
Vol.16 No.1 J. Comput. Sci. & Technol. Jan. 2001

A Non-Blocking Locking Method and Performance

Evaluation on Network of Workstations

YU Ge (� �), WANG Guoren (���), and ZHENG Huaiyuan (���)

Department of Computer Science, Northeastern University, Shenyang, P.R. China

E-mail: fyuge,wanggr,zhenghyg@mail.neu.edu.cn;

JIN Taiyong (), Kunihiko Kaneko and Akifumi Makinouchi

Department of Intelligent Systems, Kyushu University, Fukuoka, Japan

E-mail: fjty,kaneko,akifumig@db.is.kyushu-u.ac.jp

Received June 11, 1999; revised June 16, 2000.

Abstract A network of workstation (NOW) can act as a single and scal-

able powerful computer by building a parallel and distributed computing platform

on top of it. WAKASHI is such a platform system that supports persistent object

management and makes full use of resources of NOW for high performance transac-

tion processing. One of the main diÆculties to overcome is the bottleneck caused

by concurrency control mechanism. Therefore, a non-blocking locking method is

designed, by adopting several novel techniques to make it outperform the other typi-

cal locking methods such as 2PL: 1) an SDG (Semantic Dependency Graph) based

non-blocking locking protocol for fast transaction scheduling; 2) a massively virtual

memory based backup-page undo algorithm for fast restart; and 3) a multi-processor

and multi-thread based transaction manager for fast execution. The new mechanisms

have been implemented in WAKASHI and the performance comparison experiments

with 2PL and DWDL have been done. The results show that the new method can

outperform 2PL and DWDL under certain conditions. This is meaningful for choos-

ing e�ective concurrency control mechanisms for improving transaction processing

performance in NOW environments.

Keywords distributed and parallel database, concurrency control, transaction

management, locking mechanism, NOW (network of workstations)

1 Introduction

As low-cost and high-performance workstations and microcomputers such as Sun Ultra

Sparc and Pentium III become more and more popular, network of workstations (NOW)

that consists of several sites or even hundreds of sites is available. Moreover, the progress of

high-speed communication network technique such as ATM and Fast-Ethernet makes it more

feasible. One of the most promising features of NOW is to act as a single, scalable powerful

computer, which is regarded as a rival of massively-parallel processor (MPP) computers since

an NOW will have the same computing capability and transaction processing capability as

those of a currently available MPP computer, while it is much cheaper, more exible and

scalable than an MPP computer. This target can be achieved by building a parallel and

distributed computing platform on top of it. WAKASHI is such a platform system for

distributed and parallel database management[1]. However, one of the main diÆculties to

overcome is the bottleneck caused by concurrency control mechanism.

As we know, locking mechanism is a general approach for concurrency control. In a

memory mapping mechanism supported by most types of workstations, locking is a very

Partially supported by the Excellent Young Teacher Foundation and the Doctoral Program Foundation

of the Ministry of Education, China.



26 YU Ge, WANG Guoren et al. Vol.16

eÆcient way to implement. Therefore, we focus our topic on the lock-based concurrency

control methods. Locking methods guarantee database consistency by two di�erent policies:

blocking the execution of some transactions (to wait for the release of the requested locks) or

restarting some transaction (to abort non-serializable execution). It is believed that blocking

policy has better performance than restart policy because the former has lower restart rate,

and restart operations take a long time or even form resource contention. Thus the most

widely adopted method in commercial products is the blocking policy based method: 2-

phase-locking (2PL).

Under lower conict rate of transactions when few transactions compete the same data

resource, 2PL demonstrates better performance than other known methods[2]. However, as

conict rate rises, 2PL can easily lead to data contention, that is, most transactions are

blocked into waiting queues and time is wasted by waiting in the queues so that transaction

throughput cannot increase with the number of active transactions and thus the system

performance degrades[3]. Under NOW environments, there are more conditions that might

worsen data contention problems, such as the following. 1) Scalability: NOW might cover

the network of an oÆce, a department or an enterprise. NOW might contain large number

of computers, and the number of sites is dynamically changeable in terms of available sites,

problem size, or load balance consideration. When more sites are involved, the level of

concurrency might increase, which will lead to high level of data contention for accessing

shared data. 2) Advanced applications: NOW should support parallel transactions or more

complex transactions than ordinary systems. There are many new database applications

such as multimedia data services, engineering designs, OLAP and data mining, which contain

I/O-intensive operations as well as CPU-intensive operations.

