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Abstract

A unified approach called partition-and-recur for developing efficient and
correct algorithmic programs is presented. An algorithm (represented by re-
currence and initiation) is separated from program, and special attention is
paid to algorithm manipulation rather than program calculus. An algorithm is
exactly a set of mathematical formulae. It is easier for formal derivation and
proof. After getting efficient and correct algorithm, a trivial transformation
is used to get a final program. The approach covers several known algorithm
design techniques, e.g. dynamic programming, greedy, divide-and-conqu2r and
enumeration, etc. The techniques of partitizs and recurrcuce are not new, Par-
tition is a general approach for dealing with complicated sbjects and is typically
used in divide-and-conauer approach. Recurreice 1s used in algorithm analysis,
in developing loup inveriants and dynamic programming approach. The main
contribuiicn 15 combining two techniques used in typical algorithm development
into a unified and systematic approach to develop general efficient algorithmic
programs and presenting a new representation of algorithm that is easier for
understanding and demonstrating the correctness and ingenuity of algorithmic
programs.

Keywords: Programming method, algorithm design method, correctness
of algorithmic program, recurrence relation, loop invariant.

1 Introduction

Algorithmic program is an algorithm described with an implemented or abstract
programming language. Developing correct and efficient algorithmic programs is a
heart of computer science. The process of development consists of design and de-
scription of new algorithms and explanation and proof of existing algorithms. Due
to the creativity involved, this remains to be one of the field’s most challenging
problems. A lot of researches have worked on it over the years, yielding many ap-
proaches to this area, including program calculus!~4, program transformation!®!
and program automation[®~8. Because of the obstinacy of the problems, these ap-
proaches are far from practical use in developing algorithms[®~11l. There remain
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many crucial unsolved problems. Every year, a large number of new algorithms
occur in literature and many existing algorithms are described and explained in the
new textbooks of algorithms and algorithm design. They still use traditional algo-
rithm design methods, including dynamic programming, greedy, divide-and-conquer,
etc. However, there are no effective standards or rules to guide algorithm design-
ers to choose appropriate one from these methods. This has made great difficulty
not only in designing algorithms manually, but also in some experiment systems of
automated algorithmic program design. These systems can only generate some sim-
ple algorithmic program based on divide-and-conquer and exhaustive search(®l. The
KIDS system developed by D.R. Smith got better results®”], Smith investigated the
properties of many algorithm design methods, e.g., dynamic programming, divide-
and-conquer and global search, separately and built one subsystem for each method,
“then combined these subsystems into KIDS system. There is, however, no effective
standard to have the system choose proper algorithm design method for given prob-
lem. A unified approach is needed for solving these problems. Manber answered
this challenge!213], He proposed a unified approach for algorithm design based on
mathematical induction and claimed that his methodology covered many known al-
gorithm design techniques and could explain algorithm in a way to ruake it easier
to understand. According to Manber’s approach, induction hypothkesis or stvonger
induction is presented at the beginning of algorithrn cesign. That i, assume n — 1
size problem was solved, then solve n size prcblem based on the hypothesis. This
is an effective beginning. Unfortunately, he did noi formulate an easy way to solve
the n size problem:. He treated it as 2 fully creative work. Our approach given in
this paper presents an easier way not only to solve the n size problem but also to
give a new representation of algorithm to facilitate the derivation and proof of some
algorithms. We do believe that designing algorithm is a creative activity. However,
we also believe that the invention of scientific notations, methods and theory can
convert some creative work into regular work. Our research follows this confidence.
In fact, invention of some mathematical method has given us some heuristics. The
creation of Analytic Geometry is a good example for converting some creative work
into routine job. >
Our approach for developing efficient and correct algorithm is called partition-
and-recur. The key idea is partition and recurrence. Similar to other techniques
of developing algorithm, our approach is also based on the powerful mathematical
induction. Dijkstral? and Gries'¥ presented a methodology to develop algorithmic
program together with their proof of correctness hand in hand. We borrow their
techniques of formal specification and quantifier transformation, but our emphasis
is different. We separate algorithm, represented by recurrence and initiation, from
program, then pay special attention to algorithm manipulation rather than pro-
gram calculus. Using partition-and-recur, we begin from the formal specification
of a problem, partition the problem into a couple of subproblems, then develop an
efficient and correct algorithm represented by recurrence and initiation. Finally,
corresponding program and its loop invariant are developed. Our approach cov-
ers several known algorithm design techniques, e.g., dynamic programming, greedy,
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divide-and-conquer and enumeration. The techniques of partition and recurrence are
not new. Partition is a general approach for dealing with complicated objects and
is typically used in divide-and-conquer approach. Recurrence is used in algorithm
analysis and dynamic programming approach. Our main contribution is combin-
ing two techniques used in typical algorithm problem into a unified and systematic
approach to solve general algorithm problems and presenting a new representation
of algorithm for understanding and demonstrating more easily the correctness and
ingenuity of an algorithm.

