
Vol.17 No.5 J. Comput. Sci. & Technol. Sept. 2002

Squeezer: An EÆcient Algorithm for Clustering

Categorical Data

HE Zengyou (�	�), XU Xiaofei (���) and DENG Shengchun(���)

Department of Computer Science and Engineering, Harbin Institute of Technology

Harbin 150001, P.R. China

E-mail: zengyouhe@yahoo.com; fxiaofei,dscg@hope.hit.edu.cn

Received November 20, 2001; revised March 4, 2002.

Abstract This paper presents a new eÆcient algorithm for clustering categorical data,

Squeezer, which can produce high quality clustering results and at the same time deserve

good scalability. The Squeezer algorithm reads each tuple t in sequence, either assigning t

to an existing cluster (initially none), or creating t as a new cluster, which is determined by

the similarities between t and clusters. Due to its characteristics, the proposed algorithm is

extremely suitable for clustering data streams, where given a sequence of points, the objective is

to maintain consistently good clustering of the sequence so far, using a small amount of memory

and time. Outliers can also be handled eÆciently and directly in Squeezer. Experimental results

on real-life and synthetic datasets verify the superiority of Squeezer.

Keywords clustering, categorical data, data stream, data mining

1 Introduction

Clustering is an important KDD technique with numerous applications, such as marketing and

customer segmentation. Clustering typically groups data into sets in such a way that the intra-cluster

similarity is maximized while the inter-cluster similarity is minimized. Many eÆcient clustering algo-

rithms, such as ROCK[1], C2P[2], DBSCAN[3], BIRTH[4], CURE[5], CHAMELEON[6], WaveCluster[7]

and CLIQUE[8], have been proposed by the database research community.

Most previous clustering algorithms focus on numerical data whose inherent geometric properties

can be exploited naturally to de�ne distance functions between data points. However, many of the

data in databases are categorical, where attribute values cannot be naturally ordered as numerical

values. An example of categorical attribute is shape whose values include circle, rectangle, ellipse, etc.

Due to the special properties of categorical attributes, the clustering of categorical data seems more

complicated than that of numerical data.

In this paper, we present Squeezer, a new clustering algorithm for categorical data. The basic idea

of Squeezer is simple. Squeezer repeatedly reads tuples from a dataset one by one. When the �rst

tuple arrives, it forms a cluster alone. The consequent tuples are either put into existing clusters or

rejected by all existing clusters to form a new cluster by given a similarity function de�ned between

a tuple and a cluster.

The Squeezer algorithm only makes one scan over the dataset, thus, is highly eÆcient for disk

resident datasets where the I/O cost becomes the bottleneck of eÆciency.

The main objective of Squeezer is the combination of eÆciency and scalability. Experimental

results show that Squeezer achieves both high quality clustering results and scalability. In summary,

the main contributions of this paper are:

� A novel algorithm for clustering categorical data, Squeezer, achieves both eÆciency and high

quality clustering results.

This work was supported by the National Natural Science Foundation of China (Grant No. 60084004) and the IBM

AS/400 Research Fund.

612 HE Zengyou, XU Xiaofei et al. Vol.17

� The algorithm is suitable for clustering data streams, where given a sequence of points, the

objective is to maintain consistently good clustering of the sequence so far, using a small amount of

memory and time.

� Outliers can be handled eÆciently and directly.

� The algorithm does not require the number of desired clusters as an input parameter. This is

very important for the user who usually does not know this number in advance. The only parameter

to be pre-speci�ed is the value of similarity between the tuple and the cluster, which incorporates the

user's expectation that how close the tuples in a cluster should be.

The rest of this paper is organized as follows. In Section 2, de�nitions used in our new clustering

model are formalized and illustrative examples are given. Section 3 presents the detailed algorithms

and basic analysis. Experimental results are given in Section 4. Section 5 discusses the relationship

between our work and some related work. Finally, Section 6 concludes the paper.

2 De�nitions

In this section, we formalize the de�nitions needed in our new clustering model and introduce other

concepts used in the remainder of the paper.

Let A1; : : : ; Am be a set of categorical attributes with domains D1; : : : ;Dm respectively. Let the

dataset D be a set of tuples where each tuple t: t 2 D1 � � � � �Dm. Let TID be the set of unique IDs

of all tuples. For each tid 2 TID , the attribute value for Ai of the corresponding tuple is represented

as val(tid ; Ai).

De�nition 1 (Cluster). Cluster = ftid jtid 2 TIDg is a subset of TID.

Informally, a cluster produced by clustering algorithms is a subset of all the tuples in the dataset.

The Cluster presented in De�nition 1 is semantically equivalent to its traditional meaning for the

element in TID can identify each tuple uniquely.

De�nition 2. Given a Cluster C, the set of attribute values on Ai with respect to C is de�ned as:

VALi(C) = fval(tid ; Ai)jtid 2 Cg.

In fact, the set of attribute values de�ned here is the result of projecting tuples in C on Ai. Note

that the set VALi(C) contains distinct attribute values.

De�nition 3. Given a Cluster C, and ai 2 Di, then the support of ai in C with respect to Ai is

de�ned as: Sup(ai) = jftid jtid :Ai = aigj.

According to De�nition 3, the support of an attribute value is the number of tuples in the Cluster

containing the value. It can be 0 when no tuple in the Cluster contains this value. The attribute value

with large support indicates that the probability of its appearance is bigger than others.

De�nition 4 (Summary). Given a Cluster C, the Summary for C is de�ned as:

Summary = fVS ij1 � i � mg where VS i = f(ai;Sup(ai))jai 2 VALi(C)g:

Intuitively, the Summary of a Cluster contains summary information about the Cluster. In general,

each Summary consists of m elements, where m is the number of attributes. The element in a

Summary is the set of pairs of attribute values and their corresponding supports. We will show later

that information contained in a Summary is suÆcient to compute the similarity between a tuple and

Cluster.

