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Abstract Grids enable users to share and access large collections and various types of re-
sources in wide areas, and how to locate resources in such dynamic, heterogeneous and autonomous
distributed environments is a key and challenging issue. In this paper, a three-level decentralized
and dynamic VEGA Infrastructure for Resource Discovery (VIRD) is proposed. In this architec-
ture, every Border Grid Resource Name Server (BGRNS) or Grid Resource Name Server (GRNS)
has its own local policies, governing information organization, management and searching. Changes
in resource information are propagated dynamically among GRNS servers according to a link-state-
like algorithm. A client can query its designated GRNS either recursively or iteratively. Optimizing
techniques, such as shortcut, are adopted to make the dynamic framework more flexible and effi-
cient. A simulator called SImVIRD is developed to verify the proposed architecture and algorithms.
Experiment results indicate that this architecture could deliver good scalability and performance
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for grid resource discovery.
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1 Introduction

A grid environment contains a large collection
of different types of resourse distributed in a wide
area. These resources are owned and operated by
various organizations with heterogeneous adminis-
trative policies. Resources can join and leave a grid
at any time, and their status may change dynam-
ically. Resource discovery, the problem of locating
resources that satisfy users’ requests efficiently and
optimally, is an important and challenging issue in
such a grid environment. A solution to the resource
discovery problem must efficiently deal with scal-
ability, dynamic changes, heterogeneity, and au-
tonomous administration. In this paper, we will fo-
cus on the issues of scalability and dynamic change.

The Institute of Computing Technology is de-
veloping a number of integrated technologies and
systems, jointly called VEGA Grid*?, to pro-
vide Versatile Service, Enabling Intelligence, Global
Uniformity and Autonomous Control. This pa-
per presents an approach to the grid resource dis-
covery issue, called VEGA Infrastructure for Re-
source Discovery (VIRD). Our approach comprises
a three-level architecture, a URN-based resource
naming scheme, a two-level algorithm for propagat-
ing resource information changes, and two schemes

grid architecture, resource discovery, resource information propagation, Vega

for locating a resource recursively or iteratively.

The VIRD architecture is a three-level hierar-
chy: the top level is a backbone consisting of Bor-
der Grid Resource Name Servers (BGRNS); the
second level consists of several domains and each
domain consists of Grid Resource Name Servers
(GRNS); the third level consists of all clients
and resource providers. There is no central con-
trol in the VIRD. The backbone is responsible
for inter-domain resource discovery. Within a do-
main, resource providers register themselves to
GRNS servers, and clients acquire required re-
sources through GRNS servers.

Some mechanisms are also proposed to adapt
the VIRD to the dynamic characteristic of the grid.
Resources are named as objects, i.e., attribution-
value pairs. A link-state-like algorithm is used to
update and propagate resource information quickly.
A shortcut mechanism allows the topology of the
GRNS servers to change dynamically.

We have developed a configurable, event-driven
simulator called SimVIRD to verify our architec-
ture and resource information propagation algo-
rithm. Experiment results show that the viability
of the VIRD approach depends largely on a metric
called resource frequency, while being relatively in-
sensitive to the size of a grid.
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tional High-Tech R&D 863 Program of China (Grant No.2002AA104310), and the Chinese Academy of Sciences Overseas

Distinguished Scholars Fund (Grant No.20014010).
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The rest of this paper is organized as follows.
Section 2 reviews existing work on resource discov-
ery. Section 3 outlines the VIRD approach and
explains its components and mechanisms in detail.
Experiments with the SimVIRD are presented in
Section 4. Section 5 offers the conclusions.

2 Related Work

There has been much work done in the field of
resource discovery in grid environments.

