
Zhang S, Cai HQ, Ma Y et al. SmartPipe: Towards interoperability of industrial applications via computational reflection.

JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 35(1): 161–178 Jan. 2020. DOI 10.1007/s11390-020-9694-z

SmartPipe: Towards Interoperability of Industrial Applications via

Computational Reflection

Su Zhang1, Hua-Qian Cai1, Member, CCF, Yun Ma2, Member, CCF, ACM, IEEE, Tian-Yue Fan3

Ying Zhang4,∗, Member, CCF, ACM, IEEE, and Gang Huang1,∗, Member, CCF, ACM, IEEE

1Key Laboratory of High-Confidence Software Technology (Peking University), Ministry of Education
Beijing 100871, China

2School of Software, Tsinghua University, Beijing 100084, China
3Hengyi Petrochemicals CO., LTD., Hangzhou 311215, China
4National Engineering Research Center for Software Engineering, Peking University, Beijing 100871, China

E-mail: {samsuzhang, caihq}@pku.edu.cn; yunma@tsinghua.edu.cn; fty@hengyi.com
E-mail: {zhang.ying, hg}@pku.edu.cn

Received May 7, 2019; revised September 15, 2019.

Abstract With the advancement of new information technologies, a revolution is being taken place to bring the industry

into a new era of intelligent manufacturing. One of the key requirements of intelligent manufacturing is the interoperability

of industrial applications. However, it is challenging to realize the interoperability for legacy industrial applications due to

1) the deficient semantic information of data transmitted over heterogeneous communication protocols, 2) the difficulty to

understand the complex process of business logic with no source code, and 3) the high cost and potential risk of reengineering

the applications. To address the issues, in this paper, we propose an approach named SmartPipe to exposing existing

functionalities of an industrial application as APIs without source code while simultaneously allowing the application to

remain unchanged. We design a behavioral runtime model (BRM) as the self-representation of the industrial applications,

based on which a computational reflection framework is designed to flexibly construct the model and generate APIs that

encapsulate specific functionalities. We validate SmartPipe on a real industrial application that controls the spin-draw

winding machine. Results show that our approach is effective and more suitable for industrial scenes compared with

traditional approaches.

Keywords computational reflection, runtime model, interoperability, industrial application, API generation

1 Introduction

Information technologies have driven the way of

manufacturing from electronic-based to information-

based where industrial application software is deve-

loped for and deployed in the industrial field to improve

the level of development planning, transaction process-

ing, production scheduling and process control.

With the advancement of new information technolo-

gies such as Cloud Computing, Big Data, Artificial In-

telligence, and Internet of Things, a revolution is be-

ing taken place to bring the industry into a new era of

intelligent manufacturing where a highly flexible intel-

ligent manufacturing environment is built in order to

respond rapidly to changes in demand at low cost to

the firm without damage to the environment [1]. Many

countries have proposed national strategies to acceler-

Regular Paper

Special Section on Applications

This work was supported by the National Key Research and Development Program of China under Grant No. 2018YFB1004800,
the National Natural Science Foundation of China under Grant No. 61725201, Beijing Municipal Science and Technology Project under
Grant No. Z171100005117002, and Tianjin Municipal People’s Government Port Service Office (Project on Cross-Border E-Commerce
Big Data Analysis and Display System).

∗Corresponding Author

©Institute of Computing Technology, Chinese Academy of Sciences & Springer Nature Singapore Pte Ltd. 2020

http://dx.doi.org/10.1007/s11390-020-9694-z

162 J. Comput. Sci. & Technol., Jan. 2020, Vol.35, No.1

ate the intelligent manufacturing. For example, the

United States proposed Industrial Internet [2] in 2012,

and Germany proposed Industry 4.0 [3] in 2013.

One of the key requirements of intelligent manufac-

turing is the interoperability of industrial applications.

In order to build a flexible manufacturing environment,

all information about the manufacturing process should

be available when it is needed, where it is needed, and

in the form that it is needed across entire manufactur-

ing supply chains, complete product lifecycles, multiple

industries, and small, medium and large enterprises.

Therefore, as the medium of controlling the manufac-

turing process in the cyber space, industrial applica-

tions should be interoperable to enable the opening,

sharing and exchanging of manufacturing information.

Generally, a well-recognized way of realizing soft-

ware interoperability is to expose existing functional-

ities as application programming interfaces (APIs) by

refactoring the application implementation. However,

the main obstacle to achieve the interoperability of in-

dustrial applications is that the support of the original

application developers is difficult to be obtained or even

lost. As a result, generating APIs for such so-called

legacy industrial applications faces the following three

challenges.

First, legacy industrial applications usually have no

source code. As a result, it is difficult to understand

the complex process of business logic of functionalities.

Second, industrial applications are usually directly

connected to physical devices and the data is transmit-

ted over heterogeneous communication protocols. As a

result, the semantics of industrial applications is defi-

cient.

Third, industrial applications are bug-sensitive

where the production line failure caused by bugs or the

termination of applications can be very costly. As a

result, reengineering of industrial applications should

take serious.

To address these challenges, our idea is to leverage

computational reflection to construct a runtime model

that could represent the behaviors of industrial appli-

cations. Computational reflection [4] is the ability of a

computational system that provides an accurate repre-

sentation of itself (called self-representation), which re-

quires that the states and behaviors of the system are

always compliant with the representation and changes

made on the representation will be immediately mir-

rored to changes of the actual states and behaviors of

the system. Based on computational reflection, we can

control the behavior of an application by manipulating

the high-level model without source-code level reengi-

neering. The manipulation of the high-level model

shields the complexity of the application. The con-

trol of the application maintains the high-level seman-

tics attached by the data processing of the application.

Therefore, it is promising to expose existing function-

alities of legacy industrial applications as APIs without

source code via computational reflection.

To this end, in this paper, we propose an approach

named SmartPipe to generating APIs for industrial ap-

plications based on computational reflection. In order

to describe the execution behavior of an application and

the data required for the execution, we define and for-

malize a behavioral runtime model (BRM) that con-

sists of an execution variation model and a data vari-

ation model as the self-representation of the applica-

tion behaviors. Based on BRM, we design and imple-

ment a computational reflection framework to support

the ability to reify the application behavior to its self-

representation, manipulate the self-representation, and

reflect the manipulations in the behavior of the applica-

tion. With the framework, developers can construct the

BRM of the runtime behavior of an application, gene-

rate model fragments corresponding to specific func-

tionalities of the application, and transform the model

fragments to APIs that encapsulate target functionali-

ties according to interoperability requirements without

source-code level reengineering.