De�nition 5 (Cluster Structure, CS). Given a Cluster C, the Cluster Structure (CS) for C

is de�ned as: CS = fCluster ;Summaryg.

The Cluster Structure is the main data structure used in the Squeezer algorithm. We use the

Cluster to store classi�ed tuples and the Summary to compute similarities.

To illustrate the above de�nitions, consider the example given in Table 1.

Example 1. Let us consider the following dataset representing the assignment of employees to

departments. The dataset consists of 7 tuples with 5 attributes.

For briefness, attributes EmpNum, DepNum, Year, DepName and Mgr are renamed withA;B;C;D,

and E respectively, and all the attributes are considered to be categorical.

No.5 An EÆcient Algorithm for Clustering Categorical Data 613

Table 1. A Table of Employees

Tuple ID EmpNum DepNum Year DepName Mgr

1 1 1 85 Biochemistry 5

2 1 5 94 Admission 12

3 2 2 92 DB 2

4 3 2 98 DB 2

5 4 3 98 AI 2

6 5 1 98 Biochemistry 2

7 6 5 88 Admission 12

Given a Cluster C = f3; 4; 5g, we can get a Summary = ff(2; 1); (3; 1); (4; 1)g; f(2; 2); (3; 1)g; f(92; 1),

(98; 2)g; f(DB ; 2); (AI ; 1)g; f(2; 3)g. The Cluster Structure (CS) is CS = fCluster ;Summaryg.

De�nition 6 (Similarity Function). Given a Cluster C and a tuple t with tid 2 TID, the

similarity between C and t is de�ned as:

Sim(C; tid) =

mX
i=1

�
Sup(ai)P
j
Sup(aj)

�
where tid :Ai = ai and aj 2 VALi(C):

From De�nition 6, it is clear that the similarity is statistics based. In other words, if the similarity

between a tuple and an existing cluster is big enough, then it is more probable that the tuple belongs

to this cluster. In our algorithm, this measure is used to determine whether the tuple should be put

into the cluster or not.

Example 2. Continuing with Example 1, the similarity between the Cluster C = f3; 4; 5g and the

tuple with tid = 6 can be computed using De�nition 6 as:

Sim(f3; 4; 5g; 6) =

5X
i=1

�
Sup(ai)P
j
Sup(aj)

�
=
� 0

1 + 1 + 1
+

0

2 + 1
+

2

2 + 1
+

0

2 + 1
+

3

3

�
� 1:67

3 Algorithms and Basic Analysis

In this section, we will describe our core algorithms: the Squeezer algorithm and the d-Squeezer

algorithm. The d-Squeezer is a variant of Squeezer to handle dataset with large volume.

3.1 Overview

The Squeezer algorithm has n tuples as input and produces clusters as �nal results. Initially, the

�rst tuple in the database is read in and a Cluster Structure (CS) is constructed with C = f1g. Then,

the subsequent tuples are read iteratively.

For each tuple, by our similarity function, we compute its similarities with all existing clusters,

which are represented and embodied in the corresponding CSs. The largest value of similarity is

selected out. If it is larger than the given threshold, denoted as s, the tuple is put into the cluster that

has the largest value of similarity. The CS is also updated with the new tuple. If the above condition

does not hold, a new cluster must be created with this tuple.

The algorithm continues until all tuples in the dataset are traversed.

3.2 Details

The Squeezer algorithm is presented in Fig.1. It accepts as input the dataset D and the value of

the desired similarity threshold. The algorithm fetches tuples from D iteratively.

Initially, the �rst tuple is read in, and the sub-function addNewClusterStructure() is used to es-

tablish a new Clustering Structure, which includes Summary and Cluster (Steps 3 { 4).

For each subsequent tuple, the similarity between an existing Cluster C and the tuple is computed

using sub-function simComputation() (Steps 6 { 7). We get the maximal value of similarity (denoted

by sim max) and the corresponding index of Cluster (denoted by index) from the above computing

614 HE Zengyou, XU Xiaofei et al. Vol.17

results (Steps 8 { 9). Then, if the sim max is larger than the input threshold s, sub-function addTu-

pleToCluster() will be called to assign the tuple to the selected Cluster (Steps 10 { 11). If it is not the

case, the sub-function addNewClusterStructure() will be called to construct a new CS (Steps 12 { 13).

Finally, outliers will be handled (Step 15) and the clustering results will be labeled on the disk (Step

16).

In the following, we will give descriptions on the sub-functions used in the Squeezer algorithm.

The sub-function addNewClusterStructure() is presented in Fig.2. It uses the new tuple to initialize

Cluster and Summary, and then a new CS is created. The sub-function addTupleToCluster() is

shown in Fig.3, which updates the speci�ed CS with new tuple. Fig.4 gives a glance at the sub-

function simComputation(), which makes use of information stored in the CS to get the statistics

based similarity.

Algorithm Squeezer (D; s)

Begin

1. while (D has unread tuple) f
2. tuple=getCurrentTuple (D)

3. if (tuple.tid==1) f
4. addNewClusterStructure(tuple.tid)g
5. else f
6. for each existing cluster C

7. simComputation(C, tuple)

8. get the max value of similarity: sim max

9. get the corresponding Cluster Index: index

10. if sim max � s

11. addTupleToCluster(tuple, index)

12. else

13. addNewClusterStructure(tuple.tid)g
14. g
15. handleOutliers()

16. outputClusteringResult()

End

Fig.1. Squeezer algorithm.