In Section 2, we present the partition-and-recur approach with detailed explana-
tion. A brief description of traditional algorithm design methods is given. In Section
3, two typical examples using partition-and-recur are developed. Originally, these
problems were solved by two traditional approaches. A careful comparison with
traditional algorithm design techniques is given in the end of Section 3. Comparison
with other unified approaches is described in Section 4. Finally, conclusions and
discussions are presented.

2 Partition-and-Recur Approach

2.1 Consideration of Efficiency

The efficiency of an algorithm is mainly iafiuenced by the rcthod of algorithm
design and implementation, the data structures and the programming language de-
scribing the algorithm. Tn this paper we put emphasis on the method of algorithm
design and imnplementation. la gencral, it is easier to design algorithms using enu-
meration or exhaustive search, but the algorithms have low efficiency; in contrast, it
is rather difficult to design efficient algorithm using effective design method. Using
traditional method, e.g. dynamic programming, greedy, divide-and-conquer, etc.,
one can get efficient algorithm, but the difficulty is in choosing the suitable one.
We want to pursue a unified approach of developing algorithm that can cover these
well-known algorithm techniques and is easier to use. Since implementing algorithm
using iteration has higher efficiency than using recursion, we stick to iteration rather
than recursion in our methodology.

2.2 Comments on Traditional Algorithm Design Methods

Although those traditional algorithm design methods often occur in various text-
books and literature of algorithm design and programming, there is no uniform and
precise description. Here we cite Horowitz’s descriptions in Ref.[15]. The divide-and-
conquer strategy suggests that a problem should be split into subproblems, which are
somehow solved and then the solutions are combined into a solution for the original
problem. The subproblems are solved in the same way—by splitting, solving and
combining-—and this can often be done recursively. It is generally advisable to split
the problems into subproblems with roughly equal size. Dynamic programming arises
when the only algorithm we can think of is enumerating all possible configurations
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of the given data and testing each one to see if it is a solution. An essential idea is to
keep a table that contains all previously computed configurations and their results.
If there are only a small number of distinct configurations, dynamic programming
avoids recomputing the solution to these problems over and over. To determine if
there are only a small number of distinct configurations, one needs to detect when
the so-called principle of optimality holds. This principle asserts every decision that
contributes to the final solution must be optimal with respect to the initial state.
As for greedy method, Horowitz suggests it produces an algorithm that works in
stages. At each stage, a decision is made regarding whether an input combination is
feasible and is better or worse than the previous solution. At the end of final stage,
the best solution is obtained. However, greedy algorithms do not always produce
the best result. Horowitz’s description stands for common viewpoints. Obviously,
there are big differences among these methods. After carefully choosing among these
methods, one can really design many efficient algorithms. However, there are no ef-
fective standards or rules to guide algorithm designers to choose appropriate one
from these methods. This has made great difficulty in designing algorithm by hand
or by computers. For example, students, even some computer scientists, get very
confused about dynamic programming and greedy in dealing with optimal problems.
A unified approach is needed for solving these problems.

2.3 Designing Efficient Algerithins

In Ref.[16], we gereralize the recurrence relation concept of a sequence of numbers
(difference equaticn) to problem solving sequence and have the following definitions.

Definition 1. Computing step is one ezecution of a statement or a group of
statements.

Both an iteration of a loop and a recursive call of a recursive procedure can be
considered as computing steps.

Definition 2. Suppose that the solution of problem P can be obtained by n
computing steps which produce the solution sequence: Si,Sa,...,Sn, where each S;,
1 < i < n, produced by one computing step is a subsolution of P, then S, is the
solution of P. Construct the equation: S; = F(S;), which means subsolution S; is
the function of subsubsolution S—j, where 1 < i <n,1<j <1 and S_J denotes
several subsolutions S;. We call the equation S; = F (FJ) as recurrence relation of
problem solving sequence, or recurrence for short.

