
Vol.17 No.4 J. Comput. Sci. & Technol. July 2002

An E�ective Feedback Control Mechanism

for Di�Serv Architecture

WANG Chonggang (�
�)1, LONG Keping (���)1;2, YANG Jian (	 �)1

and CHENG Shiduan1 (���)
1National Laboratory of Switching Technology and Telecommunication Networks

Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, P.R.China
2Centre for Ultra Broadband Information Networks (CUBIN), EEE Department

The University of Melbourne, Victoria 3010, Australia

E-mail: fpgzhang,lkp,chsdg@bupt.edu.cn
Received March 30, 2001; revised August 27, 2001.

Abstract As a scalable QoS (Quality of Service) architecture, Di�Serv (Di�erentiated

Service) mainly consists of two components: traÆc conditioning at the edge of the Di�Serv

domain and simple packet forwarding inside the Di�Serv domain. Di�Serv has many advantages

such as exibility, scalability and simplicity. But when providing AF (Assured Forwarding)

services, Di�Serv has some problems such as unfairness among aggregated ows or among micro-

ows belonging to an aggregated ow. In this paper, a feedback mechanism for AF aggregated

ows is proposed to solve this problem. Simulation results show that this mechanism does

improve the performance of Di�Serv. First, it can improve the fairness among aggregated ows

and make Di�Serv more friendly toward TCP (Transmission Control Protocol) ows. Second,

it can decrease the bu�er requirements at the congested router and thus obtain lower delay

and packet loss rate. Third, it also keeps almost the same link utility as in normal Di�Serv.

Finally, it is simple and easy to be implemented.

Keywords feedback control, Di�Serv, fairness, Quality of Service

1 Introduction

As a new QoS architecture, Di�Serv[1;2] is exible, scalable, and simple. A Di�Serv domain com-

prises edge routers and core routers. Edge router performs traÆc conditioning, and core router only

forwards packets simply according to PHB (Per Hop Behavior). The traÆc conditioner performs

such functions as packet classifying, metering, marking and dropping. An incoming packet will be

�rstly classi�ed according to the possible �ve-tuple (Source Address, Destination Address, Source

Port, Destination Port, Protocol Type), then metered and marked according to SLS (Service Level

Speci�cations) between users and the Di�Serv domain, and dropped according to some bu�er man-

agement mechanism at last. Di�Serv has de�ned two service classes: Assured Forwarding (AF)[3] and

Expedited Forwarding (EF)[4]. The packet-marking algorithms include srTCM[5] (single rate Three

Color Marker), trTCM[6] (two-rate Three Color Marker), TSWTCM[7] (Time-Sliding Window Three

Color Marker), etc. The queue management mechanism is mainly WRED (Weighted Random Early

Detection) and some of its variations. Packet forwarding in a core router mainly includes simple queue

management and queue scheduling according to packet colors (marked at an edge router). Through

these mechanisms, Di�Serv can provide some di�erentiated QoS to di�erent traÆc ows.

Simulations and some analysis in [8, 9] show that Di�Serv can provide some di�erentiated QoS

and it is easy for Di�Serv to be deployed. But when providing the AF service, Di�Serv still has some

shortcomings such as unfairness among micro-ows, unfairness between the responsive ow and the

This work is supported by the National `863' High-Tech Programme of China under Grant No.2001AA121052, the

Research Fund for the Doctoral Programme of Higher Education (RFDP) of China under Grant No.20010013003, the

National Natural Science Foundation of China under Grant No.69972008, and the Nokia China R&D Center.



No.4 Feedback Control Mechanism for Di�Serv Architecture 421

unresponsive ow, and unfairness among macro-ows with di�erent RTTs (Round Trip Time), target

rate or number of micro-ows. The reason is that there is nearly no state of micro-ows or macro-ows

in core routers, and edge routers cannot know the state of Di�Serv domain interior.

In this paper, we propose a feedback mechanism to solve the above problems in order to avoid

aforementioned Di�Serv unfairness. The paper is structured as follows. Section 2 will describe the

proposed TFFC mechanism in details. Simulation and some analysis results are presented in Section

3. Then Section 4 gives some discussions about TFFC. We also consider the TFFC implementation

in Section 5 and conclude the whole paper in Section 6.

