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Abstract The satisfiability (SAT) problem iz a basic prohlera iz computing
theory. Presently, an active area of research on SAT problem: is to design efficient
optimization algorithms for fuding e soluticn jor . satisfiable CNF formula. A
new formulation, the (miversa! AT prchblem model, which transforms the SAT
problem ~n Boolean spice into an optimization problem on real space has been
developed. Many optimization techniques, such as the steepest descent method,
Newton’s method, and the coordinate descent method, can be used to solve the
Universal SAT problem. In this paper, we prove that, when the initial solution is
sufficiently close to the optimal solution, the steepest descent method has a linear
convergence ratio 3 < 1, Newton’s method has a convergence ratio of order two, and
the convergence ratio of the coordinate descent method is approximately (1—3/m) for
the Universal SAT problem with m variables. An algorithm based on the coordinate
descent method for the Universal SAT problem is also presented in this paper.

Keywords satisfiability provlem, optimization algorithm, nonlinear program-
ming, convergence ratio, time complexity

1 Introduction

The satisfiability (SAT) problem is to determine whether there exists an assignment of
values in {0,1} to a set of Boolean variables {z1,...,z,,} that makes a conjunctive normal
form (CNF) formula true. The satisfiability problem of a CNF formula with at most !
literals in each clause is called the [-SAT problem.

Theoretically, for | > 3, the [-SAT problem is a well-known NP-complete problem. And
thus, there exists no polynomial time algorithm for the SAT problem on the assumption
that P ## NP. On the other hand, the SAT problem is fundamental in solving many
practical problems in logic programming, inference, machine learning, and constraint satis-
faction. Many practical algorithms and approaches have been developed to solve the SAT
problem!1—¢!,

Among many algorithms and techniques proposed, the Davis-Putnam algorithm!”], in
essence a resolution procedure, has been a major practical method for solving the SAT
problem. The Davis-Putnam algorithm is able to determine satisfiability as well as unsa-
tisfiability. However it is not eflicient enough to handle a large size problem. If the SAT
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problem is restricted to the case of finding a solution for a satisfiable formula, the problem
can be solved more efficiently in practice. Based on a local search strategy, previously
several families of simple local search algorithms have been developed for finding solutions
of satisfiable CNF formulas/®. These algorithms have a polynomial average run time for
[ > 3 and n/m = O(2!/1) for the randomly generated CNF formulas with n clauses, m
variables, and [ literals in each clause!. It has been shown that the SAT1 algorithms are
more efficient than the Davis-Putnam algorithm in finding solutions of satisfiable CNF
formulas(®19. Presently, to design an efficient algorithm for finding solutions of satisfiable
CNF formulas has become an active research areal®911],

Most algorithms for the SAT problem developed so far solve the problem on the Boolean
space. Recently many Universal SAT problem models that transform the SAT problem into
an optimization problem on the real space have been developed!®%12, Many optimization
techniques, such as the steepest descent method, Newton’s method, and the coordinate
descent method can be used to solve the UniSAT7 problem. In this paper, the convergence
ratios of three basic optimization methods for the UniSAY7 problem are given. V/e prove
that, when the initial solution is sufficiently close to the ontiiva’ soluvion, the steepest descent
method has a linear convergence ratio 8 < 1, Newiou's method has ar order two convergence
ratio, and the convergence ratio of the ccordinate descent m<tliod is approximately (1—8/m)
for the UniSAT7 problem witk nu varizables.

Many optimization :5ng'ori1.hms for the UniSAT7 problem were developed(®912], In this
paper, based on a cootiinate descent method, we describe a formal version of the SAT14.7
algorithm for the I/niSAT7 problem. The experimental results show that the' SAT14.7
algorithm is much more efficient than the Davis-Putnam algorithm[l3’14].

The UniSAT?7 problem model that transfers the SAT problem from Boolean space into
a space of real numbers gives a new approach to the SAT problem. It is expected to have
numerous practical applications.

The rest of this paper is organized as follows. In the next section, we will briefly overview
the previous work in the area. Section 3 describes the UniSAT7 problem model. In Section
4, we analyze the convergence ratios of the steepest descent method, Newton’s method,
and the coordinate descent method for the UniSAT7 problem. The SAT14.7 algorithm is
described in Section 5. Finally, Section 6 concludes this paper.