Furthermore, the gains in NOW performance require that transaction processing through-

put should continue to increase with Multi-Programming Level (MPL) before reaching its

resource contention point. This only can be done by increasing the concurrency of transac-

tion executions. However, we cannot use blocking policy because its waiting feature impedes

throughput increase at a �xed MPL. Thus we have to pursue a non-blocking approach on

the basis of restart policy.

To overcome the limitations of blocking based lock methods, several methods have been

developed by combining with the restart policy[4�6]. DWDL (Distributed Wait-Depth Lim-

ited) method is an e�ective one among them[7]. DWDL resolves the data contention problem

of 2PL by restarting some transaction whenever a wait-chain becomes longer than one. In

fact, DWDL is a hybrid of blocking policy and restart policy, that is, when lock conicts

occur, a transaction must wait if the wait-chain is less than two, otherwise, some transaction

in the wait-chain must restart.

In this paper, we propose a new concurrency control method, which is similar to SGT

(Serializable Graph Testing Method)[8;9] in the respect that a conicting transaction con-

tinues its execution provided that some standards (SGT method uses serializability) are

satis�ed. It is known that SGT method provides higher concurrency than other methods

such as 2PL method[10] and TSO (Time Stamp Ordering) method[11], because it allows all

possible and correct executions unlike those methods that only allow certain kinds of exe-

cutions (for example, TSO only permits executions of transactions that obey time stamp

ordering). However, SGT method has two shortages: 1) it requires much memory space

to store Serializable Graph (SG) and much CPU time to certi�cate SG, which might cause

resource contention in ordinary computer environments; and 2) the high concurrency of

database operations also risks high restart rates of transactions. These two points might

cancel the pro�ts brought by high concurrency. Moreover, new applications require extended

transactions that don't necessarily use serializability as the unique correctness criterion. For

example, in a video-server system, the half-�nished image data are allowed to be read by a

browser application.



No.1 A Non-Blocking Locking Method and Performance Evaluation on NOW 27

To implement the new method e�ectively, we employ several novel techniques: 1) a

backup-page based group undo algorithm is exploited for fast abortion; 2) a multi-processor

and multi-thread based transaction manager is exploited for fast execution; and 3) a mas-

sively virtual memory based server cache is maintained for supporting the prefetch e�ects

of restarted transactions.

The rest of the paper is organized as follows. Section 2 introduces WAKASHI with the

two typical locking methods: 2PL and DWDL for later performance comparison. Section 3

presents the principle and design of NBL algorithm. Section 4 discusses the implementation

issues. The performance experiments and evaluation are reported in Section 5. Finally,

Section 6 concludes the paper.

2 WAKASHI and Typical Locking Methods

WAKASHI is a distributed and parallel object server system, developed at Northeastern

University of China and Kyushu University of Japan[1].

2.1 WAKASHI and Locking Mechanism

WAKASHI, running on a distributed UNIX platform, consists of servers that run as dae-

mon processes, and a client library that is linked into user programs. The server performs

data access control and transaction management, and the client library provides communica-

tion interfaces between clients and servers. In WAKASHI, each server provides a repository

of the database and the log �le. A database is a collection of persistent heaps and a heap is

a basic storage unit. Furthermore, a heap is divided into pages of equal length, and a page

is a basic control unit. When manipulating a database, the heap �les are mapped into the

server virtual memory and the client virtual memory, respectively. Thus, the objects in a

heap are loaded into the workspace along with the page mapping. All desirable controls such

as locking and dereferencing are automatically performed by the server, thus the application

can directly manipulate these objects in a transparent way. WAKASHI also o�ers client

location transparency for remote access by Distributed Shared Memory (DSM) approach.

All necessary actions on DSM control (mainly cache coherency control) are automatically

performed by servers.

At each site, there are at least one server and any number of clients. An application is

launched as a client by linking its application program with the WAKASHI client library. An

application may consist of many transactions, moreover, they may be nested. In WAKASHI,

both clients and servers are implemented as multi-threaded processes. That is, when a client

accesses several database �les, a thread for each accessed heap is created in a client, and

a thread for each opened heap is created in a server. Thus there is a \multi-threaded"

connection between the client and the server when the client accesses more than one heap.

Moreover, the control information is distributed on di�erent heaps. Thus, the control on

di�erent heaps can be performed in parallel.

In WAKASHI, the actions of a transaction are a partial order of read operations and

write operations on pages. Every transaction uses the private memory of the client as its

workspace, which is a mapping from the cache of the server. A read operation fetches a

page from a persistent heap into a client workspace, and a write operation puts a page from

a client workspace into a persistent heap. Since pages can be cached in the workspace, a

restarted transaction also does useful work to prefetch some required pages into the cache

memory.

