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Abstract This paper presents a new soliton approach to hyper-distributed hyper-parallel

self-organizing dynamic scheduling for task allocations among rational autonomous agents in a

multi-agent system (MAS). This approach can overcome many drawbacks of other mechanisms

currently used for coalition formation and cooperation in MAS. The thorny problems, such

as overabundant bid, social behaviors, colony intelligence, variable neighbors, and interdepen-

dency, can easily be treated by using the proposed approach, whereas they are very diÆcult

for other conventional approaches. The simulation on a distributed transport scheduling sys-

tem shows the soliton approach featured by hyper-parallelism, e�ectiveness, openness, dynamic

alignment and adaption.

Keywords soliton, distributed arti�cial intelligence, multi-agent system, hyper-distributed

hyper-parallel problem-solving, dynamic task allocation

1 Introduction

Basically, there are two categories in distributed arti�cial intelligence (DAI): distributed problem-

solving (DPS) and multi-agent system (MAS), the former being concerned with how to increase

the whole outcome of the system via the cooperation among individual agents, whereas the latter

trying to increase its own personal utility of each individual through the cooperation. The following

cooperation/coordination paradigms are usually used in most MAS so far[1�4]:
� Hybrid cooperation with both distributed and concentrated manners, where each agent only plays a role

designated or assigned by some agents of higher level, and thus the cooperation takes place without extra

overhead for communication or inference;

� Purely distributed cooperation, where agents form coalitions through repeated mutual negotiations

according to their own bene�ts and scopes with respect to either the environment or other agents, and then

acquire their fair share of interests with other agents within the same coalition in the light of a previously

reached agreement.

No matter which cooperation paradigm is used, it is necessary to determine the cooperative mem-

bers in advance and to form the coalition among many agents before executing the given tasks. That

is the case with the non-super-additive coalition algorithm oriented to DSP in [3] and the multiagent

negotiation under time constraints in [4]. There are many shortcomings in the coalition methods

currently used in MAS:
� The proper coalition could never be formed until a large amount of calculation and communication is

done in nearly exhaustive way, so that considerable overhead of time and resources is required.

� Once a process of task allocation has ended, owing to incomplete matching between a coalition and the

corresponding task, some capabilities that agents have or tasks require always remain to be further handled.
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But there is no dynamic strategy being ready at all times to deal with the problem.

� Once a coalition aimed at a given task forms, no matter how the environment changes, the correspondence

between the coalition and the task is almost �xed, being lack of colony intelligence.

� Tasks generally play a passive role in MAS, selected by autonomous agents rather than actively selecting

agents.

To counter the problems mentioned above, this paper makes use of and extends the competitive

wave principles proposed in [5{8], and then presents a new soliton approach to hyper-distributed

hyper-parallel self-organizing dynamic cooperation/coordination among rational autonomous agents

of MAS, which can overcome many diÆculties encountered in other mechanisms for the coalition and

the cooperation. The soliton approach can also be used to implement the algebraic modelling of [9]

for MAS distributed problem-solving. By the approach, the coalition formation and the cooperation

concurrently occur, so that all the coalitions needn't be built in advance of executing tasks via cooper-

ations. Moreover, through a special soliton | competitive waves with controllable propagation speeds

and adjustable amplitudes, a lot of thorny problems, such as remainder capabilities, overabundant

bid, dynamic coalitions, social behaviors, colony intelligence, variable neighbors, and interdependency,

could easily be treated. The simulation on a distributed transportation scheduling system shows the

soliton approach characterized by hyper-parallelism, e�ectiveness, openness, dynamic alignment and

adaption.

2 Soliton Modelling for MAS Task Allocation

The solitary wave has both particle and wave properties, and is a universal phenomenon in nature

and physics. Particularly, its energy is concentrated in a relatively small region, and its waveform

and/or wave speed could recover, called as elastic dissemination, when the waves interact mutually.

