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Abstract

As an emerging new research area, DNA computation, or more generally biomolecular computation,

extends into other fields such as nanotechnology and material design, and is developing into a new sub-discipline

of science and engineering. This paper provides a brief survey of some concepts and developments in this area.

In particular several approaches are described for biomolecular solutions of the satisfiability problem (using bit

strands, DNA tiles and graph self-assembly). Theoretical models such as the primer splicing systems as well as the

recent model of forbidding and enforcing are also described. We review some experimental results of self-assembly

of DNA nanostructures and nanomechanical devices as well as the design of an autonomous finite state machine.

1 Introduction

As we celebrate the 50th year since the discovery
of the structure of DNA, extraordinary advances in
genetics and biotechnology arrive on a daily basis.
At the same time we are witnessing research de-
velopments that employ DNA in a completely new
way treating this molecule of life as a nanomate-
rial for computation. The first conception of using
DNA for computation ripened in the mid 80’s with
the first theoretical model of splicing systems intro-
duced by Head!!). These ideas came to full power
with Adleman’s seminal experiment!?! which solved
a small instant of a combinatorial problem using
solely DNA molecules and biomolecular labora-
tory techniques. The impact of these first ideas on
many researchers can be observed by the numer-
ous theoretical results and innovative experimental
solutions that followed. Results of these studies
are considered rather significant that much of the
research has been published by leading scientific
journals such as Science and Nature. The research
has spurred new scientific interactions and opened
connections between mathematics and computer
science from one side, and molecular biology, nan-
otechnology and biotechnology from another.

The research in biomolecular computing has
already taken many different pathways (theoreti-
cally and experimentally), such that, in attempt to
describe some of these ideas, this paper will end up
presenting just a small subset of the results. Even
more, the choice of the content and the results that
are covered are colored by the bias of the author.
The reader is advised to consult the Proceedings
of the annual meetings on DNA-based computers,

currently in its ninth year, where most of the re-
searchers present their results (see [3-10]).

In these highly interdisciplinary studies, the-
ory and experiments are tightly interlaced and this
paper contains a little bit of both flavors. It
is assumed that the reader is familiar with basic
biomolecular techniques, but for a reference, the
first section gives a brief introduction to the notions
used in the following sections. It is also assumed
that the reader is familiar with mathematical writ-
ing as well as with the basic ideas of theoretical
computer science which are used in describing the
theoretical models.

The paper starts with a rather brief intro-
duction to some notions from molecular biology
and biotechnology. A short description of DNA
molecules used in successful construction of nanos-
tructures and nanomechanical devices is given in
Subsection 2.2. The main ideas exploited with
the first experimental success are described in Sec-
tion 3. One of the ultimate problems for trying
any new approach for DNA-based computation has
been the satisfiability problem (SAT). Section 4 de-
scribes three different ideas for a solution of this
problem with DNA: using linear duplex molecules,
self-assembly of DNA tiles and graph self-assembly
with junction molecules. There are numerous the-
oretical models for DNA-based computers and it is
really difficult to describe even a small subset of
them in a scope of this article. Hence, in Section 5
we concentrate on the very first model, the simple
splicing system and one of the most recent ones,
forbidding-enforcing systems. The section on nan-
odevices, Section 6, describes three very significant
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experimental results. The first one is a DNA-based
mechanical device that uses DNA “fuel” strands to
change from one state to another. The second de-
vice is a DNA-based “switch” that uses the idea of
fuel strands to switch between two positions. The
section ends with a description of an autonomous fi-
nite state machine. It employs a restriction enzyme
coupled with clever encoding that “reads” the in-
put and recognizes certain strings. The paper ends
with a few concluding remarks.

2 Biotechnology

Briefly we recall the basic DNA structure and
the actions of several types of enzymes. A more
thorough and not very technical description of the
structure of DNA and the operations performed by
enzymes can be found in [11, 12] (see also [13]).
Detailed laboratory protocols can be found in [14].

Information in a DNA molecule is stored in a
sequence of nucleotides, also called by their chem-
ical group, base, A,G,C, T (adenine, guanine, cy-
tosine and thymine) joined together by phospho-
diester bonds. In the case of RNA the thymine
is substituted with wracil U. A single strand of
DNA, i.e., a chain of nucleotides, has also a “be-
ginning” (usually denoted by 5’) and an “end” (de-
noted by 3'), and so, the molecule is oriented. A
chain of nucleotides is called oligonucleotide or sim-
ply just oligo. By the well known Watson-Crick
complementarity, A is complementary to 7" and C
is complementary to G. A double stranded DNA
is formed by establishing hydrogen bonds between
the complementary bases of two single stranded
molecules that have opposite orientation. This pro-
cess is usually called hybridization or annealing.

2.1 Enzymes and DNA Operations

e Polymerase (used in operation “amplify” or
“detect”). DNA polymerases are enzymes that syn-
thesize DNA. With these enzymes, a DNA strand
can be duplicated or extended. One of the com-
monly used protocols in molecular biology is the
so-called polymerase chain reaction (PCR). This
reaction detects certain DNA sequences and syn-
thesizes a large number of such molecules from an
existing pool of molecules. This method is used to
detect (extract) a certain sequence within a large
mix of molecules or to amplify.

e Restriction enzymes (endonucleases) (used
in operation “separate” or “cut”). Such an en-
zyme recognizes a specific sequence of nucleotides
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in a double stranded DNA molecule and cuts the
molecule in two pieces by destroying the phospho-
diester bonds at specific places of the two strands.
Different enzymes recognize different sequences of
nucleotides, and even if they recognize the same
sequence, they may cut the molecule in a different
way.

e Ligase (used in operation “glue”). It is said
that a double stranded DNA molecule has a nick if
the phosphodiester bond between two consecutive
nucleotides within one of the strands is broken. A
ligase is an enzyme that closes the nicks, i.e., recov-
ers the broken phosphodiester bonds in a double
stranded DNA.

o Length (weight) selection (used in operation
“separate” or “detect”). A technique called “gel
electrophoresis” separates DNA molecules by their
weight. The DNA is negatively charged and after
being placed in a small well of a gel in an active
electric field, it slowly moves toward the positive
side. Larger (heavier) molecules move slower and
smaller molecules move faster. The portion of the
gel that contains molecules with the desired length
can be cut out of the gel, DNA purified, and then
used in subsequent experiments.

