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Abstract This paper introduces a non-Horn rule WRM which is a weak

form of rational monotony. We explore the e�ects of adding this non-Horn rule

to the rules for the preferential inference. In this paper, a relation j� is said to be

P+WRM i� it is a preferential inference and satis�es the ruleWRM. We establish

the representation theorem forP+WRM, and compare the strength ofWRM with

some non-Horn rules appearing in literatures. Moreover, we explore the relation

between P+WRM and conditional logic, and demonstrate that P+WRM is

equivalent to `at' fragment of conditional logic CS4.2. Another contribution of

this paper is to explore the relation between two special kinds of preferential models,

i.e., PRC model and quasi-linear model. Main result reveals that the latter is a

special form of the former.

Keywords nonmonotonic consequence relation, conditional logic, rational mo-

notony, injective PRC model, quasi-linear model

1 Introduction

It is widely acknowledged that commonsense reasoning is nonmonotonic, or defeasible.

Many researchers have proposed systems that perform such nonmonotonic inferences. The

best known are probably: negation as failure, circumscription, the modal system of Mc-

Dermott and Doyle, default logic and autoepistemic logic. Each of those systems is worth

studying by itself, but a general framework in which those examples could be compared

and classi�ed is missing. Gabbay was probably the �rst to suggest focusing the study of

nonmonotonic logic on their inference relations[1]. He proposed a generalization of logical

inference, motivated by default reasoning, in which monotony is violated for the purposes

of representing the behavior of nonmonotonic inference systems as inference relations. Gab-

bay suggested three basic conditions that any such relation should meet reexivity, cut and

weak monotony (i.e., cautious monotony in [2]). Gabbay argued for his three conditions on

proof-theoretic grounds but provided no semantics against which to check them. Recently,

inspired by Gabbay's work, many people have researched into abstract nonmonotonic infe-

rence relation from various angles[2�12].

Among them, Lehman, Magidor and others have investigated the e�ects of adding the

non-Horn rule called rational monotony to the rules for preferential inference presented in

[4]. They think that rational monotony is desirable. However, David Makinson points out

that[2] rational monotony is too strong to insist upon and we should explore other more

appealing way of constructing nonmonotonic inference relations with the desired behavior:
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validation of cumulativity, supraclassicality, distribution and disjunctive rationality but not

in general of rational monotony.

Bezzazi and Pino P�erez begin a semantic investigation on two other non-Horn rules,

called rational transitivity and rational contraposition[10]. Bezzazi, Makinson and Pino P�erez

study these and their related conditions more systematically, and establish interrelations and

provide semantic characterizations in [8]. In particular, they establish the representation

theorem for P+RM+RC and P+RM+WD (see Section 2 for the de�nition of these

systems), however, their result leave open the question of representation theorems for the

weaker postulate sets P+WD and P+RC. In [9], we introduce valuation-ranked model

and PRC model, and solve these questions in the framework of �nite propositional logic.

This paper introduces a non-Horn rulesWRM (Weak Rational Monotony) that is a weak

form of rational monotony, and explore the e�ects of adding this non-Horn rule to the rules

for preferential inference. A relation j� is said to be P+WRM i� it is preferential inference

and satis�es the rule WRM. We establish the representation theorem for P+WRM, and

compare the strength of WRM with some non-Horn rules appearing in literatures. We

also explore the relation between P+WRM and conditional logic, and demonstrate that

P+WRM is equivalent to `at' fragment of conditional logic CS4.2.

Moreover, this paper explores the relation between PRCmodel[9] and quasi-linear model[8],

and establish another representation theorem for the nonmonotonic inference relationP+RT.

2 Preliminaries

In this section, we will recall some basic de�nitions and results from [4, 5, 8], which will

be used in this paper.

2.1 Some Horn and Non-Horn Rules

We consider formulae of classical propositional calculus built over a set of atomic formulae

denoted by L plus two constants > and ? (the formulae true and false respectively). Let

Form(L) be the set of all well-formed formulae. If L is �nite, we will say that the proposi-

tional language is �nite. Let U be the set of valuations, i.e., functions v: L[f>;?g ! f0; 1g
such that v(>) = 1 and v(?) = 0. We use lower case letters of the Greek alphabet to denote

formulae, and the letters v; v1; v2 : : : ; to denote valuations. As usual, ` � means that � is

a tautology and v j= � means that v satis�es � where compound formulae are evaluated as

usual.

We consider certain binary relations between formulae. These relations will be called

inference relations or consequence relations. Gabbay uses the relation symbol j� to denote

nonmonotonic consequence to distinguish it from monotonic logical consequence. If �; � are

formulae, then the sequence � j� � is called a conditional assertion. In [1], a consequence

relation is de�ned as any binary relation R between propositional formulae for which certain

properties hold. If a pair (�; �) 2 R, then using this notion of consequence, one may

sensibly conclude � given �, and write � j� �. � j6� � means (�; �) 62 R. Certain especially

interesting properties of sets of conditional assertions are described as follows, the intuition

behind those rules may be found in [2, 4, 5, 6, 8].

LLE (Left Logical Equivalence) RW (Right Weakening)

j= �$ �; � j� 

�j � 

j= �! �;  j� �

 j� �

Or And

� j� ; � j� 

� _ � j� 

� j� �; � j� 

� j� � ^ 
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CM (Cautious Monotony) Cut

� j� �; � j� 

� ^ � j� 

� ^ � j� ; � j� �

� j� 

NR (Negation Rationality) DR (Disjunctive Rationality)

� ^  j6� �; � ^ : j6� �

� j6� �

� j6� �;  j6� �

� _  j6� �

RM (Rational Monotony) DP (Determinacy Preservation)

� ^  j6� �; � j6� :

� j6� �

� ^  j6� :�; � j� �

� ^  j� �

RT (Rational Transitivity) RC (Rational Contraposition)

� j� �; � j� ; � j6� :

� j� 

� j� �;:� j6� �

:� j� :�

WD (Weak Determinacy) Reexivity

� j6� �;> j� :�

� j� :�
� j� �

M (Monotony)

� j� �

� ^  j� �

An inference relation j� is said to be cumulative
[4] i� it contains all instances of Reex-

ivity axiom and is closed under the inference rules of LLE, RW, Cut and CM. We shall

name this system C for cumulative
�. The system P[4] consists of all the rules of C and

the rule Or. An inference relation that satis�es all the rules of P is said to be preferential.

Lehmann and Magidor introduce rational inference relation in [5]. The system R consists

of all the rules of P and the rule RM. An inference relation that satis�es all the rules of R

is said to be a rational inference relation. In this paper, we introduce a new non-Horn rule

named WRM (Weak Rational Monotony) as follows:

� j� ; � ^ � j6� ; � j6� :�

> j� :�

It is easy to see that the rule WRM restricts the employment of the rule RM through

strengthening the upper sequents of RM. The system P+WRM consists of all the rules

of P and WRM. An inference relation that satis�es all the rules of P and the rule WRM

is said to be a P+WRM inference relation.

2.2 Preferential Model

Following the de�nition in [4], a preferential model W is a triple hS; l;�i, where S is a

set, the elements of which will be called states, the interpretation function l : S ! U assigns

a valuation to each state, where U is the set of all valuations, and � is a strict partial order

on S (i.e., � is transitive and irreexive) satisfying the following smoothness condition: for

any � 2 Form(L), the set k � k
w
= fs : s 2 W and l(s) j= �g is smooth�. If there is no

ambiguity, we shall write k � k instead of k � k
w
. A preferential model W = hS; l;�i is said

to be injective model i� l is injective.