Fig.1 shows the system structure of WAKASHI with its control units. In a client, each

HeapClient is a thread for accessing on a heap, and TransClient is the coordinator pro-

cess for the threads of the client and the interface for transaction operations. In a server,



28 YU Ge, WANG Guoren et al. Vol.16

each HeapServer is a thread that performs control and provides services on a heap, and

TransServer is the coordinator process for the threads of the server and the transaction

manager. The main data structures are also shown in Fig.1. LockT is the lock control table

that keeps the information for concurrency control.

Fig.1. The system structure of WAKASHI.

By using memory mapping mechanism supported by hardware, locking is one of the most

e�ective ways for concurrency control, because the access on conicted data or invalid data

is automatically detected, and then the required control is enforced correctly by the server.

In WAKASHI, we use three protection modes for a page P in a working space: (1) none: P

is invalid, (2) read: P is read-allowed, and (3) write: P is read-allowed and write-allowed.

2.2 Two-Phase Locking (2PL) Method

The practical implementation of 2PL is the strict 2PL method[9], in which lock conicts

between transactions are resolved by making the lock requester wait for the lock holder in an

FIFO queue. The waiting-for relationship can be described by Waiting For Graph (WFG).

By combining with 2-Phase-Commit (2PC) protocol, all locks of a transaction are held until

the transaction is terminated. When a transaction is to be aborted or committed, all its

read locks are released before starting abort or commit. In case of abort, the write lock on a

page can be released immediately after �nishing the undo operation on the page. In case of

commit, all write locks must be released after �nishing commit. When a lock is released, the

transaction(s) in the waiting queue is (are) scheduled in FCFS (First-Come-First-Served)

manner to avoid the risk kn which read lock requests jump ahead thus delay other write

lock requests inde�nitely.

Deadlock is possible when two or more transactions are waiting for the lock held by

some other transaction and none can continue its execution. In this case, a cycle that

contains some of these waiting transactions is formed in the WFG. In this paper, we adopt

WFG-based deadlock detection method, by which, whenever a transaction is blocked, local

deadlocks are checked. If a deadlock is found, the transaction with the most recent starting

time among those involved in the deadlock cycle, that is, the youngest transaction, is selected

as the victim to be restarted. Global deadlock detection is checked by a \Snoop" process,

which periodically collects waiting-for information from all sites to form a global WFG and

checks for any global deadlock. To balance workload, the \Snoop" is allocated at an idlest

site and can migrate dynamically in terms of workload change of the system.

2.3 Distributed Wait-Depth Limit (DWDL) Method

When data contention becomes serious, the blocking feature of 2PL inevitably reduces



No.1 A Non-Blocking Locking Method and Performance Evaluation on NOW 29

system utilization because the blocked transactions will exhaust a lot of system resources

like memory and swap space and make data contention more serious. Therefore, DWDL

method selects some blocked transactions to restart to reduce data contention[7]. DWDL

doesn't allow the waiting-queue of a locking to be longer than one, otherwise, an involved

transaction is selected to restart. The rules of selecting the victim transaction are based

on transaction maturity, which is de�ned by an age function. The age of transaction T ,

denoted as L(T ), is de�ned to be the di�erence of the current time and the startup time of

T .

The implementation of DWDL on WAKASHI is the same as 2PL method, except that

the L(T ) restart rules are used to check transaction conict in WFG. With DWDL method,

restarting a transaction is triggered by waiting-depth overow, and the scheduling is free of

deadlocks because no path longer than one exists.

3 Non-Blocking Locking (NBL) Method

Essentially, 2PL and DWDL are blocking-based methods. They are hard to provide

maximum e�ective concurrency to take full use of system resources of NOW environments.

In order to overcome the shortages caused by the blocking feature, a Non-Blocking Locking

(NBL) method is proposed in this paper.

3.1 Transaction Dependency

In the following, we de�ne some concepts needed for our method.

De�nition 3.1 (Conict). For any two operations O
i
and O

j
that belong to two

di�erent transactions T
i
and T

j
, respectively, if they operate on the same page P and one of

them is a write operation, then T
i
and T

j
conict on P .

De�nition 3.2 (Precede). When two transactions have a conict on a page, the �rst

coming transaction is said to precede the second one, or the second coming transaction is

said to follow the �rst one.

De�nition 3.3 (Depend). If T2 reads or writes a page P that has been written by T1
most recently, then T2 is said to be dependent on T1, denoted as T2 D T1.

3.2 Semantic Dependency Graph

It has been proved that the concurrent execution of transactions is correct if there is

no cycle in their Serializable Graph (SG)[9]. SG is exploited for scheduling transactions in

SGT method[8]. The advantage of SG-based method is supporting maximum concurrency

of transaction executions. However, not all concurrent executions are e�ective, and some

might be restarted later due to non-serializability, thus maximum concurrency doesn't mean

maximum transaction throughput.