The contributions of this paper are listed as follows.

1) We propose an approach named SmartPipe to

exposing existing functionalities of an industrial appli-

cation as APIs without source code via computational

reflection while simultaneously allowing the application

to remain unchanged, which can greatly improve the in-

teroperability of industrial applications.

2) We define and formalize a behavioral runtime

model (BRM) as the self-representation of an applica-

tion.

3) We design and implement a computational re-

flection framework to flexibly construct the BRM of an

application and generate APIs that encapsulate specific

functionalities without source-code level reengineering.

4) We validate SmartPipe on a real industrial ap-

plication that controls the spin-draw winding machine

and carry out some evaluations. Results show that our

approach is effective and more suitable for industrial

scenes compared with traditional approaches.

The rest of this paper is organized as follows. Sec-

tion 2 surveys related work. Section 3 overviews Smart-

Pipe. Section 4 introduces the computational reflection

Su Zhang et al.: SmartPipe: Towards Interoperability of Industrial Applications via Computational Reflection 163

framework based on BRM. Section 5 presents the API

generation via computational reflection. Section 6 val-

idates SmartPipe on a real industrial application and

carries on some evaluations. Section 7 discusses the

limitations of SmartPipe. Finally, Section 8 summa-

rizes the paper and prospects for the future research

directions.

2 Related Work

To the best of our knowledge, this paper makes

the first attempt to generate APIs that expose exist-

ing functionalities of legacy industrial applications via

computational reflection. We review the existing work

related to the integration of legacy industrial systems,

API generation, and computational reflection.

2.1 Integrating Legacy Industrial Systems

Feldhorst et al. [5] suggested a solution for the inte-

gration of legacy industrial systems, which distinguishes

three abstract system layers: device layer, integration

layer and control layer. Givehchi et al. [6] proposed an

interoperability layer requiring no changes on the legacy

device that maps field device data into an ISA95-based

information model to migrate legacy industrial systems

in a cost-effective manner to the new paradigm of in-

tegrated IT-OT levels. Tao et al. [7] proposed the In-

dustrial Internet-of-Things Hub to realize smart inter-

connection in dealing with heterogeneous equipment,

quick configuration and implementation, and online ser-

vice generation, in which a set of flexible CA-Modules

compatible with different communication interfaces and

protocols are designed. These approaches depend on

manual adaptation to heterogeneous interfaces and pro-

tocols of legacy industrial systems, and are more ar-

chitectural than technical. What is more, the direct

connection with the communication protocol can only

obtain the underlying raw data, which means that the

semantic information attached in the processing process

of the upper control application is lost.

2.2 Generating APIs During the Development

Phase

Queirós [8] presented an automatic generator of

RESTFul Web applications named Kaang that gene-

rates the main API content based on the user’s input

and a set of templates, which will help developers to

manage and test routes, define resources, store data

models and others. Ed-Douibi et al. [9] presented an

approach that leverages on MDE techniques to gene-

rate RESTful services, which takes Eclipse Modeling

Framework (EMF) data models as input and generates

RESTFul Web APIs relying on well-known libraries

and standards, thus facilitating its comprehension and

maintainability. Zhai et al. [10] developed a novel tech-

nique that can construct models for Java API functions

by analyzing the documentation. These approaches are

not applicable to generate APIs from legacy systems.

2.3 Generating APIs for Legacy Systems

Related approaches to generating APIs for legacy

systems can be divided into two categories: 1) wrap-

ping approaches that concentrate on the interface of

the legacy system and hide the complexity of its in-

ternals; 2) reengineering approaches that analyze and

adjust an application in order to represent it in a new

form [11].

2.3.1 Wrapping Approaches

Stroulia et al. [12, 13] and Canfora et al. [14, 15] pro-

posed wrapping approaches based on understanding

and modeling the users’ interaction with the legacy ap-

plication interface. These approaches are highly cou-

pled to the user interface, disturbing the operation of

technicians to a great extent when the external system

interacts with the legacy system.

Rodŕıguez-Echeverŕıa et al. [16] presented a model-

driven approach for deriving a REST API from a legacy

web application within the frame defined by a modern-

ization process. Jiang and Stroulia [17] proposed an ap-

proach that exploits a reverse engineering technique for

modelling the interaction of the user with Web sites and

obtaining the functionalities to be specified in terms of

WSDL specifications to construct Web services. Baum-

gartner et al. [18] proposed a suite for obtaining Web

services from web applications. These approaches are

all oriented to web applications while most of industrial

applications are not web applications.

Sneed [19, 20] discussed a tool-supported approach to

identifying and exposing individual business functions

in the programs as web services by clustering and

data flow analysis based on the legacy code. Lewis

et al. [21, 22] and Smith [23] discussed a migration tech-

nique that helps organizations evaluate the potential for

converting components of an existing system into ser-

vices. Inaganti and Behara [24] proposed an approach

to migrating existing applications, which establishes

the business process model, identifying the points of

164 J. Comput. Sci. & Technol., Jan. 2020, Vol.35, No.1

functionality and exposing them as services. These ap-

proaches typically work with a small subset of the func-

tionalities of legacy systems due to the inappropriate

application architecture and most of them are based on

the analysis of the source code.

Del et al. [25] proposed an approach to identifying

pieces of functionality to be potentially exported as ser-

vices from database-oriented applications by clustering

queries dynamically extracted by observing interactions

between the application and the database through for-

mal concept analysis. Yeh et al. [26] presented a pro-

cess that extracts an extended entity-relationship di-

agram from a table-based database with few descrip-

tions for the fields in its tables and no description for

keys. Strobl et al. [27] described the industrial expe-

rience in performing database reverse engineering on a

large-scale application reengineering project. These ap-

proaches are oriented to database (DB)-based systems

while industrial control applications access data in a

different way.