The examples of recurrence relation of problem solving sequence are given in
Section 3. Obviously, it is easy to get the final solution of a problem from its recur-
rence relation of problem solving sequence. Algorithm analysis theory and practical
experience show that partition is a powerful strategy for dealing with complex ob-
jects. Computation by iteration can avoid recomputing the subsolution over and
over. These two strategies give us some general hints to design eflicient algorithms.
Based on this knowledge for a given problem, the algorithm design can be broken
into 3 steps:

Step 1. Construct the specification of a problem as formal as possible, that is to formulate
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what the algorithm should do precisely.

Formal specification forces the designer of algorithm to think over the problem carefully
and precisely, and it makes derivation and proof of recurrence possible. To construct for-
mal specification, we can borrow some notations from Dijkstral3, Knuth*”| Gries(!8! and
Backhouse!ll. However, as algorithm design is also a creative activity, it needs designer’s
knowledge, experience and intelligence. Some notations for special problem must be created
by himself.

Step 2. Partition the problem into a number of subproblems, each of which has the same
structure as the original problem but is smaller in size, then partition the subproblems into
smaller subproblems until each subproblem can be solved directly. The subproblem that
can be solved directly is called the smallest subproblem.

Obviously, the shape of recurrence or algorithm is decided by partition. Different par-
titions correspond to different algorithms. One can obtain some hints for partitioning a
problem from the formal specification of the problem. In general, there are two strategies to
partition a problem, balanceable and unbalanceable partitions. For most optimal problems,
unbalanceable partition is proper.

Step 3. Construct the recurrence relation of problem solving sequence S; = F(S;) and
the initiation that initiates the value of variables and functions appearing in recurrences,
then combine the initiation and all recurrences into an algorithm.

A good formal specification helps one to derive recurrences with quantifier trapsforma-
tion. An example presented in Section 3 demonstrates this techniouz.

Considering the initiation, there are two mecthods to produce the final solution
to the problem. One is recursion whick produces computing sequence according to
top-down fashion, denoted by 5; =] ¥ (E) The other is iteration which produces
computing sequer<e according to bottom-up fashion, denoted by S; =1 F(S;). Here,
we get two algoritlums represented by recurrence relation for solving the problem:
recursive algorithm and iterative algorithm. The iterative algorithm has higher effi-
ciency than recursive one since there is no overlapping computation in its computing
sequence.

2.4 Developing Correct Program

The recursive program corresponding to recursive algorithm can be developed
directly based on the recurrence relation. We just pay main attention to developing
the program corresponding to iterative algorithm.

The key for developing correct iterative program is loop invariant. This is rec-
ognized by not only the advocators of formal method of designing algorithms and
. programs but also some specialists of algorithm design, for example, Kingston('*,
Baasel®), and others. However, the existing standard strategies for developing loop
invariants are only suitable for some simple problems. There are many complicated
algorithms and programs that cannot get satisfying loop invariants using these tech-
niques. This leads to that many computer scientists doubt the possibility of deriving
or proving algorithms and programs using loop invariant. In Ref.[20], we exposed
new properties of loop invariant and presented two new strategies for developing it.
Following is one of the two strategies.

Strategy of developing loop invariants for new algorithmic programs: Based on
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the recurrence relation of problem solving sequence, determine all needed variables in
the program and describe the variation laws or the functions of each variable, the laws
or the functions are required by loop invariants; if a sequence variable (sometimes
a set variable) which will be used as a stack is needed, the content of the sequence
variable is defined recursively.

This strategy is quite powerful, especially in using its recursive definition tech-
nique to develop the loop invariant of an iteration program with inherent recursive
property. In Ref.[20] one can find an example using this technique. The development
of a program can be broken into two steps:

Step 1. Develop loop invariant based on the new strategy.

Step 2. Transform the algorithm to program.

Remark. The algorithms and programs developed by above approach are ab-
stract ones described in an abstract language that is similar to Dijkstra’s guarded
command language. To obtain executable program code, one must apply the tech-
niques of functional refinement and data refinement to abstract programs. The tech-
niques presented in Refs.[16,18,21] are especially recommended. For saving space,
we do not state these popular techniques here.