The main problem of SGT is allowing unconditional execution provided that it is serial-

izable. To reduce the potential high restart rate when data contentions become serious, we

improved this method in the following aspects:

� Restart a transaction in advance provided that it has high risk of abortion.

� SGT method requires much space to store SG because SG contains active transactions

(not terminated yet) and committed transactions that depend on some active transaction(s).

In our method, SDG only contains the active transactions. Thus NBL can save storage

space for SDG compared with SGT method. This is because SGT allows a transaction to

commit before the transaction that it depends on while NBL doesn't allow. NBL requires

the depending transaction to wait until the depended transaction is terminated.



30 YU Ge, WANG Guoren et al. Vol.16

� SGT only contains precedence semantics. We add dependency semantics into Serializ-

able Graph. Depended transactions form a dependency chain. This semantics can be used

to support optimized processing as stated later.

De�nition 3.4 (Semantic Dependency Graph). An SDG is a directed graph hV;Ei.

V is the node set that contains the active transactions. E is the edge set that contains

all hT
i
; T

j
i (i 6= j) such that one of T

i
's operations conicts with and follows one of T

j
's

operations. Each edge has a dependency type (Read or Write as de�ned in De�nition 3:3)

as its label.

De�nition 3.5 (Dependency Chain). A dependency chain is a directed path that

connects any two nodes in an SDG.

A node may be involved in di�erent dependency chains. To describe features of an SDG,

three important parameters are de�ned as follows.

De�nition 3.6 (Depth and Width).

(1) depth(n): The depth of node n is the maximum number of edges in any dependency

chain that contains n.

(2) inWidth(n): The inWidth of node n is the number of n's incoming edges, that is,

the number of transactions that directly depend on this transaction.

(3) outWidth(n): The outWidth of node n is the number of n's outgoing edges, that is,

the number of transactions that this transaction depends on directly.

3.3 Restart Rule

Using the results from DWDL, we restrict the depth of dependency chains with the

concern of data contention and set it as 1 in this paper. To describe the features of di�erent

nodes in SDG with dependency depth 1 (called SDG-1), we classify them into three types.

De�nition 3.7 (Node Type). Three types of node are de�ned.

(1) Independent node, denoted as n node. It has neither incoming edge(s), nor outgoing

edge(s) (see Fig.2(a)). n node transaction doesn't depend on any other transactions, and no

other transaction(s) depends on it.

(2) Depended node, denoted as i node. It has incoming edge(s), but no outgoing edge(s)

(see Fig.2(b)). i node transaction doesn't depend on any other transactions, but some

transaction(s) depends on it,

(3) Depending node, denoted as o node. It has outgoing edge(s), but no incoming

edge(s) (see Fig.2(c)). o node transaction depends on some other transactions, but no other

transaction(s) depends on it.

Fig.2. Type of node in SDG. (a) n node. (b) i node. (c) o node.

The three kinds of nodes have the parameters as follows:
1) depth(n node)=0; inWidth(n node)=0, outWidth(n node)=0;

2) depth(i node)=1; inWidth(i node)=m, outWidth(i node)=0;

where m is the number of incoming edges.

3) depth(o node)=1; inWidth(o node)=0, outWidth(o node)=n;

where n is the number of outgoing edges.

Besides restricting the depth like DWDL, we restrict the outWidth of a transaction with

the concern of probability of cascaded aborting. Suppose the probability of a transaction to

be aborted is x, then the probability of the transaction T with outWidth(T ) = n is greater

than x, since 1 � (1 � x)n > x for x < 1. Thus, the larger the outWidth, the higher the

probability of aborting T . To reduce the risk of cascaded aborting, the transaction with

large outWidth must be restarted. On the other hand, inWidth also should be considered



No.1 A Non-Blocking Locking Method and Performance Evaluation on NOW 31

because of the cost of cascaded aborting. The larger the inWidth, the higher the cost of the

cascaded aborting. Therefore, to select victim transaction, two factors are used, not just

using age function as in DWDL approach.

Next we discuss the restart rules for di�erent combinations of three kinds of nodes.

There are 9 possible cases of locking requests, as shown in Fig.3, where long arrows mean

the edge to be added into SDG. There are 7 cases (noted as solid arrows) in which we should

consider to restart a transaction, and other 2 cases (noted as dash arrows) need not consider

restarting.

Fig.3. Graph of depend depth and width.

� Case 1: n node T
n
follows o node T

o
(see 1 of Fig.3), then restart T

o
.