The information service in Globus Project is
MDS34.  First, the data representation in the
directory service is globally uniform. In fact, ev-
ery resource discovery and allocation system can
have its own policies, and hence an identical in-
formation denotation would bring it some limita-
tion and inconvenience. With the permission of a
system-specific information organization, the sys-
tem can optimize its database to improve conve-
nience and achieve best storing and searching per-
formance. Second, in the MDS architecture, in-
formation, along with information servers, is orga-
nized in the strictly tree-like topology with a com-
paratively fixed relationship; while the resource dis-
tribution may change dynamically. Third, gener-
ally, requests should be answered by remote servers
storing the required resource information. If the
information is locally available, the performance
would be improved. Fourth, the directory ser-
vice used is LDAPP!, which is designed for read-
ing rather than writing, while in grid environments
frequent changing may become a problem for this
architecture.

The authors of [6] combine peer-to-peer tech-
nologies with grids and apply them to resource dis-
covery. The P2P architecture is fully distributed
and all the nodes are equivalent. But all request-
forwarding algorithms they have proposed:
dom, experience-based plus random, best neigh-
bor or experience-based plus best-neighbor, cannot

ran-
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change the plight that every node has little knowl-
edge about the distribution of resources within the
gird and their status. So, generally, they are less ef-
fective. In particular, when the types of requested
resources are vast and the work set is very big,
the miss rate increases because the past experience
does not work.

[7] presents a grid resource discovery model
based on the routing transferring method, in which
all the routers are au pair and have no difference
structurally, and the adopted algorithm is RIP-like
distance vector routing algorithm. The problems
of the algorithm will be discussed in detail in Sub-
section 3.2.2.1.

Next section will present our resource discovery
framework in three main aspects: resource naming,
resource information propagation and resource dis-
covery, where several approaches that have been
used by other distributed systems, e.g., IP routing
systems, DNS, etc., are referenced.

3 The VIRD Approach

VIRD adopts a three-level hierarchy as shown
in Fig.1: the top level is a backbone consisting of
Border Grid Resource Name Servers (BGRNS); the
second level has several domains and each domain
consists of Grid Resource Name Servers (GRNS);
and the third level consists of leaves which include
all clients and resource providers.

e A Border Grid Resource Name Server
(BGRNS) has connections to both the backbone
and one or several domains, and exchanges in-
formation with them. When locating resources,
BGRNS servers forward requests among domains
and help to find out qualified resources.

e A Grid Resource Name Server (GRNS) dy-
namically collects information about resources reg-
istered to it, and spreads information to other
GRNS servers. A GRNS receives requests from

BGRNS: Border grid resource name server
GRNS: Grid resource name server

RP: Resouce provider
Client

Fig.1. The three-level VIRD architecture: A backbone, domains and leaves.
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clients, finds proper resources either by its local
knowledge or through BGRNS servers, and then
returns the satisfying resource providers to the
clients.

e A Resource Provider registers itself to a
GRNS, which is called the resource provider’s des-
ignated GRNS, and then it will report its status
information periodically and upon changes. Mean-
while it receives and serves user requests.

e A client sends resource requests to GRNS
servers and receives replies. Of course a client can
also communicate with resource providers: sending
requests, handling responses, and using resources.

A host can act as both a client and a resource
provider at the same time.

Above all, an important component in the ar-
chitecture is resource naming that concerns re-
source representing, requesting, searching and dis-
covering.

3.1 Resource Naming

Resource naming in grids has some character-
istics corresponding to the way grids work. 1) In
most cases, a user requires some resources quali-
fied for a certain condition, while in advance the
user has no idea of their locations. Furthermore,
in general, given a request there are more than one
satisfactory resource. 2) Resource status is chang-
ing dynamically. A user request not satisfied at
one time might be satisfied at other time, and vice
3) Both the number and the types of re-
sources are changing. There are a lot of resources

versa.

joining and leaving a grid at any moment. As the
grid grows, more and more types of resources would
be available and the resource space might explode.

For the above reasons, it is improper and not
powerful enough to use current URL as the way to
address resources. In grids, resources should be ref-
erenced by name (uniform resource name, or URN).
Identifying resources by name allows users to access
resources in a variety of ways without understand-
ing the internal structure.