3 Examples of Using Partition-and-Recur Approach

The following two classic exzmpies are elabcratzly chosen from many algorithms
we developed using pactition-and-tecur®@. They respectively show that the prob-
lems that were originallv sclved by dynamic programming and greedy can be solved
using partition-and-recur approach. Since divide-and-conquer approach is a special
case of our approach, we do not include a divide-and-conquer example here. In
the development of these algorithms of the problems, we concentrate on develop-
ing algorithms represented by recurrence relation. Based on this representation of
algorithm, we can write loop invariants and program code of the algorithms in a
fairly straightforward manner. We put special emphasis on first example that solves
the problem of maximum product section. We will describe the details of each step
of algorithm design according to our methodology. However for saving space, in
Example 2, we keep the explicit steps and more details of algorithm design in mind
and just give an outline of algorithm development using partition-and-recur.

Remark About Symbols and Notations. We use Dijkstra’s guarded com-
mand language to describe programs. The variables are integer type without special
declaration. b(i : 7 — 1) denotes all adjacent elements b(k) in array b(0 : n — 1)
and is called a section where 0 < i<k <j<n-—-1;if i =7 b(¢: 7 —1) denotes
empty section. We use a unified format Q(7 : (¢) : f(2)) given by Dijkstra to denote
quantifiers including extended ones, where Q can be V, 3, 3, [, MIN (minimum
value of elements of a set) and MAX (maximum value of elements of a set), i is a
bounded variable, r(i) is the variant range of ¢ and f(3) is a function. max(a,b)
and min(a, b) are two functions whose values are maximum and minimum of ¢ and
b respectively.
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3.1 Maximum Product Section
3.1.1 Problem and Its Specification

Given an array a(0 : n — 1) containing n integers, try to store the maximum
product of all sections of @ in p. That is:
p = maxprod(a(0: n — 1))
where, maxprod(a(0: n — 1))= MAX(r,t: 0 <r <t <n: prod(r,t))

1 fr=t
Prod(r>t)_{H(i:rSiSt—lia(i)) ifr<t

According to this definition, prod(r,t) is the product of array section a(r : ¢t — 1);
if r =1, a(r : t — 1) denotes an empty section and its product is 1. An obvious
algorithm to solve this problem is enumerating the product of all sections of array
a, then choosing the maximum, but the computation complexity is O(n®). We hope
to develop a more efficient algorithm using partition-and-recur approach.

3.1.2 Partition

There are two methods to partition array a: balanceable and unbalanceabls
partitions. For this problem, since the maximum product ot each section obtained
by using balanceable partition cannot be combiuied into the solution of the origi-
nal section, we choose unbalanceable partition. Therefore; we partition computing
maxprod{a(0 : n — 1)) into computing maxpred (U : n — 2)) with a(n — 1), then
partition computing maxpiod(a(C : n -- 2)) into computing maxprod(a(0 : n — 3))
with a(n — 2), .., until computing maxprod(a(0 : 0)). Let F be the function to be
determined, we heve

maxprod(a(0: n — 1)) = F(maxprod(a(0: n — 2)),a(n — 1))
maxprod(a(0 : ¢ — 1)) = F(maxprod(a(0: i — 2),a(s — 1)) (1<i<n)

So, the key of constructing recurrence relation is to determine function F.

3.1.3 Constructing Recurrence Relation

Suppose maxprod(a(0 : ¢ — 2)) has been solved. We can derive the function F
by using the properties of quantifiers!’»?17), We have
maxprod(a(0: ¢ — 1))
=MAX(r,t:0<r <t<i:prod(rt))
= {Cartesian Product}
MAX(t:0<t<i:MAX(r:0<r <t:prod(rt)))
= {Range Splitting and Singleton Range with t =14 }
max(MAX(t:0<¢t<i—1:MAX(r:0<r <t:prod(rt))),
MAX(r: 0 < r < i : prod(r,1)))
= {Cartesian Product}
max(MAX(r,t:0 < r <t <i-1:prod(r,t)), MAX(r:0 < r <i:prod(r,i)))
= max(maxprod(a(0 : i — 2)), MAX(r : 0 < r < 7 : prod(r,1)))
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Let ma(:) = MAX(r : 0 < r < 1 : prod(r,¢)), which denotes the maximum product
of the section ending at a(¢ — 1) of array a. We have the following recurrence.

Recurrence 1.

maxprod(a(0 : 4 — 1)) = max(maxprod(a(0 : 7 — 2)), ma(3)) 1<i<n.