The competitive wave[5�8], as a special solitary wave, is a nonlinear wave which propagates concur-

rently in nonlinear media in such a way that the propagation paths and the speeds all depend on

the competition results between waves. Only the competition winner wave along a hyper-edge can

continually propagate further, whereas the loser wave along a hyper-edge is deprived of propagating

forwards unless the wave along the hyper-edge becomes a winner again in the competition turn that

follows. There are no interference between waves conuent to the same wave node and no reection

from either wave node or hyper-edge. The waveform remains rectangular without any distortion due

to dispersion or di�usion. The wave amplitude decreases in inverse proportion to the propagation

distance. The wave speed can change with the received wave amplitude and introduced heuristic

knowledge. By virtue of the characteristics of solitary competitive wave, a hyper-distributed hyper-

parallel self-organizing dynamic modelling for MAS task allocation will be constructed as follows.

De�nition 1. Given a task set G(t) = fgkjk = 1; : : : ;mg, and an agent set A(t) = faiji =

1; : : : ; ng at time slot t, each task g 2 G(t) with required capability vector eg(t) and payment rg(t), and

each agent a 2 A(t) with owned capability vector 'a(t), there are binary relations: H(t) � A(t)�A(t),

H0(t) � G(t)�A(t), and D(t) � G(t)�G(t), which represent the accessible neighbor relations between

agents, between agents and tasks, and between tasks, respectively. Their entries are de�ned by

Hij(t) =

�
1; if aj 2 Ni(t)

0; if aj 62 Ni(t)
; H0ki(t) =

�
1; if gk 2 N

0

i (t)

0; if gk 62 N
0

i (t)
;

Dkk0(t) =

�
1; if gk 7! gk0

0; otherwise
;

where Ni(t) and N
0

i (t) express the agent neighbors exerted by ai's social actions and the task neighbors

participated in by ai, respectively, and gk 7! gk0 holds i� gk0 is a precedent condition of gk.

Hereupon, at a given time slot t, there are the following sets of directed edges:

E1(t) = fai
t(ai)
�! gkjai 2 A(t); gk 2 G(t); t � t(ai)g;
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E2(t) = fgk
t(gk)
�! aijgk 2 G(t); ai 2 A(t); t � t(gk)g;

E3(t) = fai
t(ai)
�! aj jai; aj 2 A(t); t � t(ai)g;

E4(t) = fgk
t(gk)
�! gk0 jgk; gk0 2 G(t); t � t(gk)g:

Fig.1. Solitary wave modelling

for MAS task allocation.

Then we dynamically establish a special implicit di-

rected AND/OR graph G(N(t);E(t)) along which

concurrent solitary waves will propagate, where

E(t) = E1(t)[E2(t)[E3(t)[E4(t), and A(t)[G(t) �

N(t), as shown in Fig.1. Each node u 2 N(t) has its

capability vector, 'u(t) or (eu(t); ru(t)), as de�ned

in De�nition 1, while each directed edge u
t(u)
�! v in

E has a generalized distance d(u
t(u)
�! v) which can be

de�ned according to the problem under consideration,

as described later in the section on simulation. At a

given time slot t, there is such a set F(t) of nodes,

called the wavefront of G, that F(t) = fuju 2 N(t),

for 8v 2 N(t), 6 9u
t(u)
�! v 2 E1 [ E2g, and there is, at

most, one occurrence of a node with the same name in

F(t). Only the nodes in F(t) are able to spread new

edges further at the next time slot. When there is

wave arrival at node u 2 F(t), node u will, according

to its own belief or criteria, autonomously select and combine edges from the set 
�u(t) of all the input

edges to it so as to form a set 
u(t) of hyper-edges input to node u, to decide the optimal hyper-edge

L�u(t) within 
u(t), and to yield a set Qu(t) of its output edges at the next time slot.

In the process for a node u in F(t) to form its output edges Qu(t), the following rules R should

be observed:

� If u is an agent node ai, 'ai
(t) 6= 0, and H0

ki(t) = 1 or Hij(t) = 1, then there is ai
t(ai)
�! gk 2 Qai(t) or

ai
t(ai)
�! aj 2 Qai(t), respectively, where t(ai) � t.

� If u is a task node gk, Dk0k(t) = 1 or a
t(a)
�! gk 2 L

�

gk
(t), and all the precedent tasks of gk have

�nished, i.e., for 8g 2 fgjg
t(g)
�! gk 2 
�

gk
(t)g there is eg(t) = 0 (hereafter referred to as g

?), then there is

gk

t(gk)
�! gk0 2 Qgk (t) or gk

t(gk)
�! a 2 Qgk (t), respectively, where t(gk) � t.