�Notice that AND is a drived rule of system C (see [4]). In the following, we will use it without proof.

�Let W be a set, � be a strict partial order over W and V � W , we shall say that V is smooth i� for

any t 2 V , either t is itself minimal in V (i.e., there is no w 2 V such that w � t), or there exists s 2 V such

that s � t and s is minimal in V .
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Let W = hS; l;�i be a preferential model. We adopt the following notations: the range

of l will be denoted by rang(l) (i.e., rang(l) =def fv : 9s (s 2 S and l(s) = v)g). If X � S,

then min(X) is the set of all minimal element of X with respect to � (i.e., min(X) =def ft 2
X : :9s (s 2 X and s � t)g), l(X) =def fv : 9s (s 2 X and l(s) = v)g. If � � rang(l), then

l�1(�) =def fs 2 S : 9v (v 2 � and l(s) = v)g, we shall write l�1(v) instead of l�1(fvg).
A ranked model W = hS; l;�i is a preferential model for which the strict partial order

� is modular, i.e., for any x; y; z 2 S, if x 6� y, y 6� x and z � x, then z � y.

Let W = hS; l;�i be a preferential model, the inference relation generated by W will be

denoted by j�
w
and is de�ned as follows: for any formulae � and �, � j�

w
� i� for any

s minimal in k � k, l(s) j= �. We denote the set f� : � j�
w
�g by C

w
(�). An inference

relation j� is said to be injective preferential relation i� there exists an injective preferential

model W such that j�= j�
w
.

One of the main tools in the study of nonmonotonic inference relations is the represen-

tation of such relations in terms of preferential models. Lehmann, Magidor and others have

investigated the semantic characterization of preferential relation and rational relation in [4,

5]. In particular, they have established the representation theorems for them respectively.

Theorem 2.1[4;5]. j� is a preferential inference relation i� there is a preferential model

W = hS; l;�i such that j�= j�
w
.

j� is a rational inference relation i� there is a ranked model W = hS; l;�i such that

j�= j�
w
.

In order to establish a representation theorem forP+RT (i.e., P+RM+RC,P+RM

+WD), Bezzazi, Makinson and Pino P�erez introduce quasi-linear model as follows.

De�nition 2.1[8]. A preferential model W = hS; l;�i is said to be quasi-linear i� it is

ranked and it has at most one state at any level above the lowest. In other words quasi-linear

means ranked and whenever r � s; r � t then s = t or s � t or t � s.

The following (representation) theorem is due to Bezzazi, Makinson and Pino P�erez.

Theorem 2.2[8]. The following conditions are equivalent for any preferential inference

relation j�:
(1) j� is generated by some quasi-linear model.

(2) j� is determinacy preserving.

(3) j� is rational transitive.

(4) j� satis�es both RM and RC.

(5) j� satis�es both RM and WD.

3 WRM Model

In order to establish a representation theorem for P+WRM, we introduceWRM model

as follows.

De�nition 3.1. A preferential model hS; `;�i is said to be a WRM model i� the

relation � satis�es the following condition: there exist a strict partial order set h
; <i with

minimum
�

and a surjection function  : S ! 
 such that for any s; t 2 S, (s) < (t) i�

s � t.

Lemma 3.1. A preferential model hS; `;�i is a WRM model i� for any s 2 S and

w 2 min(S), if s =2 min(S) then w � s:

Proof. ()) Since hS; `;�i is a WRM model, there exist a strict partial order set h
; <i
with minimum and a surjection function  : S ! 
 such that for any s; t 2 S, (s) < (t) i�

s � t. We denote the minimum by w0. It is easy to show that, for any w 2 S, w 2 min(S)

�Let W be a set, � be a partial order on W and V � W , we shall say that t 2 V is a minimum of V

i� for every s 2 V , s 6= t, we have t � s. If t is a minimum of W , we also say that t is the minimum of �.
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i� (w) = w0. Suppose that w, s 2 S, s =2 min(S) and w 2 min(S). Thus, we get

w0 = (w) < (s). Since (w) < (s) i� w � s, we obtain w � s.

(() Constructing a partial order set h
; <i and a surjection function  : S ! 
 as

follows:

(1) 
 = (S � fw : w 2 min(S)g) [ fs0g, where s0 =2 S;

(2) <=�+ (S � fw : w 2 min(S)g) [ fhs0; ti : t =2 min(S)g;�

(3) For any s 2 S, (s) =

�
s; if s 62 min(S);

s0; if s 2 min(S):
From the above construction, it is easy to show that h
; <i is a strict partial order set

with the minimum s0 and the surjection function  : S ! 
 satisfy that, for any s; t 2 S,

(s) < (t) i� s � t. Hence, hS; `;�i is a WRM model, as desired. 2

Theorem 3.1. If W = hS; `;�i is a WRM model, then j�
w
is a P+WRM inference

relation.

Proof. It is enough to show that j�
w

satis�es WRM. We proceed by reduction to

absurdity. Suppose that the relation j�
w
does not satisfy WRM. Thus, there exist A, B

and C such that A j�
w
C, A ^ B j6�

w
C, A j6�

w
:B and > j6�

w
:A. From > j6�

w
:A,

we conclude that there is a minimal element in S that satis�es A. Let t1 2 S be such a

state. The assumption A j�
w
C enables us to conclude that `(t1) j= C. From A j6�

w
:B,

we know that there exists a minimal element in k A k that satis�es B. Let t2 2 S be such

a state. Thus, `(t2) j= C holds by the assumption A j�
w
C. Similarly, by the assumption

A ^ B j6�
w
C, there exists a minimal element t3 in k A ^B k such that `(t3) j= :C. Since

A j�
w
C, t3 is not minimal in k A k. We consider two cases.

Case 1. Suppose that t2 is minimal in S. By Lemma 3.1, we obtain t2 � t3. It contradicts

that t3 is minimal in k A ^B k.
Case 2. Suppose that t2 is not minimal in S. Since t1 is minimal in S, by Lemma 3.1,

we get t1 � t2. It contradicts that t2 is minimal in k A k. 2

4 Interrelations Between WRM and Other Non-Horn Rules

In this section, we compare the strength of the rule WRM with some non-Horn rules

appearing in literatures.

Observation 4.1. P6)WRM.

Proof. It is enough to construct a preferential model in whichWRM does not hold. Let

L be the propositional calculus on the three variables p1, p2 and p3. Let S = ft1; t2; t3; t4g,

�= fht3; t4ig, `(t1) = fp1; p3g
�, `(t2) = fp1; p2; p3g, `(t3) = fp1; p3g and ` (t4) = fp1; p2g.

This de�nes a preferential model W . It is easy to verify that p1 j�w
p3, p1 ^ p2 j6�w

p3,

p1 j6�w
:p2 and > j6�

w
:p1. Hence, j�w

does not satisfy WRM. 2

Observation 4.2. P+WRM 6) RM.

Proof. We shall build a WRM model that generates an inference relation satisfying

WRM but not RM. Let L be the propositional calculus on the three variables: p1; p2
and p3. S = ft1; t2; t3; t4g, � = fht1; t2i; ht1; t3i, ht1; t4i; ht3; t4ig, `(t1) = fp2; p3g, `(t2) =
fp1; p2; p3g, `(t3) = fp1; p3g, `(t4) = fp1; p2g. This de�nes aWRM model W . By Theorem

3.1, j�
w
satis�es WRM. It is easy to verify that p1 j�w

p3, p1 j6�w
:p2 and p1 ^ p2 j6�w

p3.

