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Abstract In this paper, two approaches are used to solve the Perspective-

Three-Point Problem (P3P): the symbolic computation approach and the geometric

approach. In the symbolic computation approach, we use Wu-Ritt's zero decompo-

sition algorithm to give a complete triangular decomposition for the P3P equation

system. This decomposition provides the �rst complete analytical solution to the

P3P problem. In the geometric approach, we give some pure geometric criteria for

the number of real physical solutions. The complete solution classi�cation for two

special cases with three and four parameters is also given.

Keywords camera calibration, pose determination, perspective-three-point

problem (P3P), analytical solution, geometric criterion, symbolic computation

1 Introduction

The Perspective-n-Point Problem (PnP) is originated from camera calibration[1�3]. It

is to determine the position and orientation of the camera with respect to a scene ob-

ject from n correspondent points. It concerns many important �elds, such as computer

animation[4], computer vision[3], automation, image analysis and automated cartography[2],

photogrammetry[5], robotics[1] and model-based machine vision system[6], etc. Fischler and

Bolles[2] summarize the problem as follows:

\Given the relative spatial locations of n control points, and given the angle to

every pair of control points from an additional point called the Center of Perspective

(CP ), �nd the lengths of the line segments joining CP to each of the control points."

The study of the PnP problem mainly consists of two aspects: (1) Design fast and stable

algorithms that can be used to �nd all or some of the solutions of the PnP problem. (2)

Give a classi�cation for the solutions of the PnP equation system, i.e., give the conditions

under which the system has one, two, three or four solutions. There are many results for

the �rst problem and the second problem is not solved completely.

The P3P problem is the smallest subset of control points that yields a �nite number of

solutions. The P3P problem was �rst considered by Grunert, a German mathematician, in

1841. Then M�uller outlined and re�ned Grunert's results in 1925. In 1981, Fischler and

Bolles[2] presented the RANSAC algorithm. They have noticed that there are at most four

possible solutions to the P3P equation system. Hung et al.
[7] presented an algorithm for

computing the 3D coordinates of perspective center relative to the camera frame. In 1991,

Haralick et al.[8] reviewed the major direct solutions up to 1991, including six algorithms

given by Grunert (1841), Finsterwalder (1903), Merritt (1949), Fischler and Bolles (1981),

Linnainmaa et al. (1988) and Grafarrend et al. (1989), respectively. They presented several
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analysis methods to compare the numerical accuracy and stability of the six algorithms. In

1992, DeMenthon et al.[9] showed that by using approximations to the perspective, simpler

computational solutions can be obtained.

One of the important research directions on the P3P problem is its multi-solution phe-

nomenon. Fischler and Bolles[2] presented some examples of multi-solution of the P3P

problem. In 1986, Wolfe et al.[10] pointed out that the six permutations of the three control

points combined with four-solution possibility can produce 24 possible camera-triangle con-

�gurations consistent with a single perspective view[5;6]. Yuan[5] gave a necessary condition

for the existence of the solution for the �rst time. In 1991, Wolfe et al.
[6] gave a geometric

explanation to this multi-solution phenomenon in the image plane under the assumption of

\canonical view".

In 1997, Su et al.[4] applied Wu-Ritt's zero decomposition method to the P3P and P4P

problems. For the P3P problem, they found the main solution branch and some non-

degenerate branches. But a complete decomposition was not given. For the P4P problem,

they strictly proved that there are generally no solutions. In [11], they used the Sturm

sequence to give improved necessary and suÆcient conditions to adjudicate the number of

solutions. In 1998, Yang[12] gave solution classi�cations of the P3P problem under some

non-degenerate conditions.

In this paper, we use two approaches to solve the P3P problem: the symbolic computation

approach and the geometric approach. In the symbolic computation approach, we apply Wu-

Ritt's zero decomposition algorithm[13] to �nd a complete solution decomposition for the

P3P equation system. The decomposition has the following implications. First, it provides

a complete analytical solution to the P3P problem. Previous work usually consider the main

solutions and omit many special cases. This might cause problems when the given data is

from the special case. Second, by expressing all solutions in triangular form, it provides a

fast and stable way for numerical solution. Third, it provides a clear solution space analysis

of the P3P problem and thus provides a good starting point for multiple solution analysis.