As shown in Fig.2, at time t13� the hyper-edge composed of a4
t0
�! g3, a5

t0
�! g3, and a6

t0
�! g3

forms as the winner scrambles for node g3 with other possible hyper-edges; at time t15 node a5 selects


a5(t
1
5) = fg3

t13�
�! a5, g2

t12�
�! a5g, Qa5(t

1
5) = fa5

t15
�! g?3 g, where g?3 means task g3 has already

�nished, i.e., eg3(t) = 0; node g1 cannot determine its hyper-edges and cannot refract wave along

Qg1(t) until the wave along g?3
t23�
�! g1 arrives at g1; at time t13�, node a4 located in edge g3

t13�
�! a4

becomes a wavefront node, so a4's remainder capability can bid for task g2 via edge a4
t14
�! g2, and

for task g3 once again via a4
t14
�! g?3 , so that Qa4(t

1
4) = fa4

t14
�! g?3 , a4

t14
�! g2g.

On the basis of dynamically generated G(N(t);E(t)), below we will discuss the issues about the

amplitude, speed and time period for solitary waves to propagate along G(N(t);E(t)). Without loss

of generality, suppose the following.
� The time spent by a node u 2 F(t) in combining hyper-edge set 
u(t), determining optimal hyper-edge

L
�

u(t) and yielding its output edges Qu(t) can be neglected in comparison with the time for wave propagation

along hyper-edges.

� The below discussion on the solitary wave propagation only focuses on that along E1(t) [E2(t) for the

time being.
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Fig.2. Solitary wave propagations along implicit AND/OR graph.

� The divergence of the intrinsic transmission delay in wave media (nodes, edges, and hyper-edges) can be

neglected as compared with the wave propagation time.

� Waves can propagate along hyper-path Pu(t) to node u at time t, i� the waves of all the hyper-edges in

Pu(t) are the competition winners at time t.

De�nition 2. Pu(t) = Ju(t) � L � u represents such a hyper-path having existed before time t

from wave sources Ju(t) along hyper-edge L 2 
u(t) up to wave node u that in 
u0(t) there is one and

only one hyper-edge L0 which belongs to Pu(t), where u
0 is any nonsource node within Pu(t), hereafter

referred to as simply Pu(t) = Ju(t) � u. Hyper-path P(t) = Jv(t) � v � u represents the cascade of

hyper-path Pv(t) = Jv(t) � v and edge v
t(v)
�! u 2 Qv(t).

De�nition 3. The amplitude attenuation Æ(Ju(t) � L � u; t) for waves to pass hyper-path

Pu(t) = Ju(t) � L � u and to arrive at u at time t is de�ned by

Æ(Ju(t) � L � u; t) =
X

v
t(v)
�!u2L; L0

2Pu(t)

[Æ(Jv(t) � L0 � v; t) + �d(v; u)] (1)

where d(v; u) is the generalized distance of edge v
t(v)
�! u; and � is a positive coeÆcient. And for wave

source u, there is Æ(Ju(t) � L � u; t) = 0 at any time t.

The waves arrive along hyper-path Pu(t) at node u with the amplitude

�(Ju(t) � L � u; t) =

�
~a� Æ(Ju(t) � L � u; t); if � > 0

�; otherwise
(2)

where

� =
X

v
t(v)
�!u2L;Jv(t)�L0

�v2Pu(t)

[�(Jv(t) � L0 � v; t)� �d(v; u)]� (p� 1)~a; (3)

with � being a threshold value close to 0, p being the number of edges in L, and ~a being constant wave

amplitude gushed from a wave source.
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De�nition 4. When the waves arrive along Pv(tv) = Jv(tv) � L0 � v at node v just at time tv,

and the edge v
t(v)
�! u is chosen as an output of node v, supposing tv � t(v), the refraction wave could

propagate along v
t(v)
�! u towards u at the speed

S
Pv(tv)(v � u; t � tv) =

�
S0d(v; u)=@(t); if @(t) > 0

0; if @(t) � 0
(4)