� Case 2: i node T
i
follows n node T

n
(see 2 of Fig.3), then restart T

i
.

� Case 3: i node T
i
follows i node T 0

i
(see 3 of Fig.3), if inWidth(T

i
) > inWidth(T 0

i
),

then restart T 0

i
else restart T

i
.

� Case 4: i node T
i
follows o node T

o
(see 4 of Fig.3), then restart T

o
.

� Case 5: o node T
o
follows n node T

n
(see 5 of Fig.3), if outWidth > maximum width,

then restart T
o
.

� Case 6: o node T
o
follows i node T

i
(see 6 of Fig.3), then restart T

i
.

� Case 7: o node T
o
follows o node T 0

o
(see 7 of Fig.3), if outWidth(T

o
) > outWidth(T 0

o
),

then restart T
o
else restart T 0

o
.

4 Implementation Issues

This section presents the major implementation issues related to the NBL method.

4.1 NBL Algorithm on WAKASHI

In the NBL method, to increase concurrency, a page P locked by transaction T1 is allowed

to be read or written by another transaction T2. In this case, T1 has to retain P at �rst like

in the case of nested transactions and let T2 hold it. This action is called \Lock Delegating",

by which the dependency between T1 and T2 is still kept and an edge is added into SDG if

the edge doesn't exist yet. The special processing for \Lock Delegating" operation is needed

in memory-protection mechanism, that is, after receiving DELEGATE signal, T1's client

will set the protection of P as none to disallow T1 to access P again.

The following is the main part of the NBL algorithm. Suppose transaction T2 encounters

a lock conict with T1 on page P when checking against LockT. WidthLIMIT is set as 2,

and DepthLIMIT is set as 1.
if the edge h< T2; T1i already exists in SDG then

if (locking-request = READ) then

dependency-type(hT2; T1i) := READ; foverriding WRITE by READg
else

Add the edge hT2; T1i with dependency-type to SDG;

fre-calculate Depth and Widthg



32 YU Ge, WANG Guoren et al. Vol.16

inWidth(T1) := inWidth(T1) + 1;

outWidth(T2) := outWidth(T2) + 1;

depth(T1) := maximum(depth(T1); depth(T2) + 1);

depth(T2) := depth(T1);

fcheck whether the depth or the width overowsg
if (depth(T1) > DepthLIMIT ) or (outWidth(T2) >WidthLIMIT ) then

fselect victim in terms of inWidth and outWidth ruleg
if (inWidth(T2) � inWidth(T1)) or (outWidth(T2) � outWidth(T1)) then

throw signal(T2,RESTART);

else throw signal(T1,RESTART);

return(WAIT);

end;

end;

throw signal(T1,DELEGATE,P );

return(SUCC);

4.2 Commit and Abort Rule

With the NBL method, the isolation of conicting data is broken by allowing the result of

an un-committed transaction to be read by other transactions. The formed dependency be-

tween them will a�ect the commit or abort of dependent transactions, the semantics of which

are similar to the commit-dependency and abort-dependency de�ned in ACTA model[12]. To

distinguish the e�ects of di�erent kinds of dependency, two kinds of dependency are de�ned.

In fact, more kinds of dependency like dirty-read can be de�ned for di�erent semantics. We

don't discuss them for the limitation of the space.

De�nition 4.1 (Read-dependent). If T2 reads page P that has been written by T1
most recently, then T2 is said read-dependent on T1 , denoted as T2 D

r
T1.

De�nition 4.2 (Write-dependent). If T2 writes page P that has been read or written

by T1 most recently, then T2 is said write-dependent on T1, denoted as T2 D
w
T1.

In the following, we give some analysis for their e�ects and special processing to cope

with commit and abort. Suppose T2 is dependent on T1.

� Commit. If T2 is committed before T1, two cases exist. (1) If T2 is read-dependent on

T1, we will lose recoverability of T2 in case that T1 is aborted. (2) If T2 is write-dependent

on T1, then T1 cannot read data written by T2, and cannot write data read/written by

T2. This means the locks of T2 should be kept even after T2 is committed. This will raise

complexity of the algorithm and require extra storage spaces. Thus we choose to let T2 wait

for T1. Hence, T2 is not allowed to commit before T1 if T2 is dependent on T1.

� Abort. If T1 is aborted before T2, two cases exist. (1) If T2 is read-dependent on T1,

then T2 is to be aborted too because T2 already reads the results of T1. This is cascaded

abort. (2) If T2 is write-dependent on T1, then T2 does not need to abort because T1's results

do not a�ect T2. However, undoing T1 might a�ect T2's results. The special processing is:

for page P written by T1, if P is not re-written by T2, then P is undone by the before image

of T1; otherwise, P is not undone but the before image of T2 is changed with T1's. Hence,

undo processing must be performed di�erently for two cases.