In the geometric approach, we consider the three perspective angles separately. Then the

locus of the center of perspective point in each case is a toroid and the center of perspective

is the intersection of the three toroids. In this way, we give some pure geometric criteria for

the number of solutions of the P3P problem. One interesting result is \The P3P problem

can have only one solution if all the three angles formed by the three control points are

obtuse". Criteria of this kind are given for the �rst time.

By combining the two approaches, we are able to give the complete solution classi�cation

for two special cases of the P3P problem with three and four parameters.

The rest of the paper is organized as follows. In Section 2, we present the algebraic

approach. In Section 3, we present the geometric approach. In Section 4, we solve some

special cases of the P3P problem completely.

2 The Algebraic Approach

We will use Wu-Ritt's zero decomposition method[13] to tackle the P3P problem. This

method may be used to represent the zero set of a polynomial equation system as the union

of zero sets of polynomial equations in triangular form, that is, equation systems like

f1(u; x1) = 0; f2(u; x1; x2) = 0; : : : ; fp(u; x1; : : : ; xp) = 0

where u could be considered as a set of parameters and x are the variables to be determined.

As shown in [13], solutions for an equation system in triangular form are well-determined.

For a polynomial set PS, let Zero(PS) be the set of solutions of the equation system

PS = 0. Then, we may consider Zero(PS=G) = Zero(PS )�Zero(G) instead of Zero(PS) in

order to remove some unnecessary components.
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2.1 The Main Component

Fig.1. The P3P problem.

Let P be the center of perspective, and A;B;C the

control points. Let jPAj = x, jPBj = y, jPCj = z and

p = cos�, q = cos �, r = cos 
 (Fig.1).

From triangles PBC, PAC, PAB, we obtain the P3P

equation system:8><
>:

p1 = y
2 + z

2 � 2yzp� a
2 = 0

p2 = z
2 + x

2 � 2zxq � b
2 = 0

p3 = x
2 + y

2 � 2xyr � c
2 = 0:

(1)

It is clear that we need to add the following \reality

conditions", which are assumed through out the paper.8><
>:

x > 0; y > 0; z > 0; a > 0; b > 0; c > 0; a+ b > c; a+ c > b; b + c > a

0 < �; �; 
 < �; 0 < �+ � + 
 < 2�

�+ � > 
; �+ 
 > �; 
 + � > �:

(2)

In order to obtain simpler formulas, we introduce the following parameters: A = b2+c2�a2

2
,

B = c2+a2�b2

2
, and C = a2+b2�c2

2
, then (1) can be written as follows.8><

>:
x
2 + yzp� zxq � xyr � A = 0

y
2 + zxq � yzp� xyr �B = 0

z
2 + xyr � yzp� zxq � C = 0:

(3)

Let u = p; q; r; A;B;C be the parameters, x; y; z the variables to be solved, and

G = xyz(p2 � 1)(q2 � 1)(r2 � 1)(Bx1 + C)(Ax2 + C)(Ax3 +B)

where x1; x2; x3 are new introduced auxiliary variables. Note that for a new variable x1,

Bx1 + C 6= 0 if and only if B 6= 0 or C 6= 0. It is clear that G 6= 0 under the given \reality

conditions" (2).

Applying Wu-Ritt's decomposition method[13] to (3), we obtain a triangular set:8><
>:

f1 = I
2
1x

8 + C16x
6 + C14x

4 + C12x
2 + C10

f2 = xS2y � C20

f3 = xS3z � C30

(TS1)

where S2 = (I1I2I3)
4, S3 = (I1I2I4)

4, I1 = p
2+q2+r2�2pqr�1, I2 = Cq(rp�q)+Br(r�pq),

I3 = Cp(rq�p)+Ar(r�pq), I4 = Bp(rq�p)+Aq(q� rp). Detailed coeÆcients of f1; f2; f3
can be found in [14]. Let J = xI1I2I3I4. From Wu-Ritt's Decomposition Theorem, we have:

Zero((3)=G) = Zero(TS1=J1) [
4[

i=1

Zero(((3); Ii)=I1 : : : Ii�1G) (4)

where TS1 = ff1; f2; f3g, J1 = JG. The �rst part of (4) is the main component for the

P3P equation system and the last four zero sets correspond to the special or degenerate

cases. Notice that the four degenerate components are disjoint to each other. Furthermore,

since there is no x; y; z in Ii, the number of solutions in the degenerate case is the maximal

number of solutions of the four degenerate components.