2 Details of TFFC

2.1 Related Works

In recent Di�Serv implementations, all packets are marked to colored packet at the ingress router

and are not dropped except that there is congestion at the ingress router. If there are UDP (User

Datagram Protocol) and TCP ows, Di�Serv will let both of them enter the domain. TCP will cut

their source sending rate when congestion happens but UDP will not. Thus UDP may obtain more

bandwidth than TCP. The correct and intelligent action is to decrease the input (to the Di�Serv

domain) rate of UDP when congestion happens using the same way as handling TCP. Based on

this idea, we design a TCP-friendly feedback control mechanism (TFFC) to improve the Di�Serv

performance. The proposed TFFC shares some similar aspects with the algorithms in [9{11].

[9] has promoted to introduce a feedback mechanism into Di�Serv, but there is no detailed design

of the feedback mechanism. [10] has proposed Network Border Patrol (NBP). NBP tries to emulate the

TCP window mechanism at the network domain border. It is a little complicated. [11] has proposed

the AFC (Aggregated Flow Control) mechanism to improve the Di�Serv performance. AFC uses a

virtual control TCP connection to simulate an aggregated ow and implements a ow control unit

based on a token bucket, where the token changes according to the normal TCP AIMD (Additive

Increase Multiplicative Decrease) mechanism. NBP and AFC are similar in that they all try to

simulate the TCP AIMD mechanism in the edge router. The same disadvantage of them is that they

will throttle ows sharply even if only one packet is dropped in the core router. This phenomenon

will not happen in TFFC because it throttles the aggregated ow in the edge router based on rate

change, not window change.

2.2 TFFC Algorithm

We assume the handled object of TFFC is the AF aggregated ow in this paper, although it is easy

to extend TFFC for micro-ows. TFFC borrows the same probe-feedback mechanism as in [10] when

computing the packet-loss-rate and round-trip-time in the Di�Serv domain. But we can piggyback

the probe information in data packets and decrease the bandwidth loss resulted from probe packets,

which will be described further in Section 4. The main ideas in TFFC are listed as follows. The ingress

router obtains the congestion state information inside the Di�Serv domain using the probe-feedback

mechanism. Based on the obtained state information, TFFC can control each aggregated ow's input

(to Di�Serv) rate using a speci�c control algorithm. We hope this mechanism can improve the Di�Serv

fairness property and keep high network utility simultaneously.
TFFC comprises four components (please see Fig.1): computing packet loss rate of the aggregated

ow f (let it be PLR(f)), computing round-trip time of the aggregated ow f (let it be RTT (f)),
computing the allowable input rate of the aggregated ow f (let it be AIR(f)) and throttling the ow
according to AIR(f). We use probe-feedback mechanism to compute PLR(f) and RTT (f) in edge

routers. Then AIR(f) can be computed according to the well-known TCP throughput equation[12]

(please see the following Formula 1).

T � 1:5�
p
2=2�MSS

RTT �pPLR
(1)



422 WANG Chonggang, LONG Keping et al. Vol.17

Here T is the throughput of a single TCP connection, MSS is the maximum session segment, RTT is

the round trip time, and PLR is the packet loss rate.

Fig.1. Details of TFFC. (a) Feedback mechanism in TFFC. (b) Ingress router functions in TFFC. (c) Egress router

functions in TFFC.

After getting the AIR(f) of the aggregated ow f , we can adjust its input rate at the ingress router

according to AIR(f). TFFC simply uses a single Token-Bucket (before the Di�Serv conditioner at

the ingress router) to perform this task. The token generating rate is equal to AIR(f). The maximal

bucket length is greater than RTT �CIR(f) (CIR(f) is the Committed Information Rate of aggregated

ow f). When packets arrive, TFFC �rstly judges whether there are enough idle tokens in the bucket.

If there are enough idle tokens, the packet can enter the Di�Serv conditioner and then enter the

Di�Serv domain. Otherwise, it will be discarded before entering the Di�Serv domain.

2.2.1 Computing AIR(f)

In order to compute AIR(f) (allowable input rate of the aggregated ow f), we need to obtain its

packet loss rate (PLR(f)) and round trip time (RTT (f)) �rstly. Then we can get AIR(f) directly

using Formula (1).