In terms of above analysis, two rules are de�ned.

� Commit rule: T2 is not allowed to commit before T1 if T2 is dependent on T1, that

is, if (T2 Dr
T1 or T2 Dw

T1), then Commit(T1) after Commit(T2).

� Abort rule: If T2 is read-dependent on T1 and T1 is aborted, then T2 must be aborted

too, that is, if (T2 Dr
T1) and Abort(T1), then Abort(T2).



No.1 A Non-Blocking Locking Method and Performance Evaluation on NOW 33

4.3 Fast Undo Processing

As we know, restart based concurrency control methods require more abort operations

than blocking based concurrency control methods. If undo operations are performed by using

ordinary log �les, the overhead will be big because (1) complex log operations are needed for

di�erent cases, and (2) a lot of log records are to be read to abort each dependent transaction.

Moreover, dependency chains of NBL method lead to cascaded abort. To reduce overheads

caused by normal undo operations and cascaded abort, we can take use of the redo-only

recovery mechanism of WAKASHI[1]. By this method, the before image of each modi�ed

page P is saved in the virtual memory in the form of backup page. The backup page of P

is attached to the entry of P in the lock table LockT.

When a lock is delegated from one transaction to another transaction, the original page

is saved in the manner of stack on behalf of the writer transaction. When a transaction T

is aborted, each page entry of the LockT is checked and the page must be undone if it has

the backup page of T .

With backup page approach, we can process the undo operations on the same page

for all dependent transactions in one step, instead of undoing them for every transaction

as ordinary systems. We call this method as \group abort". When a transaction T is

aborted, a dependency tree whose root is T is processed by using \group abort" method.

The algorithm to abort a transaction T is as follows:
for each page Pi that has a backup page of T , do

get the backup page P 0

i of T ;

if Tk is write-dependent on T , then

replace the backup page of Tk with P 0

i ;

else Undo Pi with P
0

i ;

remove P 0

i and all backup pages of read-dependent transactions of T ;

end;

for each read-dependent transaction Ti of T , do

abort(Ti);

5 Performance Evaluation and Comparison

This section shows the impacts of di�erent lock managers on the system performance in

NOW environments. Our experiments are based on the multi-user OO7 (M-OO7) benchmark[13],

which was designed by the University of Wisconsin. With M-OO7, we investigate the be-

haviors of three locking algorithms with di�erent workloads: update-bounded type and

query-bounded type. At each site, a workload generator invoking M-OO7 transactions is

implemented to increase multiple programming level (MPL) by 2, 4, 8, 16, ..., until the

thrashing point is found. The transaction throughput rate is measured for performance

comparison.

5.1 Overview of Multiuser OO7 Benchmark

M-OO7 de�nes two types of testing databases: 1) PrivateDB accessible only by one client;

2) SharedDB accessible by all clients. The size is scalable with the number of clients. In

our experiments, the sizes of small PrivateDB and small SharedDB are 4.6MB and 4.3MB,

respectively, and the sizes of medium PrivateDB and medium SharedDB are 49MB and

43MB, respectively. The sample database structure for three clients is shown in Fig.4.

The workload of a transaction is generated in terms of three parameters as follows.

� Operation Con�guration Vector (OCV) is a 4-tuple < Pr; Sr; Pw; Sw >, which repre-

sents the probability of read or update operations on the PrivateDB or the SharedDB. The

sum of the four probabilities is 1.



34 YU Ge, WANG Guoren et al. Vol.16

� RepeatCount de�nes the total number of operations. A small number generates a

short transaction, and a large number generates a long one.

� ThinkingT ime de�nes the time intervals in every operation. A short time generates

a computing-intensive transaction, and a long time generates an interactive one. In our

experiments, ThinkingTime is set as 0 to increase conicting rate.

For each client, it runs a transaction as follows.
begin transaction();

for RepeatCount do

get a random pair (DB,OP) in terms of OCV;

select PrivateDB or SharedDB in terms of DB;

follow a single random path in the assembly tree and locate a composite part;

for each node of depth-�rst traversal do

perform the read or update operations on each atomic part in terms of OP;

end;

sleep(ThinkingTime);

end;

commit transaction();

Fig.4. Structure of multiuser OO7 database.

In the experiments, each transaction accessed 45927 di�erent objects and 439587 di�erent

objects, in small database and medium database, respectively.