@(t � tv) = �d(v; u) + hv(u)� S0tv + Æ(P�v (t); t) (5)

where S0 is a positive constant; hv(u) is a heuristic generalized distance estimated for hereafter

propagation from v via u to wave sinks @. If u 2 @, then hv(u) = 0; and Æ(P�v (t); t) is the

smallest attenuation among the waves that arrive at v along some hyper-paths until time t, namely

Æ(P�v (t); t) = min
Pv(tv)fÆ(Pv(tv); tv)jtv � tg = min

L2
v(t);k
t(k)
�!v2L

[Æ(P�k(t); t) + �d(k; v)].

De�nition 5. The time period T (Pu(t)) for waves to pass through Pu(t) = Ju(t) � L � u up to

node u is equal to

tu = T (Pu(t)) =
X

v
t(v)
�!u2L;Pv(t)2Pu(t)

[T (Pv(t)) + T (v
t(v)
�! u)] = T (Pu(tu)) (6)

where T (v
t(v)
�! u) is the period for waves from Pv(t) to arrive at u via v

t(v)
�! u.

3 Concurrent Algorithm and Properties

Hyper-Distributed Hyper-Parallel Algorithm MTL

Step 1. Provide MTL with agent set A(t0) = faiji = 1; : : : ; ng as wave sources, and task set G(t0) =

fgkjk = 1; : : : ;mg, each ai with capability vector 'i(t0) and each gk with capability ek(t0) and payment

rk(t0).

Cobegin 1.

Costep 2. Parallelly update wavefront F(t) at time t, and at the begining let F(t0) = A(t0) [ G(t0);

For 8ai; gk 2 F(t), once waves along a hyper-edge arrive at them,

Costep 3. Parallelly construct ai
t
! aj 2 Qai(t) and gk

t
! gk0 2 Qgk (t) according to Hij(t) and Dkk0(t),

respectively;

Costep 4. ai with remainder capability parallelly builds wave edge ai
t
! gk 2 Q

0

ai
(t) according to H0

ki(t)

to make a new bid for gk;

Costep 5. For every u 2 F(t), by using rules R, parallelly form hyper-edge set 
u(t), select the optimal

hyper-edge L�u(t) from 
u(t), and, if u 2 G(t), then build Qu(t) corresponding to L
�

u(t);

Costep 6. Once Qu(t) is established parallelly, parallelly refract input waves of L
�

u(t) into edges of Qu(t)

immediately, at the speed decided by (4) and (5) and with the wave amplitude attenuation by

(1){(3); source node u always gushes out constant amplitude wave from u along each edge of

Qu(t0) in E1(t);

Costep 7. Parallelly calculate capability decrements, �'i(t) practically consumed by a
t(a)
! gk within

L
�

gk
(t), and �ek(t) practically contributed by gk

t(gk)
�! ai within Qgk (t), where t � t(ai), t � t(gk),

ai 2 F(t). Parallelly modify capability vectors, 'i(t) and ek(t), and if for 8k, ek(t) = 0 or for 8i,

'i(t) = 0, then MTL successfully �nishes; otherwise go to Costep 2.

Coend 1.

In what follows, (1){(6) are always observed. The validation and some properties for MTL to �nd

out optimal solution are given by the following theorems.

Lemma 1. If Æ(P�v (t); t) doesn't change with t � tv, then the period for wave to pass through

Pv(tv) and edge v
t(v)
�! u up to u is equal to the period for wave to pass through the optimal hyper-path

P�v (t) and v
t(v)
�! u to u, where tv is the time for waves along Pv(tv) to arrive at node v.
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Proof. Because Æ(P�v (t); t) still remains constant after tv, by (4) and (5), @(t � tv) remains

unchanged and the wave from Pv(tv) will refract at a constant speed along v
t(v)
�! u, where by

T (v
t(v)
�! u) = d(v; u)=S

Pv(tv)(v � u; t � tv)

= [Æ(P�v (t); t � tv) + �d(v; u) + hv(u)]=S0 � tv;

and

T (Pv(tv) � u) = tv + T (v
t(v)
�! u) = [Æ(P�v (t); t � tv) + �d(v; u) + hv(u)]=S0 (7)