Sub Function addNewClusterStructure(tid)

1. Cluster = ftidg
2. for each attribute value ai on Ai

3. VS i = (ai; 1)

4. add VS i to Summary

5. CS = fCluster ;Summaryg

Fig.2. Sub-function addNewClusterStructure().

Sub Function addTupleToCluster(tuple, index)

1. Cluster = Cluster [ftuple:tidg
2. for each attribute value ai on Ai

3. VS i = (ai;Sup(ai) + 1)

4. add VS i to Summary

5. CS = fCluster ;Summaryg

Fig.3. Sub-function addTupleToCluster().

Sub Function simComputayion(C, tuple)

1. de�n sim = 0

2. for each attribute value ai on Ai

3. sim = sim + probability of aion C

4. return sim

Fig.4. Sub-function simComputation().

As to the sub-function outputClusteringResult(), it simply outputs the Clusters stored in CSs and

writes them on to disk.

As pointed out in Section 1, the Squeezer algorithm can handle outliers eÆciently and directly. In

the end of the algorithm, we will get some Clusters. In the sub-function handleOutlier(), we can just

ignore extremely small clusters as outliers and discard them. The intuitive reason behind is that in

our clustering model, tuples in the smaller clusters are more likely to be outliers for they are more

dissimilar with respect to a large portion of tuples in the dataset. Related research on outlier detection

has empirically veri�ed the e�ectiveness of this method[9].

3.3 Properties

In this section, we will exploit some interesting properties of Squeezer. These properties guarantee

that Squeezer can produce high quality clustering results.

De�nition 7. For two tuples T1; T2 in dataset D, the similarity between them is de�ned as follows:

sim(T1; T2) = jfAijT1 �Ai = T2 �Ai, 1 � i � mgj.

De�nition 8. For a set of tuples T and a single tuple T1, for 8Ti 2 T , the average similarity

between T1 and Ti is de�ned as follows:

avg-sim(T1; Ti) =
X
i

sim(T1; Ti)=jT j:

No.5 An EÆcient Algorithm for Clustering Categorical Data 615

The de�nition of average similarity captures the spirit that the similarity between tuples can be

considered from a global point of view. In this way, the new concept of similarity incorporates global

information about the other tuples, not only the speci�ed two tuples. The extensions to the concept

of similarity between tuples guarantee that Squeezer can produce more meaningful clusters.

Lemma 1. Let s be an integer. Let C be a Cluster produced by Squeezer(D; s). Suppose jCj = N

and the tuples in C are arranged in the order of their insertion. Then, it is the case that:

avg-sim (TN ; Ti) � s where i from 1 to N � 1 and set T = C � fTNg:

Proof (Sketch). From the point of view of Squeezer, the tuple TN is added to C because the

following inequality holds:

Sim(C � fTNg; TN) =

mX
i=1

�
Sup(ai)P
j
Sup(aj)

�
� s (1)

while

avg-sim(TN ; Ti) =
X
i

sim(TN ; Ti)=jC � fTNgj

=
X
i

mX
j=1

jajij=jC � fTNgj ==aji 2 faja = T1:Ai = T2:Ai; 1 � i � mg

=

mX
j=1

X
i

jajij

jC � fTNgj
=

mX
j=1

P
i
jajij

jC � fTNgj
=

mX
j=1

�
Sup(aj)P
i
Sup(ai)

�
(2)

From (1) and (2), avg-sim(TN ; Ti) � s holds. 2

The interpretation of Lemma 1 is as follows. During the clustering process of Squeezer, only those

tuples whose average similarity with other tuples in C exceeds the threshold s can be added to cluster

C. It indicates that the tuple is put into the \best" cluster by considering average similarity.

Lemma 2. Let s be an integer. Let C be a Cluster produced by Squeezer(D; s). Suppose jCj = N

and tuples in C are arranged in the order of their insertion. Then, it is the case that:

avg-sim(Tj ; Ti) � s where i from 1 to j � 1 and j = i+ 1, set T = fTij1 � i � j � 1g:

Theorem 1 (A General Lower Bound on Average Similarity). Let s be an integer. Let C

be a Cluster produced by Squeezer (D; s). Suppose jCj = N and tuples in C are arranged in the order

of their insertion. Then, it is the case that:

avg-sim (Ti; Tj) � s(i� 1)=(N � 1) where i 6= j and 1 � i; j � N; set T = C � fTig:

Proof.

avg-sim(Ti; Tj) =

NX
j=1

sim(Ti; Tj)=(N � 1)

=
� i�1X
j=1

sim(Ti; Tj) +

NX
j=i+1

sim(Ti; Tj)
�.

(N � 1)

�(i� 1)s=(N � 1) +

NX
j=i+1

sim(Ti; Tj)=(N � 1) � (i� 1)s=(N � 1)

Theorem 1 gives a general lower bound on the average similarity for every two tuples in a cluster.

It is clear that the lower bound of average similarity of tuples is dependent on the order of its insertion

to the cluster. Those tuples added to the cluster later tend to have a larger lower bound than others.

616 HE Zengyou, XU Xiaofei et al. Vol.17

Theorem 2. Let s1; s2 be two integers and s1 > s2. Let k1 be the number of clusters produced by

Squeezer(D; s1) and k2 be the number of clusters produced by Squeezer(D; s2). Then, k1 � k2 holds.

Proof (Sketch). First, it should be noted that with these two di�erent thresholds, the tuples in

the dataset D are read in the same order. The only thing to be proved is that the number of times of

sub-function addNewClusterStructure() called when threshold equals s1 is at least not less than that

of s2.