2 Previous Work

The existing SAT algorithms can be grouped into the following several classes!!4. Most
existing SAT algorithms can be grouped into these categories.

e Discrete, consirained algorithms. Algorithms in this category treat an SAT formula as an
instance of a constrained decision problem, applying discrete search and inference procedures to
determine a solution. One straightforward way to solve an instance of SAT is to enumerate all
possible truth assignments and check to see if one satisfies the formula. Many improved techniques,
such as consistency algorithmslls], backtracking algorithms[w_zo] term—rewritingll’zl, production
system[21], multi-valued logicm, Binary Decision Diagra.mslzz’zs], chip and conquer[m, resolution
and regular resolution!®6:23:31,57-59] independent set algorithmlsol, and matrix inequality systemlas]
have been proposed.

Other specific algorithms using these principles include simplified DP algorithms , and
a simplified DP algorithm with strict ordering of variables!®. The DP algorithm improved in
certain aspects over Gilmore’s proof method!®®!. Analyses of SAT algorithms often concentrate on
algorithms that are simple because it is difficult to do a correct analysis of the best algorithms. Under

(61—63}

1In this paper, a quantity f(n) is said to be O(g(n)) if limn—-o f(n)/g(n) > 0. A quantity h(n) is said
to be o(g(n)) if limn_, 00 f(n)/g(n) = 0.
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those conditions where simple algorithms are fast, related practical algorithms are also fast. (It is
difficult to tell whether a practical algorithm is slow under conditions that make the corresponding
simplified algorithm slow.)

( ( ( 1960: Davis-Putnam (DP) algorithm!”]
1965: Resolution[25]

1971: Consistency algorithms!(26—29]

1978: Loveland’s Davis-Putnam (DPL)[30:31]
1986: Parallel consistency chips(27:32:33]
1986: Binary decision diagrams DD)[22’23]
Constrained ¢ 1988: Chip and conquer(?4]

1990: DPL plus heuristic (DPLH)[34]

1989: Local search & backtracking!3®!

1993: Backtracking and probing(36]

4 1994: Parallel DP algorithm[37]
1994: Matrix inequality sysicml!3
| 1996: CSATI

3]

LG e R R B =)

-,

i937: Rardomized iocal search (SAT1)(8:35]
1987: Parallel local search (SAT1.6)[8:35]
1988: Local search for n-queen[”"m'“]
1990: Unison algorithm and hardwarel42:43]
1991: Local search complexity(19:44]

1991: Local search for 2-SAT(43]

1992: Local search with traps (SAT1.5)[9:35]
\ L 1992: Greedy local search — GSAT[46)

Unconstrained ﬁ

( 1986: Branch-and-bound (APEX)[47]
1988: Programming models[47+48}
Constrained{ 1988: Cutting planel49:50]
1989: Branch-and-cut/51}
1989: Interior point method[52:53]

1987: UniSAT modelsl8:13:54]
1987: Nonlinear optimization (SAT6)(®:13]
Unconstrained 1989: Neural net models{53,56]

wuEgoEs ~a800

1990: Nonlinear optimization & backtracking!3]
\ L 1991: SAT14 algorithms!13]

Fig.1. Some typical algorithms for the SAT problem.

A number of special SAT problems, such as 2-satisfiability and Horn clauses, are solvable
in polynomial time!®%%%7), There are several linear time a.lgorithms[GB'Gg]
algorithms!**7% existing.

e Discrete, unconstrained algorithms. In this approach, the number of unsatisfiable CNF (or
satisfiable DNF) clauses is formulated as the value of the objective function, transforming the SAT
formula into a discrete, unconstrained minimization problem to the objective function. Local search
is a major class of discrete, unconstrained search methods!®3>%446l It can be used to solve the
transformed formula.

Early work in constraint satisfaction and complexity study contributed to the development of
local search algorithms for the SAT problem!'*. There were two major approaches in this area:
randomized local search (SATI) and greedy local search (GSAT). The SAT! algorithm was the
first local search algorithm developed from the VLSI engineering and scheduling applications. The

and polynomial time
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GSAT algorithm was derived from the early local search algorithms for the n-queen problem.