2.2.1.1 Computing PLR(f)

TFFC uses the similar probe-feedback mechanism (please see Fig.1(a), as that in [10]) to compute

PLR(f). When and only when the ingress router forwards packets into the Di�Serv domain, it

generates a probe packet for each data packet and forwards it into Di�Serv following its corresponding

data packet. Probe packets can have only the IP header whose source address is this ingress router,

and the destination address is the same as that in the data packet. The core router is responsible

for forwarding probe packets transparently. But the core router must guarantee that if a data packet

needs to be dropped, the corresponding probe packet must be dropped, and if a data packet is not

dropped, its corresponding probe packet is not dropped. When a probe packet arrives at the egress

router, the egress router simply exchanges the source address and destination address in it and sends it

back through the incoming interface, thus the ingress router generating this probe packet can receive

its corresponding feedback packet. Moreover, in order to make computed PLR(f) more precise, we

can mark the feedback packet as green and try not to drop the feedback packet. In order to decrease



No.4 Feedback Control Mechanism for Di�Serv Architecture 423

bandwidth loss, we can piggyback the probe packet in data packet using an IP header option: \TFFC

probe option" (please see details in Section 4).

The ingress router keeps a timer in order to count the transmitted probe packet number (TN (f; k))

and the received feedback number (RN (f; k)) during the k-th time interval. The packet loss rate can

be computed as follows:

PLR(f) =
TN (f; k)� RN (f; k)

TN (f; k)
(2)

Because there is delay between the ingress router and the egress router, the loss rate may be non-

precise and negative. We can count the transmitted probe packets using a better-granularity time

scale to make the computed PLR(f) more precise; the additional requirements focus on more state

variables.

2.2.1.2 Computing RTT (f) Passing Di�Serv

TFFC uses the same probe-feedback method as that in computing PLR(f) to compute RTT (f).

When generating a probe packet, the ingress router en-stamps the current time on it. After receiving

the feedback packet, the ingress router can compute the RTT (f) of this probe packet through the

Di�Serv domain according to the following Formula (3):

RTT (f; n) =
RTT (f; n� 1) � NumFB + CurrentDelay

NumFB + 1
(3)

In Formula (3), RTT (f; n) is the estimated RTT at the n-th time. NumFB is the received feedback

packets just before now. CurrentDelay is the RTT of the just received feedback packet. It needs to

be said that we can compute RTT (f) using the same the method as that in TCP, but we have found

that its performance is worse than that using Formula (3) in our simulations.

At each time when AIR(f) is computed:

NumOfToken=max (MBL, NumOfToken+(CurrentTime�LastTime)�LastAIR(f));

LastTime=CurrentTime;

LastAIR(f) = CurrentAIR(f);

At each time when packet arrives

PktLength = Length of this packet;

NumOfToken = max(MBL;NumOfToken + (CurrentTime � LastTime) � LastAIR(f));

LastTime=CurrentTime;

If NumOfToken < PktLength

Discard this packet;

Else

Forward this packet to Di�Serv conditioner;

NumofToken = NumOfToken � PktLength;

Note: MBL is Maximal Bucket Length

Fig.2. Algorithm of token-bucket valve in TFFC.

2.2.1.3 Computing AIR(f)

Once we get PLR(f) and RTT (f), we can use the following Formula (4) (derived from Formula

(1)) to directly estimate AIR(f) as:

AIR(f) =
1:5�

p
2=3�MSS

RTT �

p
PLR(f)

(4)

2.2.2 Throttling the Flow According to AIR(f)

The computed AIR(f) is the theoretic sending rate for the TCP window control mechanism. If

an aggregated ow is responsive like TCP, its arrival rate at the ingress router will not be greater

than the computed AIR(f). On the contrary, if it is non-responsive or not TCP-friendly, its arrival



424 WANG Chonggang, LONG Keping et al. Vol.17

rate at the ingress router will be greater than AIR(f). In order to make Di�Serv more TCP-friendly,

we can set a valve for each aggregated ow at the boundary of Di�Serv (please see Fig.2). The ow

rate of passing its valve is not greater than AIR(f). TFFC uses a single token-bucket to perform

this task. The tokens generating rate is AIR(f). The maximal bucket length is MBL (larger than

RTT (f) � CIR(f)). When an aggregated ow's packets arrive, TFFC judges if there are enough idle

tokens in its corresponding bucket. If there are enough idle tokens, the packets will pass the valve and

enter the Di�Serv conditioner. Otherwise, the packets will be discarded before entering the Di�Serv

conditioner. The single token-bucket is simple-to-implement and has good performance that will be

shown in Section 3.