Suppose there are N tuples in the dataset D, in the clustering process of Squeezer, Step 10 will be

executed N times to compare the maximal value of similarity with the speci�ed threshold. Then, we

consider the execution of Squeezer as a sequence of length N from the point of view of the threshold.

For instance, when the threshold is set to s1, the sequence will be: s1; s1; : : : ; s1. If in di�erent steps

we set di�erent values to the threshold, we can give a series of sequences as the following:

8>>>>>>>>>><
>>>>>>>>>>:

s1; s1; s1; : : : ; s1; s1; s1

s1; s1; s1; : : : ; s1; s1; s2

s1; s1; s1; : : : ; s1; s2; s2

� � �

s1; s1; s2; : : : ; s2; s2; s2

s1; s2; s2; : : : ; s2; s2; s2

s2; s2; s2; : : : ; s2; s2; s2

(1)

(2)

(3)

(� � �)

(N-2)

(N-1)

(N)

The �rst sequence indicates that in the whole lifetime of Squeezer, the threshold is set to s1, while

the second sequence says that for the last tuple the threshold is set to s2. The explanations of other

sequences are similar. It is easy to �nd that any adjacent sequences have the same elements in all

positions except one. We use C1; C2; : : : ; CN to represent the clusters produced by Squeezer with

corresponding sequences of thresholds. Obviously, k1 = jC1j and k2 = jCN j.

For s1 > s2, from the Steps 10 { 13 in the algorithm Squeezer and the properties of these sequences,

the following statements hold:

8>>><
>>>:

jC1j � jC2j

jC2j � jC3j

� � �

jCN�1j � jCN j

(1)

(2)

(� � �)

(N-1)

Then, k1 = C1 � k2 = CN holds.

The interpretation of Theorem 2 is as follows. Intuitively, with the increase of threshold s, the

number of clusters produced by Squeezer will increase; at least it will not decrease. In practice, when

the threshold s reaches its maximal value (the number of attributes), the result produced by Squeezer

will be that every single tuple forms a cluster, when no duplicates exist.

3.4 Handling Large Databases: d-Squeezer

During the clustering process of Squeezer, our main task is to maintain and update several CSs.

However, when the size of dataset is extremely large, the Clusters in CS will occupy a large amount

of main memory. To handle large volume data, we propose d-Squeezer, an alternative of Squeezer.

The only di�erence between d-Squeezer and Squeezer is that: in d-Squeezer, instead of retaining

the Cluster in CS in main memory, we write the Cluster identi�er of each tuple back to the �le

immediately when it is assigned to a Cluster. Only the Summary in a CS and a Counter for the size

of Cluster will be held in the main memory. For the Summary and Counter can be relatively small in

size, they can be retained in main memory even in case that the database is very large. This property

enables d-Squeezer to handle very large databases.

No.5 An EÆcient Algorithm for Clustering Categorical Data 617

As stated in De�nition 6, the similarity between a tuple and the cluster is computed as:

mX
i=1

�
Sup(ai)P
j
Sup(aj)

�
:

It is easy to get that
P

j
Sup(aj) = jCj. To reduce the computation time, we will not computeP

j
Sup(aj) and replace it with the size of Cluster fetched from Counter directly.

Fig.5 and Fig.6 describe the changed sub-functions of addNewClusterStructure() and addTupleTo-

Cluster().

Sub Function addNewClusterStructure(tid)

1. Write tid to Cluster on disk

2. Counter++

3. for each attribute value ai on Ai

4. VS i = (ai; 1)

5. add VS i to Summary

6. CS= f Summary, Counterg

Fig.5. addNewClusterStructure() for d-Squeezer.

Sub Function addTupletoCluster(tuple, index)

1. Write tuple.tid to Cluster on disk

2. Counter++

1. for each attribute value ai on Ai

2. VS i = (ai; Sup (ai) + 1)

3. add VS i to Summary

4. CS= f Summary, Counterg

Fig.6. addTupleToCluster() for d-Squeezer.

Instead of adding the tid of a tuple to the corresponding Cluster maintained in the main memory,

we write the information onto the disk. As shown in Fig.5 and Fig.6, the CS will only contain Summary

and the size of Cluster (denoted as Counter).

It is obvious that the results of clustering produced by Squeezer and d-Squeezer are the same in

spite of the di�erences between them.

3.5 Time and Space Complexities

Worst-case analysis: The time and space complexities of the Squeezer algorithm depend on the

size of dataset (n), the number of attributes (m), the number of the CSs and the size of every CS. To

simplify the analysis, we assume that the �nal number of clusters is k, and every attribute has the

same number of distinct attribute values, p. Then, in the worst case, from Subsection 3.2, we can get

that the algorithm has time complexity O(n � k � p �m) and space complexity O(n+ k � p �m).

Practical analysis: As pointed out in [10], categorical attributes usually have small domains.

Typical categorical attribute domains considered for clustering consist of less than a hundred or,

rarely, a thousand attribute values. An important implication of the compactness of categorical

domains is that the parameter, p, can be regarded to be very small. The use of hashing technique in

the search of attribute values in Summary can also reduce the impact of p. So, in practice, the time

complexity of Squeezer can be expected to be O(n � k �m).

The above analysis shows that the time complexity of Squeezer is linear with the size of dataset,

the number of attributes and the �nal number of clusters, which make this algorithm deserve good

scalability.

4 Experimental Results

This section contains the experimental results about the performance of Squeezer. Both the quality

of the clustering results and the eÆciency are examined. We ran Squeezer on real-life as well as

synthetic datasets. The use of real-life datasets is to compare the quality of the clustering results

produced by Squeezer with other algorithms, such as ROCK. The synthetic datasets are used to

primarily demonstrate the scalability of Squeezer and d-Squeezer.

