{39].

5.4 Inductive Types via W -Types

It is well-known that inductive types are de�nable in an extensional dependent calculus

with W -types[17;40]. The interpretation given in Section 4 is extensional. It follows that

it also interprets the W -types with the extensional rules. So the extensional Calculus of

Constructions enriched withW -types is accounted for by the method illustrated in Section 4.
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5.5 Other Formulations of Generalized Inductive Types

Once the essence of the generalized inductive types is understood, di�erent formulations

should present no problems. [20] and [41] contain two other formulations. The advantage

of the formulation in [20] is that it is easier to see how to generalize(!) the generalized

inductive types. We call general inductive types those inductive types de�ned in [20] with

strict positivity being relaxed to just positivity.

With little modi�cation, our !-Set model is a sound interpretation of the generalized

inductive types formulated in [20]. Our method, however, does not give a model of the

general inductive types in !-Set. But it does give a model of the general inductive types in

Per. This is due to the existence of a largest universe, as it were, in Per. For more details,

see [30{32].

5.6 Internal Inductive Types

A totally di�erent approach is to code up inductive types internally. This is adopted

in [41{45]. This method does not pose any model theoretical problems in the traditional

sense. The semantic interest here is about how to relate two levels of models. See [46, 47]

for details.

5.7 Categorical Inductive Types

In [47], a categorical formulation of recursion is given. It is interesting to see what this

general de�nition means in concrete categories in which dependent typed calculus can be

modeled. See [30] for some examples.
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