To compute ma(i), one can, based on the definition of ma(i), enumerate the
product of all sections in a(0 : 3 — 1) ending at a(i — 1) and get an O(i?) algorithm.
Using partition-and-recur, we hope to find a more efficient algorithm. Suppose
ma(i — 1) has been computed. We try to find the recurrence relation for computing
ma(i). Based on the properties of quantifiers, we have

ma(i) = MAX(r:0<r <i:prod(ri))
= max(MAX(r:0 <r <i-1:prod(r,i)),prod(s,i))
= max(MAX(r:0<r <i-1:prod(r,i—1)*a(i—1)),1)
{ma(i—l)*a(i-—l) ifa(i—1)>0
1 if a(i —1) =0
—ma(i—1)*a(i —1) ifa(t—1) <0

where, —ma(i — 1) is the minimum product of all sections ending at a(i —2) of array
a(0 : ¢ — 2). The following is its formal definition.
mi(i) = MIN(r : 0 < r < i : prod{r,i))
Similarly, we have

mi(i) = min(MIN(r:0<7<i—1:prod(r,i--1)xa{s—1)),1)
J min(mi{i — V) *a(i —1),1 ifa(i—1)>0
= 49 if a(i —1) =0
| me-1)*ai—1) ifai—1)<0

Based on the above derivation, we have the following recurrence.
Recurrence 2.

ma(i— 1) *a(i — 1) ifa(i—1)>0

ma(i) =<¢ 1 ifa(t—1)=0 0<iln
max(mi(i — 1) * a(i — 1),1) ifa(i—1)<0
min(mi(z - 1) * a(i — 1),1) ifa(i-1)>0

mi(i) = { 0 ifali —1)=0 0<i<n
a(i~1)*a(i—1) ifa(t1—1)<0

Obviously, according to the definition of maxprod(a(0 : ¢ — 1)) and prod(r,t),
if i = 0, then r = t = 4 = 0, prod(r,t) = 1, maxprod(a(0 : ¢ — 1)) = 1. Similarly,
ma(i) = mi(i) = 1. Therefore we have the following.

Initiation 1. i = 1A maxprod(a(0:—1)) =1Ama(0) =1Ami(0) =1

Combining Initiation 1, Recurrences 1 and 2, we have:

ALGORITHM: maximum product section
BEGIN: i = 1 Amaxprod(a(0: —1)) =1 Ama(0) =1 Ami(0) =1
RANGE:1<:<n
RECUR: maxprod(a(0 : ¢ — 1))=max(maxprod(a(0 : i — 2)), ma(i));
ALGORITHM: ma(i) and mi(i)
RECUR:
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ma(t — 1) xa(i — 1) ifa(t—1)>0
ma(i):{ 1 ifa(i—1)=0
max(mi(i — 1) x a(i — 1),1) ifa(i—1) <0
min(mi(z - 1) * a(i — 1),1) ifa(z—1)>0
mi(i)=4¢ 0 ‘ ifa(i—1)=0
ma(i—1) *a(i — 1) if a(i — 1) < 0

END

Based on this algorithm, let initial value of ¢ be 1, one can compute maxprod(a(0 :
i — 1)) step by step; finally when ¢ = n, we get the result of maxprod(a(0: n — 1)).

Remark on algorithm representation. The algorithm representation con-
sists of five components headed by five key words: ALGORITHM, BEGIN, RANGE,
RECUR, END. ALGORITHM component gives the name of the algorithm or the
name of the function that will be computed by the algorithm. The recurrences are
given between RECUR and END. BEGIN component gives the initiation of the re-
currences, that is the initial values of the variables and functions contained in the
recurrences. RANGE component gives the range of the variables appearirg in the re-
currences. An algorithm may contain subalgorithms. In above exainple, algorithms
ma(t) and mi(i) are subalgorithms of the maximum product secticr: algorithm. An
algorithm and its subalgorithm may share the same BEGIN 2nd RANGE compo-
nents.

3.1.4 Devuloping Loop Invariant and Program

Observing the algorithm of maximum product problem, besides variable ¢, addi-
tional three variables p, z, y are needed to store the value of maxprod(a(0: ¢ — 1)),
ma(i), mi(i) respectively. Now according to our strategies given in Ref.[20], we can
write loop invariant I as follows in a fairly straightforward manner.

I: p=maxprod(a(0:i—1))Az=ma(i)Ay=mi(i)A 0<i<n

Based on Initiation 1, I can be established by p,z,y := 1,1,1. The body of
loop can be constructed mechanically based on Recurrences 1 and 2. Following is
the program described in guarded command programming language for solving the
maximum product section problem.

i?p,w7y = 0,1?1’1;

doi#n—ifa(i) >0 —z,y:=zxa(i), min(y * a(z), 1);

Oa(?) =0— 2,y :=1,0;
Oa(z) < 0 — z,y := max(y * a(z), 1), z * a()

fi
p = max(p, T);
1 =141

od
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Readers c¢an verify the correctness of this program based on Recurrences 1, 2,
Initiation, loop invariant I and standard proof techniques in Ref.[2,4]. It is a simple
and trivial task in this context.