The degree eight polynomial equation was also obtained in [4, 8] and from this equation,

it is easy to see that at most four solutions can be found for the P3P problem from the main

component.



No.3 New Algorithms for the Perspective-Three-Point Problem 197

Since S2 > 0; S3 > 0, y > 0 and z > 0 are equivalent to C20 > 0 and C30 > 0. To �nd

the positive solutions for equation system (1), we need only to solve the following problem:

Determine the positive solutions of f1 = 0 under the conditions C20 > 0 and C30 > 0.

Theoretically, this problem can be solved in many ways. Since f1 is a quartic equation in x2,

we can solve this equation analytically and use the known results about quartic equations to

give the solution criterion. The problem with this simple idea is that the resulted formulas

are too complicated to be useful. In principal, this problem can be solved with Tarski-

Seidenberg-Collins's quanti�er elimination theory[15] or the Sturm-Tarski theory[16]. But,

we cannot get a neat solution with all these methods. In [12], a partial solution is given

using the complete discriminant method.

2.2 The Degenerate Cases

The degenerate cases are caused by Ii = 0; i = 1; : : : ; 4. It is well-known that I1 = 0 if

and only if points P;A;B;C are coplanar[11]. Hence I1 < 0 under the reality conditions (2),

and we need not consider Zero(((3); I1)=G).

For I2 = 0, we consider Zero(((3); I2)=I1G). Using the Gr�obner Basis method[17], we

�nd that the polynomial set ((3); I2) can be decomposed into two branches:

Zero(((3); I2)=I1G) =

2[
i=1

Zero(GS2i=I1G)

where

GS 21 =

8>>><
>>>:

I2

(pq � r)z2 + rC

ry � qz

(pq � r)(x2 � 2qxz �A)� Cqp

GS 22 =

8>>><
>>>:

I2

rI1x
2 + Cp(q � rp) + Ar(1� p

2)

rI1(pq � r)(y2 � 2rxy)� C0

(rp� q)z + (pq � r)y + (r2 + q
2 � 2pqr)x

Here C0 = C(pr� q)(q3�2pq2r+ qr
2� q+ rp)+Ar(pq� r)(r2+ q

2�2pqr). In other words,

this degenerate case is reducible. Using Wu-Ritt's algorithm, we have:

Zero(GS21=I1G) =

7[
i=2

Zero(TS i=I1JiG):

TSi; i = 2; : : : ; 7 are given below. Ji is the product of the initials of polynomials (see [13]
for de�nition) in TSi. 8>><

>>:
I2

(rp� q)2x4 � 2(rp� q)(T0 � 2 qBr2)x2 + T 2

0

2rx(rp� q)y � (pr � q)x2 + T0

qz � ry

(TS2)

8>>>><
>>>>:

rp� q

B

(p2 � 1)2x4 � 2(p2 � 1)(T1 � 2Cq2)x2 + T 2

1

2rx(p2 � 1)y � (p2 � 1)x2 + T1

pz � y

(TS3)
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>>>>:

pq � r

C

(p2 � 1)2x4 � 2(p2 � 1)(T2 � 2p2q2B)x2 + T 2

2

2qxp(p2 � 1)y � (p2 � 1)x2 + T2

z � py

(TS4)

8>>>><
>>>>:

q

r

(p2 � 1)x4 � T3x
2 + T4

y2 + x2 �A�B

pyz + x2 �A

(TS5)

8>>>><
>>>>:

p

Cq2 �Br2

x4 � 2(2Br2 +A)x2 +A2

2rxy � x2 +A

qz � ry

(TS6)

8>>>>>>><
>>>>>>>:

p

q

r

x2 �A

y2 �B

z2 � C:

(TS7)

Here T0 = A(pr � q) + Bpr; T1 = A(p2 � 1) + Cp
2; T2 = A(p2 � 1) + Bp

2; T3 = p
2(2A +

B + C)� 2A; T4 = p
2(A+C)(A+B)�A

2. From the computation process, the number of

meaningful solutions in this case is the maximal number of solutions of the six components

TS i; i = 2; : : : ; 7, which is two.