So, j�
w
does not satisfy RM. 2

Observation 4.3. P+WRM 6) DR.

Proof. Let us consider the following WRM model W . The model W has �ve states s
i

(0 � i � 4), the ordering is: s0 � s1, s1 � s2, s0 � s2, s0 � s3, s0 � s4 and s4 � s3. The

�R + A is the restriction relation of R with respect to A, i.e., R + A = R \A2:

�We give the valuations as for a Herbrand model, that is identifying the subset of variables with its

characteristic function.
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language has three propositional variables: p, q and r. State s0 is labeled with the valuation

that does not satisfy any variables. State s1 is labeled with the valuation that satis�es only

p and r. The two states s2 and s3 are labeled with the same valuation that satis�es only

p and q. State s4 is labeled with the valuation that satis�es only q and r. Since W is a

WRM model, j�
w
satis�es WRM. On the other hand, it is easy to verify that p_ q j�

w
r,

p j6�
w
r and q j6�

w
r. So, j�

w
does not satisfy DR. 2

Observation 4.4[5]. P+DR ) NR.

Observation 4.5. P+DR 6) WRM.

Proof. Let L be the propositional calculus on the three variables: p0; p1 and p2. Let

S contain three elements: s
i
for i = 0; 1; 2 and `(s

i
) satis�es only p

i
. The partial order

�= jhs1; s2ij. This de�nes a preferential model W . First, we show that j�
w
does not satisfy

WRM. Indeed, we have p0_p1_p2 j�w
:p2, p0_p1_p2 j6�w

::p1 and > j6�
w
:(p0_p1_p2),

nevertheless, we also have :p1^ (p0_p1_p2) j6�w
:p2. Hence, j�w

does not satisfyWRM.

On the other hand, by the proof of Lemma 3.6 in [5], we know that any preferential model

that does not satisfy DR must have at least four states. Thus, j�
w
satis�es DR. 2

Observation 4.6. P+NR 6) WRM.

Proof. Immediately from Observations 4.4 and 4.5. 2

Observation 4.7. P+WRM 6) NR.

Proof. Let L be the propositional calculus on the three variables: p0, p1 and p2. Let

S contain six elements: s
i
for i = 0::5, and ` such that `(s0) j= :(p0 _ p1 _ p2), `(s1) j=

p0 ^ p1 ^ :p2, `(s2) j= p0 ^ :p1 ^ p2, `(s3) j= p0 ^ p1 ^ p2, `(s4) j= p0 ^ :p1 ^ :p2 and

`(s5) j= :p0^:p1^:p2. �= fhs0; sii: 1 � i � 4g[fhs5; sii: 1 � i � 4g[fhs2; s1i, hs3; s4ig.
This de�nes a WRM model W . It is easy to verify that p0 ^ p1 j6�w

p2, p0 ^ :p1 j6�w
p2

and p0 j�w
p2. Hence, j�w

does not satisfy NR. 2

Bezzazi, Makinson and Pino P�erez study some non-Horn rules systematically, and estab-

lish interrelations and provide semantic characterizations in [8]. They compare the strength

of the rules DP, RT, RC, WD and RM, and prove the following proposition:

Proposition 4.1[8]. Given the preferential rules P, the rules DP and RT are equivalent,

and are implied by M. They are also equivalent to the pair fRM, RCg and also to the pair

fRM, WDg. Moreover, given P, RC implies both WD and NR. However, given P, none

of the following implications hold: RM to WD, RC to DR, WD to NR.

They also establish the representation theorem for P+RT. However, their result leave

open the question of representation theorems for the weaker postulate sets P+WD and

P+RC. In [9], we solve these questions in the framework of �nite propositional logic. In

order to compare the strength of WRM with WD and RC, we recall some concepts and

result in [9].

De�nition 4.1[9]. Let W = hS; l;�i be a preferential model, the binary relation @ is

de�ned as follows:

For any X1;X2 � S;X1 @ X2 i� 8s (s 2 X2 ) 9t (t 2 X1 and t � s)).

De�nition 4.2[9]. A preferential model W = hS; l;�i is said to be valuation-ranked i�

@+ fl�1(v): v 2 rang(l) � l(min(S))g is a linear order. In other words, for any v1; v2 2
rang(l)� l(min(S)), if v1 6= v2 then l�1(v1) @ l�1(v2) or l

�1(v2) @ l�1(v1).

Theorem 4.1[9]. In �nite framework, j� is a P+WD inference relation if and only if

there is a valuation-ranked preferential model W = hS; l;�i such that j�= j�
w
.

Observation 4.8. (1) P+WRM 6) RC. (2) P+RC 6)WRM. (3) P+WRM 6)
WD. (4) P+WD 6) WRM.

Proof. By Proposition 4.1, we have P+RM 6) RC and P+RM 6) WD. Thus, it is

easy to know that P+WRM 6) RC and P+WRM 6) WD. In the following, we will

show P+WD 6) WRM.

Let L be the propositional calculus on the three variables: p0; p1 and p2. Let S contain six

elements: s
i
for i = 0; 1; 2; : : : ; 5, and ` such that `(s0) j= :p0^p1^:p2, `(s1) j= p0^p1^p2,
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`(s2) j= p0 ^:p1 ^ p2, `(s3) j= p0 ^ p1 ^:p2, `(s4) j= p0 ^ p1 ^:p2 and `(s5) j= p0 ^ p1 ^ p2.

�= fhs0; s1i; hs2; s3i; hs2; s4ig. This de�nes a valua-

tion-ranked preferential model W . Hence, by Theorem

4.1, j�
w
is a P+WD inference relation. On the other

hand, one easily veri�es that p0^p1 j6�w
p2, p0 j6�w

:p1,
p0 j�

w
p2 and > j6� :p0. Thus, j�

w
does not sat-

isfy WRM. Similarly, according to the representation

theorem for P+RC in [9], we may show P+RC 6)
WRM. 2

Together with the results in [2] that M implies DP

but not conversely, and thatRM impliesDR which im-

plies NR but neither conversely. The above results are

shown in Fig.1, where one condition implies another,

given a preferential inference relation, i� one can follow

arrows from the former to the latter.

Fig.1. The strength of some rules.

5 WRM-Transform and Representation Theorem for P+WRM

In this section, we establish the representation theorem for P+WRM. In the proofs for

representation theorem, it is usually necessary to construct a preferential model for a given

consequence relation. In various proofs for representation theorems, the authors usually

construct desired model directly based on given inference relation[4�6;8;11]. In this paper,

we do not construct desired model directly, but transform a KLM model to aWRM model,

where KLM model is introduced by Kraus et al. in [4]. We �rst recall some concepts and

results in [4].

Let j� be a preferential inference relation, following the technique in [4], we say that �

is not less ordinary than � and write � � � i� � _ � j� �. The valuation m 2 U is said to

be a normal valuation for � (i.e., �-normal) i� 8� 2 L such that � j� �, m j= � . Given a

preferential relation j�, Kraus et al. construct the preferential model W
c
= hS

c
; `
c
;�

c
i as

follows:

(1) S
c
= fhm;�i : m is a normal valuation for �g,

(2) `
c
(hm;�i) = m, and

(3) hm;�i �
c
hn; �i i� � � � and m j= :�:

For convenience, in the following, we call the above model W
c
= hS

c
; `
c
;�

c
i KLM model

associated with the relation j�.
Lemma 5.1[4]. If � � � and m is a �-normal valuation that satis�es �, then m is

�-normal.