Remark. This is not an easy problem. The problem is taken from A. Kaldewaij
and its solution is given by M. Rem using the standard techniques of developing
program and proof hand in hand. Our development of the algorithm has sorme simi-
larity with theirs in using the techniques of quantifier transformation. However our
emphasis is different. We distinguish an algorithm, represented by recurrence and
initiation, from program, and pay special attention to algorithm manipulation rather
than program calculus. The algorithm represented by recurrence relation is exactly
a set of mathematical formulae. It is easier for formal proof and derivation. After
getting correct algorithm, transforming it into correct program is a trivial work.

- Compared with Manber’s methodology[1213], ours is also based on powerful mathe-
matical induction. So are the existing techniques of program proof and derivation.
We do believe that designing algorithm is a creative activity. However, we also be-
lieve that the invention of scientific notations, methods and theory can convert some
creative work into a routine job. In this example, we stick to partition-and-recur as
well as formal specification of the problem, and the derivation of Recurvence 1 and
Recurrence 2 is mainly done mechanically.

3.2 Minimum Spanning Tree Problem

Let G = (V, E,W) be¢ a counectad, undirected graph with a real-valued weight
function, wherc V' is the set of nodes, F is the set of edges and W is the set of weights
W (u,v) of each edge (u,v) in E. A spanning tree of graph G is a tree that connects
all nodes of the graph G, denoted by ST(G). There is more than one SP(G). Let
{SP(G)} denote the set of SP(G), where there is at least one SP(G) whose sum
of weights of all edges is as small as possible. This SP(G) is called the minimum
spanning tree of graph G, denoted by M ST(G). The problem is how to construct
an M ST(G) for a given graph G.

According to partition-and-recur approach, we assume T.n, 0 < n <| V| —1, is
a partial M ST(G). It means T.n is a set of n edges and all edges of T'.n belong to
an MST(G). If n =| V | —1, then T'.n is a full MST(G). We need to extend T'.n
with more edges one by one. The problem is what kind of edge can be added to T.n,
i.e., finding a function F satisfying

Tn+1=F(Tmn)

Since the final product is a tree with minimum weight, the edge we should find
must satisfy two constraints:

1. two nodes of the edge are not in the same tree;

2. the cost of the edge is as small as possible.

These give us some heuristic to produce a partition for graph G. Let P be a set
of nodes in G and divide nodes of G into two parts: P and V — P, with no edge in
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T.n whose one node is in P and the other in V — P. We call this division a partition,
denoted by (P,V — P).

An edge (u,v) satisfying u € P and v € V — P is called a crossing edge and a
crossing edge (u,v) is called minedge if its weight is the minimum among all crossing
edges. Let cross(P, V — P) denote all crossing edges on partition (P, V — P). Suppose
M is an M ST(G) that includes T'.n, then there is at least one edge in M that is a
minedge in cross(P,V — P). This edge is what we are looking for. Based on this
observation, we have the following recurrence:

Recurrence 3. T.n+ 1 = T.n U {minedge(P,V — P)} 0<n<|V|-2

The function minedge(P,V — P) produces a minedge on partition (P,V — P).
The reader can find a proof of Recurrence 3 in many textbooks, such as in Ref.[23].

Based on Recurrence 3, we can derive two well-known algorithms. Let T.n be
the connected component of partial M ST(G) and D.n be a set of all nodes in T'.n,
then we can make partition (D.n,V — D.n). Therefore we have another recurrence:

Recurrence 4. T.n + 1 = T.n({minedge(D.n,V — D.n)} 0<n<|V|-2

This recurrence gives us an easy way to construct an MST(G), specially in
choosing minedge. Since D.n contains all nodes in T'.n, therefore cross(D.n,V'—D.n)
includes all edges whose one node is in D.n and the other is in V' — D.n. Minedge
can be chosen in this domain. The key is how to make the partition (D.n,V — D.n).
Assume edge (u,v) is the minedge on partitica (D.n — 1.V — D — 1), where
u € Din—1and v € V — D.n— 1. The partition (D.n,V — D.n) can be derived
from the following recurrence:

Recurrence 5.