There are four key design goals for the nam-
ing scheme in VIRD. First, the naming scheme
should be independent of our architecture. This
allows users to make use of our infrastructure with-
out having to know the details of the architec-
ture and similarly allows the naming scheme to be
adopted by other systems dealing with grids. Sec-
ond, the naming scheme is of good scalability. All
resource names in our scheme are in the form of ob-
jects that allow thousands of classes and instances.
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Third, the naming scheme should allow resources
to be identifiable to a fine level of granularity but
should not require such details that are not nec-
essary. Fourth, our naming scheme should be user
friendly. The resource names are the tools for users
to access grids, hence the naming scheme must be
convenient to use.

(res_name) ::= ({class_name)|(class_id)) [“?”
(specification)]

(class_name) ::= (string)

(class_id) ::= (number)

(specification) ::= ((attribute) (cop)(value)) {(bop)

)
((attribute)(cop) (value))}
(attribute) ::= (string)
(value) ::= (string)|(res_name)
<b0p> = “>77 | 113 ’7 | “<77 | “>:77 | “!:’7 | “<:’7 |
include | exclude | satisfy

(cop) := AND | OR | NOT

Fig.2. The syntax of our naming scheme in BNF. The class
name or class id specifies a resource type. The specification
is attribute-value pairs and indicates the qualification for

resources.

The naming scheme is to divide resources into
classes and define attributes for every class. The
syntax of our naming scheme in Backus-Naur Form,
or BNF, is shown in Fig.2. A resource name con-
sists of two parts: class name or class id, and speci-
fication, which collectively identify a user’s require-
ment.

A user indicates the type of the requested re-
source by class name or id. The class name is a
string friendly for users to remember, while the
class id is a number and is used for the sake of
performance. With some user interfaces, e.g., Web
portals, users can fill out resource requests easily.
In the interior of the system, all resource types are
represented by ids. The class name or id is manda-
tory and could be further qualified with the follow-
ing specification.

The specification is a logic expression consist-
ing of attribute-value pairs and is linked together
by operators. This field is optional and when it is
null it means that a user needs only resources of
one kind no matter what the properties are. Here
the operators “include” and “exclude” respectively
mean that the attribution should contain or should
not contain the specified value.

As the definitions in Fig.2 show, types of class’s
attributes could be classes, too. For instance, as
shown in Fig.3, class ComputingResource has an
attribute OS, and the attribute OS might be an in-
stance of class OperatingSystem with members —
type, version, supportedlibrary, etc. And a spec-
ification can just be seen as an object instance.
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The “satisfy” operator denotes that the attribu-
tion should meet the qualification of the following
object value.

ComputingResource?(CPU>“933MHz”)AND (memory =
“256M”) AND (OS satisfy (OperatingSystem ? (type =
“Linux”) AND (version = “RedHat7.2”)))

Fig.3. An example of resource name.

Our scheme just enables us to name individ-
ual resources. However, to request multiple num-
bers or types of resources at one time a request
language is needed, which is not discussed here.
Namespace and inheritance can also be introduced
to enhance its generality and extensibility. The in-
terested readers could also refer to [8-10].

3.2 Information Propagation Mechanisms

Information propagation in the VIRD is mainly
responsible for resource information generating
(registering and updating) and spreading within
the infrastructure.

3.2.1 Two-Level Topology

It is impossible for one server to know about
the whole grid, while it is practical and preferable
for a node to know a part, especially the informa-
tion about those servers and resources that have
close relationship with it. Thus a two-level GRNS
architecture is adopted. BGRNS servers and the
connections between them build up the backbone
and each BGRNS is also connected with one or
several domains so that it joins the backbone and
the domain(s). In a domain all the GRNS servers
are independent except that there might be update
information between each other.

This two-level architecture is preferred due to
the following reasons.

e It has good scalability. Based on the experi-
ence of the Internet routing, the number of GRNS
servers in a grid could be up to thousands.

e Every GRNS could have its own information
organization. All servers are independent of each
other and every server can put the local informa-
tion into optimal structure and can have its own
managing and searching policies.

e It would be more effective. Each GRNS knows
all the knowledge about resources in a domain and
most requests can be answered locally. Only those
conditions that cannot be satisfied in the domain

would be forwarded to a BGRNS.
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e The conception domain in the VIRD architec-
ture somehow conforms to the virtual organization
(VO)'! and can be integrated organically.