1985 1986 1987 1988 1989 1990 1991 1992 1993 1994

Operations
research

CSP

Fig.2. Early development of local search algorithms for SAT problem.

e Constrained programming algorithms. Methods in this class were developed based on the
fact that CNF or DNF formulas can be transformed to instances of Integer Programming, and
possibly solved using Linear Programming relaxations!*7:48:50,52,53,71-73] Many approaches, in-
cluding branch-and-bound®”), cutting-plane[49’50], branch-and-cut{5!], interior-point[sz’sal, and im-
proved interior-point!”| have been proposed to solve the integer program representing, the inference
problem. Researchers found integer programming methods faster than resolution for certain ciasses
of problems, although these methods do not possess a robust convergence property and often fail
to solve hard instances of satisfiability!47>4850,52,53.711

e Unconstrained, nonlinear optimizatica aigorithms. Speciai models have been formulated to
transform a discrete formula or Bouiean spacz {C,1}" {a decision problem) into an unconstrained
UniSAT problem on rsel space E™ (an unconstrained nonlinear optimization problem). The trans-
formed formulas can be solved by many existing nonlinear optimization methods!®9:13:54],

In practice, mos: scquential SAT algorithms can be mapped onto parallel computer
systems, resulting in parallel SAT algorithms('4l. Accordingly, as given in Fig.3, there are
four classes of parallel algorithms for solving SAT.

( ( ( 1983: Parallel CLP algorithms(73:76]
1986: Parallel DRA chips!27:32:33]
1987: Paralle] DP algorithm[78]
1988: Parallel AC algorithms[77]
1988: Parallel CSP architectures(27:32]
1990: Unison algorithm and hardwarel42:43]
ﬁ 1992: Vectorized DP algorithmlm]
\ 1994: MIMD DP algorithm/[37]

Constrained ¢

a0 o0 n T

1987: CNF local search(8:35]

1987: DNF local search(8:23]

< Unconstrained{ 1987: Parallel local search!8:35]
1991: Discrete af8 relaxation(86]

L 1993: Multiprocessor local search(83}

( Constrained { 1989. Interior point method!52:53]

1987: UniSAT models®:13]
1987: Nonlinear optimization (SAT6)[8:13]
9 . 1991: Continuous af8 relaxation(86]
Unconstrained .
1991: SAT14 algorlthms[13]
113,54]

1991: Parallel nonlinear optimization:

g 0B —a30Q0Q

\ 1992: Neurocomputingl“]
Fig.3. Some parallel SAT/CSP algorithms.

e Parallel, discrete, constrained algorithms. Many discrete, constrained SAT and CSP algo-
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rithms have been implemented in parallel algorithms or put on special-purpose, hardware VLSI
architectures. These include parallel consistent labeling algorithms[75‘76], parallel discrete relax-
ation (DRA) chips!?"*2%% parallel arc consistency (PAC) algorithms!””), parallel constrained search
architectures[27’32], parallel Unison algorithms!*? parallel Unison architectures(*?], parallel DP
algorithms®”77°! and parallel logical programming languages® =34

e Parallel, discrete, unconstrained algorithms. A number of discrete local optimization algo-
rithms were implemented on parallel computing machines. These include CNF local search(®3%]
DNF local search[®13] parallel local search!®3%! and multiprocessor local search!®®. A new af
relaxation technique was developed in a parallel and distributed environment!®®l.

o Parallel, constrained programming algorithms. Kamath et al. implemented an interior point
zero-one integer programming algorithm on a KORBX(R) parallel/vector computer®?5%,

o Parallel, unconstrained, nonlinear optimization algorithms. Several of these algorithms have
been implemented: UniSAT models!®13), parallel, continuous o3 relaxation!®® and paralle! nonlin-
ear optimization algorithms!*3>4.

3 UniSAT7: A Universal SAT Problem Model

A CNF formula F is a logical and of . clauses, C: AC; A .. AChp. A clause C; is a logical
or of literals, i.e., @ V...V Q). A literal Q; is either a Boolean variable = or the negation
of the variable, Z. The satisfizbility probiem (SAT) is to determine whether there exists an
assignment of valves in {0, 1} to a set of Boolean variables {z1,...,z,,} that makes a given
CNF formula F satistiable (true)"87]. The SAT problem of a C N F formula with at most
[ literals in each clause is called the [-SAT problem.