Our algorithms were implemented in Java. All experiments were conducted on a Pentium III-600

machine with 128M of RAM and running Windows 2000 Server.

618 HE Zengyou, XU Xiaofei et al. Vol.17

4.1 Quality of Clustering Results with Real-Life Datasets

In this experiment, we compare Squeezer with ROCK, for ROCK can produce good clustering

results. We experimented with two real-life datasets: the Congressional Voting dataset and the

Mushroom dataset, which were obtained from the UCI Machine Learning Repository[11] and used in

ROCK[1]. Now we will give a brief introduction to these two datasets.

� Congressional Votes: It is the United States Congressional Voting Records in 1984. Each

tuple represents one Congressman's votes on 16 issues. All attributes are Boolean with Yes (denoted

as y) or No (denoted as n) values. A classi�cation label of Republican or Democrat is provided with

each tuple. The dataset contains 435 tuples with 168 Republicans and 267 Democrats.

� Mushroom: The mushroom dataset has 22 attributes with 8,124 tuples. Each tuple records

physical characteristics of a single mushroom. A classi�cation label of poisonous or edible is provided

for each tuple. The numbers of edible and poisonous mushrooms in the dataset are 4,208 and 3,916,

respectively.

Table 2 contains the initial results of running on congressional voting data using Squeezer with

s set to 10. The clusters in Table 2 are the original results produced by Squeezer without outlier

post-processing. If we regard clusters with a size less than 10 as outliers and remove them, only the

set f1, 2, 3, 5, 11, 13, 18g of clusters will be retained. After removing outliers, the results of clusters

produced by Squeezer and ROCK (we get the results of ROCK given by [1]) are described in Table 3.

Table 2. Initial Results on Congressional Voting Data by Squeezer

Cluster No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Republicans 124 0 3 0 15 0 0 0 1 2 1 0 7 0

Democrats 9 14 134 3 1 8 5 2 1 1 32 3 9 9

Cluster No. 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Republicans 7 0 2 0 4 0 0 0 0 2 0 0 0 0

Democrats 0 4 0 10 0 1 5 4 4 1 3 1 1 2

As Table 3 illustrates, both Squeezer and ROCK can identify clusters with the majority of Repub-

licans or Democrats. Due to the elimination of outliers, the sum of the sizes of clusters produced by

ROCK and Squeezer is not equal to the size of the original input size. From the summary information

of Table 3 we can conclude that both algorithms can produce clusters of high quality.

We also compare our algorithm with ROCK using the mushroom dataset. Table 4 gives the results

of ROCK and Squeezer with s set to 16.

Table 3. Results on Congressional Voting Data by Squeezer and ROCK

ROCK (Results Reported in [1])

Cluster No. No. of Republicans No. of Democrats

1 144 22

2 5 201

Squeezer

Cluster No. No. of Republicans No. of Democrats

1 124 9

2 0 14

3 3 134

4 15 1

5 1 32

6 7 9

7 0 0

As shown in Table 4, both algorithms can �nd pure clusters except one (cluster 15 in ROCK,

cluster 14 in Squeezer) in the sense that mushrooms in each cluster were either all edible or all

poisonous. However, cluster 14 in Squeezer contains only one edible mushroom with all the others

being poisonous. Cluster 15 in ROCK contains 32 edible mushrooms and 72 poisonous mushrooms.

In this case, Squeezer performed better than ROCK and it was shown that Squeezer can produce high

quality clusters.

No.5 An EÆcient Algorithm for Clustering Categorical Data 619

Table 4. Results with Mushroom Data by Squeezer and ROCK

ROCK (Results Reported in [1])

Cluster No. No. of Edible No. of Poisonous Cluster No. No. of Edible No. of Poisonous

1 96 0 12 48 0

2 0 256 13 0 288

3 704 0 14 192 0

4 96 0 15 32 72

5 768 0 16 0 1,728

6 0 192 17 288 0

7 1,728 0 18 0 8

8 0 32 19 192 0

9 0 1,296 20 16 0

10 0 8 21 0 36

11 48 0

Squeezer

Cluster No. No. of Edible No. of Poisonous Cluster No. No. of Edible No. of Poisonous

1 0 256 13 48 0

2 512 0 14 1 72

3 768 0 15 48 0

4 96 0 16 0 32

5 96 0 17 0 8

6 192 0 18 0 859

7 1,728 0 19 192 0

8 0 1,296 20 288 0

9 0 192 21 0 36

10 0 288 22 31 0

11 192 0 23 0 8

12 0 869 24 16 0

4.2 Tuning the Parameter of Squeezer

The similarity threshold s is the only parameter needed in the Squeezer algorithm, which can a�ect

the results of clustering and the speed of algorithm. As pointed out in Subsection 3.3, di�erent values

of s may produce di�erent numbers of clusters. In this section, we will give some empirical results

to shown how it can a�ect the Squeezer algorithm with the Congressional Voting dataset and the

Mushroom dataset

Since the classi�cation label is provided for each tuple in the two datasets, to test the impact of

changing parameter s on the quality of clustering, we will use the percentage of misclassi�ed tuples

as an assessment. Fig.7 describes the number of produced clusters with changing s, and Fig.8 shows

how the percentage of misclassi�ed tuples changes when s increases.

Fig.7. Number of clusters with di�erent s values. Fig.8. The percentage of misclassi�ed tuples

with di�erent s values.

Just as we have pointed out in Theorem 2, with the increase of s, the number of clusters produced

by Squeezer increases, and the experimental results given in Fig.7 con�rm our idea. At the same time,

as shown in Fig.8, the increase of s will result in the improvement of accuracy of clustering. However,

if the number of clusters is too large, it prevents us from getting meaningful clusters. On the other

hand, if the value of s is small, all tuples are put into the same cluster, which will result in little

usefulness of the Squeezer algorithm.