2.3 Extending TFFC to Micro-Flows

In this paper, we assume the handled object of TFFC is the aggregated ow. In fact, we can extend

TFFC for micro-ows. Under this case, ingress routers need to compute AIR(f) and set a valve for

each micro-ow, and to keep more state variables proportional to the number of micro-ows. The

additional advantage is that TFFC can improve not only fairness among aggregated ows but also

fairness among micro-ows. Moreover, we can extend the TFFC idea to the Endpoint Congestion

Management architecture[13].

3 Simulation Results and Analysis

In this section, we will present some simulation results and analysis for the TFFC mechanism.

We have performed many simulations under several scenarios using the commonly-used dumb-bell

network topology.

3.1 Simulation Setup and Performance Metrics

We use NS2.1b7[14], an event-driven packet-level network simulator from Berkeley and LBNL, for

our work. Based on the Di�Serv module only provided in the NS2.1b7 version, we have developed

several extensions to this simulator in order to simulate our proposed TFFC mechanism. Our simula-

tion topologies and some parameters are shown in Fig.3. The topologies are often used in a dumb-bell

way. In all our simulations, we make such assumptions as: only two aggregated ows belonging to

the same AF class: Sender 1 and Sender 2, only one congested link, and uni-directional traÆc from

Sender 1 (or 2) to Receiver 1 (or 2). In Fig.3, \X" denotes the parameter whose value will be changed

in the simulations.

Fig.3. Simulation topology.

Our main performance metrics is fairness, called the fairness index[15]. The fairness index, FI, is

de�ned as follows: if there are n concurrent connections in the network and the throughput achieved

by connection i is equal to x
i
, 1 � i � n, then:

FI =

�P
n

i=1 xi

�2

n�
P

n

i=1 x
2
i

(5)

The fairness index always lies between 0 and 1 for non-negative throughputs, and as explained in

[15], it is equal to (k=n) if k of n connections receive equal throughput and the remaining do not.

Thus FI cannot be less than 1=n in a network with n connections.



No.4 Feedback Control Mechanism for Di�Serv Architecture 425

We have also collected bu�er change trajectory and congested link utility, but we omit the simu-

lation results of congested link utility here because there is hardly any di�erence between TFFC and

the normal Di�Serv.

3.2 Simulation Results

The following are some simulation results and our analysis: the fairness of TFFC, the bu�er

requirement under TFFC, the additional bene�ts of TFFC. Under all cases, we compare the results

of TFFC with those of normal Di�Serv. It needs to be claimed that we omit the link utility results

because we have observed that there is no apparent di�erence (increase or decrease) with (or without)

TFFC.

3.2.1 Fairness Index

In this subsection, we mainly research the TFFC fairness between the responsive ow and the

unresponsive ow. The congested link rate is changed from 0.5Mbps, 0.8Mbps, 1.0Mbps, 1.5Mbps, to

2.0Mbps. The Sender 1 including only one UDP ow (rate= 2.0Mbps) and Sender 2 with variable TCP

connection are two aggregated ows (belonging to the same AF class) with the same CIR (=0.5Mbps)

(Committed Information Rate). The TCP connection number in Sender 2 is changed from 1, 2, 4, 8,

to 10. The results are shown in Fig.4.

Fig.4. Fairness of TFFC and normal Di�Serv.

Fig.4 shows that:

1) Under each environment, TFFC has better fairness;

2) TFFC and the normal Di�Serv have almost the same fairness when the congested link rate is

equal to 1Mbps, because the congested link rate is equal to the sum of Sender 1's and Sender 2's CIRs

at this time;

3) Under the normal Di�Serv and TFFC, when the connection number of Sender 2 increases, the

fairness will increase, because more TCP connections have more strong ability to contend bandwidth

with the unresponsive ow (Sender 1);

4) Under an over-provisioned network, the improved fairness under TFFC is more apparent, be-

cause there is more residual bandwidth in this case.



426 WANG Chonggang, LONG Keping et al. Vol.17

Moreover, we also collect the changing curve of AIR(f) which will show the stability of TFFC. The

simulation environment and parameters are the same as the above. Because of the limited space for

the paper, we only give one of the simulation results in Fig.5 (Sender 2 has only two TCP connections,

and the congested link rate is 1.5Mbps).