Let zi,...,Z,, be Boolean variables and x be the vector (z1,...,2,) in {0,1}™. Let
Y1,- .., Ym be real variables and y be the vector (y1,...,¥n) in an m-dimensional real space,
E™. We now decribe one formulation for the SAT problem on E™, the UniSAT?7 problem
model(®212:54] Given a CNF formula F(x) from {0,1}™ to {0, 1} with n clauses Cy, ..., Cp,
an objective function fi(y) from E™ to F is defined as a sum of n clause functions c;(y)
(1<i<n):

hiy) = Zci()')- (1)

A clause function ¢;(y) is a product of m hteral functions ¢;;(y;) (1 < j < m):

¢ = H 0:5(y5), (2)

where
(y; — 1)?, if z; is in clause C;
¢.;j(y;) =< (y; +1)%, if #; is in clause C; (3)
1, if neither z; nor Z; is in clause C;

The correspondence between x and y is defined as follows (for 1 < ¢ < m):

1, if Y =1
I, = 0, if Y = -1

undefined, otherwise

Clearly, F'(x) is true if and only if fi(y) is the global minimum value 0 on the corresponding
ye {~1,1}™.
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The UniSAT7 problem model transforms the SAT problem on the Boolean space into an
optimization problem on the real space of E™. The UniSAT7 problem is to find a vector
y in E™ such that the corresponding vector x in {0,1}™ satisfies the given CNF Boolean
formula.

Any numerical optimization method can be used to solve the UniSAT7 problem. We will
analyze in the next section the convergence ratio and the efficiency of three basic optimiza-
tion methods: the steepest descent method, Newton’s method, and the coordinate descent
method[88! for the UniSAT7 problem.

To ensure the theoretical convergence ratios, instead of f;, the object function

fy) = H(Y) + fa(y) (4)

will be considered, where

f(y) = (y; - 1)*(y; + 1)% (5)
i=1
For all ye {—1,1}™, clearly f2(y)=0.

From this, for any ye {-1,1}™, f(y)=0 if and only if f1{y)=6. Thus, F(x) is true if
and only if f(y)=0 on the correspeading point y€ {--1,1j". Given a CNF formula F, we
will call f an object function of 7 and a vector y€ {—1,1}™ with f(y)=0 a solution of f.

For the object function f an:d the UniSAT7 problem, we have the following theorem.

Theorem 1. et f be an object function of a CNF formula F. For anyy € E™ with
f{y) < 1, we can find a vector y* € {—1,1}™ such that f(y*) = 0, i.e., we can find a
solution of the formula F.

Proof. Let y be a vector in E™ such that f(y) < 1. Then from f = f; + fz, we have
f1(¥) <1and fa(y) < 1. Then we have for each clause function c; (1 <i < n) of f; defined
in (3), ¢;(y) < 1. Therefore, for each clause function ¢; (1 < i < n), there exists a literal
function ¢;; in c; defined in (3) such that ¢;;(y) < 1. Define a round-off operation as follows:

- 1, lnyZO
Vi = -1, ify; <0

Let y* be the vector obtained from the round-off operation on y. Then clearly, the literal
function ¢;;(y*) = 0. This implies that the clause function ¢;(y*) = 0 and thus fi(y*) = 0.

For each clause function (y; — 1)%(y; +1)2 (1 < j < m) in f, fo < 1 implies that
either (y; ~ 1)2 < 1 or (y; + 1)? < 1. Therefore, for each clause function (y; — 1)%(y; + 1)?
(1 < j <m)in f;, by the round-off operation, we have (y; — 1)2(_1,1_;f +1)2 = 0. Thus, we
have fo(y*) = 0. Combining this and f,(y*) =0, y* is a solution of f. O

From the above theorem, the optimization process for solving the UniSAT7 problem can
be stopped when a vector ye E™ with f(y) < 1 is found.

The following definitions will be used in deriving the convergence ratios of the steepest
descent method, Newton’s method, and the coordinate descent method for the UniSAT7
problem.

For an object function f(y)=f(y1,.--,¥Ym), we define the gradient of f to be the vector

f(y) af(y))
y, 7 Oym /7

Vi) = (

In matrix calculations the gradient is considered to be a row vector.
For f(y), we define the Hessian of f at y be the m x m matrix denoted H(y) as

M],

HO) = [55,
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For function f defined in (4) and (5), clearly, f has the continuous first and second
derivatives, and

o f o f

dy:idy;  Oy;0y;

Therefore, the Hessian of f is a real symmetric matrix.

In the following of the paper, y will denote a row vector and y” will denote a column
vector.

4 Convergence Ratios

The UniSAT7 problem model transforms the SAT problem ifito an unconstrained opti-
mization problem on the real space of E™. Many nonlinear programming technigues can
be used to optimize the object function f. In this section, we analyze the convergence ratio
and efficiency of three basic methods: the steepest descent methsc, Nevrion's mcthod, and
the coordinate descent method, for the object functicn f defined ir (4) and (5). We do
not describe these methods here. They can be found in most neniinear programming text
books(®8].