3.2.2 Information Propagation Algorithms

Consistent with the VIRD architecture, the in-
formation propagation protocols are classified into
interdomain protocols and intradomain protocols.

3.2.2.1 Existing Resource Routing Algorithm

In [7], all the resource routers are au pair and
have no difference structurally. It can be inferred
that their algorithm is a RIP-like distance vector
algorithm. Thus, this approach is simple and easy
to implement, whereas it has some problems. 1)
First of all, the distance vector routing algorithm is
slow to convergel['2]. 2) The authors experimented
with a model composed of 5,000 nodes simulating
the real network. But according to the practice
and experience from IP routing, it is impractical
to build such a big network of routers solely by
RIP. 3) The requested router only knows that the
biggest or best resource attributions in a certain di-
rection and has little information about the details
of individual resources, so it might lead to incorrect
routing.

3.2.2.2 Intradomain Information Propagation Al-
gorithm

Our intradomain information propagation algo-
rithm consists of the following parts.

e Finding Neighbors: In this paper, a GRNS
A’s neighbor refers to a GRNS that directly con-
nects with A in the topology and is a logical con-
cept, different from the neighbor in IP routing. The
starting neighbors of a GRNS may be predefined
statically and a server reads them from a configu-
ration file during startup. Then it tries to say hello
to its neighbors to verify whether they are alive and
ready to establish the real connections.

A new feature mechanism called shortcut is pro-
posed. The main idea is that new connections be-
tween GRNS servers could be added dynamically
according to some conditions. For example, in
the case that the resources registered to a certain
GRNS, R1, have been frequently used by the recent
requests of GRNS R2, R2 could ask R1 to estab-
lish a shortcut between them. If agreed, updating
information can be sent from R1 directly to R2,
therefore time will be saved and information on R2
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about R1 will be more up to date. The shortcut
should not be written into the configuration file due
to its dynamic characteristic and could be deleted
when it is not necessary any more.

e Packing an RSP: Each GRNS constructs re-
source state packet, or RSP. A GRNS generates
an RSP periodically or when it discovers that it
has a new neighbor, the status of its registered re-
sources has changed or a neighbor has gone down.
If triggered update is used and triggering events
have not happened for a certain long time, a GRNS
must send an empty RSP to declare its living, or
its neighbors would think that it has been down.

e Disseminating the RSP to all GRNS servers:
Each GRNS keeps track of the sequence number it
used last time when it generated an RSP; when it
needs to generate a new one, it uses the next se-
quence number. When another GRNS receives an
RSP, it compares the sequence number of the re-
ceived RSP with the one from its memory (if it has
one there) and assumes that the one with higher
sequence number is more recently generated. And
the sequence number would wrap around.

The advantages and features of our intrado-
main information propagation algorithm include
that 1) our link-state-like algorithm converges more
quickly than distance vector algorithms!'?l; 2) it
makes the resource discovery faster becauser some
information needed to choose the resource provider
for a request is locally available; in contrast, with a
distance vector algorithm, a GRNS only knows that
a requested resource is in a certain direction, and
the request has to be forwarded to the correspond-
ing neighbor; 3) the topology can be consciously
changed when necessary.

It is not supposed that GRNS or BGRNS
servers know the resource information about other
domains they do not belong to, hence no such in-
formation is propagated between domains.

3.3 Resource Discovery Mechanism

The main function of the resource discovery
mechanism is that GRNS servers answer requests
from clients and find satisfactory resources.

3.3.1 Resource Discovery Process

The requests come in two flavors: recursive and
iterative, also called nonrecursive.

3.3.1.1 Recursion

Recursion, or recursive discovery, is just a name

for the discovery process used by a GRNS when it
receives recursive requests, as shown in Fig.4.

The domain

3)
- 1) GRNS
GENS
(I —
6) 5)
7

T *GRKs
: 3

Fig.4. Discovery process for a recursive request.