Fig.5. Trajectory of AIR(f) under TFFC.

Fig.5 shows that AIR(f) of Sender 1 and Sender 2 is gradually equal as time going on (because

both their CIR are equal to 0.5Mbps), which proves that TFFC is stable.

3.2.2 Bu�er Requirements

In this subsection, we mainly study the bu�er requirements under TFFC. The simulation environ-

ment is the same as in Subsection 3.2.1. We collect the instantaneous queue length and the average

queue length at the congested link for each simulation. We �nd out that the instantaneous queue

length and the average queue length are smaller under TFFC than those under the normal Di�Serv.

Because of the limited space for this paper, we give only one of the results (Sender 2 has only two

TCP connections, and the congested link rate is 1.5Mbps) in Fig.6. The second picture in Fig.6 is an

enlarged part of the �rst picture in Fig.6.

Fig.6. Bu�er requirements under TFFC and the normal Di�Serv.

Fig.6 shows that:

1) TFFC has less bu�er requirements (decreased by about 20%);

2) Less bu�er requirements will bring in smaller delay and a lower packet loss rate through the

Di�Serv domain.

3.2.3 Additional Bene�ts

Scenario 1. Impacts of Di�erent TCP Connections

In this scenario, we mainly study the TFFC ability to reduce the unfairness between TCP aggre-

gated ows resulted from di�erent TCP connection numbers. The congested link rate is changed from



No.4 Feedback Control Mechanism for Di�Serv Architecture 427

0.5Mbps, 0.8Mbps, 1.0Mbps, 1.5Mbps, to 2.0Mbps. The Sender 1 including two TCP connections and

Sender 2 with variable TCP connections are two aggregated ows (belonging to the same AF class)

with the same CIR (= 0.5Mbps). The TCP connection number in Sender 2 is changed from 1, 2, 4,

8, to 10. The results are shown in Fig.7.

Fig.7. Fairness under di�erent TCP connections.

Fig.7 shows that:

1) TFFC does improve the fairness between Sender 1 and Sender 2 that have di�erent TCP

connections, no matter whether the network is over-provisioned or under-provisioned;

2) When Sender 2 has only two TCP connections, TFFC and the normal Di�Serv have the best

and almost the same fairness, because Sender 1 and Sender 2 have the same TCP connection number

at this time;

3) When the congested link rate is equal to 1Mbps (also equal to the sum of Sender 1 and Sender

2's CIRs), the fairness improvement under TFFC is not apparent, because the congested link just

accommodates the total green packet of Sender 1 and Sender 2 in this case;

4) Under the normal Di�Serv, the fairness decreases when the connection number of Sender 2

increases, because more micro-ow will grab more bandwidth from Sender 1 with only two TCP

connections.
Scenario 2. Di�erent RTTs

In this scenario, we mainly study the TFFC ability to

reduce the unfairness among TCP aggregated ows with

di�erent RTTs. The congested link rate is 0.5Mbps,

1.0Mbps, 1.5Mbps, 2.0Mbps and 2.5Mbps. The Sender

1 and Sender 2 are two aggregated ows (belonging to

the same AF class) with the same TCP connection num-

ber (= 3) and CIR (=0.5Mbps). The link delay between

Sender 1 and its neighboring edge-router is 1.0ms, but

the link delay between Sender 2 and its neighboring

edge-router is 40ms and 140ms. Fig.8. Fairness under di�erent RTTs.

Fig.8 shows that: TFFC does improve the fairness between Sender 1 and Sender 2, which have

di�erent RTTs, no matter whether the network is over-provisioned or under-provisioned.



428 WANG Chonggang, LONG Keping et al. Vol.17

4 Some Discussions

From the above simulation results, we can see that TFFC has the following advantages: improving

the fairness among aggregated ows, decreasing bu�er requirements, keeping the high link utility, and

making Di�Serv more TCP-friendly. At the same time, TFFC still has some weaknesses such as: the

impreciseness of RTT (f) and the PLR(f), and the bandwidth loss resulted from probe and feedback

packets.

4.1 About RTT (f)

Although the computed RTT (f) in TFFC is not the real round-trip time of a ow passing the

entire network, yet we can use it approximately because the computed RTT (f) is smaller than the

factual round-trip time (thus AIR(f) is greater than the factual allowable incoming rate and TFFC

will not throttle TCP). Moreover it can decrease the unfairness among aggregated ows resulted from

di�erent RTTs to some degree.