2.3.2 Reengineering Approaches

Zhang et al. [28, 29] proposed a reengineering ap-

proach which applies an improved agglomerative hier-

archical clustering algorithm to restructure legacy code

and to facilitate legacy code extraction for Web service

construction. Chen et al. [30] proposed a reengineering

approach by identifying system features, constructing

a feature model to organize the identified features, and

identifying their implementation in the legacy system

through feature location techniques. Guo et al. [31] pro-

posed a reverse engineering technique to make the func-

tionalities of a client-server .NET application available

as Web services. Shimin et al. [32] presented a compo-

nentization framework for extracting reusable compo-

nents from a Java system in a low cost but high pre-

cision way based on the automated class dominance

analysis and domain knowledge. Cuadrado et al. [33]

proposed a process for recovering legacy system archi-

tecture based on modifying the existing legacy code.

Marchetto and Ricca [34, 35] presented a stepwise ap-

proach based on testing that can help a developer to mi-

grate an existing Java system into an equivalent service-

oriented system. Many of these approaches require

source code, which is typically unavailable. In addi-

tion, in consideration of that the production line failure

can be very costly in the industrial production environ-

ment, industrial enterprises tend to avoid reengineering

the legacy systems.

2.4 Computational Reflection

Huang et al. [36, 37] presented a reflection-based ap-

proach to autonomic computing middleware, which

shows the philosophy that autonomic computing should

focus on how to reason while reflective computing sup-

ports how to monitor and control. The Runtime Appli-

cation Architecture (RSA) based on reflective middle-

ware is proposed to support architecture-based applica-

tion maintenance and evolution. Albertini et al. [38, 39]

proposed an approach to exploring and interacting with

SystemC models by means of an introspection tech-

nique known as computational reflection. Lopez et

al. [40] presented a blackbox solution to convert legacy

single-user applications to collaborative multi-user tools

by intercepting user interface libraries and input events.

Bellman et al. [41] proposed an approach that combines

the use of active experimentation driven by internal

processes in the system itself and computational re-

flection for developing trustworthy and adaptable com-

plex systems. These researches inspired us that existing

functionalities of a legacy industrial application can be

exposed without the source code while simultaneously

allowing the application to remain unchanged via com-

putational reflection.

3 Approach Overview

Simply put, the computational reflection of an ap-

plication is the mapping of the running state of an ap-

plication to a set of operational data. The former part

constitutes the base-level entity, and the latter part con-

stitutes the meta-level entity, while the two-way causal

association is maintained between the base-level entity

and the meta-level entity. Fig.1 shows the concept of

computational reflection. Based on computational re-

flection, we can control the behavior of an application

by manipulating the high-level model.

We propose an approach named SmartPipe to ex-

posing existing functionalities as APIs without source

code while simultaneously allowing the application to

remain unchanged via the computational reflection

framework based on the BRM.

In order to describe the execution behavior of an ap-

plication and the data required for the execution, we de-

sign BRM that consists of an execution variation model

and a data variation model as the self-representation of

the application behaviors.

The computational reflection framework is a frame-

work that supports the ability to reify the application

Su Zhang et al.: SmartPipe: Towards Interoperability of Industrial Applications via Computational Reflection 165

Manipulate

Reify Reflect

Meta-Level Entity

Base-Level Entity

Fig.1. Concept of computational reflection.

behavior to its self-representation, manipulate the self-

representation, and reflect the manipulations to the

self-representation in the behavior of the application.

With the computational reflection framework, deve-

lopers can construct the BRM of the runtime beha-

vior of an application, generate model fragments corre-

sponding to specific functionalities of the application,

and transform the model fragments to APIs that en-

capsulate target functionalities according to interoper-

ability requirements without reengineering.

The main steps of SmartPipe are shown in Fig.2.

1) The developer operates the target functionalities

of the application through user interface in the compu-

tational reflection runtime.

2) The computational reflection runtime monitors

the execution of the application and constructs the

BRM.

3) The developer manipulates the BRM according

to the interoperability requirements and generate APIs

that encapsulate the target functionalities from alter-

native model fragments.

4 Computational Reflection Framework

Based on Behavioral Runtime Model

Computational reflection [4] is the ability of a com-

putational system that provides an accurate representa-

tion of itself (called self-representation), which requires

that the states and behaviors of the system are al-

ways compliant with the representation (called causal-

connection) and changes made on the representation

will be immediately mirrored to the changes of the ac-

tual states and behaviors of the system.

Simply put, the computational reflection of an ap-

plication is the mapping of the running state of an ap-

plication to a set of operational data. The former part

constitutes the base-level entity, and the latter part con-

stitutes the meta-level entity, while the two-way causal

association is maintained between the base-level entity

and the meta-level entity.

In general, the computational reflection can be di-

vided into structural reflection and behavioral reflec-

tion depending on the base-level entity [42]. Typically,

the implementation of behavioral reflection is more dif-

ficult than structural reflection.

• The base-level entity of the structural reflection is

the current program and its abstract data types, which

can be regarded as the state of the application.

• The base-level entity of the behavioral reflection is

the execution behavior of the current program and the

data required for its execution, which can be regarded

as the behavior of the application.

In order to describe the behavior of applications and

the interaction between modules, behavioral reflection

is necessary for complex applications. Therefore, we

design a computational reflection framework based on

behavioral runtime model (BRM) to support the be-

havioral reflection, which is shown in Fig.3.

In the proposed framework, the BRM is a self-

representation of the behavior of an application, reify-

ing it in a complete, accurate and flexible manner,

which can be constructed automatically with some con-

figuration. Developers can easily manipulate the self-

representation based on algorithmic aids to generate

model fragments corresponding to specific functionali-

ties of the application. After that, the manipulations

can be reflected in the behavior of the application. That

is, the model fragments can be transformed to APIs

that encapsulate target functionalities according to in-

teroperability requirements semi-automatically, achiev-

ing the control of the application.

4.1 Behavioral Runtime Model

When an application is to run in an operating sys-

tem, the operating system loads the required executable

files into memory and starts executing. In general, the

memory occupied by a process can be divided into four

areas.

166 J. Comput. Sci. & Technol., Jan. 2020, Vol.35, No.1

Runtime

Runtime

CV

Trace the Behavior

M
Application

Developer

Data Variation Model Execution Variation Model

Behavioral Runtime Model

Runtime

Developer

Application with

API Library

3. Generate APIs from

Alternative Model Fragments

Method1 Method2 Method3 Method1 Method2 Method3

Application

1. Operate the Targeted

 Functionalities of an

 Application Through

 User Interface

2. Construct the Behavioral

Runtime Model

T
im

e

T
im

e

C I

Control the Behavior

V M

Fig.2. Overview of SmartPipe.