2.2 DNA Molecules Used in Nanostruc-
tures

In nature, DNA appears as linear double
stranded molecule (in eukaryotes) but also it can
be in a circular form (mostly in viruses and bacte-
ria, prokaryotes). Circular DNA can be obtained
also in a laboratory by joining (ligating) the ends
of a linear DNA. Such molecules are used in sev-
eral models of DNA-based computers (e.g., [12],
Chapter 9). Circular molecules have been used as
building blocks for DNA knots. In theory, virtually
any knot can be constructed using right-handed
B-DNA for negative crossings and left-handed Z-
DNA for positive crossings'®~18. Many catenas
and linkages of DNA molecules are known, but just
recently, the first Borromean DNA rings were as-
sembled using B and Z DNA[!9],

In DNA-based computing the complementarity
of the nucleotides (A < T, G + C) is one of the
basic properties used for encoding information as a
tool for computation, as well as for obtaining DNA
nanostructures. Besides the linear duplex DNA,
there are two additional DNA building blocks fre-
quently used, junction molecules and DNA pro-
totiles made of DX or TX molecules.
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Fig.1. A four armed branched junction molecule, and a DNA tile made of a triple cross over molecule.

Junction molecules are fairly well understood.
These molecules were used in construction of DNA
polyhedra, a quadrilateral, a truncated octahe-
dron and a cubel!”2921] " The k-armed branched
molecules (k is a natural number > 2) seem to
be suitable for graph construction. An example of
4-armed branched molecule is presented in Fig.1
to the left. In this figure, the double helix of
the molecule is not presented. Hydrogen bonds
between the anti-parallel, complementary Watson-
Crick bonds are depicted as dotted segments be-
tween the strands. Polarity of the DNA strands
is indicated with arrowheads being placed at the
3'-end. The angles between the “arms” are known
to be flexible. If we allow each “arm” to be over
200 or 300 base pairs long, then the “arms” of
this molecule become rather flexible and we de-
liberately show them curved. On the other hand,
short arms of two or three helical turns (one heli-
cal turn is about 10.5 bases) would provide quite
rigid structure. Such rigid structures show high
potential for constructing three dimensional crys-
tals. Two dimensional arrays made of rigid struc-
tures have been reported in [22]. The 3'-ends can
be extended such that each arm ends with a single
stranded portion. This single stranded part, also
called “sticky end”, can anneal to its Watson-Crick
complement once placed in a test tube. Construc-
tion and properties of these molecules are fairly well
understood?324] such that their potential for uti-
lizing them in a more complex structures is becom-
ing rather feasible. Recently, general non-regular
graphs have been successfully constructed by us-
ing junction molecules for the vertices and duplex
molecules for the edges/2!.

DNA prototiles. Another very important step
toward constructing three dimensional DNA crys-
tals was made by the design and the assembly of a
two dimensional array made of DNA tiles/?6]. The
construction of these arrays was enabled by the use
of double (DX) and triple (TX) cross over molecules
that act as tiles. These molecules are double or
triple duplex molecules (two or three double he-
lices) such that DNA strands interchange between
different helices. An example of a triple cross over

molecule is presented in Fig.1 to the right (figure
obtained from [27]). The 3'-ends are indicated with
an arrow and they may be extended to be used as
sticky ends such that connecting TX molecules in a
two-dimensional array is possible(2®]. These DNA
tiles made of DX and TX molecules have been ini-
tially designed in Seeman’s laboratory at New York
University and now are used by several groups in
Caltech, Duke and University of Southern Califor-
nia.

3 Beginning

In his experiment, Adleman!? solved a small in-
stant of a combinatorial problem known as Hamil-
tonian Path Problem for a directed graph. The
Hamiltonian Path Problem (HPP) asks whether for
a given (directed) graph G there is a path from one
vertex (denote it with v;,) to another vertex (de-
note it with v,,t) that visits every vertex exactly
once. If such path exists then it is called Hamilto-
nian.

In the Adleman’s experiment, the edges of G are
represented by single-stranded DNA oligos made
of twenty (randomly chosen) nucleotides. The ver-
tices in the graph are also oligos of 20 nucleotides
having the first 10 nucleotides complementary to
the last 10 of the incoming edge, and the other 10
being complementary to the first 10 nucleotides of
the outgoing edge (see Fig.2). A path e;---ex of
length k£ in G is represented by a double-stranded
DNA molecule of length 20k base pairs with ten
nucleotides (single-stranded) overhang from each
end. So, if a Hamiltonian path exists, then it has
to be represented by a double stranded molecule
of length 20n where n is the number of vertices.
The experiment that solved the problem had the
following key elements:

1) encode the information about the graph into
DNA strands;

2) use self-assembly of the molecules led by
the Watson-Crick complementarity to generate a
large library of strands that encode paths in the
graph;
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3) use known biomolecular techniques (liga-
tion, gel electrophoresis, PCR, affinity separation)
to extract the right solution, i.e., to extract the
molecules that represent paths from v, to v, and
visit every vertex exactly once;

4) provide a way (gel-electrophoresis) to read
out the output.

vertex 3

10nt ‘

verlex 2

20nt "
7 T

vertex 1

Y Y -
| 10nt 10nt ” 10nt

edge from 1 to 2 edge from 2 to 3
Fig.2

The problem that was chosen for this experi-
ment was a well known NP-complete problem that
is generally “intractable” in the sense that for a
relatively modest size of a graph, with any known
algorithm, an impractical computer time is needed
for solution. The Adleman’s approach to this prob-
lem is not much different then a brute force search,
but the way it was encoded and solved, the use
of massive parallelism, self-assembly and the use of
non-determinism made it very novel, inspiring and
a base for innovative ideas both experimentally and
theoretically.