Similarly, we have

Zero(GS22=I1G) =

12[
i=8

Zero(TS i=I1JiG)

where TS8 = GS 22; J8 = rI1(r � pq)(q � pr). Other TS i are given below.8>>>><
>>>>:

r

C

(p2 � 1 + q2)x2 � p2(B +A) +A

(p2 � 1 + q2)y2 � q2(A+B) +B

z � qx� py

(TS9)

8>>>><
>>>>:

r � pq

C

(q2 � 1)x2 +A

(q2 � 1)(y2 � 2pqxy �B)� q2A

z � qx

(TS10)

8>>>><
>>>>:

q � pr

B

(p2 � q2)x2 � p2A

py � qx

(p2 � q2)(z2 � 2qxz � C) + q2A

(TS11)
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>>>>>>>:

p

q

B

(r2 � 1)x2 +A

y � rx

(r2 � 1)z2 � r2(A+ C) + C:

(TS12)

The number of meaningful solutions in this case is two.

From the above decomposition, it is easy to see that there are at most four solutions for

case I2 = 0. The cases for I3 = 0 and I4 = 0 can be treated similarly[14]. From Subsections

2.1 and 2.2, we have proved:

Theorem 1. Under the reality conditions (2), the P3P problem has at most four solu-

tions.

2.3 Geometric Meaning of the Degenerate Cases

Besides the main component, all the three sub-components given by I2 = 0; I3 = 0, and

I4 = 0 can be decomposed into two branches. Since they are similar, we only discuss one of

the cases I2 = 0, which is equivalent to

q(q � pr)(a2 + b
2 � c

2) = r(r � pq)(c2 + a
2 � b

2):

Here we try to �nd the geometric meaning of this special case. Let R be the radius of

circumscribed circle of the triangle ABC. Then

a
2 + b

2 � c
2 = 2ab cosC = 8R2 sinA sinB cosC

c
2 + a

2 � b
2 = 2ac cosB = 8R2 sinA sinC cosB:

We thus have:

r � pq

q � pr
=

q(a2 + b
2 � c

2)

r(c2 + a2 � b2)
=

cos � sinB cosC

cos 
 sinC cosB
=

tanB cos �

tanC cos 

:

Let A1, B1, C1 be the dihedral angles between plane BPA and plane CPA, plane APB

and plane CPB, plane APC and plane BPC, respectively. We have,

tanB1 =

p
2pqr + 1� p2 � q2 � r2

cos � � cos� cos 

; tanC1 =

p
2pqr + 1� p2 � q2 � r2

cos 
 � cos � cos�
:

Thus we get,

I2 = 0()
tanB1

tanC1

=
tanB cos �

tanC cos 

:

Similarly I3 = 0()
tanC1

tanA1

=
tanC cos 


tanA cos�
and I4 = 0()

tanA1

tanB1

=
tanA cos�

tanB cos �
:

2.4 Zero Structure for the P3P Equation System

From the previous subsections, we obtain a complete decomposition of Zero((3)=G):

Zero((3)=G) =

22[
i=1

Zero(TS i=TiG)

where TS i are polynomial sets in triangular form and Ti are polynomials which could be

found in the previous subsections. From this decomposition, we have the following observa-

tions.
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(1) Since the solutions for each triangular set are well-determined, this decomposition

provides a complete set of analytical solutions for the P3P problem.

(2) There is one main component and the rest components correspond to the special

cases. The solution of the main component is reduced to solution of one quartic polynomial

equation in x
2 and two linear equations, and the special components are reduced to solving

quadratic equations (considered as polynomials in x
2 or z2 if necessary).

(3) From the decomposition, it is easy to see that there are at most four distinct solutions

under the reality conditions (2). Notice that this result was proved previously only for the

main component.

(4) With the above decomposition, the solving of the P3P problem is reduced to the

solving of triangular sets. For detailed study of methods and stability analysis of solving

triangular sets, please refer to [18]. Actually, the P3P problem is simpler than the general

case. From the decomposition, we may see that we need only to solve linear, quadratic, and

quartic equations. Notice that for equations with degree less than or equal to four, we have

explicit formulas for their solutions and explicit criteria to decide whether these equations

have real or complex solutions[19]. Therefore, for any given values of the six parameters we

can use one of the triangular sets to �nd all the real solutions for x; y; z. Since this process

does not involve symbolic computation and numerical iteration, it is fast and stable.