Su Zhang et al.: SmartPipe: Towards Interoperability of Industrial Applications via Computational Reflection 167

Method1 Method2 Method3 Method1 Method2 Method3

T
im

e

T
im

e
Execution Variation Model

Reify

Registers Stack Heap

Memory

Language Processor

Data

Segment
Code

Segment

Reflect

Manipulate

Data Variation Model

Meta-Level Entity

Base-Level Entity

Fig.3. Computational reflection framework based on BRM.

• Code Segment. A code segment, also known as a

text segment or simply as text, is one of the sections of a

program in an object file or in memory, which contains

executable instructions.

• Data Segment. A data segment is a portion of the

virtual address space of a program, which contains the

global variables and static variables that are initialized

by the programmer.

• Heap. The heap is the segment where dynamic

memory allocation usually takes place.

• Stack. The stack area contains the program stack,

a last-in-and-first-out structure, typically located in the

higher parts of memory. The stack area traditionally

adjoined the heap area and grew in the opposite direc-

tion.

When an application is running, the execution of

code segment will cause changes in other memory area

and registers. The BRM of an application should be

able to react to the application over a period of time in

two aspects: the execution behavior of the application

and the data required for its execution.

We formally define the BRM in following subsec-

tions.

168 J. Comput. Sci. & Technol., Jan. 2020, Vol.35, No.1

4.1.1 Formal Definition

The behavioral runtime model (BRM) is a self-

representation of the application behavior that consists

of the code execution and the data changes.

Definition 1. The behavioral runtime model con-

sists of an instruction set, a set of local data state, a

set of global data state, a relationship that denotes the

order or dependence of two certain executed instruc-

tions and the local data state between the execution of

them, and a relationship that denotes the change from

one global data state to the other and the instruction(s)

that caused the change.

M = (I, L,G, ε, σ),

where

• I = {ii} is the instruction set, where ii is an

executed instruction consisting of an opcode and some

operands;

• L = {Ri, Si} is the set of local data state, where

Ri = {(register, data)ij} is the set that denotes the reg-

ister state and Si = {(address, data)ij} is the set that

denotes the memory state of stack area;

• G = {Di, Hi} is the set of global data state,

where Di = {(address, data)ij} is the set that de-

notes the memory state of data segment and Hi =

{(address, data)ij} is the set that denotes the memory

state of reachable heap area;

• ε ⊆ I × I × L denotes the order or dependence

of two certain executed instructions and the local data

state between the execution of them;

• σ ⊆ G×G× I denotes the change from one global

data state to another and the instruction(s) that caused

the change.

According to the base-level entity of behavioral

reflection, the BRM can be divided into two parts:

the execution variation model that describes the exe-

cution behavior of the application and the data vari-

ation model that describes the data required for the

execution.

What is more, considering that the behavior of a

functionality of the application can be comprehended

better through the sequences of method call, and the

accuracy and completeness of the behavior can be guar-

anteed through the sequences of instruction execution,

we divided the execution variation model and the data

variation model into two levels: the instruction level

and the method level.

4.1.2 Execution Variation Model

The execution variation model is used to describe

the execution behavior of the application during a pe-

riod of time, which is shown in Fig.4. With the exe-

cution variation model, developers can inspect the run-

ning state of the instructions at any time.

Method1 Method2 Method3

I1

I1

I1

I1

I2

I2

I2

I2

In

In

In

In⇁

In⇁

In⇁

In⇁

In⇁k

In⇁k

In⇁k⇁

In

Parameters

Parameters

Parameters

Return

Value

Return Value

Return

Value

T
im

e

Fig.4. Execution variation model.

Definition 2. The execution variation model

Mexecution consists of an instruction set, a set of lo-

cal data state, and a relationship that denotes the order

or dependence of two certain executed instructions and

the local data state between the execution of them.

Mexecution = (I, L, ε).

In an instruction-level execution variation model,

the instructions in I are all executed instructions. In

a method-level execution variation model, the instruc-

tions in I are all method call and method return in-

structions. Obviously, Imethod-level ⊂ Iinstruction-level.

4.1.3 Data Variation Model

The data variation model is used to describe the

data required for the execution during a period of time,

which is shown in Fig.5. With the data variation model,

developers can inspect the state of accessible variables

in data segment and heap area at any time.

Su Zhang et al.: SmartPipe: Towards Interoperability of Industrial Applications via Computational Reflection 169

Method1 Method2 Method3

S1

S1

S1

S1

S2

S2

S2

S2

Sn

Sn

Sn

Sn

Sn⇁

Sn⇁

Sn⇁

Sn⇁

Sn⇁k

Sn⇁k

Sn⇁k⇁

Icall

Icall

Icall

Iret

Iret

Iret

T
im

e

Fig.5. Data variation model.

Definition 3. The data variation model Mdata con-

sists of an instruction set, a set of global data state, and

a relationship that denotes the change from one global

data state to another and the instruction(s) that caused

the change.

Mdata = (I,G, σ).

In an instruction-level data variation model, the in-

struction in σ is one certain effective instruction (an

instruction that has effect on accessible variables in

data segment and heap area). In a method-level data

variation model, the instructions in σ are some cer-

tain effective instructions between two method instruc-

tions (method call or method return), that is, each

element in G denotes the global data state when a

certain method instruction was executed. Obviously,

Gmethod-level ⊂ Ginstruction-level.

4.2 Constructing the Behavioral Runtime

Model

The construction of the BRM includes the following

challenges.

1) The execution of an application is complex. How

to achieve the fine-grained instructions that are able to

represent the execution of an application?

2) Multi-thread is commonly applied to provide bet-

ter user experience. How to record the dependent rela-

tionship between different control flows?

3) According to the definition, the BRM covers ev-

ery variation of the execution behavior and the required

data of an application over a period of time. How to

solve the problem of state explosion when modeling?

To overcome the above challenges, we take the fol-

lowing measures.