Several theoretical models based on the lab pro-
tocols used in the Adleman’s experiment can be
found in the literature (e.g., [12, 29, 30]). They all
use more or less the same set of operations: merge,
separate, detect, amplify etc. and they all can feasi-
bly be executed by a robotic system. In [30], Lipton
showed that, using these operations, the satisfia-
bility problem (see Section 4) for propositional for-
mulas can be solved and consequently a large set of
problems can be solved by DNA. In [31], it is shown
how these operations can be used to break the Data
Encryption Standard (DES). Approximately one
gram of DNA is needed and using robotic arms (as-
suming each operation to last one minute) breaking
DES is estimated to take five days. The most sig-
nificant in the analysis for breaking DES is that
the success is quite likely even with, at this point
unavoidable, large number of errors within the lab
protocols.

The big drawback in the Adleman’s and Lip-
ton’s approach is the need of a very large pool of ini-
tial molecules that have to be generated in order to
assure correct solution to the problem. For a larger
graph, say a modest size of 200 vertices, one needs
“DNA more than the weight of the Earth” (see
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[32]). The subsequent studies have concentrated on
developing algorithms such that not necessarily all
of the potential solutions are constructed at once
(e.g., [33, 34]). However, scaling up the proposed
models to a larger and practically significant prob-
lems remains one of the most difficult problems in
using DNA for computation.

4 Solving SAT

The SAT problem is one of the standard exam-
ples of NP-complete problems, and in fact, many
researchers have suggested various ways to solve
this problem by different biomolecular techniques.
Here we show three of these approaches, using
linear duplex molecules, using DNA tiles and us-
ing DNA graph structures. Although it is now
clear that solution of large scale combinatorial
search problems, most probably, will not be the
future of DNA-based computations, new meth-
ods, models and techniques are described very of-
ten through proposals for a solution to this prob-
lem. The method that uses linear duplex molecules
is the first one that was proposed by Lipton[°. It
requires linear number of laboratory steps (regard-
ing the size of the formula), and the experimental
results are most successful.

We start with a definition of the problem. Let
A ={aj,az,...} be a set of Boolean variables. A
clause is a formula C' = by + by + --- + by where
+ is the logical “or” and each b; is a variable or a
complement to a variable in A.

A conjunctive logical formula is a formula of the
form: a = Cy{-C5-...-C, where each C; is a clause.

The satisfiability problem (SAT) asks whether
for a given logical formula, «, there is an assign-
ment of { True, False}, i.e., {1,0} to the variables
in a that would assign « the value of T, i.e., 1.

Consider the example:

a=@+y+2)(z+y+2)@+g+2). (*)

This formula () has value 1 for the assignments
(z,y,2) € {(0,0,0), (1,1,1), (1,0,0), (0,1,1), (0,0,
1)} and 0 for any other assignment. We will follow
this example for the discussion below.

4.1 Solving SAT with Linear
Molecules

Duplex

Right after the initial Adleman’s report of a
successful experimental solution of an instance of
HPP, Lipton®® realized that a large class of com-
putationally hard problems can be solved using es-
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sentially the same techniques. (1) Encode the vari-
ables and their truth values within DNA strands.
(2) Use Watson-Crick complementarity and recom-
binant DNA operations to separate the solution.
This method relies on availability of a large pool of
bit strands encoding the variables and their truth
values. Using this approach now there are quite
few experimental solutions of SAT.

Landweber and her group in Princeton used
RNA to encode the bit strands(®3]. They solved
a 3 X 3 knight problem which is equivalent to a
solution of a SAT problem with nine variables.
Currently this group is developing an automated
system using a microfluidic device to separate the
strands. Such a device was initially reported by the
group of McCaskilll®=38]  at the GMD-National
Research Center for Information Technology in
Germany and currently it is being developed by
Van Noort and Landweber in Princeton, USA.

The research group at University of Southern
California utilized hybridization of short sticker
single stranded DNA strands to encode the Boolean
variables similarly as was proposed by Lipton. The
solution is obtained by separating strands that en-
code assignments of the variables that satisfy the
given formula. This separation employs comple-
mentary stickers and requires sensitive and error-
resistant techniques that separate a small set of
specified molecules from a large pool of distinct
molecules. An automated mix of thermo-cycler and
gel-eloctrophoresis technique was developed for this
purpose and in a major breakthrough they achieved
to solve an instance of SAT with 20 variables!®9].

At the same time the Japanese group led by
Suyama reported that they are also capable of solv-
ing an instance of SAT with 20 variables. Their
algorithm is based on the idea that not all pos-
sibilities for the truth values of the variables are
encoded at once, but the solution is slowly built
up according to the problem. This approach was
first reported by Suyama in [33] and recently the
robots designed for implementation of these tech-
niques were presented in [40].

Hagiya et al.[*1] presented another algorithm for
solving SAT, the so-called SAT engine which uses
a hairpin formation of a single stranded molecule
as a test for inconsistent value assignment of the
variables. Each strand contains values of variables
that are contained in one clause, such that opposite
values of the variables are encoded with comple-
mentary nucleotides. When such inconsistent as-
signments are made, the DNA strand forms a hair-
pin and is cut by a restriction enzyme employing

J. Comput. Sci. & Technol., Jan. 2004, Vol.19, No.1

the recognition site inserted in the value sequence.
Hagiya also initiated the model of Whiplash PCR
that uses a single molecule and its hairpin forma-
tion to simulate a finite state machine!*?. The
method was subsequently improved by Winfree3!.