3 The Geometric Approach

In this section, we will give some pure geometric criteria for the number of solutions of

the P3P problem by conducting a pure geometric analysis.

Let us consider the three conditions � = \APB , � = \APC , and 
 = \BPC separately.

The set of all P satisfying condition \APB = � is a toroid S
0

AB. Similarly, we can de�ne

S
0

AC and S
0

BC . Because the three toroids are symmetric with the plane ABC, we need only

consider what happens on one side of plane ABC. Let SAB denote the half of S0AB which is

on one side of plane ABC. We can similarly de�ne SAC and SBC .

We divide the problem into two steps: �rst, we determine the intersection curve CA of

surfaces SAB and SAC ; then, we determine the intersection of CA with SBC . We have solved

the �rst step completely. For the second step, we have some partial results.

3.1 Determine CA = SAB \ SAC

First, let us note that under certain conditions (e.g., in Fig.5) CA may contain a single

isolated point A. In this case, we will remove A from CA and consider CA as a continuous

curve. Let dABi (dABe) denote the intersection of SAB and plane ABC which is on the same

(opposite) side of AB with point C. Since the symmetric axis for toroids S0AB and S0AC meet

in point A and point A is also on the toroids, from the shape of the toroid, each branch of CA
must pass through plane ABC. That is, CA must meet with plane ABC. Curve CA intersects

with plane ABC at, at most, four points: J = dABe\dACe;H = dABe\dACi, K = dABi\dACe,

and I = dABi \dACi. From now on, we also use A;B;C to denote the angles of \A;\B;\C.

We �rst give the existence conditions for points J;H;K and I.

� Point J exists if �+
 < A (Fig.2). In Fig.2, \BJA = 
, \CJA = �, and \BJC = �+
.

If � + 
 is large enough, dABe and dACe will have no intersection point. If � + 
 = A, dABe

is tangent to dACe at point A. If � + 
 < A, the intersection of dABe and dACe will exist.

� Point H. There are two cases. If point B is outside of SAC , H1 exists if B < � and

� + A < 
. In Fig.3, \BH1A = 
, \CH1A = �. In order to ensure the existence of H1, 


must be greater than � + A. If 
 = � + A, dACi is tangent to dABe at point A. Otherwise,

point B is inside SAC . We can prove similarly that H2 exists if � < B and 
 < � + A:
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Fig.2. Existence conditions for point J . Fig.3. Two cases for point H.

� Point K. There are two cases. If point C is outside of SAB, K1 exists if C < 
 and


 +A < �. Otherwise, point C is inside SAB. K2 exists if 
 < C and � < 
 + A:

� Point I. There are two cases. If point B is outside of SAC , I1 exists if B < �, C < 
,

and � + 
 + A < 2� (Fig.4). Otherwise, point B is inside SAC . Similar to the �rst case, I2
exists if � < B and 
 < C (Fig.4).

Fig.4. Existence conditions for point I.

We will now give a classi�cation of CA by counting the intersections of CA with plane

ABC. Suppose that S;U; V are points. We use E(S) (E(S)) to denote the existence (nonex-

istence) condition of point S. Notation Sn(U; V ) means that if S exists then U and V will

not exist. Notation S;U ) V means that if S and U exist then V exists. From the results

in the preceding sections, we have the following results:8>>>>><
>>>>>:

Jn(K1;H1)

H1n(J;K1;H2; I2);H2n(H1; I1)

K1n(J;H1;K2; I2);K2n(K1; I1)

I1n(I2;K2;H2); I2n(I1;K1;H1)

K2;H2 ) I2; J; I2 ) H2;K2:

(R)

� CA intersects plane ABC in four points. Since H1n(H2);K1n(K2) and I1n(I2), point
J must exist. From J n(K1;H1);K2 and H2 must exist. Finally from K2;H2 ) I2, we get

the fourth point I2. So the four points are J;H2;K2; I2. Then the condition of this case

should be E(J) \E(H2) \E(K2) \E(I2) \E(H1) \E(K1) \E(I1), which is equivalent to

E(J) \E(I2) by (R). That is,

� + 
 < A; � < B; and 
 < C:

In this case, CA consists of two space curves: one is from point J to I2 and the other is from

H2 to K2. Fig.5 shows the case in the plane ABC and a spatial case.