The following lemma lists some properties of KLM model to be used.

Lemma 5.2. If W
c
= hS

c
; `
c
;�

c
i is a KLM model associated with the preferential

relation j�, then
(1) � j� � i� � j�

wc
�.

(2) > � � for any �.

(3) If hn; �i is a minimal element of hS
c
;�

c
i, then the valuation n is >-normal.

(4) If n is a >-normal valuation, then hn;>i is a minimal element in hS
c
;�

c
i.

(5) If hm;>i 6�
c
hn; �i, then m j= �.

(6) If hn; �i �
c
hm;�i, k is an �-normal valuation and k j= �, then k is a �-normal

valuation.

(7) If hm;>i 6�
c
hn; �i, then m is an �-normal valuation.

Proof. (1) See Lemmas 5.17 and 5.16 in [4].

(2) From j= (� _ >)$ > and > j� >, we have � _ > j� > by the rule LLE.

(3) Immediately from (2) and Lemma 5.1.
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(4) Otherwise, there exists hm;�i such that hm;�i �
c
hn;>i, so, by the construction of

W
c
, we have m j= false.

(5) By (2), we have > � �, so, if m j6= �, then hm;>i �
c
hn; �i. Consequently, m j= �:

(6) Immediately from Lemma 5.1 and the construction of the model W
c
.

(7) Immediately from Lemma 5.1, (2), (5) and the de�nition of �
c
: 2

In order to establish representation theorem for P+WRM, in the following we trans-

form a KLM model to a WRM model. Suppose that the relation j� is a preferential

inference relation, and the model W
c
= hS

c
; `
c
;�

c
i is the KLM model associated with j�.

We construct the preferential model 3(W
c
) = hS; `;�i as follows:

1) S = S
c
;

2) ` = `
c
;

3) �=�
c
[fhs; ti : s 2W

t
and t =2W

t
g, where W

t
= fhn;>i: hn;>i 2 Sg.

It is obvious that 3(W
c
) is a WRM model. For convenience, in the following, we call

the above model 3(W
c
) the WRM-transform of W

c
.

Lemma 5.3. If W
c
= hS

c
; `
c
;�

c
i is a KLM model, then j�

wc
� j�3(Wc) :

Proof. Suppose that � j�
wc

�. We want to show � j�3(Wc) �. Let hn; ri be minimal in

hk � k3(Wc);�3(Wc)i. Since k � k3(Wc)= k � kWc
and �

c
��3(Wc), hn; ri is still minimal in

hk � k
wc
;�

c
i. By � j�

wc
�, we have n j= �. Consequently, � j�3(Wc) �: 2

It is easy to see that, in general, j�
Wc
6= j�3(Wc). However, in the following, we will show

that, if the relation j�
Wc

satis�es the rule WRM then j�
Wc

=j�3(Wc) holds.

Lemma 5.4. The following rule is derivable in P+WRM:

> j� �! �;> j6� :�

� j� �

Proof. Suppose that > j� �! � and > j6� :�. Since > j6� :>� and the assumptions,

by WRM, we obtain > ^ � j� � ! �. By LLE, we have � j� � ! �. Furthermore,

combining it with � j� �, by AND and RW, we get � j� �. 2

Lemma 5.5. If W
c
= hS

c
; `
c
;�

c
i is a KLM model and j�

Wc
satis�es WRM, then

j�
wc
� j�3(Wc) :

Proof. Suppose that � j6�
wc

�. We want to show � j6�3(Wc) �. Since � j6�
wc

�, there

exists a minimal element in hk � k
wc
;�

c
i satisfying :�. Let hn; qi be such state. We consider

two cases.

Case 1. Suppose that hn; qi is minimal in hk � k3(Wc);�3(Wc)i:
Since n j= :� and hn; qi is a minimal element in hk � k3(Wc);�3(Wc)i, we get � j6�3(Wc)

�:

Case 2. Suppose that hn; qi is not a minimal in hk � k3(Wc);�3(Wc)i:
Since hn; qi is not a minimal element in hk � k3(Wc);�3(Wc)i, there exists hm;>i such

that hm;>i �3(Wc) hn; qi and m j= �. So, by Lemma 5.2 (4), we have > j6�
wc

:�. By

Lemma 5.2 (1), > j6�
wc
:� and � j6�

wc
�, we obtain > j6� :� and � j6� �. Furthermore, by

Lemma 5.4, we have > j6� �! �. Thus, > j6�
wc

�! � and there exists a minimal element

ht; i in W
c
such that t j= � and t j= :�. By the Lemma 5.2 (3), we have ht;>i 2 S. It is

obvious that ht;>i is minimal in hk � k3(Wc);�3(Wc)i. Consequently, � j6�3(Wc) �. 2

By Theorem 3.1, Lemmas 5.2 (1), 5.3 and 5.5, we get the following theorem:

Theorem 5.1. Suppose that j� is a preferential inference relation and W
c
= hS

c
; `
c
;

�
c
i is the KLM model associated with the relation j�. Then the following conditions are

equivalent.

(1) j� is a P+WRM inference relation.

(2) j�
wc
= j�3(Wc) :

�Otherwise, from j= :> ! :� and > j� :>, we have > j� :� by the rule RW, it contradicts the

last assumption.
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Theorem 5.2. j� is a P+WRM inference relation if and only if there is a WRM

model W = hS; l;�i such that j�= j�
w
.

Proof. Immediately from Lemma 5.2 (1), Theorems 3.1 and 5.1. 2

6 Conditional Logic CS4.2

Conditional logics were originally constructed in order to account for properties of condi-

tional statements in natural language. These logics consist of the classical propositional logic

augmented with a conditional connective, often written as ). This additional connective is

necessitated because the material conditional does not adequately reect linguistic usage of

\if-then" constructs. Recently, the use of conditional logics in nonmonotonic reasoning has

been explored[13�19]. Among them, Boutilier[13] and Lamarre[17] demonstrate that preferen-

tial system and rational system are equivalent to the `at' fragment of conditional logic C4

and CT4D respectively. Their results show clearly that nonmonotonic consequence relation

j� may be characterized by conditional implication). Furthermore, their researches lay

theoretic foundations of transforming the automated reasonings in conditional knowledge

base[5] into those in normal modal logics, for which automated theorem proving methods

are known.

In the ensuing paragraphs, we will explore the relation between P+WRM and the

conditional logic CS4.2. In this section, we introduce the conditional logic CS4.2.

The underlying language L) of CS4.2 is a standard propositional language with a

special connective ). Well-formed formula of L) is de�ned as usual. In the following, we

denote the set of all well-formed formulae of L) by Form(L)):

A plausibility space
[19] is a pair (
;�), where 
 is a set and � is a reexive and transitive

relation over 
. Given two subsets S and T of 
, we follow the standard technique in [19]

of saying that plausibility space (
, �) satis�es S * T if 8 s 2 S 9t 2 T \ S (s � t and

:9u 2 S � T (t � u)).

Lemma 6.1[19].