4.2 About AIR(f)

Another weakness is that AIR(f) is suitable for a single connection, but an aggregated ow will

comprise many connections in fact. However, this factor will not inuence the TFFC performance as

can be seen in the simulations. Moreover it can decrease the unfairness among the aggregated ows

involving di�erent micro-ow numbers.

4.3 Bandwidth-Loss in TFFC

Finally, TFFC introduces some bandwidth loss resulted from the probe-feedback mechanism and

extra burdens to network nodes. This problem can be weakened using the following methods. 1) We

can piggyback the probe packet in the data packet using a special IP header option: named as \TFFC

probe header" (please see Fig.9 and next Subsection for details). 2) We can compute the PLR(f) and

RTT (f) at the egress router and feedback them to the ingress router, thus decrease the bandwidth

loss resulted from the feedback packet. 3) We can generate the probe packet for every N(> 1) data

packets, thus get a trade-o� between the preciseness of PLR(f) and bandwidth loss. Moreover we

think that the extra bandwidth-loss and burden are worthy compared with the TFFC advantages.

We will try to design an advanced method to measure the packet loss rate accurately and e�ectively

in our future research work.

Fig.9. IP header option for TFFC probe. Fig.10. IP header optin for TFFC feedback.

4.4 Comparison Between TFFC and WFQ

WFQ[16] (Weighted Fair Queuing) can provide deterministic QoS guarantee (such as delay and

bandwidth) for each micro-ow. WFQ is often used under the IntServ[17] (Integrated Service) archi-

tecture, and it is needed to keep the per-ow state information at each router. Although TFFC can

improve the fairness properties among AF aggregated ows, yet it still guarantees only di�erentiated

QoS, not deterministic QoS. It is obvious that IntServ with WFQ provides better QoS guarantees

than Di�Serv or TFFC, but Di�Serv with TFFC is more scalable and simple than WFQ, and pro-

vides assured QoS acceptable to some degree. So we emphasize only performance comparison between

TFFC and the normal Di�Serv, and do not compare TFFC with WFQ through simulations.



No.4 Feedback Control Mechanism for Di�Serv Architecture 429

Initialization:

Set k = 1; /* �rst interval to compute PLR(f) */

Set TFFCTimer=value; /* the time interval to compute the packet loss rate */

NumFB=0;

TN (f; k) = 0; RN (f; k) = 0;

RTT (f; k) = 0; AIR(f) = PIR(f);

Whenever receiving a packet P from the outside of the Di�Serv domain:

Get the FlowID of packet P (assuming FlowID = f);

Perform the TFFC value according to the algorithm in Fig.2;

If it is needed to drop packet P

Do nothing;

Else

TN (f; k) + +;

Get the current time;

Form the TFFC probe option according to Fig.9;

Insert the formed TFFC probe option to packet P ;

Forward packet P according to the original Di�Serv;

Whenever receiving a packet P from the inside of the Di�Serv domain:

If packet P is a TFFC feedback packet

Get the FlowID of packet P (assuming FlowId= f);

RN (f; k) + +;

NumFB++;

Get the Timestamp in packet P (assuming Timestamp=SendTime);

CurrentDelay=CurrentTime-Sendtime;

Compute the RTT (f; k) according to Formula (3);

Else do nothing;

Whenever TFFCTimer expires:

For each aggregated ow f

f

Compute PLR(f) according to Formula (2);

Compute AIR(f) according to Formula (4);

k++;

RN (f; k) = 0; TN (f; k) = 0;

g

Fig.11. Pseudocode for TFFC at ingress routers.

Whenever receiving a packet P from the inside of the Di�Serv domain, from interface IF

Get the FlowID from the TFFC probe option in packet P ;

Get the Timestamp from the TFFC probe option in packet P ;

Form the TFFC feedback option according to Fig.10;

Get the IRIA from the TFFC probe option in packet P ;

Form the feedback packet FP;

/* FP includes the just formed the TFFC feedback option, the destination IP address is IRIA

in packet P , and the source IP address is the egress packet address. */

Forward FP through interface IF;

Fig.12. Pseudocode for TFFC at egress routers.

5 Implementation

To implement TFFC, we need to make some changes at edge routers (including ingress routers

and egress routers) and core routers. When using the TFFC probe option, we need to change only

edge routers' function, and keep core routers unchanged. Figs.11 and 12 show the detailed process.