Let Pv(t
4

v ) be the optimal hyper-path to v until tv, along which waves arrive at node v just at time

t4v , that is t
4

v � tv, Pv(t
4

v ) = P�v (tv), and Æ(Pv(t
4

v ); t
4

v ) � Æ(Pv(tv); tv). Obviously, for t
4

v � t � tv,

there is Æ(Pv(t
4

v ); t
4

v ) � Æ(Pv(t); t), which means that Æ(P�v (t); t � t4) also does not change after t4v ,

and thus T (Pv(tv) � u) = T (Pv(t
4

v ) � u) = T (P�v (t) � u) holds for t � t4v . 2

Lemma 2. If Æ(P�v (t); t) does not change with t � t�, for 8v, v
t(v)
�! u 2 L 2 
u(t), t

� being the

earliest time for waves to reach v along some hyper-path, then the period for waves to propagate along

Pu(t) = Ju(t) � L � n up to u is equal to that for waves to propagate along the optimal hyper-path

up to L and then to pass via L up to u.

Proof. By (6) and (7), there is

tu =T (Pu(t)) = T (Pu(tu)) =
X

v
t(v)
�!u2L

[Æ(P�v (t); t � t�v) + �d(v; u) + hv(u)]=S0

=
X

v
t(v)
�!u2L

[Æ(Pv(t
�

v); t
�

v) + �d(v; u) + hv(u)]=S0 (8)

2

Lemma 3. Under the same condition as Lemma 2, and if t�v � t�u, then the optimal hyper-path

P�u(t) never contains edge v
t(v)
�! u, where t�v is the earliest time for waves to arrive at v.

Proof. By t�v = min
Pv(tv)[T (Pv(tv))] and by (8), t�v is equal to the time for wave to propagate

along the optimal hyper-path P�v (t) to v. Thus from t�v � t�u, it can be derived that

t�u = T (P�u(t)) = T (Pu(t
�

u)) =
X

v0
t(v0)
�!u2L

[Æ(Pv0(t
�

v0); t
�

v0) + �d(v0; u) + hv0(u)]=S0

=
X

v0
t(v0)
�!u2L

[t�v0 + T (v0
t(v0)
�! u)] � t�v < t�v + T (v

t(v)
�! u);

and then v0 6= v, v
t(v)
�! u 62 L, v

t(v)
�! u 62 P�u(t). 2

Lemma 4. For 8v, if Æ(P�v (t); t) never changes when t � t�v, then the wave with the maximum

amplitude will arrive earliest at t�u = [Æ(P�u(t
�

u); t
�

u) + h(u)]=S0, where v
t(v)
�! u 2 L, L 2 
u(t).

Proof. By assumption Æ(P�v (t); t � t�v) = Æ(Pv(t
�

v), t
�

v) = c(v), c(v) being a constant, and by (8),

there are

tu = T (Pu(tu)) =
X

v
t(v)
�!u2L

[Æ(P�v (t); t � t�v) + �d(v; u)]=S0 + h(u)=S0

=
X

v
t(v)
�!u2L

[c(v) + �d(v; u)]=S0 + h(u)=S0;

and

Æ(P�u(t); t � t�u) = min
Pu(tu)

fÆ(Pu(tu); tu � t�u)g = min
L2
u(t)

X
v
t(v)
�!u2L

[Æ(P�v (t); t � t�v) + �d(v; u)]:
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By Lemma 3, only the case t�v < t�u needs considering, and therefore

Æ(P�u(t); t � t�u) = min
L2
u(t)

X
v
t(v)
�!u2L

[Æ(P�v (t); t > t�v + �d(v; u)]

= min
L2
u(t)

X
v
t(v)
�!u2L

[c(v) + �d(v; u)] = min
L2
u(t)

[S0tu � h(u)] = S0t
�

u � h(u)

holds true, namely, when t � t�u, Æ(P
�

u(t); t) is also unchanged. Hence, t�u = [Æ(P�u(t), t � t�u) +

h(u)]=S0 = [Æ(P�u(t
�

u); t
�

u) + h(u)]=S0, and at t�u the minimum attenuation wave, i.e., the maximum

amplitude wave, arrives at u earliest. 2

Lemma 5. When t � t�(v), it is true that Æ(P�v (t); t) doesn't change with time for any wave node

v.