(1) If S * T1 and S * T2 hold in (
;�), then S * T1 \ T2 holds in (
;�).
(2) If S1 * T and S2 * T hold in (
;�), then S1 [ S2 * T holds in (
;�).
(3) If S * T1 and S * T2 hold in (
;�), then S \ T1 * T2 holds in (
;�).
(4) If S � T and S1 * S holds in (
;�), then S1 * T holds in (
;�).
De�nition 6.1. A partial order R is called weak directed relation if it satis�es the

following condition: for any x; y; z, if R(x; y) and R(x; z) then there exists an element t

such that R(y; t) and R(z; t):

LetM = hW;R; V i be a Kripke model	, R a weak directed relation overW and w 2W ,

we de�ne the notion M;w j=  as follows:

M;w j= p i� V (w) j= p, where p is a primitive proposition;

M;w j= :� i� M;w j6= �;

M;w j= � ^ � i� M;w j= � and M;w j= �;

M;w j= �) � i� S�
w
* S�

w
holds in hR(w), R + R(w)i, where R(w) = ft : hw; ti 2 Rg,

R + R(w) = R \ (R(w))2 and S�
w
= ft: hw; ti 2 R and M; t j= �g.

The conditional logic of normality (denoted by CS4.2), which is complete and sound

with respect to the class of weak directed frames, is the smallest S � Form(L)) such

that S contains the following axiom schema and is closed under the following rules, where

	Introduction about Kripke model is omitted. Detailed introduction concerning modal logic and Kripke

model may be found in [20].
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2
c
� =def :�) �
�,:
(1) All tautology in classical proposition logic.

(2) 2
c
(A! B)! (2

c
A! 2

c
B).

(3) 2
c
A! A.

(4) 2
c
A! 2

c
2
c
A.

(5) :2
c
:2

c
A! 2

c
:2

c
:A.

(6) (A) B)$ 2
c
(2

c
:A _ :2

c
:(A ^2

c
(A! B))).

(MP) From A! B and A infer B:

(NES) From A infer :A) A:

(US) From A infer A1, where A1 is a substitution instance of A:

The following lemma is trivial but useful in the following section.

Lemma 6.2. If hW;Ri is a weak directed frame, then A ) C;:(A ^ B ) C);:(A )
:B) j=hW;Ri > ) :A:

7 The System PWRM�

Nonmonotonic inference relation j� is a metalingustic object, however, conditional impli-

cation ) is in object language L), so, in order to explore the connection between them, we

follow the method in [13] and interpret j� as conditional connection in some object language

and translate the inference rules of P+WRM into the corresponding Hilbert-style axioms.

Boutilier[13] extends the language of conditional assertions as follows: permitting Boolean

combinations of assertions as well as propositional formula (without occurrence of j�) by
viewing j� as a connective. The well-formed formulae of this enriched language are called

extended conditional assertions, the set of which is denoted by L
EC

:

PWRM� is the smallest set S � L
EC

containing all tautology in classical proposition

logic and the following axioms, and is closed under the following inference rules:

ID A j� A,

AND (A j� B ^A j� C)! A j� B ^ C,
OR (A j� C ^B j� C)! A _B j� C,

CM (A j� B ^A j� C)! A ^B j� C,

WRM (A j� C ^ :(A ^B j� C) ^ :(A j� :B))! > j� :A,
T (:A j� A)! A,

LLE from j= A$ B infer (A j� C)! (B j� C),

RW from j= A! B infer (C j� A)! (C j� B),

MP from A! B and A infer B, and

US from A infer A1, where A1 is a substitution instance of A:

Let M = hS; `;�i be a WRM model and s 2 S: The truth of an extended conditional

assertion A at s is de�ned inductively as follows, where M;s j=PWRM� A means A is true

at s.

(1) M;s j=PWRM� p i� p 2 `(s), where p is a primitive proposition;

(2) M;s j=PWRM� :A i� M;s 6j= A;

(3) M;s j=PWRM� A! B i� M;s j= B or M;s 6j= A;

(4) M;s j=PWRM� A j� B i� A j�
M
B:

Theorem 7.1. `PWRM� A i� j=PWRM� A.

Proof. ()) By Theorem 5.2, the proof is trivial.

(() It is enough to show that every PWRM� consistent set is satis�able. Let �1 be

such a set of formulae, and � be any maximal consistent set in LEC containing �1. The


See: Zhu Zhouhui, Two dimensional structure intention theory and nonmonotonic reasoning,

Ph.D.Thesis, Nanjing University of Aeronautics and Astronautics, 1998.

�It is easy to ver�y that M;w j= 2c� i� 8t( if hw; ti 2 R
M

then M; t j= �) where M is a Kripke model.
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set fA j� B: A j� B 2 �g [ fA j6� B : :(A j� B) 2 �g is denoted by K. It is easy to

know that the set K forms a P+WRM inference relation. By Theorem 5.2, there exists

a WRM model M = hS; `;�i such that A j� B 2 K i� A j�
M

B. Construct a WRM

model M1 = hS1; `1;�1i as follows:
(1) S1 = S [ fwg, where w =2 S;

(2) �1=� [fhs;wi : s 2 Sg;
(3) For any s 2 S1,

`1(s) =

�
`(s); if s 6= w;

fp : p 2 � and p is atomicg; otherwise:

Clearly, M1 is a WRM model. In the following, we show M1; w j= �. We proceed by

structural induction on formula to show M1; w j= A i� A 2 �. Obviously, for any atomic

variable p, p 2 � i� M1; w j= p. Assume that the property holds for A and B. For the

formula with shape :� or �! �, the proof is trivial. In the following, we deal with formula

with shape � j� �. Suppose that A j� B 2 �. So, A j�
M
B. We consider two cases.

Case 1. Suppose that k A k
M
6= ;. By the construction of M1, any minimal point in

k A k
M1

is also minimal in k A k
M
. Hence, M1; w j= A j� B.

Case 2. Suppose that k A k
M
= ;. Since k A k

M
= ;, we get A j�

M
:A. Furthermore,

we know A j� :A 2 �. Since � is a maximal PWRM� consistent set, by the axiom T,

we know :A 2 � (i.e., A =2 �). By the inductive hypothesis, we gain M1; w j= :A: So,
k A k

M1
= ;. Hence, M1; w j= A j� B:

On the other hand, suppose A j� B =2 �. Since � is a maximal PWRM� consistent

set, we have :(A j� B) 2 �. Furthermore, we get A j6�
M
B. Hence, there exists a minimal

element (denoted by t) in k A k
M

such that M; t j6= B. It is obvious that t is still minimal

in k A k
M1

, so, M1; w j6= A j� B: 2

8 PWRM� and CS4.2

In this section, we will explore the relation between PWRM� and CS4.2. For the sake

of convenience, we suppose that the language L is denumerable.

De�nition 8.1. � =def fA : A is a well-formed formula of L) without occurrence of

nested )g:
De�nition 8.2. A translation functor o : LEC ! � is de�ned inductively as follows:

(1) If � is atomic, then �o = �;

(2) If � has the form :�, then �o = :�o;
(3) If � has the form � ! , then �o = �o ! o;

(4) If � has the form � j� , then �o = �o ) o:

De�nition 8.3. Let � be a maximal PWRM�
consistent set, � is called I-type maximal

consistent set if � satis�es the following condition:

> j� � 2 � or > j� :� 2 �; for any � 2 Form(L):

Otherwise, � is called II-type maximal consistent set.