� CA intersects plane ABC in three points. From Jn(K1;H1), we know that if J exists, at

least eitherH2 orK2 should exist. Actually only one ofH2 andK2 can exist. Otherwise from

K2;H2 ) I2, we know that there will be four points! Then we know that either H2 or K2

exists. From H2n(H1; I1) and K2n(K1; I1), we know that I2 must exist. Since J; I2 ) H2;K2,

point J must not exist. Since H1n(H2);K1n(K2) and I1n(I2), if we assume that H1 exists,

from H1n(J;K1;H2; I2) we know that the other two points are K2 and I1. This contradicts
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to K2n(K1; I1): Thus H2 must exist. From H2n(H1; I1) we know the other two points are

K2 and I2. The condition of this case should be E(H2) \E(K2) \E(I2) \E(J) \E(H1) \
E(K1) \ E(I1). Using (R) we can simplify this condition to E(H2) \ E(K2) \E(J). That
is,

j� � 
j < A < � + 
; B < �; and 
 < C:

In this case, CA consists of two space curves: one is from A to I2 and the other is from H2

to K2. Since the detailed analysis is the same, we will omit them below.

Fig.5. CA consists of two curves.

� CA intersects plane ABC in two points. There are �ve sub-cases.

Case 1. The intersections are J;K2 (J;H2) if8><
>:

� + 
 < A

B < �


 < C

0
@
8<
:
� + 
 < A

� < B

C < 


1
A :

In this case, CA consists of one space curve from J to K2 (J to H2).

Case 2. The intersections are J; I1 if

� + 
 < A; B < �; and C < 
:

In this case, CA consists of one space curve from J to I1.

Case 3. The intersections are H2;K1 (H1;K2) if8><
>:


 +A < �

� < B

C < 


0
B@
8><
>:

� + A < 


B < �


 < C

1
CA :

In this case, CA consists of one space curve from H2 to K1 (H1 to K2).

Case 4. The intersections are K1; I1 (H1; I1) if8>>><
>>>:


 + A < �

B < �

C < 


� + 
 + A < 2�

0
BBB@
8>>><
>>>:

� + A < 


B < �

C < 


� + 
 + A < 2�

1
CCCA :

In this case, CA consists of one space curve from K1 to I1 (H1 to I1).

Case 5. The intersections are K2; I2 (H2; I2) if8><
>:

� + A < 


� < B


 < C

0
B@
8><
>:


 +A < �

� < B


 < C

1
CA :

In this case, CA consists of one space curve from K2 to I2 (H2 to I2).



No.3 New Algorithms for the Perspective-Three-Point Problem 203

� CA intersects plane ABC in one point. We need to consider two sub-cases.

Case 1. The intersection is H2 (K2) if8><
>:
j� � 
j < A < � + 


� < B

C < 


0
B@
8><
>:
j� � 
j < A < � + 


B < �


 < C

1
CA :

In this case, CA consists of one space curve from A to H2 (A to K2).

Case 2. The intersection is I1 if

j� � 
j < A < � + 
;B < �;C < 
; and � + 
 + A < 2�:

In this case, CA consists of one space curve from A to I1.

3.2 Determine CA \ SBC

We should comment that the seemingly tedious analysis in the preceding section is ac-

tually based on strong geometric intuition coming from a dynamic geometry software: Ge-

ometry Expert
[20]. Using Geometry Expert, we can see clearly how dABi and dABe change

when changing the six free parameters continuously. But for the 3D case, there is still no

adequate software for us to get an intuitive idea of how CA looks like. Here are some partial

results we got.

Lemma 2. The P3P problem has one or three solutions if CA consists of one space curve

and the two intersection points of plane ABC and CA are not on the same side of SBC .

Proof. Since CA is a continuous space curve and the two intersection points of plane

ABC and CA are not in the same side of SBC , CA must intersect SBC for odd times. In

addition, the maximal number of solution is four, hence the problem has a unique solution

or three solutions. 2.
Lemma 3. If �, 
 (�; �; 
; �) are obtuse angles and

� > A (� > B; 
 > C), then the P3P problem can only

have one or three solutions.