Proof. First, de�ne the maximum intermediate node number �(u) of node u in a hyper-path Pu(t)

as follows. If u is a wave source, �(u) = 0 and if max
v
t(v)
�!u2L;L2Pu(t)

f�(v)g = k, then �(u) = k + 1.

By induction for �(u), if �(u) = 0, it is obvious that Æ(P�u(t); t) = 0 for t � t0 and the lemma holds

true. When �(u) = 1, any ancestor node v of u is a wave source, thus, Æ(P�u(t); t) = min
L2
u(t)

P
v
v(t)
�!u2L

[Æ(P�v (t); t) + �d(v; u)] = min
L2
u(t)

X
v
t(v)
�!u2L

�d(v; u) is unchanged with time and the lemma is true

for �(u) = 1. By the induction assumption for �(u) = k, one needs to prove that the lemma is also

true for �(u) = k + 1. For �(u) = k + 1 � 2, the set !(u) of the father nodes of u can be divided into

such two subsets, !1(u) and !2(u), that if v 2 !(u) and t�v < t�u then v 2 !1(u), otherwise v 2 !2(u).

By the induction assumption about �(u) � k and by Lemma 3, it is sure that Æ(P�v (t); t � t�v) = c(v)

is a constant, and there is

Æ(P�u(t); t � t�u) = min
L2
u(t)

X
v
t(v)
�!u2L

[Æ(P�v (t); t � t�u) + �d(v; u)]

= min
L2
u(t)

X
v
t(v)
�!u2L;v2!1(u)

[c(v) + �d(v; u)]:

Therefore Æ(P�u(t); t � t�u) remains unchanged with time, and the conclusion holds for �(u) = k+1. 2

Theorem 1. The wave along the hyper-path P�v (t) with the minimum attenuation will arrive at

node u earliest, and the arrival time is t�u = [Æ(P�u(t), t � t�u) + h(u)]=S0.

Proof. It is straightforward from Lemmas 3, 4 and 5. 2

Theorem 2. Waves that pass along Pv(t) and P
�

v (t) to v at time tv and t�v, respectively, tv� t�v <

[�d(v; u) + hv(u)� h(v)]=S0, will arrive at the next node u at the same time.

Proof. By Lemma 4 and Theorem 1, we have t�v = [Æ(P�v (t), t � t�v) + h(v)]=S0. Thus, �d(v; u) +

hv(u)� S0tv + Æ(P�v (t); t � t�v) > 0, namely @(t � t�v) > 0 can be derived. Furthermore, by De�nition

9 and Lemma 1, T (Pv(t) � u) = [Æ(P�v (t); t � t�v) + �d(v; u) + hv(u)]=S0 = T (P�v (t) � u) holds true.

If tv � t�v � [�d(v; u) + hv(u) � h(v)]=S0, then @(t � tv) � 0, and S
Pv(tv)(v � u; t � tv) = 0, which

means the wave from Pv(t) fails to propagate along v
t(v)
�! u. 2

Theorem 3. If MTL selects a heuristic value hv(u) so that [hv(u) � h(v)]=d(v; u) is a constant,

then the wave propagates at an identical speed along any edge.

Proof. By Theorem 1, S0t
�

v = Æ(P�v (t), t � t�v) + hv(u) holds, and

S
Pv(tv)(v � u; t � t�v) = S0d(v; u)=[�d(v; u) + hv(u)� S0t

�

v + Æ(P�v (t); t � t�v)]

= S0d(v; u)=[�d(v; u) + hv(u)� h(v)] = S0=(� + c)

is a positive constant. 2
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Theorem 4. The period time for Algorithm MTL to �nd out the optimal solution is independent

of the heuristic value.

Proof. By Theorem 1 and h(u) � 0 for any wave sink node u, there is the time t�u = [Æ(P�u(t),

t � t�u) + h(u)]=S0 = Æ(P�u(t), t � t�u)=S0. Here Æ(P
�

u(t), t � t�u) has nothing to do with the heuristic

value h(v) of any wave node v. 2

Theorem 5. The larger the heuristic values, the less the complexity of wave nodes required for

�nding out the optimal solution.