The main result of this section is that for any Boolean CNF formula F, if y* is a solution
point of the object function * defined in (4) and (5), then the Hessian matrix H(y*) of f
at y* is positive definite. From this result, the convergence ratios of the three optimization
methods can be derived(89],

Definition 2%, An m x m real symmetric matriz H is positive definite if and only if
for all nonzero vector d in E™, d-H-dT > 0. Or equivalently, H is positive definite if and
only if all the eigenvalues of H are larger than zero.

Theorem 3. Let y*€ {—1,1}™ be a solution point of f. Then the Hessian matric
H(y*) of f is positive definite.

Proof. Let y*e {—1,1}™ be a solution of f. Since the Hessian matrix H(y*) of f is a real
symmetric matrix, by Definition 2, H(y*) is positive definite if and only if d-H(y*)-dT > 0
for any non-zero vector d= (dy,dy,...,dy) in E™.

Let d= (dy,...,dn) be an arbitrary non-zero vector in E™,

y(@)=y" +ad=(yf +adi,...,y;, + adn),

and
g&) = f(y(a)) = f(y* + ad) = f(y] + ody,. .., up, + adp).

By Taylor’s theorem, we have

_ dg(a) 1 dzg(a) 2 2
g{a) = g(0) + i X a+ 5o laco x o + o(a*).
From this, we have
1
gla) = g(0) + ¢'(0)a + Eg"(O)a2 + o(az), (6)
ey dg(a) of oy Of Oym
0) = =l———4+...+ =
90 da ’a:O (Byl Ou tot Oy, Oa )a:O
of of T
=(=~di+ ...+ —dn =Vf(y*)-d 7
<3y1 ! OYrm )(yx,---yym)=(y{,~--,y.‘n) f7) @
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ngy < P9 (xS 9uidy
9"(0) ==z ’a:o - (Zzl 9y:0y; %3—;)(,:0

(L% 50 ) meHEY

(Y1see¥m)=(U] ooy )

Since f has the global minimum value 0 at the solution point y*,

of  of

Vf(y* :(— )
i) oy OUm/ (Y10 Ym )= (W i)

=(0,...,0).

From this and (7}, we have g'(0) = 0 for any de E™. Therefore, from (£}, (8), and
g(0) = f(y*)=0, we have

1 1 . )
g(a) = 50"(0)a” + ofa?) = SFi(y*)-dT o + ola). )
On the other hand,

gle) = fly* + ad) = fily* + ad) + fo(y* + ad). (10)

Clearly, from (1) and (3), we have fi(y* + ad) > 0. Now we calculate f2(y* + ad). For
y; =1,

(y; — 1+ ad;)?(y] + 1+ ad;)? = (ad;)*(2+ ad;)? = (2ad;)? + o(a?),
and for y7 = ~1,

(y; -1+ adj)z(y;-' + 1+ adj)2 =(-2+ ozdj)z(ozdj)2 = (2ozdj)2 + o(az).

Therefore,
Ay +ad) =) (v — 1+ ad))*(y] + 1+ ad;)’ = ) _(2ad;)? + o(a?)
j=1 j=1
=4(d? + ... + d2)a® + o(a?). (11)

From (10) and (11), we have
gle) = f(y* +ad) = Ay +ad) + (& + B +... + d2Ja’ +o(e?). (1)

From (9) and (12), we have
. 1 .
fily* +ad) + 4(df + ...+ dfn)oz2 + o(az) = Ed-H(y“‘)-dToz2 + o(az).

Since f;(y* +ad)> 0, a can be arbitrarily small, and for any non-zero vector d, (df +...+
d%) > 0, the above equation holds if and only if d-H(y*)-d”> 0. Thus, from Definition 2,
at any solution point y*, H(y*) is positive definite. O

Now we give the convergence ratios of the steepest descent method, Newton’s method,
and the coordinate descent method for the UniSAT7 problem.
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Definition 488!, Let the sequence {ri} converge to r. The order of convergence of {ri}
is defined as the supremum of the nonnegative numbers p satisfying
k41 — 7|

0< lim ————— < oo.
koo |Tg — 7P

Definition 58], If a sequence {r«} converges to r in such a way that

the sequence {ry} is said to converge linearly to r with convergence ratio 3.