5.2 Testbed Con�guration

The experiments were made at di�erent MPLs. We selected the average throughput rate

at one site for local testing, and at two remote sites for distributed testing. In each experi-

ment, the clients were allocated on three machines evenly. The site where Shared database

and Private databases were created was called Local site, and the other site was called Re-

mote site. We got the results for the 2PL, DWDL and the NBL locking managers that were

implemented in WAKASHI, respectively. The results were obtained by repeatedly running

the same testing. The throughput was computed by the UNIX function gettimeofday() and

the �nal results were the average of 4 runs of the benchmark operations.

We used three symmetric Sun Sparc/20 workstations that were connected by an isolated

Ethernet. The three machines have the same con�guration with 4 SuperSparc+ processors



No.1 A Non-Blocking Locking Method and Performance Evaluation on NOW 35

(50MHz), 64 MB main memory, and a Segate ST31200N 1.05GB disk driver. The swapping

space is 180 MB and the page size is 4KB. The operating system is SUN OS 5.5. The testing

programs were coded with C++ and OML C++ binding language of WAKASHI.

5.3 Checkin/Checkout Experiment

In the Checkin/Checkout experiments which simulate CAD applications, half of the

transactions act as designers who perform Checkin operations, and the other half of the

transactions act as designers who perform Checkout operations. The parameters of the

experiments are set to be update-bounded as follows.

Checkout OCV = h0; 30; 70; 0i; Checkin OCV = h30; 0; 0; 70i

The results are shown in Fig.5, Fig.6, and Fig.7. We do not include the test using 2PL

for Medium DB because transactions managed by 2PL often deadlock and we could not get

correct result.

Fig.5. Update-bounded, local (SmallDB, RepeatCnt=2000).

Fig.6. Update-bounded, local (Medium DB, RepeatCnt=10).

Fig.7. Update-bounded, remote (Medium DB, RepeatCnt=10).



36 YU Ge, WANG Guoren et al. Vol.16

� Local operations: Fig.5 shows that concurrency control policy is not the main factor

a�ecting the throughput of the operations for Small DB. Because the size of Small DB is

smaller than the size of main memory and so the most of Small DB is in main memory

during operations, the operations for Small DB are CPU-intensive. CPUs can continue to

process some CPU-intensive short-duration transactions while some other transactions are

blocked. In this case, 2PL is not so bad. In contrast, NBL increases the throughput of the

operation for Medium DB by 10%{20% compared with DWDL as shown in Fig.6. This is

because the operations for Medium DB tend to be I/O-intensive, and the update-bounded

feature causes more blocked transactions that have to wait.

� Distributed operations: Fig.7 shows NBL outperforms DWDL for larger MPL. This is

because larger MPL leads to more blocked transactions for DWDL than for NBL.

5.4 Producer/Consumer Experiment

In the producer/consumer experiment, which simulates the video-on-demand applica-

tions, one producer transaction acts as a video camera that generates video data, other

consumer transactions act as displayers to read and display the video data.

For this experiment, the parameters are de�ned to be query-bounded as follows:

producer OCV = h70; 0; 0; 30i; consumer OCV = h0; 70; 30; 0i

The results are shown in Fig.8, Fig.9, and Fig.10. We do not include the test using 2PL

for Medium DB either.

� Local operations: For the same reason as in the Checkin/Checkout test, the operations

producer and consumer are also CPU intensive in Fig.8. Then, concurrency control policy is

not the main factor a�ecting the throughput of the operations for the Small DB. In case of

Medium DB as shown in Fig.9, DWDL outperforms NBL and the maximum throughput of

DWDL is 30% larger than NBL. This is because query-bounded feature causes few blocking

operations so that transactions don't have to wait.

Fig.8. Query-bounded, local (small DB, RepeatCnt=2000).

Fig.9. Query-bounded, local (Medium DB, RepeatCnt=10).



No.1 A Non-Blocking Locking Method and Performance Evaluation on NOW 37

Fig.10. Query-bounded, remote (Medium DB, RepeatCnt=10).

� Distributed operations: Since the number of messages of NBL concurrency controller

is larger than that of DWDL, Fig.9 shows that DWDL increases total throughput of the

operation by 10%{50% compared with NBL for distributed environments.

6 Conclusions

In this paper, we have studied several alternatives for synchronizing accesses to databases

by multiple transactions in NOW environments. They are 2PL (a conventional blocking-

based method), DWDL (an improved blocking-based method), and NBL (a restart-based

method proposed by us).

The results of experiments with multiuser OO7 benchmark in our environment show

that: 1) The update-bounded transactions with NBL scheduling can increase more through-

put than those with DWDL methods in local and distributed environments; 2) Query-

bounded transactions with DWDL can increase more throughput than those with NBL in

local and distributed environments; 3) Both NBL and DWDL outperform 2PL for medium

size database.