Lemma 8.1. If � is a maximal PWRM�
consistent set, then S� = f� : > j� � 2 �g

is consistent and closed in classical propositional logic.

Proof. Suppose that S� is inconsistent. Thus, there exist �1; �2; : : : ; �n; � 2 S� such that

` �1^�2^� � �^�n ! :�. From > j� �
i
2 � (1� i � n), we have > j� �1^�2^� � �^�n 2 �.

Furthermore, by RW and MP, we get > j� :� 2 �. Since � is a maximal consistent set,

by AND, we have > j� :> 2 �. By T and MP, we obtain :> 2 �. This contradicts that

� is a consistent set. Analogously, we may show that S� is closed. 2
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De�nition 8.4. Let � be a maximal PWRM�
consistent set and :(� j� �) 2 �. The

set �
�j6�� is de�ned as follows:

�
�j6�� =

�
S� [ f:�g; if � 2 S�;

S�; otherwise:

Lemma 8.2. Let � be a maximal PWRM�
consistent set and :(� j� �) 2 �, then

�
�j6�� is consistent.

Proof. By Lemma 8.1, it is enough to show that �
�j6�� is consistent when � 2 S�.

Let :(� j� �) 2 � and � 2 S�. Suppose that �
�j6�� is inconsistent. Thus, there exist

�1; �2; : : : ; �n 2 S� such that ` �1 ^ �2 ^ � � � ^ �
n
! �. By Lemma 8.1, we have � 2 S�.

Consequently, > j� � 2 �. From > j� � 2 �, > j� � 2 � and :(> j� :>) 2 �, by

WRM, LLE, MP and the fact that � is a maximal consistent set, we gain � j� � 2 �. It

contradicts :(� j� �) 2 �. 2

Lemma 8.3. If � is a maximal consistent set and S� 6` �! �, then :(� j� �) 2 �.

Proof. Suppose that :(� j� �) =2 �. Since � is a maximal consistent set, we have

� j� � 2 �. Furthermore, by RW and MP, we gain � j� � ! � 2 �. On the other hand,

by ID, RW and MP, we obtain :� j� �! � 2 �. Further, by OR, LLE and MP, we get

> j� �! � 2 �. Hence, �! � 2 S�. This contradicts S� 6` �! �. 2

Lemma 8.4. If � is a II-type maximal consistent set and S� 6` �! �, then there exists

�
j6�Æ which is consistent with :(�! �).

Proof. Suppose that there does not exist such �
j6�Æ. Thus, for any :(> j� ) 2 �, we

have S� [ f:g ` � ! � or S� ` � ! �. Since S� 6` � ! �, we have S� [ f:g ` � ! �.

Moreover, since � is a II-type maximal consistent set, there exists Æ such that :(> j� Æ) 2 �

and :(> j� :Æ) 2 �. Hence, S� [ f:Æg ` � ! � and S� [ fÆg ` � ! �. Consequently,

S� ` �! �. This contradicts S� 6` �! �. 2

De�nition 8.5. Suppose that � is a II-type maximal consistent set. If S� 6` �! � and

�
j6�Æ [ f:(�! �)g is consistent, then we de�ne �

�j6��

j6�Æ
as follows:

�
�j6��

j6�Æ
=def �j6�Æ [ f:(�! �)g:

De�nition 8.6. Let � be a maximal consistent set, 
� is de�ned as follows:


� =

�
f�

j6�Æ : :( j� Æ) 2 �g; if � is a I-type consistent set ;

	�; otherwise;

where 	� = f�
j6�Æ : :( j� Æ) 2 �g [ f�

�j6��

j6�Æ
: S� 6` � ! �;�

j6�Æ [ f:(� ! �)g is

consistent and :( j� Æ) 2 �g:
Theorem 8.1. If � is a maximal PWRM�

consistent set, then there exists a CS4.2

model, which satis�es the set �o = f�o : � 2 �g.
Proof. Let �+ = f� j� � : � j� � 2 �g and �� = f� j6� � : :(� j� �) 2 �g. Thus,

�+ [ �� is a P+WRM inference relation, and therefore there exists a WRM model

hS;�; `i generating �+ [ ��. According to the proof of Theorem 7.1, there exists a WRM

model M1 = hS [ fw0g;�1; `1i such that M1; w0 j= � and s �1 w0 for any s 2 S: In the

following, we will construct a CS4.2 model M and show M;w0 j= �o.

Since L is denumerable, �� is denumerable. Hence, there exists an in�nite sequence

s0; s1; s2; : : : ; si : : : (i � 0) satisfying the following conditions:

(1) s0 = S�,

(2) s
i
2 
� (i � 1), and

(3) for any natural number n and x 2 
�, there exists a natural number m such that

m > n and s
m
= x:

Construct a CS4.2 model M = hD
M
; `
M
;�

M
i as follows:
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(1) D
M

= S [ fw0g [ fsi : i � 0g,
(2) �

M
= (�1)

�1[ fhs
i
; s
j
i : i � jg [ fhw; s

i
i : w 2 S [ fw0g and i is a natural numberg

[ fhx; xi : x 2 D
M
g,

(3) By Lemmas 8.2 and 8.4, for any x 2 
�, x is consistent. Now, for any s
i
, we choice

arbitrarily a word which satis�es s
i
and denote it by choice(s

i
). Construct `

M
as follows:

for any s 2 D
M
; `

M
(s) =

�
`
M
(s) = `1(s); if s 2 S [ fw0g;

`
M
(s) = choice(s); if s 2 fs

i
: i � 0g:

It is obvious that the relation �
M

is weak directed. In the following, we will show that

M;w0 j= �o. We proceed by structural induction on formula.

(1) Obviously, if � 2 �o and � 2 Form(L), then M;w0 j= �.

(2) Suppose that � ) � 2 �o. Thus, � j� � 2 �. If k � k
M
= ;, then M;w0 j= � ) �

holds trivially. If k � k
M
6= ;, let w be an arbitrary element in k � k

M
. We consider two

cases.

Case 2.1. Suppose that w 2 fs0; s1; : : : ; si; : : :g:

Since � j� � 2 � and � is a maximal consistent set, we get > j� � ! � 2 �� .

Hence, M;s
i
j= � ! � for any i: Therefore, M;w j= � ^ �, and for any s, if w � s then

M;s j= �! �.

Case 2.2. Suppose that w 2 S [ fw0g:
By the smoothness of k � k

M1
, w is minimal in (S [ fw0g)\ k � k

M1
or there exists

a minimal element (denoted by t) such that t �1 w: In both cases, we can conclude that

there exists t1 (t1 = w or t1 �1 w) such that M1; t1 j= � ^ � and for any u, if u �1 t1 then

M1; u j= � ! �. Furthermore, together with the construction of M , we know that there

exists t1 satisfying the following conditions:

(a) w �
M
t1,

(b) M; t1 j= � ^ �, and
(c) for any u, if t1 �M

u then M;u j= �! �:

With both Case 2.1 and Case 2.2, we get M;w0 j= �) �:

(3) Suppose that :(�) �) 2 �o: Thus, :(� j� �) 2 �. We consider two cases.

Case 3.1. Suppose that � is a II-type consistent set.

Case 3.1.1. Suppose that S� ` �! �.