Proposition 688, Suppose f has second partial derivatives which are continuous on
E™. Suppose further that at the local minimum point y* the Hessian motriz of £, H(y*),
is posttive definite. If {yr} is a sequence generated by the steepest descent meihod that
converges to y*, then the sequence of objective values {f{(y)} converges to f(y*) linearly
with a convergence ratio no greater than [(A — a)/{A--a)!2, where A » a > 0 are the largest
and smallest eigenvalues of the Hess?aa matric H(y*), respectively.

Proposition 7188, Supsose f haos third partial derivatives which are continuous on E™.
Suppose further that t the iocal mimimum point y* the Hessian matriz of f, H(y*), is
positive definite. Then if siarted sufficiently close to y*, the points generated by Newton’s
method converge to y*. The order of convergence is at least two.

Lemma 8. Suppose f has second partial derivatives which are continuous on E™.
Suppose further that at the local m:inimum point y* the Hessian matriz of f, H(y"*), is
positive definite. If started sufficiently close to y* and {yx} is a sequence generated by the
coordinate descent method where at each stage the coordinate corresponding to the largest (in
absolute value) component of the gradient vector is selected (the Gauss-Southwell Method!®®])
that converges to y*, then the sequence of objective values { f(yx)} converges to f(y*) linearly
with a ~onvergence ratio no greater than 1 — Frs——l)’ where A > a > 0 are the largest and
smallest eigenvalues of the Hessian matriz H(y™*), respectively.

Proof. See Appendix. O

Theorem 9. Let f be the function defined in (4) and (5). If {yx} ts a sequence of
vectors generated by the steepest descent method that converges to a solution y* of f, then
the sequence of the objective values {f(yr)} converges to f(y*) linearly with a convergence
ratio [(A — a)/(A + a)]* < 1, where A > a > 0 are the largest and smallest eigenvalues of
the Hessian matriz H(y*) of f, respectively.

Proof. Clearly, f has second partial derivatives which are continuous on E™. Therefore,
the theorem follows from Theorem 3 and Proposition 6. O

Theorem 10. Let f be the function defined in (4) and (5). If started sufficiently close
to a solution point y*, the sequence {y} generated by Newton’s method converge to y*. The
order of convergence is at least two.

Proof. The theorem follows from Theorem 3 and Proposition 7. O

Theorem 11. Let f be the function defined in (4) and (5). If started sufficiently close
toy* and {yr} s a sequence generated by the coordinate descent method where at each stage
the coordinate corresponding to the largest (in absolute value) component of the gradient
vector is selected (the Gauss-Southwell Methodlss]) that converges to a solution y* of f, then
the sequence of the objective values {f(yx)} converges to f(y*) linearly with a convergence

ratio (1 — T(F?'—T)) < 1, where A > a > 0 are the largest and smallest eigenvalues of the

Hessian matriz H(y), respectively.
Proof. The theorem follows from Theorem 3 and Lemma 8. O
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From the convergence properties given above, we can roughly estimate the efficiency of
the steepest descent method and the coordinate descent method for solving the UniSAT7
problem.

Let {yx} be a sequence of vectors generated by the steepest descent method that converge
to a solution point y* and let the initial value of the vector yo to be (0,...,0). Then
fyo) =n+m.

From Theorem 9, we have that the convergence ratio of the steepest descent method for

fis
A—a\?
A+a)’
where A > a > 0 are the largest and smallest eigenvalues of the Hessiah matrix H(y*) of

f, respectively.
From this, we have

A—a
A+a

f(yrq) < ( >2f(Yk)» (13)

for sufficiently large k.
From A > a > 0, clearly there exists a constant # < 1 such that

(i72) <»

Therefore, if (13) holds for every k > 1, then for & > — log(m + n)/log 8, we have

fyy) B (n+m) < (n+m)=1.

n+m
Thus, from Theorem 1, the UniSAT7 problem can be solved in O(log(n 4+ m)) iterations by
the steepest descent method on the assumption that (13) holds for every k > 1.