4.2 Solving SAT with DNA Tiles

The methods mentioned in the previous section
have been shown to be relatively successful experi-
mentally, but they all require increase in the num-
ber of laboratory operations (linear with the size of
the formula). Although the recombinant DNA op-
erations are being automated and robotized, they
still are not precise. In each laboratory protocol
one assumes less than 100% yield, often less than
80%. As yield decreases with each additional pro-
tocol, it becomes valuable to have models and com-
putational techniques that require little outside me-
diation or human interaction. Scaling up of the al-
gorithms comes as another problem, in particular,
generating a combinatorial library that contains all
possible solutions (as was suggested by Lipton, and
done by Landweber and Adleman) becomes quite
impractical even for a modest size problem. Many
authors have suggested use of the self-assembly of
DNA tiles (DX or TX molecules) as a possible
model of computation. This model uses one-pot
reactions, and is based solely on the Watson-Crick
complementarity of the sticky ends.

First to realize that the self-assembly of DNA
tiles is capable of simulating a Universal Turing
machine was Winfree!**.. He showed that the four
sticky ends in a DX molecule can be considered as
four sides of a Wang tile*s!. By tiling the plane
with Wang tiles one can simulate the dynamics of
one-dimensional cellular automata and with this, a
Universal Turing machine. Two dimensional arrays
made of DX and TX molecules have been reported
by the Seeman’s laboratory!?$44l. There are no
successful experimental self-assembly of two dimen-
sional programmable arrays, but the laboratory of
Winfree at Caltech reported good progress toward
assembly which simulates dynamics of a cellular au-
tomaton producing the Sierpinsky trianglel¢!.

Besides two dimensional arrays, a linear array
of DNA tiles can also be used as a computational
model. In [47] the authors show solutions of vari-
ous different computational problems using string
assembly of DNA tiles. They prove that, theo-
retically, the languages that are generated by lin-
ear assembly of finite DNA tiles correspond to the
ETOL systems. Fig.3 shows the idea of using linear
(string) DNA tile assembly to solve SAT. The
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Formula Clause formula
(4y+2)a+g+2)E+5+2) C, 011 0 0 1
Cy Cs Co (& 1 0o 0 1 1 0
Cy; 0 1 0 1 1 0
T T Yy Y z z
- —— O
D
"
< D
Start, y is true y is false End
- > |
-
S
Start z is true y is false z is false Fnd

Fig.3. Solving a 3-variable SAT problem by linear assembly of DNA tiles. The double helical structure of the strands is not

presented for simplicity. The string tile assembly at the bottom row represents one possible solution.

width of each tile (i.e., the number of DNA dou-
ble helices) is equal to the number of clauses in the
formula. There are two tiles for each variable a;:
a “true” a; and a “false” a; tiles. For each clause
C; in which a; appears, “true” a; tile has a hairpin
structure at that position. Similarly with the ap-
pearance of @; and the “false” a;. For example, in
Fig.3, the formula o has three clauses and the tiles
have three helices, i.e., they are TX molecules. The
variable y appears in clause Cy as y and in C5 and
Cs3 as y. Hence the “true” y tile has the first helix
as a hairpin and the “false” g tile has hairpins in the
second and the third helices. The hairpins “cap off”
the clauses which are satisfied by the truth value
of the variable of the tile. In this way, the formula
a is satisfied if and only if a circular molecule is
constructed during the assembly.

This idea of having one single strand that rep-
resents solution to the given problem was employed
by Mao et al.[*8] where a linear self assembly of TX
molecules that perform binary addition (cumula-
tive exclusive OR) of a sequence of bits was ob-
tained experimentally. The result could be read out
within a single strand. This computational method
seems to be promising since the “programming” of
the tiles is rather straightforward, the computation
is performed by self-assembly without outside me-
diation and the steps are executed in a massive
parallel way. This reduces the human interaction
to a minimum, but unfortunately it does not solve
the scaling problem.

4.3 Solving SAT by Graph Self-Assembly

DNA is a three dimensional molecule and the
Watson-Crick complementarity can be used to as-
semble three dimensional structures. Using junc-
tion molecules, one can imagine assembling arbi-
trary graphs or other three-dimensional structures.
The first successes along these lines are already
one decade old. Chen and Seeman used junction
molecules to construct a cube and a truncated
octahedron?>21,  In [49, 50], the authors show
that many combinatorial problems can be solved
by graph assembly. The idea is to encode the
problem in duplex molecules and branched junction
molecules such that the graph can self assemble if
and only if there is a solution to the problem. We
illustrate this technique here with the solution of
SAT as presented in [25].

Observe that for each formula o with vari-
ables aj,...,a; and clauses Cy,...,C, we can
associate a graph G(«) defined in the following
way. The vertices of G are {aq,...,a, a1,...,ax,
Cy,...,Cs}. The set of edges contains {a;,a;}
for « = 1,...,k. If a clause C; contains atoms
bj1,bj2,b;3 where bj; is either a variable or a nega-
tion of a variable, then G(a) contains the edges
{Cj,bj1},{Cj,bj2},{Cj,b;3}. The graph G(a),
corresponding to the formula (x), is depicted in
Fig.4.

The idea for solving 3-SAT is to encode the
problem into junction DN A molecules such that the
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Fig.4. The graph G(a) corresponding to the formula () is presented on the left. To the right is a possible DNA graph

structure representing the graph G(a).

graph G(a) is self-assembled according to its
Watson-Crick coding if and only if the formula
a has a solution. Each clause C' (containing
atoms, say z,y, z) is represented with a 3-junction
molecule such that the arms of the molecule end
with a single stranded extension containing three
parts of the encoding. The first and the third parts
of the encoding are atom specific, and the middle
part is value (True =1, or False =0) specific.

Since a clause has value “true” if at least one of
the atoms in the clause has value true, seven dif-
ferent molecules for each clause are needed (each
molecule encodes one of the seven possibilities of
the atom values that assign value true to that
clause).

Each variable and its complement in the graph
G(a) is represented with two adjacent vertices.
The degree of these vertices equals the number of
clauses each of the variables or their complement
belongs to. In the DNA graph, this is represented
with two junction molecules, call them J; and Jo
glued together. One of these junctions, say Jp, rep-
resents the variable, say x, and the other Js, rep-
resents its negation Z. As with the clause building
blocks, the single stranded encodings have three
parts. The truth value encoded in the arms of J;
is opposite to the truth value encoded in the arms
of Jo. For the formula (x) and the variable z, one
building block is depicted in Fig.5.