The recursive process is as follows.

1) The GRNS S1 receives a recursive request. S1
first searches its local database of resource information
for the satisfactory resource. If no qualified resource
in this domain is found, S1 will forward the request to
a BGRNS BS1 and go to 2); if found, S1 chooses an
appropriate one from the candidates and if the chosen
resource is local to S1, it will reserve the resource and
return the reservation handle, go to 8); or else go to 4).

2) BS1 receives the forwarded request, finds an an-
swer according to some mechanisms and returns it to
S1. The interdomain resource discovery will be dis-
cussed in 3.3.1.3, and the details are omitted here.

3) S1 gets the reply from BS1 and go to 8).

4) S1 sends an acknowledge-and-reserve request to
S2. If the resource satisfies the request, S2 will keep the
corresponding resource for that client and send back a
reservation handle. Otherwise, S2 will tell S1 that the
resource is no longer qualified.

5) S1 receives the reply and if the reply is a reser-
vation handle, S1 returns the handle, go to 8); if the
reply implies disqualification of the resource, go to 6).

6), 7) S1 repeats the procedure similar to 1)—5) un-
til the qualified resource is found or the time is out. Go
to 8).

8) S1 returns the answer to the client either the
reservation handle or the “no qualified resource is
found” message. The resource discovery process stops.

Recursive queries place most of the burden of
resource discovery on a single GRNS.

3.3.1.2 Iteration

Iteration, or iterative discovery, on the other
hand, refers to the discovery process used by a
GRNS when it receives iterative requests (Fig.5).

Although distinct from each other, the iterative
process is somewhat similar to the recursive one.
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Hence a general description instead of the details
of each step is given here. The designated GRNS
is only the initial place for the client to ask ques-
tions. If there is satisfactory resource registered to
the GRNS it reserves the resource and returns a
handle; if the resource is under some other GRNS
in the domain the GRNS will return the address
of that server; if there is no satisfactory resource
in the domain the GRNS will return the address of
a BGRNS. Then if the answer is not a reservation
handle the client will continue the request.

The domain
| BGRNS BS1

—Tars s

Fig.5. Discovery process for an iterative request.

The two methods (recursive and iterative) are
applicable and specific to different situations. They
coexist in grids.

3.3.1.3 Interdomain Resource Discovery

Since every BGRNS belongs to one or several
domains, it has full knowledge of the resource in-
formation of the domain(s). When a resource re-
quest cannot be satisfied in a domain, it will be
forwarded to the BGRNS connecting the domain
to the backbone. The BGRNS broadcasts it to all
or some other BGRNS servers. If a BGRNS finds
a proper resource in the domains it knows, it will
send an answer to the initial BGRNS. Then the
initial BGRNS will choose the proper one from all
the answers.

3.3.2 Searching and Choosing Resources

Searching, to find qualified resources for re-
quests, has close relationship with organization of
databases on GRNS servers. The VIRD architec-
ture puts no requirement on information organiza-
tion in GRNS servers, i.e., every server can have
its own information format, storing and accessing
methods and can combine them with the searching
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method to achieve best performance.

Given the whole knowledge of a domain and a
set of qualified resources, there are several ways to
pick out an appropriate one based on various met-
rics. The following is some commonly used policies.

e Choosing the most lightly loaded resource:
taking the load status as the criterion, the most
lightly loaded one is the most preferred.

e Choosing the “closest” resources: every edge
between two GRNS nodes is given a weight and
a weighted graph of the domain is obtained. Ap-
ply straightforward algorithms (e.g., Dijkstra al-
gorithm) to calculate the distance between each
pair of nodes. Metrics for the edges can be defined
by fixed numbers, hops, or communication latency,
etc.

e Choosing resources according to static pref-
erence policies: this measurement looks somewhat
stiff, but it conforms to some practice in the grid,
even in the Internet. There would be thousands
of resources and users in girds, and some of them
belong to the same organizations, realistic or vir-
tual. Due to considerations on factors such as cost,
effectiveness and security, some resources would be
more appropriate than others even with the same
capability.