Furthermore, with the increase of the number of clusters, the execution time of Squeezer will

620 HE Zengyou, XU Xiaofei et al. Vol.17

increase signi�cantly, as presented in Fig.9.

Fig.9 gives the results of execution time when s increases. As we pointed out in Subsection 3.5,

the Squeezer algorithm is linear with the number of clusters. Thus, the increase of s will result in the

increase of execution time.

Fig.9. The execution time with di�erent s values.

The above experiments show that the choice of s can a�ect both the quality of clustering and

execution time of Squeezer. Thus, choosing a proper value for the parameter s is one of important

tasks that must be considered in the Squeezer algorithm.

To solve this problem, in our current implementation, the following strategy is adopted.

From the analysis of Subsection 3.3, for a given similarity threshold s, it is expected that the average

similarity between any two tuples in the same cluster is larger than s. Therefore, this parameter can

be speci�ed as the user's expectation that how close the tuples in a cluster should be in the case that

the user is familiar with the dataset. However, it is often the case that the properties of the target

dataset to be analyzed are not known in advance. We use the sampling technique to get a candidate

value of threshold, which is described as the following steps:

1) Get a sample of the whole dataset, denoted as S.

2) For every pair of tuples in S, compute the similarity between them by De�nition 7.

3) Compute the average value of the similarities from Step 2, denoted as avg value.

4) Set s = avg value + 1 or s = avg value + 2.

To verify the e�ectiveness of our method for the automatic assignment of an appropriate value

for the input parameter, we ran experiments on the Congressional Voting dataset and the Mushroom

dataset.

For each dataset, we randomly chose 1/10 of the dataset as a sample and for each sample we

ran 10 times to get an average value of avg value. For the Congressional Voting dataset, we get

avg value=8. According to our heuristic, the similarity threshold can be set to 9 or 10. From our

previous experimental results, it is clear that these two values can be regarded as good choices from

the point of view of the number of clusters and clustering accuracy. For the Mushroom dataset, we

get avg value=13, thus, s will be 14 or 15. Similar to the analysis of Congressional Voting dataset,

these automatically produced values are also \good" values.

4.3 Order Sensitivity

For the Squeezer algorithm to read tuples in sequence, in this section, we will test the sensitivity

of our algorithm to the input sequence of tuples.

Fig.10. No. of clusters with

di�erent input sequences.

To �nd out how the input sequence of tuples a�ects

the Squeezer algorithm, we ran experiments on the real

life datasets of Mushroom and Congressional Voting.

For each dataset, we produced 10 new datasets with each

tuple placed randomly. Thus, by executing Squeezer on

these datasets we can get results with di�erent input

sequences of tuples.

In the experiments, s was set to 10 for the datasets

generated from Congressional Voting and 16 for Mush-

room.
First, experiments were conducted to see the impact on the number of �nal clusters. As Fig.10

No.5 An EÆcient Algorithm for Clustering Categorical Data 621

shows, the numbers of clusters produced by Squeezer with di�erent input sequences are almost the

same, which gives the evidence that the processing order of tuples does not have any major impact

on the number of clusters.

With a careful analysis of the clustering results using di�erent processing orders, it reveals that,

for the same number of clusters, the clustering results are almost the same except for the movement of

several tuples from one cluster to another. If the size of clusters changes, approximately, combining two

or more clusters with larger size will give results for smaller size of clusters. Due to space limitation,

we omit the details.

From the above experimental results, we can con�dently assert that the Squeezer algorithm is

robust with respect to input sequences of tuples.

4.4 Scalability with Synthetic Dataset

For the running time, experiments were carried out with synthetic datasets. Since the complexity

of the ROCK algorithm is quadratic with the number of tuples in the database, it uses sampling to

handle large datasets. The scalability of the algorithm is determined by the sample size, which makes

the comparison on scalability between ROCK and Squeezer diÆcult. However, we believe that, in

ROCK, to preserve the quality of clustering, the sample size must be approximately set to be large

enough according to the database size. With the increase of sample size, scalability of ROCK will

degrade since it is quadratic with the size of sample.

Thus, we compare Squeezer algorithm with CACTUS[10] algorithm and k-modes[12] algorithm,

both of which have good scalabilities. The CACTUS algorithm scans the whole dataset twice. In

the �rst scan summary information is collected and in the second scan clusters are produced. To

make the comparison more convincing, we implemented the CACTUS in a more eÆcient way. In our

implementation, in the �rst scan we only collected inter-attributes information and in the second scan

nothing but clusters were labeled on the disk. Obviously, this implementation of CACTUS runs faster

than the original one. For the k-modes algorithm�, we set the �nal number of clusters to be 2 to

make it run faster and save the �nal results onto disk. For more details about CACTUS and k-modes

refer to [10, 12].

To �nd out how the number of tuples a�ects the 4 algorithms, we ran a series of experiments

with increasing numbers of tuples. The datasets were generated using a data generator, in which all

possible values were produced with (approximately) equal probability. We set the number of tuples

to 1 million, the number of attributes to 10 and the number of attribute values for each attribute to

10. Due to sparseness of generated datasets, we set s to 1.

Fig.11 shows the scalability of Squeezer and d-Squeezer, CACTUS, and k-modes while increasing

the number of tuples from 1 to 10 million. When the number of tuples goes up to 3 million, the

Squeezer runs out of memory.

Fig.11. The execution time with di�erent numbers of tuples.