1) The behavior interpreter is an interpreter that in-

terprets executable instruction, which can monitor the

instructions at runtime and simulate the execution of

recorded instructions. By implementing the behavior

interpreter, we can achieve the complete, accurate and

detailed records of the application behavior. What is

more, we hooked up some system methods that send

system messages to form handles, which means that

the interactions between users and the application are

also included in the method-level execution variation

model.

2) Typically, a control flow is represented by a

thread, and the dependence can be divided into two

categories: synchronization dependence and communi-

cation dependence, which can be inferred during the

interpretation process and represented by ε in the exe-

cution variation model.

• Synchronization dependence captures the depen-

dent relationship due to inter-thread synchronization.

Informally, an instruction ia in one thread is synchro-

nization dependent on an instruction ib if the start

and(or) termination of the execution of ia determi-

nate(s) the starts and(or) termination of the execution

of ib through an inter-thread synchronization. Typ-

ically, synchronization dependence is associated with

method call and method return instructions.

• Communication dependence represents dependent

relationship due to inter-thread communication. In-

formally, an instruction ia in one thread is directly

communication-dependent on an instruction ib in an-

other thread if the struct used at ib has direct influence

on the struct used at ia through an inter-thread com-

munication.

3) Considering the terribly high time and space

complexity, it is infeasible to snapshot the state of reg-

isters, stack, heap, and data segment whenever some-

thing changes. Therefore, we proposed a rolling forward

strategy to relieve the problem of state explosion.

4) In addition to the behaviors related to the target

functionality, there are also some irrelevant behaviors

to be eliminated, such as the regular check to the net-

work connection. We proposed a three-level filter to

further relieve the problem of state explosion.

170 J. Comput. Sci. & Technol., Jan. 2020, Vol.35, No.1

4.2.1 Key Mechanism 1: Rolling Forward Strategy

To avoid the terribly high time and space comple-

xity caused by snapshotting the data state of every vari-

ation, we propose the rolling forward strategy. The

basic idea of the rolling forward strategy is to restore

the state of registers, stack, heap, and data segment on

demand based on the initial state and the subsequent

instructions.

Considering that the strategy of rolling forward

from the initial state to the required state all the time

may be inefficient, we trade off between the recording

cost and the querying cost by adjusting the strategy to

record the runtime state every time when a method is

called or returns, and restore the required state from

the latest recorded state.

Algorithm 1 shows the rolling forward algorithm.

The behavior interpreter is used to record the required

information and support the rolling forward algorithm.

4.2.2 Key Mechanism 2: Three-Level Filter

The number of nodes in a fine-grained record is the

number of instructions executed during this time, which

greatly increases the complexity of model generation

and the difficulty of model analysis. On the one hand,

the complexity of runtime instructions will be tremen-

dously increased if each execution of an instruction is

treated as a runtime instruction in the BRM. On the

other hand, the accuracy of the model will be com-

promised if we ignore indispensable parts of the exe-

cution. Therefore, we implement a three-level filter

to control the complexity of the model and meet the

granularity requirement in different scenarios, includ-

ing an interaction-level filter, a method-level filter, and

an instruction-level filter.

The interaction-level filter filters behaviors irrele-

vant to a specific functionality by the type and title

of controls (e.g., button, textbox). As mentioned be-

fore, the system messages that represent the interaction

between users and the application are included in the

method-level execution variation model. When a user

interacts with an application to trigger a specific func-

tionality, the events of mouse and keyboard usage will

be converted to system messages to some specific con-

trols of the application. These messages then trigger

the execution of some specific response methods of these

controls, which begin the execution of the functional-

ity. Therefore, the scale of the BRM can be narrowed

down to a specific functionality by analyzing the corre-

lation between the action of users and the reaction of

application.

Besides, the method-level filter filters the methods

unconcerned by developers by method name and the

instruction-level filter filters the unconcerned instruc-

tion by instruction type. Developers can configure the

three-level filters on demand to generate a BRM of ap-

propriate granularity in different scenarios.

5 API Generation via Computational

Reflection

The BRM is a self-representation of the behavior

of an application, which can comprehensively and ac-

curately describe the runtime behavior of an applica-

tion. Computational reflection requires that the self-

representation is manipulable, which means the manip-

ulations to the self-representation should be reflected in

the behavior of the application.

In SmartPipe, developers manipulate the BRM by

generating model fragments corresponding to specific

functionalities, and the manipulations can be reflected

in the behavior of the application by transforming the

model fragments to APIs that encapsulate target func-

tionalities according to interoperability requirements

semi-automatically, thus achieving the control of the

application.

The generation of APIs includes following chal-

lenges.

1) A complete functional execution process is usu-

ally highly coupled to the user interface, thus an model

fragment that corresponds to the target functionality

while is low-coupled to the user interface should be lo-

cated.

2) Due to the compilation and the possible confu-

sion, the method names are usually confused and have

Su Zhang et al.: SmartPipe: Towards Interoperability of Industrial Applications via Computational Reflection 171

no semantic information, which greatly increases the

difficulty of locating the appropriate model fragment.

3) To ensure that the effects of the generated API

are consistent with the target functionality, the context

of the model fragment should be well constructed.

To overcome the above challenges, we take the fol-

lowing measures.

1) We propose a keyword-based contamination al-

gorithm to solve the problems of semantic missing and

user-interface coupling during the location of appropri-

ate model fragments.

2) We propose an approach to restoring the nece-

ssary data dependence of the model fragment while en-

suring the flexibility of APIs.

5.1 Generation of Model Fragments

In response to the problems of semantic missing and

user-interface coupling, we propose a keyword-based

contamination algorithm. Although the semantic in-

formation is usually lacking in the BRM, the values of

runtime data instances are unambiguous. The core idea

of the keyword-based contamination algorithm is to use

the information related to the functionality execution

provided by developers to sort the structs in memory

by their correlation with the provided information and

sort the alternative model fragments by their correla-

tion with the sorted structs and the provided informa-

tion. The algorithm is shown in Algorithm 2.

The first step of the algorithm is to build a struct

diagram (line 1). After that, the algorithm iterates

through all the instructions and reference chains in the

BRM to update the weight of the struct diagram (lines

2–4), where the value of α is 0.8 and Count1(i, j) repre-

sents the number of instructions that include both node

i and node j.