There may be many other metrics and imple-
menters can define their own metrics based on their
situation or on the users’ demand. All metrics can
be implemented and deployed independently or em-
ployed together.

4 Experiments

In this section, the experimental environment
is presented, including our simulator and assump-
tions. We also present the details about the inputs
and the parameters, as well as the experimental
results.

4.1 Experimental Environment

Because there are no standards for evaluating a
resource discovery system in a grid, and our archi-
tecture is original and quite different from those in
[3, 4, 6, 7], it is difficult to compare its performance
with that of the others. So far, our experiments
aim at verifying our three-level architecture for re-
source discovery by setting up and using an emulat-
ing grid environment. Considering that our inter-
domain policies are similar to common peer-to-peer
technologies, and much work(®13:14] has been done
in this area, our experiments in the current stage
are only focused on the intradomain algorithm.
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Because the key of our approach is the dy-
namic propagation of the resource update in-
formation, the unscalable, static, discrete event
simulators!!®16] cannot be used. Aiming at our
needs, we have designed and implemented a con-
figurable, event-driven grid simulator, SimVIRD.
With SimVIRD, one can configure the parameters
related to the resource discovery performance, such
as the topology of GRNS servers, the request trace,
the resource distribution, the resource information
update period, etc.

A resource discovery system is very complicated
and influenced by many factors. To simplify the
problem, some assumptions are predefined based
on the goals of our simulation. 1) The latency of
locally searching resource information is ignored,
because it is negligible compared to the network
latency, and the focus of our simulation is to verify
the overall architecture instead of the local search-
ing policy. 2) All the requests are of recursive fla-
vor. Since interdomain resource discovery has not
been simulated, no TTL (Time to Live) is consi-
dered and the retry time for requests is set to 3,
i.e., on receiving a request, a GRNS will try to find
it an answer in the domain and try to acknowledge
the corresponding resource for at most three times.
If it fails all the time, it will forward the request
to a BGRNS. 3) Resources are modeled as having
only one dynamic attribute in the form of a deci-
mal fraction ranging from 0 to 1. 4) Accordingly,
requests are simplified to require only one resource
whose attribute is smaller than a certain value.

While these assumptions are not realistic, it
helps us to understand the effectiveness of our ar-
chitecture and the impacts of main parameters on
the resource discovery performance.

4.2 Experimental Inputs and Parameters

The performance of the resource discovery me-
chanism depends on the following factors.

4.2.1 Topology

The topology of GRNS servers influences the
performance of our resource discovery approach.
In the extreme, if a node receives RSPs directly
from all the other nodes, it is most possible that
the node can make the best decision for user re-
quests. However the influence of them on the dis-
covery performance is beyond the discussion of this
paper. In our simulation, the GNRS topology and
the network latency between GRNS nodes used in

our simulation are generated by the Tiers network
generator!”l. Tt is assumed that there are no fail-
ures in communication between nodes.

4.2.2 Resource Distribution

There are two main factors about resource distri-
bution. The first is the distribution of resources in
a domain. Sometimes resources are centralized in a
small region, while there are few elsewhere. Some-
times they scatter evenly. For generality, a resource
is randomly chosen to reside on a GRNS node in
our simulation. The second issue is resource fre-
quency. Some resources are very common, of large
number and widely available, while some others are
rare. For a certain type of resources, the ratio of
its number R to the number of GRNS nodes in
the domain N is used to represent the resource’s
frequency. Resource discovery performance is com-
pared using different values of R/N. The compar-
ison results show the effectiveness of our approach
under various resource frequencies.

4.2.3 User Request

User request patterns can surely make a differ-
ence to the resource discovery performance, but no
real user request traces can be found for simulation,
which is a problem often met in research during the
design phase.

The factors shaping a user request pattern in-
clude user request distribution (what kinds of re-
sources the user wants) and user request arriving
rate. In our model, only one kind of resources
is simulated, and every resource has only one dy-
namic attribute. This simplification is reasonable
in terms of the principles of the architecture. A re-
quest requires a resource whose dynamic attribute
is smaller than a randomly generated value. The
request arriving rate is set to 1,000 according to a
common Web server’s request receiving rate, i.e.,
a GRNS receives a request randomly within every
1,000 ticks, where a tick is just a general time unit.