To �nd out how the number of attributes a�ects these algorithms, we ran a series of experiments

with increasing numbers of attributes. In Figs.12 and 13, the number of attributes is increased from

�The k-modes program used here is implemented in C and tested in Solaris 2.6 with 128M RAM, so we believe

that it is faster than its implementation in JAVA.

622 HE Zengyou, XU Xiaofei et al. Vol.17

10 to 100 and the number of tuples is �xed to 100,000.

Fig.12. The execution time with di�erent numbers of attributes (1).

Fig.13. The execution time with di�erent numbers of attributes (2).

The above experimental results demonstrate the scalability of Squeezer and d-Squeezer with respect

to both the size of dataset and the number of dimensions. At the same time, the d-Squeezer algorithm

outperforms the other algorithms in both cases.

5 Related Work

A few algorithms have been proposed in recent years for clustering categorical data[1;10;12�16].

In [15], the problem of clustering customer transactions in a market database is addressed. First,

frequent itemsets are used to construct a weighted hyper-graph, where each frequent itemset is a

hyper-edge and the weight of each hyper-edge is computed as the average of the con�dence for all

possible association rules that can be generated from the itemset. Then, a hyper-graph partitioning

algorithm is used to partition the items such that the sum of weights of hyper-edge cut is minimized.

Finally, customer transactions are assigned to the best item cluster according to items contained in

each transaction and the item clusters. As pointed out in [1], this method is questionable for it makes

the assumption that itemsets that de�ne clusters are disjoint and have no overlap among them. This

may not be true in practice since transactions in di�erent clusters may have common items.

STIRR, an iterative algorithm based on non-linear dynamical systems, is presented in [13]. The

approach used in [13] can be mapped to a certain type of non-linear systems. If the dynamical system

converges, the categorical databases can be clustered. Another recent research[14] shows that the

known dynamical systems cannot guarantee convergence, and proposes a revised dynamical system in

which convergence can be guaranteed.

K-modes, an algorithm extending the k-means paradigm to the categorical domain, is introduced

in [12]. New dissimilarity measures to deal with categorical data are used to replace means with

modes, and a frequency based method is used to update modes in the clustering process to minimize

the clustering cost function. This algorithm is scalable in terms of both the number of clusters and the

number of tuples. However, as pointed out in [1], traditional partitioning algorithms are not suitable

to categorical data, and the quality of clustering cannot be guaranteed.

In [10], the authors introduced a novel formalization of a cluster for categorical data by gener-

alizing a de�nition of cluster for numerical data. A fast summarization based algorithm, CACTUS,

is presented. CACTUS consists of three phases: summarization, clustering and validation. In the

summarization phase, summary information about the dataset is collected. In the clustering phase,

No.5 An EÆcient Algorithm for Clustering Categorical Data 623

summary information is used to discover a set of candidate clusters. In the validation phase, the

actual set of clusters is derived from the candidate clusters. In this method, the distinguishing subset

assumption is made. However, this assumption does not always hold in practice.

ROCK, an adaptation of an agglomerative hierarchical clustering algorithm, is introduced in [1].

This algorithm starts with assigning each tuple to a separated cluster, and then clusters are merged

repeatedly according to the closeness between clusters. The closeness between clusters is de�ned as

the sum of the number of \links" between all pairs of tuples, where the number of \links" is computed

as the number of common neighbors between two tuples. This link based method can produce good

clustering results. Since the complexity of this algorithm is quadratic with the number of tuples in

the database, sampling is used in it to handle large datasets. So, the scalability of the algorithm

is determined by the sample size. To preserve the quality of clustering, the sample size must be

approximately set to be large enough according to the database size. With the increase of database

size, scalability of the algorithm will degrade.

In [16], the authors proposed the notion of large item. An item is large in a cluster of transactions

if it is contained in a user speci�ed fraction of transactions in that cluster. An allocation and re�ne-

ment strategy, which has been adopted in partitioning algorithms such as k-means, is used to cluster

transactions by minimizing the criteria function de�ned with the notion of large item.

The similarity measure used is a key aspect for the clustering algorithm, which can determine the

quality of �nal clustering results. Therefore, we compare the average similarity in this paper with

existing ones.

The de�nition of average similarity captures the spirit that the similarity between tuples can be

considered from a global point of view. In this way, the new concept of similarity incorporates global

information about the other tuples, rather than only the speci�ed two tuples. The similarity measures

used in [1, 10, 15, 16] also have the same advantage. In detail, [10, 15, 16] explicitly require that tuples

in the same cluster should have patterns in common, and these common patterns can be described

explicitly, for example, the large item in [16]. In contrast, the term links in [1] is similar with our

average similarity in essence. Both of these two measures also require that tuples in the same cluster

should have patterns in common. However, these common patterns cannot be described explicitly.

For example, the common neighbors in [1] and the average similarity are not �xed in the cluster for

di�erent data points. From the experimental result for the Mushroom Dataset in Subsection 4.1, the

likeness between clusters produced by ROCK and Squeezer veri�es our analysis. Furthermore, despite

these common features, the average similarity can be computed more eÆciently than other measures;

it guarantees that the Squeezer algorithm is better than other algorithms with respect to scalability.

6 Conclusions

In this paper, we consider the problem of clustering categorical data in large databases. An eÆcient

algorithm named Squeezer is proposed, which can produce high quality clustering results and at the

same time deserves good scalability.

Furthermore, the Squeezer algorithm can handle outliers eÆciently and directly, which makes it

robust to the e�ect of noise. Especially, this algorithm is suitable for clustering data streams. In

the data stream model, data points can only be accessed in the order of their arrivals and random

access is disallowed. And the space available to store information is supposed to be small compared

with the huge size of unbounded streaming data points. Thus, the data mining algorithms on data

streams are restricted to ful�ll their tasks with only one pass over data sets and limited resources.