Let {yx} be a sequence of vectors generated by the coordinate descent method where at
each stage the coordinate corresponding to the largest (in absolute value) component of the
gradient vector is selected (the Gauss-Southwell Method[ss]) that converges to a solution
point y*. Then by Theorem 11, we have

f(yr+1) < <1 - > f(ye)s (14)

A(m—1)

for sufficiently large k. Since A > a > 0, clearly there exists a # < 1 such that,

(- ams) =

Therefore, if (14) holds for all k¥ > 1, then initially choosing yo = (0,...,0) and for k >
—mlog(m + n)/log B, we have

a k a -m(—log(m+n)/log B)
f(Yk)S(l—m) f(YO)<(1—m) (m+mn)
< lestm /18P (1 4 ) = —— i () =1

From this and Theorem 1, the UniSAT7 problem can be solved in O(m log(n+m)/ log 3)
iterations by the coordinate descent method on the assumption that (14) holds for all k > 1.
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5 An Algorithm for the UniSAT7 Problem

Many optimization algorithms for the UniSAT7 problem were developed!®:12:13] Based
on a coordinate descent method(®® we now describe a formal version of the SAT14.7 algo-
rithm for the UniSAT7 problem on E™ (Fig.4). The kernel of the SAT14.7 algorithm is the
minimizer which minimizes the object function by the coordinate descent method.

Since the computation of the gradient of f; is much easier than that of f, to optimize
the function f; is more efficient than to optimize the function f for the UniSAT7 problem
in practice, though optimization on f may have better convergence ratio. Given the object
function f; on E™, the SAT14.7 algorithm initially chooses y from E™ and then the function
/1 is minimized with respect to each variables y; (1 < ¢ < m) in the minimizer until f; < 1.
Since for each clause function ¢; (1 < i < n) in f;, each variable y; (1 < j < m) appears
in ¢; at most once, f; is a quadratic function with respect to y;. Thus, minimizing j; with
respect to one variable can be done in O(nl) time. When f; < 1 then a reund_cf operation
defined in Section 3 is performed to find the solution.

In practice, before f; < 1, the algorithm could be ztuck «t a local miniioum point. To
overcome this problem, a local handler is added in the $ATi4.7 aigorithm. In the local
handler, a new initial vector y is generated.

Procedure S5AT14.7 ()
begin
/* initialization */
y:=initial_vector();
local := 0; limit :=poly(m);
/* search */
while (fi(y)> 1 and local < limit) do
begin
old.f = f1(y);
/* minimizer */
for i:=1tomdo
minimize f1(y) with respect to y;;
/* local handler */
if f1(y)> old.f then
begin y:=initial_vector(); local := local + 1 end;
end;

if f1(y) < 1 then y*:=round_off(y) else y*:=enumerate();
end.

Fig.4. SAT14.7: An optimization algorithm for the SAT problem on the real space E™.

The run time of the SAT14.7 algorithm can be estimated as follows. The initial por-
tion and the computation of fi(y) take O(In) time. In one iteration of the while loop,
minimizing f;(y) with respect to one variable can be computed in O(In) time, and thus,
the minimizer takes O(lmn) time. Clearly, one execution of the local handler takes O(m)
time. Summarizing the above, the run time of the SAT14.7 algorithm is O(klmn), where
k is the iteration times of the while loop. The experimental results show that the iteration
times of the while loop for optimizing f; is less than that for f. Using the results of the
iteration times in the last section, the value of k is expected to be O(log(m + n)/log B),
where 8 = (1 —a/(A(m —1)))™, A > a > 0 are the largest and the smallest eigenvalues of
the Hessian matrix H(y*), and the average time complexity of the SAT14.7 algorithm is

expected to be O(lmnlog(m + n)/log 8) if the SAT14.7 algorithm is not stuck at a local
minimum point.
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6 Conclusion

Recently, to design an efficient optimization algorithm for finding a solution of a satisfiable
CNF Boolean formula has become an active research. A new formulation, the UniSAT7
problem model, which transforms the SAT problem into an optimization problem on real
space, has been developed(8:12:54],

In this paper, we prove that, when the 1nitial solution is sufficiently close to the optimal
solution, the steepest descent method has a linear convergence ratio g < 1, Newton’s method
has an order two convergence ratio, and the coordinate descent method has a convergence
ratio of (1 — 3/m) for the UniSAT7 problem with m variables.
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Appendix. The Proof of Lemma 8

Since f has the global minimum value 0 at the solution point y*, Vf(y*) = 0. Then from
Taylor’s theorem, we have

fy) - F) = (v =Y HEY) e - )T +ol(ye —¥9)%).

From this, we have

F&0) = Fr) =) = FO) = (Fesr) — FO) = (v — ¥y YHE )y — ¥
~ b1 —YVHE) Frsr —¥)T + (¥ =¥ ) + Yiegr = ¥")?)