Hence, > j� �! � 2 � and > j� :� 2 ��. Consequently, we obtain :� 2 S�. On the

other hand, since :(� j� �) 2 �, we get � j6�
M1

�. Hence, there exists a minimal element s

in k � k
M1

such that `1(s) j= � ^ :�. So, by :� 2 S� and the construction of M , for any

x 2 D
M
, we have `

M
(x) j6= � if s � x. Consequently, M;w0 j= :(�) �):

Case 3.1.2. Suppose that S� 6` �! �.

By Lemma 8.4 and the construction of M , it is easy to verify that M;w0 j= 2c3c
:(�!

�). Therefore, M;w0 j= :(�) �):

Case 3.2. Suppose that � is a I-type consistent set.

Since � is a I-type consistent set, for any � 2 Form(L), we get � 2 S� or :� 2 S�. If

:(� ! �) 2 S�, then we get M;w0 j= 2
c
3
c
:(� ! �). If � ! � 2 S�, then the proof is

analogous with Case 3.1.1. Therefore, M;w0 j= :(�) �):

For any formula � 2 �o, since � possesses one of the above three forms or may be

translated equivalently into the form (�11 _ �12 _ � � � _ �1m) ^ (�21 _ �22 _ � � � _ �2m) ^
� � � ^ (�

n1 _�n2 _ � � � _�nm), in which �
ij
possesses one of the above three forms. Hence, if

� 2 �o then M;w0 j= � by the proof of (1){(3). 2

�See the proof of Lemma 8.3.

�Otherwise, since T j� �! � 2 �, :(T j� :�) 2 �, and :(T j� :T ) 2 �, byWRM, LLE and MP,

we get � j� �! � 2 �. Furthermore, since � is a maximal consistent set, by ID, AND and MP, we have

� j� � 2 �. This contradicts :(� j� �) 2 �.
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Theorem 8.2. For any � 2 L
EC

, `PWRM� � i� `CS4:2 �
o:

Proof. (() Suppose that 6`PWRM� � and `CS4:2 �o. Thus, there exists a maximal

PWRM* consistent set S such that :� 2 S. By Theorem 8.1, we know that there is a

CS4.2 model which satis�es :�o. This contradicts the soundness of CS4.2.
()) By Lemmas 6.1 and 6.2, it is easy to verify that the translations of all axioms and

rules in PWRM� by the functor o is valid in CS4.2 model. Thus, for any � 2 L
EC

,

if `PWRM� � then j=CS4:2 �o. Furthermore, by the completeness of CS4.2, we obtain

`CS4:2 �
o. 2

De�nition 8.7. For any � 2 �, the translation of � into L
EC

(denoted by ��) is de�ned

inductively as follows:

(1) If � is atomic, then �� = �;

(2) If � has the form :�, then �� = :��;
(3) If � has the form � ! , then �� = �� ! �;

(4) If � has the form � ) , then �� = �� j� �. 2

Theorem 8.3. For any � 2 �, `PWRM� �� i� `CS4:2 �.
Proof. By Theorem 8.2, it is trivial. 2

The above Theorems 8.2 and 8.3 demonstrate that P+WRM is equivalent to `at'

fragment of conditional logic CS4.2, where `at' fragment means tautology in CS4.2 without

occurrence of nested ).

9 Quasi-Linear Model: A Special Form of PRC Model

Bezzazi, Makinson and P�erez established the representation theorem for P+RT in terms

of quasi-linear model. However, they left open the question of representation theorems for

the weaker postulate sets P+RC and P+WD[8]. In [9], we introduce valuation-ranked

model and PRC model, and solve those open questions. In this section, we will explore the

relation between PRC model and quasi-linear model. Main result reveals that quasi-linear

model is a special form of PRC model.

De�nition 9.1[9]. A preferential model W = hS; l;�i is said to be PRC model i� it

satis�es the following conditions:

(1) W = hS; l;�i is valuation-ranked;
(2) for any v 2 l(min(S)) and s 2 S, if l(s) =2 l(min(S)) and l�1(l(s)) is not the minimum

element of the linear order @+ fl�1(v) : v 2 rang(l) � l(min(S))g, then there exists t 2 S

such that t � s and l(t) = v, and

(3) if l�1(v0) is the minimum element of the linear order @+ fl�1(v) : v 2 rang(l) �
l(min(S))g, then, for any v 2 l(min(S)) such that 9t (t 2 l�1(v0) and v =2 l(fw : w � tg)),
there exists s 2 l�1(v0) such that l(ft : t � sg) = fvg.

In [9], we have established the following theorem in the framework of �nite language.

Theorem 9.1[9]. j� is a P+RC inference relation if and only if there exists a PRC

model W = hS; l;�i such that j�= j�
w
.

De�nition 9.2[8]. A model W = hS; l;�i is said to be parsimonious i� for every state

s 2 S there is a formula � such that s 2 min(k � k).
Lemma 9.1. If W = hS; l;�i is an injective quasi-linear model, then W is a valuation-

ranked preferential model.

Proof. Since W is a quasi-linear model, �+ (S � min(S)) is a strict linear order. By

injectivity, l(S � min(S)) \ l(min(S)) = ; and l�1(v) is a single set for any v 2 rang(l).

Thus, the relation @+ fl�1(v) : v 2 rang(l) � l(min(S))g is strict linear. Hence, W is a

valuation-ranked preferential model. 2

Lemma 9.2. If W = hS; l;�i is a quasi-linear model, then s � t for any s 2 min(S)

and t 2 S �min(S):

Proof. This follows immediately from the fact that W is a ranked model. 2
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Lemma 9.3. If W = hS; l;�i is an injective quasi-linear model, then W is an injective

PRC model.

Proof. By Lemma 9.1, W is an injective valuation-ranked model. Suppose that v 2
l(min(S)), s 2 S and l(s) =2 l(min(S)). Thus, there exists t 2 min(S) such that l(t) = v.

Obviously, s 2 S �min(S). Furthermore, by Lemma 9.2, we get t � s. So, W satis�es the

conditions (2) and (3) in the de�nition of PRC model. Hence, W is an injective PRC model.

2

Lemma 9.4. If W = hS; l;�i is a quasi-linear model, then there exists a quasi-linear

model W1 = hS1; l1;�1i satisfying the following conditions:

(1) 8s; t 2 min(S1)(l1(s) = l1(t)) s = t), and

(2) j�
W
= j�

W1
:

Proof. We de�ne the binary relation �= over min(S) as follows:

s �= t i� l(s) = l(t); for any s; t 2 min(S):

It is easy to show that �= is an equivalence relation. We construct W1 = hS1; l1;�1i as
follows:

(a) S1 = (S �min(S)) [ f[t] : t 2 min(S)g, where [t] = fs : t �= s and s 2 min(S)g,

(b) for any s 2 S1, l1(s) =

�
l(s); if s 2 S �min(S)

l(t); if there exists t 2 min(S) such that s = [t]
, and

(c) �1=�+ (S �min(S)) [ fh[t]; si : s 2 S �min(S) and t 2 min(S)g:
By Lemma 9.2 and the construction of �=, it is easy to know that W1 satis�es the

condition (1), and the above construction is well-de�ned, i.e., this de�nition does not depend

on the choice of the representative of [t]. Furthermore, by the construction of W1, we get

l(min(k�k
W
)) = l1(min(k�k

W1
)) for any � 2 Form(L). Hence, j�

W
= j�

W1
. 2

Theorem 9.2. If W = hS; l;�i is a quasi-linear model, then there exists a quasi-linear

model W1 = hS1; l1;�1i satisfying the following conditions:

(1) W1 is injective,

(2) W1 is parsimonious, and

(3) j�
W
= j�

W1
:

Proof. Without loss of generality, by Lemma 9.4, we may suppose that W satis�es the

following condition:

if l(s) = l(t) then s = t; for any s; t 2 min(S):

Construct W1 = hS1; l1;�1i as follows:
(a) S1 = [f�(�) : � 2 Form(L)g, where �(�) = min(fs : s 2 S and l(s) j= �g),
(b) l1 = l + S1, and
(c) �1=�+ S1:
It is obvious that W1 is a preferential model. Since W is a quasi-linear model, by the

above construction, �1 satis�es the following conditions:

1) 8x; y; z 2 S1( if x 6�1 y, y 6�1 x and z �1 x then z �1 y);

2) 8x; y; z 2 S1( if x �1 y and x �1 z then z �1 y or y �1 z or y = z):

Hence, W1 is a quasi-linear preferential model. Furthermore, by the construction of S1,

we have w 2 min(k � k
W1

) for any � 2 Form(L) and w 2 4(�). So, W1 is parsimonious.

In the following, we verify that W1 is injective. Suppose that there exist s; t 2 S1 such that

s 6= t and l1(s) = l1(t). By the construction of S1, we have s 6� t and t 6� s. Since W1

is a quasi-linear model, by Lemma 9.2, s; t 2 min(S1). It is easy to show that min(S) =

min(S1). Hence, s; t 2 min(S): This contradicts the assumption that, for any s; t 2 min(S),

if l(s) = l(t) then s = t. Thus, W1 is injective. Furthermore, by the construction of W1, we

get l(min(k � k
W
)) = l1(min(k � k

W1
)) for any � 2 Form(L). Hence, j�

W
= j�

W1
. 2

Immediately from Theorem 9.2 and Lemma 9.3, we get the following theorem.
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Theorem 9.3. If W = hS; l;�i is a quasi-linear model, then there exists an injective

PRC model W1 such that j�
W
= j�

W1
.

The above theorem reveals that, for each quasi-linear model W , there exists an injective

PRC model which is equivalent to W in the sense to generate the same nonmonotonic

inference relation. Bezzazi, Makinson and P�erez establish a representation theorem for

P+RT in terms of quasi-linear model (see Theorem 2:2) in [8]. By the above result, we

also establish a representation theorem for P+RT in terms of injective PRC model as

follows.

Theorem 9.4. j� is a P+RT inference relation if and only if there exists an injective

PRC model W = hS; l;�i such that j�= j�
W
.

10 PRC Models and Injective-Closed

De�nition 10.1. Let S be a set of preferential models. We say that S is injective-closed

if for any W 2 S, there exists an injective model W1 2 S such that j�
W
= j�

W1
:

A number of results in literatures reveal that some preferential model sets are injective-

closed, e.g., �lter model sets, quasi-linear model set, ranked model set and so on[6;8]. In this

section, we will show that the set of all PRC models is not injective-closed.

Lemma 10.1. Suppose that W = hS; l;�i is an injective PRC model. If s 2 min(S)

and t 2 S �min(S), then s � t:

Proof. Suppose that there exists s 2 min(S) and t 2 S �min(S) such that s 6� t. Since

l is injective and t 2 S �min(S), we have l(t) =2 l(min(S)): We consider two cases.

Case 1. Suppose that ftg is not the minimum element of the linear order @+ fl�1(v) :

v 2 rang(l)� l(min(S))g�. Since l is injective, by the condition (2) in the de�nition of

PRC model, we have s � t: This contradicts s 6� t.

Caee 2. Suppose that ftg is the minimum element of the linear order @+ fl�1(v) : v 2
rang(l) � l(min(S))g: Since l is injective and s 6� t, we get l(s) =2 l(fu : u � tg). On the

other hand, since l is injective, by the condition (3) in the de�nition of PRC model, we get

l(fu : u � tg) = fl(s)g, this contradicts l(s) =2 l(fu : u � tg).
From the above two cases, we get s � t for any s 2 min(S) and t 2 S �min(S). 2

Lemma 10.2. If W = hS; l;�i is an injective PRC model, then W is a ranked model.

Proof. Construct a totally strict order set h�;�i and function f : S ! � as follows:

(1) � = (S �min(S)) [ fs0g, where s0 =2 S;

(2) � =�+ (S �min(S)) [ fhs0; ti : t 2 S �min(S)g; and

(3) for each s 2 S, f(s) =

�
s; if s 2 S �min(S);

s0; if s 2 min(S):
SinceW is an injective PRC model, �+ (S�min(S)) is a strict linear order. Furthermore,

by Lemma 10.1, � is a strict linear order, and s � t i� f(s) � f(t) for any s, t 2 S. Thus,

W is a ranked model. 2

Lemma 10.3. If W = hS; l;�i is an injective PRC model, then W is an injective

quasi-linear model.

Proof. By Lemma 10.2, W is an injective ranked model. Since @+ fl�1(v) : v 2 rang(l)�
l(min(S))g is a strict linear order, by the de�nition of @ and injectivity, we get �+ fs : l(s) 2
rang(l)� l(min(S))g is a strict linear order. By injectivity, l(S �min(S)) \ l(min(S)) = ;.
Thus, �+ (S � min(S)) is a strict linear order. Suppose that r � s and r � t. We have

s; t 2 S �min(S): So, s = t or s � t or t � s. Hence, W is an injective quasi-linear model.

2

By Theorems 9.4, 2.2 and 9.2, Proposition 4.1, and Lemma 10.3, we get the following

theorem:

�Notice: Since l is injective, l�1(v) is a single set for each v 2 rang(l).
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Theorem 10.1. The set of all PRC models is not injective-closed.

11 Conclusion and Further Work

We introduce a non-Horn rules WRM that is a weak form of rational monotony, and

explore the e�ects of adding this non-Horn rule to the rules for preferential inference. We

establish the representation theorem for P+WRM, compare the strength of WRM with

some non-Horn rules appeared in literatures, and demonstrate that P+WRM is equivalent

to `at' fragment of conditional logic CS4.2.

Incidentally, WRM-transform may be regarded as a transformation of preferential mod-

els, this view reects the idea that we may obtain desired models through transforming

existent models (e.g., KLM models). This standpoint di�ers from the approaches in [4{6,

8, 11]. They all pay attention to de�ning a preferential model directly based on a given

inference relation.

In this paper, we also explore the relation between PRC model and quasi-linear model.

Main result reveals that quasi-linear model is a special form of PRC model, in other words,

for any quasi-linear modelW , there exists an injective PRC model which generates the same

nonmonotonic inference relation with W . On the other hand, we show that the set of all

PRC models is not injective-closed.

From the results in this paper and [8], we know that some preferential model sets are

injective-closed (e.g., the set of quasi-linear models and the set of ranked models) and some

not (e.g., the set of all preferential models and the set of PRC models). By the results in [6]

and [11], it is easy to know that when the language is �nite, given a preferential inference

relation j�, if j� satis�es the following property INJ presented in [6], then the set of its

preferential models is injective-closed.

INJ C(� _ �) � Cn(C(�) [ C(�)), where Cn is classical Tarski operation and C(�) =

f� : � j� �g.
However, when the language is in�nite, the results in [6] and [11] could not imply the

above conclusion. This would be a good topic for further researches.
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