After constructing the struct relationship diagram,

the algorithm proceeds to the second step: perform-

ing keyword-based matching to find structs that are

directly related to the keyword (lines 5–7), where

Count2(i, k) represents the number of instructions that

contain both node i and keyword k, and β is 2 000. In

this step, the keyword is a string or value provided by

the developer, which is the special data in the process

of executing a certain function. For example, the corre-

sponding special data of a BRM describing the process

of querying production data can be the content of the

query results.

After initializing the weight of the directly related

struct, the algorithm proceeds to the third step: con-

taminating the indirectly related structs (lines 8–11),

where N(p) = 0.5p + 1 is used to control the total

amount of the weight change of different nodes in each

iteration and E(i, j)× Avg(i)
Total(i) is the amount of contam-

ination of each successor node according to the propor-

tion of the weight of the edge.

After calculating the correlation of structs, we can

calculate the correlation of the instructions in the exe-

cution variation model and convert the model to reduce

the execution logic associated with the user interface

(lines 12–16), where the penalty parameter Penalty =

0.5.

After calculating the correlation of each instruction,

the correlation of the specific model segment with the

specified structs in each control flow can be calculated

and a number of alternative model fragments sorted by

the correlation can be generated (lines 17–19). Due to

the presence of the penalty coefficient, the correlation of

the model fragments associated with the user interface

is typically less than that of other ones.

Deletion is the main operations in this process,

which may be accidentally wrong because of the possi-

172 J. Comput. Sci. & Technol., Jan. 2020, Vol.35, No.1

ble underreporting of the keyword-based related struct

contamination analysis. Therefore, the scope of the

contamination can be expanded by adjusting N(p) and

the number of iteration rounds in the analysis algorithm

when developers find that there is no suitable model

fragment among the recommended model fragments.

5.2 Construction of Data Dependence

A given fragment of BRM consists of a set of instruc-

tions. Each model fragment can automatically generate

a code snippet that maintains the control equivalence

of heap to the original fragment through program ana-

lysis. The main challenge of generating the code snippet

is the construction of the data dependence of the model

fragment, which should keep the data that the model

fragment depends on the same as when it executed.

The types of data dependence of a model fragment

can be divided into two types: the numeric type and

the struct type.

1) For the data dependence of numeric type, since

the data type in the BRM is a concretized value, the

dependence of the numeric type in the newly generated

code snippet is consistent with the value in the BRM.

2) Data dependence of struct type can be further

subdivided into local struct type and global struct type.

The local struct can be regarded as a struct that can be

recycled after the execution of the BRM, and the global

struct is a struct that is not affected by the execution

of the function. For a local struct, the code snippet to

construct it can be automatically generated by playing

back the related instructions that change the struct.

For a global struct, a reachable struct reference chain

for obtaining the struct can be constructed by program

analysis, and the code snippet to construct it can be

automatically generated according to the reference type

between the structs described in the chain.

5.3 Parameterization of Interactive Variables

The code snippets (i.e., APIs) generated by the

model fragments are based on the monitored behaviors

of an application. After the construction of data de-

pendence, the value of variables in a code snippet is

the same as that when the target functionality was ex-

ecuted, which means that the execution result of this

code snippet is the same as the target functionality.

Interactive variables are the variables that represent

the alterable input of users when they trigger the tar-

geted functionality. For example, in the case of a pro-

duction data query, the date parameter is an interactive

variable, which is a fixed string in the automatically

generated API. Obviously, such a kind of API is inflex-

ible. Therefore, the interactive variables in generated

APIs should be replaced with modifiable parameters.

In addition, the conversion from the directly achieved

data of various structures to standard data formats like

JSON is necessary.

6 Case Study

In this section, we validate SmartPipe on a real in-

dustrial application that controls the spin-draw winding

machine and compare it with other approaches. Our co-

operative enterprise is Zhejiang Hengyi Petrochemicals

Co., Ltd., China 1○.

6.1 Background

In industrial fields, large industrial devices are usu-

ally equipped with dedicated control applications, with

which technicians at the production site can control the

behavior of the device, monitor the status of the device

and view production records of the device.

For various reasons, most of these control applica-

tions do not provide a remotely callable API that en-

capsulates the above functions. Manufacturers using

these devices can only arrange technicians to go to the

operation consoles of each production floor to perform

on-site operations on these control applications, which

is inefficient and greatly hinders the development of in-

telligent manufacturing.

Fig.6 shows a dedicated application for controlling

a spin-draw winding machine (a device for producing

polyester filament yarn) facing with the above problem.

During the spinning process, this control applica-

tion records various events that occur during the ope-

ration of the machine (including normal events such as

winding start and abnormal events such as over tem-

perature) and the production data of the machine (in-

cluding statistical reports such as package report, pro-

duction report and yarn break report).

Manufacturers want to remotely and automatically

acquire these device data in a programmatic manner to

support further data analysis (optimization of process

parameters, prediction of equipment failures, etc.) and

automation integration (shovelling wire with mechani-

cal arm automatically, etc.).

1○http://en.hengyi.com, Nov. 2019.

Su Zhang et al.: SmartPipe: Towards Interoperability of Industrial Applications via Computational Reflection 173

Fig.6. Program for controlling the spin-draw winding machine.

6.2 Generating Process

Through SmartPipe, we generate the corresponding

APIs for the six functionalities of this control applica-

tion: EventInfo, YBMSBaseInfo, PackageReport, Dof-

fChangeReport, ProductionReport and YarnBreakRe-

port. The following will introduce the process of devel-

oping APIs with the API for querying EventInfo as an

example.

First, we configured a coarse-grained model con-

struction strategy (only for function-level models) to

monitor all modules of the application. Fig.7 shows

the view of the generated model.

Based on the generated model, the contamination

analysis is carried out to determine the specific modules

that implement the target functionality. After that, a

fine-grained model is constructed to support the gene-

ration of API. Fig.8 shows a part of the API code.

At last, the converting from date strings in the

request (the start date and the end date of a query

request) to the integers in the method (param1 and

param2) and the converting from the result struct

(res3) to the JSON string in the response should be

implemented by developers with the help of the BRM.

The execution result of the developed API is shown in

Fig.9.

We developed the remaining five APIs in similar

ways. Thus, the device data enclosed in the control

application is opened through APIs via computational

reflection, which greatly improves the interoperability

of the application.