Using high-bandwidth network such as ATM, the throughput in NOW environments is

expected to become near to that in multi-processor environment, which is to be proved in

our next research topic. Therefore, we conclude that both NBL and DWDL are suitable for

advanced applications which are usually with long duration and heavy workload, especially

in NOW environments with high-bandwidth network.

References

[1] Yu G, Kaneko H, Bai G et al. Transaction management for a distributed object storage system

WAKASHI | design, implementation and performance. In Proc. 12th ICDE, New Orleans, Feb.

1996, pp.380{389.

[2] Agrawal R, Carey M J, Livny M. Concurrency control performance modeling: Alternatives and impli-

cations. ACM Trans. Database Systems, Dec. 1987, 12(4): 609{654.

[3] Thomasian A. Two-phase locking performances and its trashing behavior. ACM Trans. Database

Systems, Dec. 1993, 18(4): 579{625.

[4] Carey M J, Krishnnamurthy S, Livny M. Load control for locking: The `Half-and-Half' approach. In

Proc. 9th ACM PODS Conf., 1990, pp.72{84.

[5] Franaszek P A, Robinson J T, Thomasian A. Concurrency control for high contention environments.

ACM Trans. Database Systems, Jun. 1992, 17(2): 304{345.

[6] Moenkeberg A, Weikum G. Conict-driven load control for the avoidance of data-contention thrashing.

In Proc. IEEE Conf. Data Engineering, Kobe, 1991, pp.632{639.

[7] Franaszek P A et al. Distributed concurrency control based on limited wait-depth. IEEE Trans. Parallel

Distributed Sys., 1993, 11: 1246{1264.

[8] Badal D Z. Correctness of concurrency control and implications in distributed databases. In Proc. IEEE

COMPSAC Conf., Nov. 1979, pp.588{593.

[9] Bernstein P A, Hadzilacos V, Goodman N. Concurrency Control and Recovery in Database Systems.

Addison-Wesley, MA, 1987.



38 YU Ge, WANG Guoren et al. Vol.16

[10] Gray J N. Notes on database operating systems. Operating Systems: An Advanced Course, Lecture

Notes in Computer Sci., Springer-Verlag, Berlin, 1978, 60: 393{481.

[11] Bernstein P A, Goodman N. Timestamp based algorithms for concurrency control in distributed database

systems. In Proc. 6th VLDB, Oct. 1980, pp.285{300.

[12] Chrysanthis P K, Ramamritham. ACTA: A framework for specifying and reasoning about transaction

structure and behavior. In Proc. SIGMOD, May 1990, pp.194{203.

[13] Carey M J, DeWitt D J, Kant C et al. A status report on the OO7 OODBMS benchmarking e�ort.

ftp://ftp.cs.wisc.edu/oo7/retrospective.ps

YU Ge is a professor at Northeastern University, China. He received his B.E. degree and M.E.

degree from Northeastern University in 1982 and 1986, respectively, and his Ph.D. degree from

Kyushu University, Japan in 1996. He is a member of CIMS Expert Group of the National `863'

High-Tech Programme of China, a member of IPSJ, ACM, and ACM SIGMOD.

WANG Guoren is a professor at Northeastern University, China. He received his B.E. degree,

M.E. degree, and Ph.D. degree from Northeastern University in 1988, 1991 and 1996, respectively.

He did post-doctoral work at Kyushu University from 1996 to 1997. He is a member of ACM, and

ACM SIGMOD.

ZHENG Huaiyuan graduated from Northeastern University in 1953. He has been a professor

at Northeastern University since 1986, and was a member of CIMS Expert Group of the National

`863' Programme of China from 1991 to 1996. His research interests include distributed database

systems, software engineering, and computer integrated manufacturing (CIM).

JIN Taiyong received his B.E. degree from Northeastern University in 1993, and his M.E.

degree from Kyushu University in 1998. Now he is a Ph.D. candidate in Kyushu University. His

research interests include parallel transaction processing, object database systems, and distributed

shared memory management.

Kunihiko Kaneko is an associate professor at Kyushu University, Japan. He received his B.E.

degree, M.E. degree, and Ph.D degree from Kyushu University in 1990, 1992 and 1995, respectively.

He is a member of IPSJ, ACM, and IEEE.

Akifumi Makinouchi is a professor at Kyushu University, Japan. He received his B.E. degree

from Kyoto University in 1967, Docteur-Ingenieur degree from Universite de Grenoble in 1970, and

Ph.D. degree from Kyoto University in 1985. He is a member of IPSJ, ACM, and IEEE.