Proof. Let the set of nodes via which waves have passed by time t be N (t), and h1(u) � h2(u)

for wave node u. By Theorem 1, t�u(1) = [Æ(P�u(t), t � t�u(1)) + h1(u)]=S0 and t�u(2) = [Æ(P�u(t),

t � t�u(2)) + h2(u)]=S0 hold true. Because Æ(P�u(t); t � t�u(1)) = Æ(P�u(t); t � t�u(2)) is irrelative to

h(u), there is t�u(1)�h1(u) = t�u(2)�h2(u) and thus t�u(2) � t�u(1), which implies the waves with h2(u)

cannot propagate so fast as the waves with h1(u) can. Moreover, according to Theorem 4, irrespective

of h1(u) or h2(u), the Algorithm MTL spends the same time in �nding the optimal hyper-path,

whereby N2(t) � N1(t). 2

Theorem 6. Algorithm MTL has the time complexity O(L) to �nd the existential solution, where

L is the total distance of the optimal hyper-path.

Proof. By Theorem 1, the wave reaches a wave sink node u at time t�u which is directly proportional

to L. 2

4 Simulation and Conclusions

By using the solitary wave modelling and the algorithm MTL, the simulation experiments on a

distributed transportation scheduling system are carried out, where every distributed transportation

company and every distributed warehouse, as a hauler (agent) and a cargo owner (task) respectively,

manage to pursue their own maximum pro�ts or minimum costs via negotiation and then via coor-

dination under various constraints, such as volume of road haulage, freight charges, hauling capacity,

the number of trucks, service quality, price of goods, haul cycle, freight distance, order of transport

priority, and so forth. All the constraints in addition to some interferential social behaviors among

individual haulers are taken into account in the simulation. Particularly, the generalized distance

d(v; u) used in algorithm MTL is synthetically de�ned as follows:

d(ai; gk) =w1k'i(t)k=

mX
j=1

k'ij(t)k+ w2k'i(t)k=k'ik(t)k

+ w3kek(t)k=k'ik(t)k+ w4k'ik(t)k=rik(t);

d(gk; ai) =w
0

1kek(t)k=

nX
i=1

k'ik(t)k+ w02kek(t)k=k'ik(t)k

+ w03p(dik; vik; k'ik(t)k) + w04f(qi);

where k � k is the norm value of capability vector;

w1; : : : ; w4 and w01; : : : ; w
0

4 are weight coeÆcients; p is

a function to calculate the time period for ai to �nish

subtask gik corresponding to k'ikk, dik and vik being

the freight distance and freight velocity, respectively;

and f is a function of service quality qi of company

ai.

It is owing to both controllable speed and ampli-

tude of wave propagation that the complex transport

scheduling problem is e�ectively solved in a hyper-

distributed hyper-parallel self-organizing way. Fig.3

illustrates some simulation results. Here for simplic-
Fig.3. Simulation results on distributed self-organizing

dynamic scheduling for transport problem.
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ity, in the simulation, the capacity totally required for an agent to bid for several tasks once must be

less than the capacity the agent owns currently, that is the overabundant bid, which can also be dealt

with by MTL algorithm in principle, is unallowable.

The conclusions are summarized as follows:
� The solitary competitive wave approach and the algorithm MTL can implement hyper-distributed hyper-

parallel self-organizing dynamic scheduling for MAS task allocation.

� The proposed approach is featured with many advantages over other conventional problem-solving meth-

ods for MAS. Specially, it is as easy as natural to deal with the interdependency, remainder capability, dynamic

coalition, social behaviors, colony intelligence, etc.

� The solitary wave model is essentially di�erent from general implicit AND/OR graph used to search state

space. In the classical search of implicit AND/OR graph, there are two phases: top-down search and bottom-

up search, and in bottom-up phase all the hyper-edges are previously �xed. Moreover, the back-tracking

is usually necessary. On the other hand, however, in the soliton model, the hyper-edges are dynamically

constructed, and the back-tracking and two phases are not necessary, so that it is possible to handle the

stochastic distributed social intervenient behaviors of MAS.
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