The performance of an algorithm operating on a data stream is measured by the number of passes the

algorithm must make over the stream[17]. As we have shown, the Squeezer algorithm needs to scan

the database only once, and maintains some Cluster Structures in the main memory with small space

requirement. This perfect property quali�es it for the task of clustering data streams.

In the future work, we will revise Squeezer to make it more suitable for clustering data streams

in the restricted data stream model. Automatic assignment of an appropriate value for the input

624 HE Zengyou, XU Xiaofei et al. Vol.17

parameter of Squeezer will be also further addressed.

Acknowledgements The authors wish to thank Dr. Longtao He for his help in debugging the

code. We would also like to express our gratitude for Dr. Zhexue Huang of the University of Hong

Kong for sending us helpful materials and the code of k-modes.

References

[1] Sudipto Guha, Rajeev Rastogi, Kyuseok Shim. ROCK: A robust clustering algorithm for categorical attributes. In

Proc. 1999 Int. Conf. Data Engineering, Sydney, Australia, Mar., 1999, pp.512{521.

[2] Alexandros Nanopoulos, Yannis Theodoridis, Yannis Manolopoulos. C2P: Clustering based on closest pairs. In

Proc. 27th Int. Conf. Very Large Database, Rome, Italy, September, 2001, pp.331{340.

[3] Ester M, Kriegel H P, Sander J, Xu X. A density-based algorithm for discovering clusters in large spatial databases.

In Proc. 1996 Int. Conf. Knowledge Discovery and Data Mining (KDD'96), Portland, Oregon, USA, Aug., 1996,

pp.226{231.

[4] Zhang T, Ramakrishnan R, Livny M. BIRTH: An eÆcient data clustering method for very large databases. In Proc.

the ACM-SIGMOD Int. Conf. Management of Data, Montreal, Quebec, Canada, June, 1996, pp.103{114.

[5] Sudipto Guha, Rajeev Rastogi, Kyuseok Shim. CURE: A clustering algorithm for large databases. In Proc. the

ACM SIGMOD Int. Conf. Management of Data, Seattle, Washington, USA, June, 1998, pp.73{84.

[6] Karypis G, Han E-H, Kumar V. CHAMELEON: A hierarchical clustering algorithm using dynamic modeling. IEEE

Computer, 1999, 32(8): 68{75.

[7] Sheikholeslami G, Chatterjee S, Zhang A. WaveCluster: A multi-resolution clustering approach for very large spatial

databases. In Proc. 1998 Int. Conf. Very Large Databases, New York, August, 1998, pp.428{439.

[8] Agrawal R, Gehrke J, Gunopulos D, Raghavan P. Automatic subspace clustering of high dimensional data for data

mining applications. In Proc. the 1998 ACM SIGMOD Int. Conf. Management of Data, Seattle, Washington,

USA, June, 1998, pp.94{105.

[9] Jiang M F, Tseng S S, Su C M. Two-phase clustering process for outliers detection. Pattern Recognition Letters,

2001, 22(6/7): 691{700.

[10] Venkatesh Ganti, Johannes Gehrke, Raghu Ramakrishnan. CACTUS-clustering categorical data using summaries.

In Proc. 1999 Int. Conf. Knowledge Discovery and Data Mining, August, 1999, pp.73{83.

[11] UCI Repository of Machine Learning Databases. http://www.ics.uci.edu/�mlearn/MLRRepository.html

[12] Huang Z. A fast clustering algorithm to cluster very large categorical data sets in data mining. In Proc. SIGMOD

Workshop on Research Issues on Data Mining and Knowledge Discovery, Tucson, Arizona, USA, May, 1997,

pp.146{151.

[13] David Gibson, Jon Kleiberg, Prabhakar Raghavan. Clustering categorical data: An approach based on dynamic

systems. In Proc. 1998 Int. Conf. Very Large Databases, New York, August, 1998, pp.311{322.

[14] Zhang Yi, Ada Wai-Chee Fu, Chun Hing Cai, Peng-Ann Heng. Clustering categorical data. In Proc. 2000 IEEE

Int. Conf. Data Engineering, San Deigo, USA, March, 2000, p.305.

[15] Eui-Hong Han, George Karypis, Vipin Kumar, Bamshad Mobasher. Clustering based on association rule hyper-

graphs. In Proc. 1997 SIGMOD Workshop on Research Issues on Data Mining and Knowledge Discovery, Tucson,

Arizona, USA, May, 1997, pp.78{85.

[16] Wang Ke, Xu Chu, Liu Bing. Clustering transactions using large items. In Proceedings of the 1999 ACM Inter-

national Conference on Information and Knowledge Management, Kansas City, Missouri, USA, November, 1999,

pp.483{490.

[17] Sudipto Guha, Nina Mishra, Rajeev Motwani, Liadan O'Callaghan. Clustering dsta streams. In The 41st Annual

Symposium on Foundations of Computer Science, Redondo Beach, California, USA, November, 2000, pp.359{366.

HE Zengyou received his M.S. degree in computer science from Harbin Institute of Technology (HIT) in

2002. He is currently a Ph.D. candidate in the Department of Computer Science and Engineering, HIT. His

main research interests include data mining, multi-database systems and approximate query answering.

XU Xiaofei received his M.S. and Ph.D. degrees in computer science from HIT in 1985 and 1988 respec-

tively. He is currently a professor in the Department of Computer Science and Engineering, HIT. His main

research interests include CIMS and database systems.

DENG Shengchun received his Ph.D. degree in computer science from HIT in 2002. He is currently an

associate professor in the Department of Computer Science and Engineering, HIT. His main research interests

include data mining and data warehouse.