To form a DNA graph corresponding to G(«),
all clause molecules and all variable building blocks
are combined and their compatible ends are allowed
to form double-stranded DNA. Once formed, the
molecules are locked together by sealing all open

“nicks” with DNA ligase.

A possible DNA structure that corresponds to
the graph G(a) for the formula o in Example (%)
is depicted in Fig.4 to the right. Once ligated, it is
one circular single stranded molecule, i.e., a knot.
Such knot structures have been used to study re-

combination enzymes!®!l| and similar techniques for
detecting the knot structures might be useful here.
There are graphs, however, that do not form a knot,
but rather form links (multicomponent circles), and
partially formed graphs may contain smaller knots
and links as well. This question was addressed
in [52].

s to clause Oy

R oy =
- NI

to clause Cy
<.

to clause €
4

T T
e

To T I

verter T verler x

Fig.5. A building block for variable z and Z in (*). Since Z
appears in two clauses, it is encoded with a 3-junction. The
variable = appears in only one clause, so it is represented
with a duplex molecule, one side of which is connected to

one arm of the 3-junction representing z.

5 Theoretical Models

As computer scientists and mathematicians be-
came aware of the laboratory possibilities involving
DNA molecules, the theoretical models for DNA-
based computations started to develop and they ap-
peared in many different flavors. The very first one
that appeared few years before the Adleman’s ex-
perimental result, was introduced by Head!]. This
model initiated the study of H-systems (i.e., splic-
ing systems) and the early research following this
initial paper was concentrated on characterizing H-
systems and proving that they generate regular lan-
guages. Head, in [53], suggested use of circular
(cyclic) strands within splicing systems and soon
after, the interest for H-systems as a theoretical
model for DNA-based computation exploded. It
took about ten years for the researchers to under-
stand the computational power of these systems
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[64]. Many variations of H-systems from the origi-
nal definition have been considered in the literature
and for more detailed description the reader is ad-
vised to consult with [11, 12]. In this paper, we
describe the main idea behind splicing systems by
considering “simple” splicing.

Another rather new theoretical model moti-
vated by chemical reactions among different sets of
molecules are the so-called “forbidding-enforcing”
(fe-) systems introduced in [56]. Being rather new,
there are many things that need to be yet un-
derstood for this model. At this point we do
have a way to do computation (through the so-
called I'-trees described in [56]) and we have some
understanding about the topological properties of
these systems®7:58]. Most recently, fe-systems have
been considered within the concept of membrane
computing®. In Subsection 5.2 we present the
definition for this model and an example for the
solution of 3-SAT based on forbidding and enforc-
ing.

There are many other theoretical models
for DNA-based computations, most of them
having computational power equivalent to the
Universal Turing machine. These include
sticker systems['2:6% insertion-deletion systems[6!],
Watson-Crick automatal'2%2 etc. but will not be
included in the scope of this presentation.

5.1 Splicing Systems

In order to illustrate the splicing idea, we con-
centrate on the simplest example, the “simple”
splicing system. This example might not be very
interesting from computational power point of view
(the language generated by a simple splicing sys-
tem is strictly locally testable), but the splicing
systems started with this model and its relation
to the action of the endonucleases on DNA can be
explained in a vivid way. In particular, just re-
cently, an algebraic characterization of this type of
splicing system was obtained, the first one for any
class of splicing systems[®3],

Restriction enzymes (endonucleases) of type
IT recognize specific sites (recognition sites) of
a double-stranded DNA molecule and cut the
molecule (by destroying the phosphodiester bonds),
often in a way that leave a small single-stranded
overhang.

Once cut, molecules with complementary over-
hangs can join together and the phosphodiester
bonds can be re-established with an aid of a lig-
ase. The question rises, “what words (strings of
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DNA molecules) can be obtained in a single tube
by allowing a set of restriction enzymes and a lig-
ase to react?”. This question was first considered
by Head!!! and then followed by extensive studies
of this and extensions to this H-system by other re-
searchers such as R. Freund, Gh. Paun, G. Rozen-
berg and others %12, The theoretical set-up is as
follows.

Let A be an alphabet, M C A, and L C A*,
and let opaq(L) be defined by z € oam(L) if and
only if there exist z,y € L such that for some
ce M,z =1d2cx’, y = ycy”’, and z = x'cy”.
The set of factors or subwords of a language L is
denoted with Sub(L) i.e., Sub(L) = {z : Jy € L,
Yy = zxzy for some zy,20 € A*}. A simple H-
system is a triple H = (A, S, M), where A is a
finite alphabet, S C A* is a finite set of initial
words, called azioms, and M C A. The language
generated by H is L(H) = |J;°, L¥), where the
sets L() are defined recursively by L(®) = S and
LD = LG Yoy (LD), i > 0.

In order to see that simple H-systems generate
strictly locally testable languages we follow [64],
and recall the definition of constants for a lan-
guage. A word c is a constant for a language L
if and only if zcy’ € L whenever zcy,z'cy’ € L.
For a given simple H-system, H = (4,5, M), it
is clear that if ¢ € M, then ¢ is a constant for
L(H). But even more is true: if u € Sub(L(H))
is such that Sub(u) N M # @, then w is a constant
for L(H). For let u = ujcus, where ¢ € M, and
suppose that zuy, z'uy’ € L(H). Since ¢ € M, the
word zujcusy’ is in op(L(H)) = L(H), (consider
zuycugy and z'ucusy’), so zuy’ € L(H). It follows
that if £ = max{|u| : u € Sub(S), Sub(u)NM = 0},
then every word of length greater than & is a con-
stant for L(H). This is the well known characteri-
zation of strictly locally testable languages[®3]. (See
also Theorem 4.6 in [11] and Subsection 7.5 in [12].)