6.3 Comparison with Other Approaches

The application mentioned above is a legacy desk-

top application without database. The source code is

unavailable, the communication protocol is unknown,

and the outdated architecture is not suitable for being

directly exposed as APIs. Therefore, most of the ap-

proaches mentioned in Section 2 cannot be implemented

except wrapping approaches based on user interface.

We implemented two APIs that encapsulate the

same functionality of querying the package report: one

based on computational reflection (CR-based API) and

the other based on user interface (UI-based API),

and compared their execution efficiency, concurrency,

174 J. Comput. Sci. & Technol., Jan. 2020, Vol.35, No.1

development time and impact on application operation.

Table 1 shows the results of the comparison.

Fig.7. View of method-level execution variation model.

Fig.8. Part of generated code of the API.

Fig.9. Execution result of the developed API.

In terms of the execution efficiency, the CR-based

API is more efficient than the UI-based API. We tested

the cumulative execution time of the two APIs for 1 000

single-threaded executions. The execution time does

not include the communication time. The results show

that the average time for the CR-based API to exe-

cute is 21.14 ms, and the average time for the UI-based

API to execute is 383.48 ms, which is about 18 times

that of the CR-based API. The reason is that the im-

plementation of the CR-based API only includes the

indispensable key business logic that has been stripped

out from the application while the implementation of

the UI-based API includes redundant processes such as

the response of user interface, which is time-consuming.

In terms of the concurrence, the CR-based API sup-

ports concurrency while the UI-based API does not

support concurrency due to the high coupling with the

user interface. Techniques like Docker may help the

UI-based API support concurrency. However, since

industrial control applications are often connected to

the target physical manufacturing devices, these tech-

niques cannot be applied. We tested the average exe-

cution time of the CR-based API at 10/20/50/100

Table 1. Comparison of CR-Based and UI-Based Approaches

Implementation Execution Efficiency (ms/request) Concurrence Development Time (hour) (1 developer) Impact on Operation

CR-based 21.14 Support 8 Slight

UI-based 383.48 Not support 2 Serious

Note: CR-based means computational-reflection based. We implemented two APIs that encapsulate the same functionality of query-
ing the package report: one based on computational reflection and the other based on user interface, and compared their execution
efficiency, concurrency, development time and impact on application operation.

Su Zhang et al.: SmartPipe: Towards Interoperability of Industrial Applications via Computational Reflection 175

threads concurrency, and the results were divided into

22.90/24.43/30.63/33.58 ms, where the API was called

once every 1 second and 100 times per thread. There-

fore, the concurrency of the CR-based API is sufficient

to support most of the scenarios, as the key business

logic is stripped out appropriately.

In terms of the development time, the development

of UI-based API took about 2 hours while that of

the CR-based API took about 8 hours with the same

developer because the UI-based API only needs to simu-

late the user operation and capture the changes of user

interface while the CR-based API needs to strip the

key business logic inside the application. However, the

computational reflection framework based on the BRM

provides a lot of assistance for development; thus deve-

lopers can conduct the work without comprehending or

modifying the internal logic of the target functionality.

Therefore, the development complexity of the CR-based

API is moderate.

In terms of the impact on user operation, the user

cannot operate the control application normally when

the UI-based API is slight called due to the high cou-

pling with the user interface, while the impact is negli-

gible when the CR-based API is frequently called. We

tested the execution time of the UI-based API while

running the above program for concurrence test (100

threads). The average time for the UI-based API to ex-

ecute is 383.48 ms, which was only increased by 6.02%

compared with that in the normal state.

In summary, SmartPipe is effective and practical,

which is more appropriate to expose the existing func-

tionalities of a legacy industrial application as APIs

compared with traditional approaches.

7 Discussion

In this section, we discuss the limitation of Smart-

Pipe from aspects of generality, performance and secu-

rity.

7.1 Generality

We discuss the generality from programming lan-

guages, operating environment and complexity of ap-

plication.

7.1.1 Programming Language of Application

Common programming languages can be divided

into compiled languages (Java, C#, C, C++, etc.) and

interpreted languages (Python, JavaScript, etc.).

For interpreted languages, the source code for such

applications is directly available due to the nature of

their interpretation. That is to say, for an applica-

tion developed in an interpreted language, most of the

reengineering approaches in related work can be used

for API generation. In addition, industrial control

applications typically do not use interpreted language

development in view of efficiency issues. Therefore, we

did not implement SmartPipe for an interpreted lan-

guage. Of course, SmartPipe is in principle compatible

with interpreted languages.

For compiled languages, it can be divided into

“semi-compiled languages” (such as Java, C#, and so

on) with intermediate code and “fully compiled lan-

guages” (such as C/C++) with only machine code. For

“semi-compiled languages”, we have achieved good sup-

port for Java and C#. For “fully compiled languages”,

due to the large amount of metadata loss in the compi-

lation process, the generated model contains less type

description information, which leads to the relatively

high requirements for API developers.

7.1.2 Operating Environment of Application

The operating environment of industrial applica-

tions can be divided into two categories: general en-

vironment (Windows PC, etc.) and dedicated environ-

ment (PLC, etc.). SmartPipe supports the general en-

vironment in which the upper control program mainly

runs, and does not support the dedicated environment.

7.1.3 Complexity of Application

SmartPipe can be applied to complex industrial ap-

plications, such as distributed industrial applications.

The internal logic of the target functionality does not

need to be understood or modified in SmartPipe; thus

the complexity of industrial applications does not affect

the usability of the method. Of course, calls to the gene-

rated APIs must follow the usage rules of the original

functionalities; otherwise the execution of APIs may go

wrong. In addition, the poor application architecture

design, such as over-coupling between different func-

tionalities, will increase the difficulty of development,

thus reducing the generality of SmartPipe to some ex-

tent.

7.2 Performance

The performance of an API is limited by the specific

implementation of the business logic of the target func-

tionality. That is to say, the execution efficiency of an

176 J. Comput. Sci. & Technol., Jan. 2020, Vol.35, No.1

API will be correspondingly low when that of the target

functionality is low and an API does not support con-

currency in cases where, for example, the key business

logic involves a write operation to the same file. Since

the APIs are generated by deleting the redundant exe-

cution process, the execution efficiency is theoretically

not lower than that of the original functionalities and

a certain extent of concurrency is supported in most

cases.