Proof. See Fig.6. We have \BI1A = 
 >
�
2
,

\CI1A = � >
�
2
. Point I1 is on the same side of BC

with point A. According to the \reality conditions", we

know that � + � + 
 < 2�, which implies that point I1
is inside SBC . Condition � > A means that point A is

in the outside of SBC . Thus the result follows according

to above lemma. 2

Fig.6. A unique solution exists.

Theorem 4. Under the reality conditions (2), (1) if �, �, and 
 are obtuse, then the

P3P problem can only have one solution; (2) furthermore if A < �;B < �;C < 
, then the

P3P problem has a unique solution.

Proof. From Lemma 3, we know that the problem will have one or three solutions since

�, �, and 
 are obtuse and at least one of A;B;C is acute. Since the three angles are all

obtuse, the three toroids and their intersection curves are concave. This implies that they

can only have one intersection point. If A < �;B < �;C < 
, from Subsection 3.1, point I1
must exist. Similar to Lemma 3, points A and I1 must be on di�erent sides of SBC . Similar

to the proof of Lemma 2, a solution must exist. 2

4 Complete Solution of Two Special Cases

4.1 Case of a = b = c and r = q

Without loss of generality, let a = b = c = 1. The P3P equation system becomes
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>:

y
2 + z

2 � 2yzp� 1 = 0

z
2 + x

2 � 2zxq � 1 = 0

x
2 + y

2 � 2xyq � 1 = 0:

(PS 1)

Using Wu-Ritt's method, this equation system has the following two components:8><
>:

f1 = 2(p� 1)x2 + 4q(1� p)zx+ 1� 2p

f2 = y � z

f3 = 2(p� 1)z2 + 1

(ES 1)

8><
>:

g1 = 2qC1x+ z(2z2C2 � 1� 8pq2)

g2 = C1y + 2z(z2C2 � C3)

g3 = 4C2
2z

4 � 4C3C2z
2 + C

2
1 :

(ES 2)

Here C1 = 4q2 � 1, C2 = 1� 2q2 + p, C3 = pC1 + C2 = 4pq2 + 1� 2q2.

Let points I; J;H;K be de�ned as in Section 3. If (ES 1) has positive solutions, these

solutions must be the intersection points of curve AI or JI and SAB . Since p < 1, 1 +

(2p� 2)z2 always has one positive solution z =
q

1
2�2p

, so does y. The number of positive

solutions of (ES 1) is determined by f1(x) = 0. Notice that p < 1 and f1(x) is a quadratic

equation in x, we have the following results.

� Equation system (ES1) has one positive solution if and only if8<
:

q > 0

p =
1 + q

2

2
or

1

2

or p <
1

2
:

� Equation system (ES1) has two positive solutions if and only if

q > 0 and
1 + q

2

2
> p >

1

2
:

Now we discuss (ES 2). If (ES 2) has positive solutions, these solutions must be the

intersection points of curve HK and SAB. From the \reality conditions" (2) we know that

the coeÆcient of z4 in g3, C2 = 1�2q2+p, won't vanish. In addition, a necessary condition

for H and K to exist is � <
�
3
, so q > 1

2
. Thus, both C1 and C2 are not zero.

We can prove that if (x; y; z) is one positive solution of (ES 2), (x; z; y) will be another

positive solution of (ES 2). We also proved that if z is positive, then g1 always has a positive

solution for x[14]. So the number of positive solutions of (ES 2) is equal to the number of

positive solutions of g3. Let g(w) be obtained by replacing z
2 in g3 by w. Denote the

discriminant of g(w) by �2. We have

�2 = 64q2(1 + 2p)(2pq2 + 1� 3q2)(1� 2q2 + p)2:

From � <
�
3
and � < 2�, we know q >

1
2
, p > � 1

2
and 1 � 2 q2 + p 6= 0: Thus the sign of

�2 is determined by 2 pq2 + 1 � 3 q2. Using Wu-Ritt's method again, we can prove that if

�2 = 0, equation system (PS 1) has no solution. So g(w) has two real solutions if and only

if 2pq2 + 1 � 3 q2 > 0, and the two real solutions are all positive[14]. Thus (ES 2) has two

positive solutions if and only if

q >
1

2
and p >

3

2
�

1

2q2
:

Otherwise (ES 2) has no positive solution.
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We still need to consider the reality conditions (2): 0 < �; � < �, 0 < �+ 2� < 2�, and

2� > �, which can be reduced to

�1 < p < 1;�1 < q < 1; 2q2 � 1 < p:

Combining the above conditions, we have the following classi�cation for the P3P problem.