We now return to the action of endonucleases
on DNA segments. Assume that we have a finite
number of distinct double-stranded DNA segments,
and an infinite supply of each segment. Assume
further that we have a finite number of restric-
tion endonucleases and a ligase. Denote by E the
set of restriction endonucleases and consider the
alphabet A = {A,C,G,T}. Write the sequences
of double-stranded DNA segments in direction 5’
to 3’, and consider them as elements of A*. For
S AAGCCT?
s TTCGGAs
then we include AAGCCT and AGGCTT. For

each restriction endonuclease €, consider its restric-

example, if we have a segment
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tion site p. (again in direction 5 to 3') and de-
note the overhang produced by the action of the
enzyme with a.. For example, for FcoRI, the re-
striction site is pp gy = GAATTC and the over-
hang is o, Rry = AATT. Denote with S’ the set
of all initial DNA segments, written as words in
A*, as described above. Let {ai,...,ax} be the
set of all distinct overhangs produced by the re-
striction enzymes in E. For ¢ = 1,2,...,k, let a;
be a new symbol encoding the sequence «;, and let
Y = {ai,...,a;}. Extend Ato A= AUY and
define a simple H-system H = (A4, S, %) where

S ={zua;u'y | zuc;u'y € S’ and there
exists € such that p. = ua;u’ and o, = a;t.

It is easy to see that the language L(H) gen-
erated by the simple H-system H equals the set
of distinct molecules produced by the action of a
ligase and the set of endonucleases on the set of
molecules S’.

5.2 Forbidding and Enforcing

Models for DNA computation based on classical
concepts in formal language theory employ deter-
minism in various forms, such as rewriting tech-
niques and grammar systems, and for many can
be proven that they have universal computational
power. However, the deterministic way of defining
languages by “everything that is not allowed is for-
bidden” employed by these models does not neces-
sarily correspond to the various non-deterministic
ways that biomolecules act within one biochemical
reaction. Motivated by this non-determinism (con-
sidering molecules as strings, and sets of molecules
as languages) the authors in [56, 57] use boundary
conditions of forbidding and enforcing to introduce
another way of defining classes of languages. This
new concept is best described with the phrase “ev-
erything that is not forbidden is allowed”. In this
sense, the forbidding boundary conditions imply
that certain words are not allowed in the language,
but any language that does not contain words that
are forbidden is allowed. This corresponds to a bio-
chemical condition when certain molecules cannot
“survive” in a given biochemical environment. Sim-
ilarly, the enforcing condition says that with pres-
ence of a specific set of words, some other words
must be present as well, and hence, any language
that contains these words is allowed in the family.
Again, biochemically, the enforcing conditions pro-
vide a model where in certain conditions presence
of some molecules imply presence of other (new)
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molecules. As in any biochemical reaction, the re-
sulting set of molecules (i.e., resulting language)
can belong to a family of possible sets, all satisfy-
ing the initial boundary conditions. It is shown in
[56, 57] that many computational problems such as
SAT and Hamiltonian Path Problem can be solved
using fe-systems and we describe a possible solution
of SAT here.

A pair of finite sets (X,Y) (X, Y C A*) is called
an enforcer, and we say that a language L satisfies
the enforcer (X,Y") if X C L implies that YNL # 0.
In that case we write Lsat(X,Y). Note that if
X ¢ L, then (X,Y) is trivially satisfied. When
X = 0, the enforcers are called brute enforcers. If
for an enforcer (X,Y) we have that X NY # 0,
then every language L satisfies (X,Y). Such en-
forcers are called trivial. If E is a set of enforcers,
then L sat F if it satisfies every enforcer in F¥. The
family of languages defined by the enforcing set E
is denoted with £(E) and consists of all languages
that satisfy the enforcer F.

A finite set of words F' C A* is called a for-
bidder and a language L is consistent with a for-
bidder F' if F ¢ Sub(L) where Sub(L) denotes the
set of all subwords of words in L. In this case we
write Lcon F. If F is a set of forbidders, then we
write L con F if L is consistent with every forbid-
der in F. The set of all languages consistent with
a forbidding set F is denoted with £(F). An fe-
system is a pair (F, E) defining a class of languages
L(F,E)={L C A*|LsatE and Lcon F} and so
L(F,E)=L(F)NL(E).

5.2.1 Solving SAT with fe-Systems

Consider the formula « presented with (%) in
Section 4. The clauses of the formula are C; =
T+y+z,Cy=x+7+zand C3 =T+ 7+ z. Define
an fe-system as I' = (F; U Fs, E) such that

E= {(®7 {1x7 0x})7 (@7 {1y7 Oy})v (Q)v {127 OZ})}

ensure all possible truth values

Fi= {{15670:1:}7 {1y;0y}7 {1Z70Z}}

define unique value for each variable

Fy = {{1z,0y, 12}, {0z, 1y, 0z}, {1z, 1y,0z}}
ensure that each clause is true

Now every language that belongs to £(I") has to
satisfy the set of enforcers F, i.e., each variable
has to be assigned at least one truth value. The
forbidding set F; says that the subwords in each
L € L(I') cannot contain both truth assignments
for a variable. The second forbidding set ensures
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that the assignments that make each of the clauses
“false” cannot be present in the language all at
once. Since L£(I') contains all languages that sat-
isfy the enforcing and forbidding sets, we have that
«a is satisfiable if and only if £(I") # 0.

6 Nanomechanical Devices and Automata

The relatively predictable results by hybridiza-
tion of two complementary DNA strands is one
of the appealing reasons for using nucleic acids in
nanotechnology. It has a minuscule size (about 2
nanometers in diameter), the single stranded parts
can be considered as “sticky parts” that anneal to
its complement with a formation of a double he-
lix as a final result. The sticky parts provide pre-
dictable intermolecular interaction and the double
helical structure provides a predictable final geo-
metrical structure. Moreover, the nature has pro-
vided unique tools in the form of enzymes that
allow us to have a tractable and controllable sys-
tem. These properties are rather attractive for use
in nanotechnology and for construction of nanode-
vices. We mention three recent developments in
using DNA as a tool for construction of nanome-
chanical devices or as a model for a molecular finite
state automaton.