We have implemented the TFFC algorithm in the NS simulator and the total additional code is only

dozens of lines. In fact, we can add the TFFC function to routers through upgrading only software

(not hardware or ASIC technology), because the edge router has probably a lower packet-forwarding

speed. Using the Network Processor Unit (NPU)[18] technology, router's software upgrade and function

extension can be realized easily.



430 WANG Chonggang, LONG Keping et al. Vol.17

5.1 How to Generate the Probe Packet and Feedback Packet

We can use two IP header options: \TFFC probe option" (Fig.9) and \TFFC feedback option"

(Fig.10) to realize probe and feedback processes. Through inserting the TFFC probe option to each

received packet, the ingress router can perform the probe function. In the TFFC probe header, we

add three �elds: FlowID, Ingress-router IP Address and Timestamp. FlowID is the aggregated ow's

identi�cation that the packet belongs to. If we want to support more aggregated ows, we can extend

the FlowID �eld to 32 or 48 bits. The ingress-router IP Address is the IP address of the ingress router

(incoming interface address). Timestamp is the current time in the ingress router. The feedback

packet has only the TFFC feedback option, and no data payload. TFFC feedback option has two

useful �elds: FlowID and Timestamp.

5.2 Ingress Router

The operations in the ingress router are as follows: adding \TFFC probe option" to each received

data packet before forwarding it, receiving feedback probe packets, computing ows' packet loss rates,

computing round-trip time, computing ows' allowable incoming rates, throttling unresponsive ows

(please see Fig.1(b) and Fig.11). As for adding \TFFC probe option", we need to form the corre-

sponding \TFFC probe option" according to Fig.9. As for computing packet loss rates, we need to

keep three state variables: the transmitted probe packet number, the received feedback packet num-

ber, and the packet loss rate. As for computing RTT, we need to keep only one variable RTT. As

for computing ows' allowable incoming rates, we can directly use Formula (4). As for throttling the

incoming ows, we take a single token-bucket as a valve (Fig.2), and need to keep two variables: the

current bucket length and the last time of token updating. Moreover, in order to compute packet

loss rates, we need a system timer (TFFCTimer). As long as the TFFCTimer expires, we start to

compute packet loss rates.

5.3 Egress Router

In TFFC, the egress router is responsible for intercepting the data packet that has \TFFC probe

option", generating the corresponding feedback packet, and sending the formed feedback packet to

the corresponding ingress router immediately (please see Fig.1(b) and Fig.12). The operations are

simpler than those in the ingress router.

6 Conclusions

In this paper, we have proposed a TCP-friendly Feedback Control mechanism (TFFC) to improve

the AF aggregated ow's fairness properties under Di�Serv. In TFFC, the ingress router continuously

transmits probe packets into the Di�Serv domain to measure network conditions and adjust each

aggregated ow's allowable incoming rate dynamically. When Di�Serv is congested, TFFC will drop

some packets before they enter the Di�Serv domain. When not congested, TFFC will allow more

packets to enter the Di�Serv domain. We have run lots of simulations, which show that TFFC

does improve the Di�Serv performance to some degree. TFFC has the following advantages. First,

TFFC can better the fairness between the unresponsive and responsive ows and make Di�Serv more

TCP-friendly. Second, TFFC decreases bu�er requirements, and obtain such bene�ts as lower delay

and lower packet loss rates. Third, TFFC can reduce the unfairness among aggregated ows having

di�erent RTTs and micro-ow numbers. Finally, TFFC keeps high link utility at the same time and is

easy to be implemented. In fact, TFFC can be integrated with other architectures such as Endpoint

Congestion Management[13] and Multi-Protocol Label Switching[19] besides Di�Serv. Although there

are still some weaknesses such as: probe process may use some bandwidth and there is impreciseness

of ows' allowable incoming rates, we believe that TFFC is bene�cial to Di�Serv and worthy to be

implemented. We try to design a more advanced method to measure the packet loss rate accurately



No.4 Feedback Control Mechanism for Di�Serv Architecture 431

and e�ectively, and a new TFFC-based QoS architecture will be developed in our future research

work.