== 2(Yx1 —yOHE) e -y
- (Yk+1 - yk)H(y‘)(yk+l - Yk)T +o((yi — ym)2 + (Yk+1 - y.)z)
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= — 2o, di H(y")zi — (o)’ dxH(y")d}
+o((ye—y")? + (yr+1-¥")?), (15)
where
Yesr =Ye tard, 2=y, -y,
and aj satisfies
Vi(y, + ardi)df =0.
From this and

Yy
Vi(y) = Vi(y,) = / H(y)dy = (y—ys)H(ye)(1 + o(1)),

k
we get
0= Vf(y, + ardi)dy = (axdxH(ys))di (1 + 0(1)) + Vf(y,)dr.
Therefore,

“ViyJdr  _ -edp (16)

where gr = Vf(y,). In addition, since V f(y”) = (,

A
Viyr) = Vi(y,) - VFiy") = j' H(y")dy = (ve—y" )H(y")(1 + o(1)) = zsH(y*)(1 + o(1)).
ye

From this,
dH(y")al = zeH(y')d] = 8% _
Ry E =AY ) T T o)
Therefore, from (15) and (16), we have
T2 T\2 gl
F30) = F¥pn) = 2 B) - (Bd JAHGDA )

diH(ye)di (1+0(1))2  (deH(yx)d{)2(1 +0(1))?
From
fyr) = f(y") = zeH(y" )2z (1 + o(1))
and (17), we have

0 grd?)? __@dD)2dH(y")d}]
Fye) = Fnsa) _ " diH(ye)di 0002 (deH(yr)di)2(+00))2
fyo) = Fy*) 2 H(y")z; (1 +o(1))
(gedi)®
(deH(y,)dy ) (z«H(y*)z )(1 + o(1))
8 ( 2 3 d H(y")d} )
(1+o0(1))*  dpH(y,)d} (1 +o(1))?
(gedi)?
(deH(y,)d] )(g«H-1(y*)g} )(1 + 0(1))
(e — dxH(y")d ).
(1+0(1))*  deH(y,)d{ (1+ o(1))?

(18)

Let Ax and a be the largest and the smallest eigenvalues of H(y, ), respectively. Then Ay > ax > 0
for yi sufficiently close to y*, since H(y") is positive definite.
From this,
0 < ax(dxd?) < deH(y,)dT < Ax(dedy). (19)
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Therefore,
(grdi )’ >0
(deH(y,)dy ) (8« H (y*)g; ) (1 + o(1))

fly) — f(Yk+1)

From this and

Vo= ) 22
we have
( 2 B dkH(y*)dZ ) >
(1+0(1))*  deH(y,)d] (1 + o(1))2

Therefore, from (19},

I 1
geH ™' (v")gi < — (ki)
where a is the smallest eigenvalue of H(y*), and (18),

flys) — f(ny) > (gkd{)2
fy) = f(y*) ~ (Aeded])(1gigl)(1 + o(1))
2 dH(y" ) d,
X ((1 +o(1))2  Q.H(y,)dl (G + 0(1?)
N _a{gydi)?
" A (dedy) (rgT)(1 + o1))
a(grdT)? L SH(y)dy
Ai(dwdf)(grgt )1 +0(1))  (dH(yx)d})

+ o(1). (20)

Let
e; =(0,...,0,1,0,...,0).
P

i

Then it is clear that

20052(e¢,gk) =1 (21)
i=1
Since one e; is in the direction of dx_1, say em, cos(em,gx) = 0. Therefore, from (21), we have
that at least one of the terms cos®(e:,gx) > 1/(m — 1). Thus, from the fact that the coordinate

corresponding to the largest (in absolute value) component of the gradient vector gy is selected at
each stage,

(gkdf)z 2 1
————————=— = max cos (e; > .
(dedT)(gegT)  i=tiom—1 (eigr) 2 g
From this and (20),
Fi) = f(Yiq1) S92 1
fly) = fy") = A (m~1)(1+0(1))
a 1 d.H(y")dy
- — X X + o(1).
A D+ o)~ @enan W
As k — 00, yr—Yy”, we obtain
im f(Yk)_f(Yk+1) > a ,
k—oo f(yi)— fly*) = A(m-—1)
where A is the largest eigenvalue of H(y™).
From this, we get
lim fOer) —FO) e O

e ) —F7) ST Am D)