6.1 DNA Actuator

Yurkel®! realized that when in a solution that
contains DNA strands that are partially hybridized
a strand that is completely complementary to one
of the strands is introduced, then the hybridiza-
tion of the complementary strands overcomes the
partial hybridization (see Fig.6). This new comple-
mentary strand can be used as a “fuel” to “move”
strands from one hybridization to another and
with this to change the geometry of the the self-
assembled structures in the tube.

The actuator like nanodevice uses DNA strands
as a fuel and operates with the same principles.
Two strands are assembled, strand A and strand
B. The second strand B has a sequence length
approximately double the length of the strand A
(see Fig.7(a)). The strand A has both 3’ and 5'-
ends complementary to the corresponding 5’ and
3’-ends of the strand B except few bases in the
center part. The double stranded regions are less
than 100bp and as such are rather stiff whereas the
single stranded region is much more flexible. In
this initial assembly the double stranded stiff re-
gions are bent due to the central nucleotides that
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are free.

Motion on the actuator like device is induced
by employing DNA fuel strands F' that are com-
plementary to the single stranded portion of the
strand B. This makes a rigid type of DX molecule
made of two duplex molecules. In this case the de-
vice is straighten (Fig.7(b)). The fuel strand is a
bit longer than the single stranded portion of the
strand B and it has non-hybridized single stranded
part. The original (relaxed) state of the device
is obtained by introduction of a complementary
strand F to the strand F. The free single stranded
portion of F anneals to F and then F starts to
compete with the complex AB for binding with F
(Fig.7(c)). Since F is a full complement of F' and is
firmly attached to its free single stranded portion,
going through the process of three-strand branch

B —

Fig.6.
molecules A and B such that B has a portion that is single

Assume a tube contains partially hybridized

stranded and not annealed (figure to the left). If a com-
plete complement to B, strand B is introduced, then the
hybridization between B and B overcomes and strand A is

released.

A
"
s

o Ic|

\EFF

Fig.7
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migration, F wins over the complex AB. It pro-
duces a waste product FF' and relaxes the complex
AB.

Yurke and his collaborators have devel-
oped several similar DNA-fueled nanomechanical
devicesl87%8] One can envision such devices in-
corporated into two dimensional DNA arrays such
that the whole surface could fold and open up.
This combination has a great potential in devel-
oping nanomaterials and nanotemplates for circuit
developments.

6.2 Two-State Switch

Using the same idea of fuel DNA strands, See-
man’s laboratory developed a two-state switch[69].
This device is a combination of PX and JX,
molecule that flip-flops between these two states
as different fuel strands are added or removed (see
Fig.8, this figure is adapted from [70]). One can
consider a PX molecule as a double helix made of
two DNA duplex molecules. This robust device,
whose machine cycle is shown in Fig.8(a), is di-
rected by the addition of set strands to the solution
that forms its environment.

The set strands, drawn in green and yellow, es-
tablish which of the two states the device will as-
sume. They differ by rotation of a half-turn in the
bottom parts of their structures. The sequence-
driven nature of the device means that many dif-
ferent devices can be constructed, each of which is
individually addressable; this is done by changing
the sequences of the red and blue strands where the
green or yellow strands pair with them. As was the
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case with the fuel strands of the actuator, the green
and yellow strands have short, single stranded ex-
tensions. The state of the device is changed by first
binding full complements of green or yellow strands
(fuel strands) and then removing them from solu-
tion (strands are biotin-tailed and can be removed
by magnetic streptavidin beads). Adding the other
strands changes the state of the device. Fig.8(b)
shows that the device can change the orientation of
large DNA trapezoids, as revealed by atomic force
microscopy. The PX (green strand) state leads
to parallel trapezoids and the JX, (yellow strand)
state leads to a zig-zag pattern. This device has two
very significant advantages. First, it is robust, and
second, it is sequence dependent. One can envision
several such devices, each addressable by different
sets of strands used in a single nanostructure.

6.3 Finite State Automaton

One of the recent breakthrough in the ideas
of using DNA for computation is obtained by an-
other collaboration between a computer scientist
E. Shapiro and a biochemist E. Keinan/™". They
treated a type II restriction endonuclease as a tool
to change states in a finite state machine, such that
together with a rather clever encoding of the states
and the symbols, a successful model for recognizing
formal languages was obtained. They used three
main ideas: (a) use a restriction endonuclease FokI;
(b) encode a pair (state, symbol) with both, the se-
quence and the length of the segment; and (c) use
accepting sequence for final readout.

X
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Fig.9. (a) Action of the enzyme. (b) State-symbol encodings, and transition molecules.

The enzyme that was chosen FokI is such that
it has a recognition site GGATG, but it cuts a dou-
ble stranded molecule 9 and 13 bases away from the
recognition site leaving a 5" overhang (see Fig.9(a)).
The sequence of bases between the recognition site
and the cutting position is completely irrelevant for
the action of the enzyme. This is exactly the place
where encoding of the symbols and the states of
the automaton could take the whole advantage.