(Dn,V-—Dn)=({Dn-1U{v},V—-Dn-1-{v}) 0<n<|V]-2

We make the {ollowing initiation:

Initiation 2. n =0AT.0 =0 A D.0 = any node z in V.

Beginning at Initiation 2, using Recurrences 4 and 5, we can compute 7.1 step
by step, finally get 7. | V' | —1 that contains M ST(G). Obviously, Initiation 2,
Recurrence 4 and Recurrence 5 form an efficient algorithm. That is the well-known
PRIM algorithm.

ALGORITHM: PRIM

BEGIN: n =0AT.0=0AD.0=any node zin V

RANGE: 0<n |V | -2

RECUR: T.n + 1 = T.n U {minedge(D.n,V — D.n)}
ALGORITHM: minedge(D.n,V — D.n)
RECUR: choose((D.n,V — D.n), (u,v));

(Dn+1,V-Dn+1)=(DnuUu{v},V—-Dn-{v})

END

END

where Procedure choose((D.n,V — D.n), (u,v)) has the following meaning: (u,v)
contains the edge that has the minimum weight in cross(D.n,V — D.n).

Suppose all nodes of graph G are numbered by 1, 2, ..., | V | —1. Considering
Recurrences 4 and 5, let T.n be stored in set variable 7. We need another variable
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to store the weight of each edge in cross(D.n,V — D.n). However, a wise idea is
that for each node v in V — D.n, let element d(v) of array a(l : |v| — 1) contain
the minimum weight of any edge connecting v to a node in T.n. Based on PRIM
algorithm described above, we can write the precondition @, postcondition R, loop
invariant and its program as follows:

Program of PRIM Algorithm

{Q:G=(V,E,ZW)AA={adj(v) | v € V Aadj(v) is a set of nodes adjacent to v}}
{R:T = MST(G)} |

{I:T=TnaAV(j:jeV -D:d(j)=MIN(k:keD:w(k))A1<n<|V]|-1}

for each v € V do d(v) := 0o od;

T,u := 0, any node in V;
D := {u};

doD#V s foreachvinV —D do ifveadj(u)Aw(y,v)<d(v)

then d(v):= w(u,v);p(v) :=u od;

choosemin(u, V — D, d);
D,T = DU'{u}, T U {(u,p(w)}

od

where Procedure choosemin(u, V' — D, d) has the following mzaning: choose node z,
z € V — D, make d(z) as small as possible, then store z ir ». The first twe lines in
the loop body implement Procedure choose((D.n. V' — I’.n), (u,2)).

Based directly on Recurrence 3, we car. derive Krusksl aigorithm using similar
approach.

Final Remark. Oaly using partition-and-recur, two typical problems are solved.
On cursory examination, one may think partition-and-recur approach is the same as
the well-known divide-and-conquer. We believe that there is some similarity between
two approaches, however the differences are crucial. As described by Horowitz in
Academic Encyclopedia Computer Science(1993)[15], divide-and-conquer approach
always suggests splitting the problems into roughly equal size problems. Therefore
only a small number of problems could be solved by this approach. In literature and
textbooks of algorithm design, these problems were arranged in a small chapter.
However partition-and-recur can be used to solve general problems which originally
were solved by dynamic programming, greedy, enumeration, as well as divide-and-
conquer. The examples presented in this section are good evidence. The max-
imum product section originally was solved by dynamic programming, Minimum
spanning tree is a typical example solved by greedy approach. Readers can find
an example!2%l preorder binary tree problem, of using partition-and-recur to solve
divide-and-conquer problem. Fairly to say, divide-and-conquer is a special case of
partition-and-recur,

4 Comparison with Related Work

The partition-and-recur approach described above is a unified and systematic
approach for design algorithmic programs. There are some approaches similar with
ours.
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Manber’s approach. We have given our comments on Manber’s approach in
Section 1. The maximum product section algorithm is an example that follows our
viewpoint. This shows some promise to develop a software system that can finish
this routine work automatically. The similarity with Manber’s approach is that
our approach is also based on powerful mathematical induction. In fact, so are the
existing techniques of proof and derivation of algorithm and program.