1) Point P has four solutions, if and only if

1 > q >
1

2
;

1 + q
2

2
> p >

1

2
; and p >

3

2
�

1

2q2
:

2) Point P has three solutions, if and only if8>><
>>:

1

2
< q <

p
2

2
3

2
�

1

2q2
< p �

1

2

or

8><
>:

1

2
< q < 1

p =
1 + q

2

2
:

3) Point P has two solutions, if and only if8><
>:

0 < q �
1

2

1

2
< p <

1 + q
2

2

or

8><
>:

1

2
< q < 1

1 + q
2

2
< p < 1

or

8>><
>>:

p
2

2
< q < 1

1

2
< p �

3

2
�

1

2q2
and p > 2q2 � 1:

4) Point P has one solution, if and only if8><
>:
�
p
3

2
< q <

1

2
or

p
2

2
� q <

p
3

2

2q2 � 1 < p <
1

2

or

8>><
>>:

1

2
< q <

p
2

2

2q2 � 1 < p �
3

2
�

1

2q2

or

8><
>:

0 < q �
1

2
or

p
2

2
� q <

p
3

2

p =
1

2

or

8><
>:

0 < q �
1

2

p =
1 + q

2

2
:

Fig.7 is the solution distribution diagram for this special case. L1 is p = 1+q2

2
, L2 is

p = 2q2 � 1, and L3 is p = 3
2
� 1

2q2
. Table 1 shows where the solutions come from for each

region.

Here are some general observations from Fig.7. The P3P problem most probably will

have one solution. The probabilities of hoving two, three and four solutions decrease in order.

The P3P problem tends to have more number of solutions when the three perspective angles

are small. The most complicated cases occur when the three perspective angles are almost

equal to the correspondent inner angles of triangle ABC.

Fig.7. Solution distribution for case a = b = c = 1; q = r.
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Table 1

Solution number 1 2a 2b 2c 3 4

Equation systems ES1 ES2 ES1 ES1 ES1 and ES2 ES1 and ES2

4.2 Case of b = c and r = q

Without loss of generality, we may assume that b = c = 1. In this case, there are three

parameters p; q and a. From the cosine theorem we know that a =
p
2� 2 cosA. We will

use cosA as the third parameter. The equation system becomes8><
>:

y
2 + z

2 � 2yzp� 2 + 2 cosA = 0

z
2 + x

2 � 2zxq � 1 = 0

x
2 + y

2 � 2xyq � 1 = 0:

(PS 2)

Similar to the �rst example, we get the following two components:8><
>:

(p� 1)x2 + 2q(1� p)zx� p+ cosA

y � z

2(p� 1)z2 + 1� cosA:

(ES 3)

8><
>:

2qC1x� z(4q2(cosA+ p)� z
2
C2 � C1)

C1y � z(4q2(cosA+ p)� z
2
C2 � 2C1)

C
2
2z

4 � 2C2C3z
2 + C

2
1 :

(ES 4)

Here C1 = 2q2�1+cosA, C2 = 1�2q2+p, C3 = 2 pq2+(1�cosA) (1�2q2). The structure

of (ES 3) and (ES 4) are similar to that of (ES 1) and (ES2). Hence, we have

� Equation system (ES3) has one positive solution if and only if8<
:

q > 0

p = cosA+
q
2

2
or cosA

or p < cosA:

� Equation system (ES3) has two positive solutions if and only if

q > 0 and cosA < p < cosA+
q
2

2
:

� Equation system (ES4) may not have one positive solution, and it has two positive

solutions if and only if

q >

r
1� cosA

2
and p > 2� cosA+

cosA� 1

2q2
:

Now, the classi�cation of the solutions can be obtained easily.

5 Conclusion

By decomposing the equation system for the P3P problem into triangular sets with WU-

Ritt's zero decomposition method, we gave fast, stable, and complete methods for solving the

P3P problem. Although we gave some pure geometric criteria for the solution classi�cation

of the P3P problem, this problem still resists a complete solution and should be further

studied. In the algebraic computation approach, the main problem is to �nd a set of simple

criteria. In the geometric approach started in this paper, we need to �nd criteria of larger

scope.
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