The authors demonstrated simulations for sev-
eral automata with two states. One of these au-
tomata consists of two states sg and s; with the
following transitions: (sg,a) — so, (s1,a) — s1,
(so,b) — s1 and (s1,b) — sg, with sy being the
initial state and the terminal state. This automa-
ton recognizes (accepts) all words that have even
number of b’s. The (two) symbols are encoded with
sequences of length 6 such that the first four of the
sequence encode the state s; (i.e., in state s; read-
ing the symbol) and the last four encode the state
so (Fig.9(b)). The state transitions are encoded
with four short transition molecules, each starts
with the recognition site of FoklI, followed with a
sequence of computationally irrelevant base pairs.
These transition molecules end with a 5’ overhang
of four bases complementary to the encoding the
pair (state, symbol). The transitions for (sg,a) and
(s1,b) have 3 base pairs which allow cuts of the in-
put molecule to be at the same position of the 6
base pairs encoding an input symbol. The encod-
ing of (sp,b) has 5 irrelevant base pairs, and this
“moves” the cut of the enzyme to the left leaving
5" overhang with the first 4 nucleotides of the 6
encoding an input symbol. This moves the read-
ing of the next input sequence to encodings of s;.
The encoding of (s1,b) has only one irrelevant base
pair which “moves” the cut of the enzyme to the
last 4 nucleotides (as are needed for state sp). The
input to the automaton is a strand that contains

a restriction site for FokI, seven (irrelevant) base
pairs, a sequence of base pairs encoding a word
with symbols a and b. At the end there is a ter-
minal sequence which can anneal to the transition
molecule that encodes a terminal state. The “au-
tomaton” changes its states and reads the input
without outside mediation, and solely by the use of
the enzyme. Fig.10 shows several transitions (com-
putational steps) of the finite state machine. The
initial experiment reported in [71] employed a ligase
to ‘glue’ the transition molecules to the remaining
of the input, but their subsequent study showed
that this is not necessary!72.

This autonomous computational device is one of
the most significant advancements toward the ulti-
mate goal of achieving a biomolecular computer.
It shows that with proper coding and use of appro-
priate enzyme, a computational device is possible
without any outside mediation. This opens up the
door for using such devices not just for performing
computation, but potentially also in genetics and
medicine.

7 Concluding Remarks

There are many other issues concerning
biomolecular computations that are rather signif-
icant for a prosperous development of the scientific
discovery that were not included in this short re-
view. They are both theoretical and experimental.
In use of synthetic DNA one of the difficult ques-
tions is encoding of the bases such that cross hy-
bridization of non-complementary strands is min-
imized. It turned out that this problem is quite
complex and many authors have concentrated on
developing theoretical coding models(™®74  com-
puter simulations!”=77] even experimental built up

of coding libraries!"®].



110

Input neslecule b

i i
I MNNNNRNY CTGGCT OOCAGCCTEC T OGO AGE
MMMMNNNGADDEAG G TCGEADDGAGD G TR

J. Comput. Sci. & Technol., Jan. 2004, Vol.19, No.1

]

1] i I
G NNNNNN O OGCTCOCAGCCTGECT COCAGE -
MMMMNNMNMNGADCDA GUOTOGGACCG AR s
The emzyme cuis the inpot modecale aned Beaves | 5o sticky end s sverhang
[ |

h ] L]
m:lhﬂtm'n ICAGHT CTGRCT COCATE
MWRCCO A GOGTOG GACCGAGDGTOG

“Read oowith stade Sp™: the transition mobsoule {Sn, a) anncals

ok

i MRNOGCTEN
ETRE W M NC L A GO

] PR | LA
CAGECTOHGET OG0 A
LAl CaAGICOTOD

The enzyme cots the inpuat modecule aml beaves | Sh, 0 stidcy end as overhang

i 5, b

|
MNNNNCAGOCTORET COOAGE
PN MMNGETODOACCOAGOR TN -

“Head bowith srato 5,7

"Reard o with dtate 5,7

Foik 1

e PN CTOGCT

i ‘;P i

LAl

o gl
o

NN MNGA DT GA G LI ¥

the teansickn maleciike (S, b anoeals

b
n'_d-lt__rl:;l. |.|':| SET IR I
.r':_'|‘|:||'| ”ltull ................

LEwr transtiom mmokscule (S, a)] anneals

The enzynss cits the jeput mokecibe and loaves |5, 6] sticky el as avor g

Fig.10. Several computational steps of the finite state machine.

From the theoretical point of view, although
there are many theoretical models for DNA-based
computations, the real task in front of the theo-
reticians is to characterize these models within the
scope of the experimental limitations.

Besides the Adleman’s latest success(?, all
other experimental results in biomolecular comput-
ing have been still on a “toy” level. Although Adle-
man’s experiment solved a computational complex
problem (an NP-complete problem), it is now clear
that due to the amount of DNA needed to scale
this approach to a larger problem, solutions to
large combinatorial search problems by biomolecu-
lar protocols will not improve on the conventional
computers. Even more, there are real challenges for
the experimentalists to obtain protocols that are
sufficiently reliable, controllable and predictable.
The standard biomolecular protocols do not have

the precision needed for computation. These tech-
niques have to go through many adjustments and
sometimes completely new protocols are necessary
in order to improve their yield. The solution of
a 20-variable SAT problem was obtained by de-
signing protocols for exquisitely sensitive and error-
resistant separation of small set of molecules. The
solution of a 20-variable SAT problem could be con-
sidered as a “test” for this new protocol. Hence, a
search for a DNA solution of such combinatorial
problems, even though not computationally signif-
icant, may prove to be fruitful in developing new
technologies.

On the other side, the whole research area has
been very recent and for such a small period (less
than 9 years since the first experimental result) the
progress has been tremendous. For the past half-
century DNA, RNA and proteins have been ex-
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clusively the provence of molecular biologists and
medical scientists who have concentrated on un-
derstanding their biological impact and properties
in living organisms. As these past few years of
biomolecular computing has shown, it is most likely
that nanoengineers, computer scientists and mate-
rial scientists will explore these molecules within
non-biological contexts. We now have models and
experimental designs for two dimensional arrays,
three dimensional structures, DNA devices fueled
by DNA strands, autonomous finite state biomolec-
ular machines... All of these are in an infantile
stage and it is not clear which one of these sev-
eral roads will turn out to be fruitful.
real possibility that quite few of them may be suc-
cessful, each in a different field of our scientific
community and aspects of life. Whatever the re-
sults, this area of research has brought together
theoreticians (mathematicians and computer sci-

It is a

entists) with experimentalists (molecular biologists
and biochemists) to one very successful collabora-
tion. Just the exchange of fresh ideas and discus-
sions among these communities brings excitement,
and quite often, provides a new line of development
that could not have been possible without the “out-
siders”.
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