In each simulation, every GRNS reads requests
from a trace file. To keep the experiment long
enough to simulate the real running process of our
model, the request number is set to (100 % the re-
source information update period)/the request ar-
riving period, where the resource information up-
date period will be detailed in the following sec-
tion. For example, when resource information up-
date period is 50,000 time units, the trace file of
every GRNS has 5,000 request entries.
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4.2.4 Update Periods

The update periods refer to the period of up-
dating the resource information and the period of
changing the resource state. In our experiments,
a GRNS periodically sends to its neighbors the
new RSPs generated and received by it. Resources
change their status for every resource state change
period.

4.3 Results

We are interested in the following four statistical
parameters.

1) In_domain rate: the rate of requests that can
be satisfied in the domain.

2) Forwarding rate: the rate of requests that
cannot be satisfied in the domain and should be
forwarded to a BGRNS; its value is equal to (1 -
in_domain rate).

3) Forwarding error rate: the rate of forwarded
requests that can be satisfied in the domain at that
moment.

4) Looking-up error rate: the rate of looking up
results that have been acknowledged as wrong by
the designated GRNS of the found resource.

Because some of our parameters in the simula-
tion are random values generated during runtime,
in order to avoid errors caused by randomness, ev-
ery experiment is repeated 200 times and all the
results are the averages.

Fig.6 gives looking-up error rates for various ra-
tios between the resource information update pe-
riod and the resource state change period. As the
ratio grows, the amount information on a GRNS
about other GRNS nodes decreases in time, hence
the possibility of getting wrong looking-up results
increases. The intuition is confirmed by Fig.6. It
can be seen that for all the resource state change
periods the looking-up error rates grow along with
the ratio between the resource information update
period and the resource state change period.

The influence of the node number and the re-
source frequency on the rate of requests that can
be satisfied in the domain is shown in Fig.7. When
the resource frequency is 1/10, the rate is between
54.64% and 59.09%. When it is 10, the rate can be
as high as 97.8%. For a number of testings, the en-
vironments are similar to this one except that the
ratios between the resource information update pe-
riod and the resource state change period are differ-
ent (0.5 and 2), and similar pictures are obtained.
They are not presented here due to the space limit.
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Fig.6. The looking-up error rate as a function of the ratio of
the resource update period to the resource state change pe-
riod. The resource state change period is constant: 100,000;
the ratios of them are 0.01, 0.1, 1, 5 and 10 respectively.

The node number is 100 and the resource frequency is 10.
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Fig.7. In_domain rates in the environments with different re-
source information update periods and resource frequencies.
The node number is 100. The ratio between the resource
state change period and the resource information update

period is 1.

In our experiments the request numbers for dif-
ferent resource frequencies are all the same; while
in reality the requests for rare resources should be
much fewer than those for common resources. So
the overall requests forwarded for interdomain re-
sponse would not be too many and the burden on
BGRNS servers would not be too heavy. These
experimental data indicate that the layered archi-
tecture is acceptable in terms of the traffic on a
BGRNS.

In Fig.7 it is obvious that as the resource fre-
quency increases, the rate grows. At the same time,
the rate of requests satisfied in the domain bears
little relation to the resource information update
period. In the environments with other node num-
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bers, the same outcome is obtained. (Due to the
limited space, the graphs are not presented here.)
The resource information update period and the
resource state change period are set to 100,000 in
the later experiments.