Program calculus. This approach was created by Dijkstral®?l, and developed
into practical techniques by Gries!l, Backhousel!!, and others. The approach put
special emphasis on developing program rather than designing algorithm. One must
develop a program hand-in-hand with its loop invariant and proof of correctness.
Our development of algorithms has some similarity with theirs. We borrow some
of their te¢hniques of formal specification and quantifier transformation. However
our emphasis is different: we separate algorithm, represented by recurrence, from
program, then pay special attention to algorithm manipulation rather than program
calculus. The algorithm represented by recurrence relation is exactly a set of math-
ematical formulae and has mathematical transparency. It is easy for formal proof
and derivation on existing theoretical foundation. We believe that, after getting cor-
rect algorithm represented by recurrence, transforming it into correct pregrer is a
trivial work. Most of the work can be done mechanically. In contrast with program
calculus, one cannot derive program statements directly. One cap oniy inanipulate
logic formulae, i.e., semantics of program, extracted from e program. There are
some complicated transformatisi. processes from lngic to program or from program
to logic during derivaticn and proof ¢t program. '

Program irensferimation. The approach is founded by Strong, Burstall, Darling-
ton, Bird, Cohen, et al. Paull’s book® summarized the main results in this area.
To develop an algorithm, one must define a recursive function by enumerating all
possible cases. This recursive definition does not imply an efficient algorithm. For
increasing the efficiency, one must remove the recursion by seme transformation
rules. In many cases, this is a difficult task. In contrast with our approach, the
algorithm represented by recurrences and initiation has the same shape as their re-
cursive definition, but the difference is crucial. Our recurrence relation represents
an efficient algorithm rather than a general recursive definition. Our development
of minimum spanning tree algorithm is simpler and more convincing than Paull’s.

5 Conclusions and Discussions

In summary, developing efficient and correct algorithm using partition-and-recur
can be broken into a sequence of 5 steps:

1. Develop the formal specification of the problem:;

2. Partition the problem into a number of subproblems each of which has the
same structure as the original problem, but is smaller in size; continue this procedure
until reaching the smallest problem;

3. Develop an algorithm represented by recurrences and initiation;
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4. Write loop invariant directly based on our new strategy in Ref.[20];
5. Transform the algorithm to program.

As claimed by Manber (Ref.[13], p.4), a common criticism of almost any method-
ology is that, although it may present an interesting way to explain things that were
already created, it is of no help in creating them. This is a valid criticism, since
only the future will tell how effective a certain methodology is and how widely used
it becomes. Currently, our methodology is also mainly used in explaining, deriving
and proving existing algorithms(®*»2423] including path algorithms, travel tree algo-
rithms, Knapsack algorithm, schedule algorithms, sorting algorithms, array section
algorithms and some numeric algorithms. A convincing example is the development
of Knuth’s challenging program, using partition-and-recur, that converts a binary
fraction to decimal fraction with certain conditions!26:27l. We have also taught this
approach in graduate level courses(?2l. The benefit of having such a general method-
ology is twofold:

o Partition-and-recur is a unified and systematic approach for designing algorithms and
programs. It covers several existing algorithm design techniques, including divide-and-
conquer, dynamic programming, greedy, enumeration and some nameless methods. It
can partly avoid the difﬁculty in making choice among various existing algorithm de-
sign methods. Algorithm design is a creative activity. It needs desigrer’'s knowladge,
experience and intelligence. So does our approach. Partition-and-recur guides algorithm
designer to follow an effective way to find an efficizvt solution.

¢ We get a new representation of algoritlim, mainlv & set of recurrences and initiations.
That is exactly a set of mathematica! formulae and is easy for formal proof and derivation.
It characterizes the main idea of an ¢fficient algorithm and is more precise and simple than
the representation of algorithu in natural language, flowchart and program. Its particular
merit is easiness of understanding and demonstrating the ingenuity and correctness of an
algorithm. This also shows us some promise to use partition-and-recur in some automatic
or semiautomatic algorithm and program development system.

It should be pointed out that this is not a finished research project. As described
above, a number of algorithmic programs were developed by only using partition-
and-recur. Originally, several existing design methods were needed to explain them.
The obtained result is encouraging. However it is still not easy to determine the
exact range to which our approach can be applied. This situation is the same as
several existing approaches, e.g., program calculus, program transformation, Man-
ber’s approach and even some well-known algorithm design methods. We need to
develop more algorithmic programs for accumulating experiences in using our ap-
proach, then to determine how widely it can be used. In constructing problem
specification, more suitable notations are needed. To pursue higher efficiency of an
algorithm, we need more heuristics for partitioning a problem. For constructing and
manipulating recurrences, we need more mathematical tools. We are studying these
problems continually.
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