References

[1] Nichols K et al. De�nition of the di�erentiated service �eld (DS Field) in the IPv4 and IPv6 headers. RFC2474.

http://www/ietf.org/rfc.html

[2] Blake S et al. An architecture for di�erentiated services. RFC2475. http://www.ietf.org/rfc.html

[3] Heinanen J et al. Assured forwarding PHB. RFC2597. http://www.ietf.org/rfc.html

[4] Jacobson V, Nichols K, Poduri K. An expedited forwarding PHB. RFC2598. http://www.ietf.org/rfc.html

[5] Heinanen J, Telia Finland, Guerin R. A single rate three color marker. RFC2697. http://www.ietf.org/rfc.html

[6] Heinanen J, Telia Finland, Guerin R. The two rate three color marker. RFC2698. http:/www.ietf.org/rfc.html

[7] Fang W, Seddigh N, Biswajit Nandy. A time sliding window three colour marker (TSWTCM). RFC2859.

http:/www.ietf.org/rfc.html

[8] Nandy B et al. Intelligent traÆc conditioners for assured forwarding based di�erentiated services networks. In IFIP

Conference on High Performance Networking (HPN 2000), June, 2000.

http://kabru.eecs.umich.edu/qos network/di�serv/Di�Serv papers/papers/hp

[9] Chow H, Leon-Garcia A. A feedback control extension to di�erentiated services. hdraft-chow-di�serv-fbctrl-00.txt,

.ps,.pdfi, March, 1999.

[10] Albuquerque C, Vickers B J, Suda T. Border network protocol. http://netresearch.ics.uci.edu/NBP/paper.html,

July, 1999.

[11] Nandy B, Ethridge J et al. Aggregate ow control: Improving assurances for di�erentiated services network. In

IEEE INFOCOM 2001, April, 2001.

[12] Floyd S, Fall K. Promoting the use of end-to-end congestion control in the Internet. IEEE/ACM Trans. Networking,

Aug., 1999, 7(4): 458{472.

[13] ECM, IETF Working Group. http://www.ietf.org/html.charters/ecm-charter.html.

[14] NS | Network Simulator. http://www-mash.cs.berkeley.edu/ns/.

[15] Jain R. The Art of Computer Systems Performance Analysis. John Wiley and Sons, 1991.

[16] Bennett J R, Zhang H. WF2Q: Worst-case fair weighted fair queueing. In IEEE INFOCOM'96, Mar., 1996, Vol.1,

pp.120{128.

[17] Braden R, Clark D, Shenker S. Integrated services in the Internet architecture: An Overview. RFC1633.

http:/www.ietf.org/rfc.html

[18] Wolf T, Turner J S. Design issues for high-performance active routers. IEEE JSAC, Mar., 2001, 19(3): 404{409.

[19] MPLS, IETF Working Group, http://www.ietf.org/html.charters/mpls-charter.html.

WANG Chonggang received his B.S. degree in communication engineering from the Northwest Polytechnic Uni-

versity (NPU) in 1996, and M.S. degree in communication and information systems from the University of Electronic

and Science Technology of China (UESTC) in 1999 respectively. He is currently a Ph.D. candidate of the National

Laboratory of Switching Technology and Telecommunication Networks at Beijing University of Posts and Telecommu-

nications (BUPT). His current research interests cover IP QoS, queue scheduling and management, ow control and

bandwidth management, wireless networks and optical Internet.

LONG Keping received his Ph.D. degree in 1998 from the University of Electronic and Science Technology of

China (UESTC). He is currently a post-doctoral fellow and associate professor in Beijing University of Posts and

Telecommunications (BUPT). His research interests include SDH/ATM network survivability, ATM/IP network per-

formance analysis, TCP congestion control enhancement, router queue management and IP QoS mechanisms (Di�serv

and Intserv). He has published over 30 research papers and has �nished �ve key projects as a key researcher and a

project manager.

CHENG Shiduan is a professor and a Ph.D. supervisor. She graduated from Beijing University of Posts and

Telecommunications (BUPT) in 1963. Since then she has been working at BUPT. From 1992 to 1998 she was the head

of the Switching and Network Expert Group in the National `863' High-Tech Programme by the Ministry of Science and

Technology of China. She has published more than 70 papers and several books in the �eld of telecommunications. Her

research interests cover ISDN, ATM, protocol engineering, network performance, security and survivability. Currently

she is working on VoIP, VoIP/IN interworking and IP QoS mechanisms.