From Fig.8 it can be seen that as the GRNS
number of a domain increases, the forwarding rates
under different resource frequencies change little,
and this shows the scalability of our architecture
and algorithm. The reason for this phenomenon is
that a GRNS node always tries to find a proper re-
source for a request as close to it as possible, so the
nodes far from it have little impact on it. As for
why the forwarding rates vary much when the re-
source frequency is 1/10, the reason may lie in the
randomness for the small number of resources. Of
course, the scale of a domain cannot extend unlim-
itedly, because as a domain grows, the overhead for
the resource information propagation grows as well.
On the other hand, the resources on nodes too far
away may seldom, if not never, be used, and hence
the overhead for such resources’ information is of
little meaning.
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Fig.8. Forwarding rates for the environments with various
node numbers and resource frequencies. The resource infor-
mation update period and the resource state change period
are 100,000.

Table 1 presents forwarding error rates under
some environments with fixed resource update pe-
riod and resource state change period. It can be
seen that the forwarding error rates are rather low,
and the maximum is 8%, while the minimum is just
0.06%. Together with the conclusion from Fig.7
that the forwarding rate is acceptable, it can be
concluded that our architecture and resource in-
formation update algorithm are viable. Of course,
further work needs to be done on the approach to
reduce forwarding error rates consequently to im-
prove the resource discovery performance.

Table 1. Forwarding error rates under some
environments with various node numbers and resource
frequencies. The resource update period and the
resource state change period are always 100,000.

Node Resource Frequency (%)
Number 1/10 1 2 4 6 8 10

50 0.06 4.48 3.26 4.07 0.69 0.90 0.38
100 1.10 5.02 3.49 1.95 1.33 1.10 0.60
150 8 5.52 2.74 1.57 1.10 0.98 0.56
200 0.52 4.07 3.28 1.94 0.97 0.84 0.54

5 Conclusions

This paper presents an approach to the grid re-
source discovery issue, called VEGA Infrastructure
for Resource Discovery (VIRD). We have devel-
oped a simulator, SImVIRD, to evaluate the VIRD.
The analysis and experiment results indicate that
this is a viable approach, especially with respect to
scalability and dynamic change of grid resources.
This architecture is proposed as a resource discov-
ery framework. In fact it can also be applied in the
resource management and scheduling possibly with
a little modification.

The VIRD three-level architecture helps im-
prove scalability by taking advantage of local-
ity and layered distribution of resource informa-
tion. In VIRD, the name of a resource is inde-
pendent of its physical attributes, which facilitates
the transparency of physical resources to applica-
tions. A link-state-like algorithm is adopted to
propagate changes in resource information within a
grid domain, which converges faster than distance-
This algorithm is augmented
with a short-cut scheme, which could further im-
prove the efficiency of resource information up-
dates. All these mechanisms help deal with the
dynamic change of grid resources.

vector algorithms.

This paper also defines several measures to
gauge the effectiveness of a resource discovery
method, including the in_domain rate, the forward-
ing rate, the forwarding error rate, and the looking-
up error rate. When a request is used to discover
a resource, there could be three outputs: (1) a re-
source matching the request is returned; (2) no re-
source is found because there is no resource match-
ing the request; (3) no resource is returned but
there exists at least one matching resource. The
third case generates a wrong output. The effective-
ness of a resource discovery method can be mea-
sured by the forward error rate, which is defined
as the rate of wrong outputs in the total outputs.
In our simulation, when a resource is not found in
a grid domain (Cases 2 and 3), the request will be
forwarded to another domain via a BGRNS.
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A few conclusions can be drawn from exper-
iment results regarding the effectiveness of the
VIRD approach. The looking-up error rate grows
with the ratio between the resource information up-
date period and the resource state change period.
The in_domain rate reflects locality, which has close
relationship with the resource frequency. When the
resource frequency is 1/10, the rate is just between
54.64% and 59.09%; when the resource frequency
increases to 10, the rate can be as high as 97.8%.
Because the GRNS always tries to find resources
on closest nodes, the effectiveness of the VIRD ap-
proach has little relation with the number of nodes
in a grid domain.

The experiments also indicate another phe-
nomenon: the looking-up and the forwarding error
rates could be significant (the highest error rate
in our experiments is 8%), especially when the re-
source frequency is low. This suggests that resource
information updating rate should not be fixed, but
rather variable with respect to different types of re-
sources. For infrequent resources, the correspond-
ing update rate should be kept low.
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