7.3 Security

Although APIs generated by SmartPipe follow the

original security mechanism in the application, any

form of exposing functionalities as APIs poses an ad-

ditional security risk: the attacker has an additional

means of intrusion. Therefore, additional measures

such as gateways, firewalls and encryption need to be

added to ensure security when deploying APIs gene-

rated by SmartPipe.

8 Conclusions

This paper proposes SmartPipe, a computational-

reflection-based approach to improving the interoper-

ability of industrial applications by exposing existing

functionalities as APIs. SmartPipe uses the behavioral

runtime model as the self-representation of an industrial

application and provides the computational reflection

framework to flexibly construct the model and gene-

rate APIs that encapsulate specific functionalities. The

main innovative feature of SmartPipe is that it is not

dependent on the source code and allows the applica-

tion to remain unchanged. We validated SmartPipe on

a real industrial application that controls the spin-draw

winding machine and carried out some evaluations to

compare it with other approaches. Results showed that

our approach is effective and more suitable for indus-

trial scenes compared with traditional approaches. As

future work, we plan to better support fully compiled

languages and explore how to apply SmartPipe in a

dedicated environment like Programmable Logic Con-

troller.

References

[1] Shipp S S, Gupta N, Lal B et al. Emerging

global trends in advanced manufacturing. Techni-

cal Report, Institute for Defense Analyses, 2012.

https://www.nist.gov/sites/default/files/documents/2017-

/05/09/IDA-STPI-report-on-Global-Emerging-Trends - in-

Adv-Mfr-P-4603 Final2-1.pdf, August 2019.

[2] Lin S W, Miller B, Durand J et al. Industrial Internet refe-

rence architecture. Technical Report, Industrial Internet

Consortium, 2015. https://www.iiconsortium.org/pdf/SHI-

WAN%20LIN IIRA-v1%208-release-20170125.pdf, Nov.

2019.

[3] Bechtold J, Lauenstein C, Kern A et al. Industry 4.0 — The

capgemini consulting view. Technical Report, Capgemnini

Consulting, 2014, 31. https://www.capgemini.com/cons-

ulting/wp-content/uploads/sites/30/2017/07/capgemini-c-

onsulting-industrie-4.0 0 0.pdf, Nov. 2019.

[4] Maes P. Concepts and experiments in computational reflec-

tion. ACM SIGPLAN Notices, 1987, 22(12): 147-155.

[5] Feldhorst S, Libert S, Ten Hompel M et al. Integration of a

legacy automation system into a SOA for devices. In Proc.

the 12th IEEE Int. Conf. Emerging Technologies and Fac-

tory Automation, September 2008, Article No. 110.

[6] Givehchi O, Landsdorf K, Simoens P et al. Interoperabil-

ity for industrial cyber-physical systems: An approach for

legacy systems. IEEE Trans. Industrial Informatics, 2017,

13(6): 3370-3378.

[7] Tao F, Cheng J F, Qi Q L. IIHub: An industrial Internet-

of-Things hub toward smart manufacturing based on cyber-

physical system. IEEE Trans. Industrial Informatics, 2018,

14(5): 2271-2280.

[8] Queirós R. Kaang: A RESTful API generator for the mod-

ern web. In Proc. the 7th Symp. Languages, Applications

and Technologies, June 2018, Article No. 1.

[9] Ed-Douibi H, Izquierdo J L C, Gómez A et al. EMF-REST:

Generation of RESTful APIs from models. In Proc. the

31st Annual ACM Symp. Applied Computing, April 2016,

pp.1446-1453.

[10] Zhai J, Huang J J, Ma S Q et al. Automatic model gene-

ration from documentation for Java API functions. In Proc.

the 38th IEEE/ACM Int. Conf. Software Engineering, May

2016, pp.380-391.

[11] Almonaies A A, Cordy J R, Dean T R. Legacy system evolu-

tion towards service-oriented architecture. In Proc. the 2010

Int. Workshop on SOA Migration and Evolution, March

2010, pp.53-62.

[12] Stroulia E, El-Ramly M, Sorenson P et al. Legacy systems

migration in CelLEST. In Proc. the 22nd Int. Conf. Soft-

ware Engineering, June 2000, Article No. 790.

[13] Stroulia E, El-Ramly M, Sorenson P. From legacy to web

through interaction modeling. In Proc. the 18th Int. Conf.

Software Maintenance, October 2002, pp.320-329.

[14] Canfora G, Fasolino A R, Frattolillo G et al. Migrating inte-

ractive legacy systems to web services. In Proc. the 10th

European Conf. Software Maintenance and Reengineering,

March 2006, pp.24-36.

[15] Canfora G, Fasolino A R, Frattolillo G et al. A wrapping

approach for migrating legacy system interactive function-

alities to service oriented architectures. Journal of Systems

and Software, 2008, 81(4): 463-480.

[16] Rodŕıguez-Echeverŕıa R, Maćıas F, Pavón V M et al. Model-

driven generation of a REST API from a legacy web appli-

cation. In Proc. the 9th International Workshop on Model-

Driven and Agile Engineering for the Web, July 2013,

pp.133-147.

[17] Jiang Y T, Stroulia E. Towards reengineering web sites to

web-services providers. In Proc. the 8th European Conf.

Software Maintenance and Reengineering, March 2004,

pp.296-305.

Su Zhang et al.: SmartPipe: Towards Interoperability of Industrial Applications via Computational Reflection 177

[18] Baumgartner R, Gottlob G, Herzog M et al. Interactively

adding web service interfaces to existing web applications.

In Proc. the 2004 Symp. Applications and the Internet, Jan-

uary 2004, pp.74-80.

[19] Sneed H M, Wien A G. Wrapping legacy software for reuse

in a SOA. Multikonferenz Wirtschaftsinformatik, 2006, 2:

345-360.

[20] Sneed H M. Integrating legacy software into a service ori-

ented architecture. In Proc. the 10th European Conf. Soft-

ware Maintenance and Reengineering, March 2006, pp.3-14.

[21] Lewis G, Morris E, Smith D. Analyzing the reuse poten-

tial of migrating legacy components to a service-oriented

architecture. In Proc. the 10th European Conf. Software

Maintenance and Reengineering, March 2006, pp.15-23.

[22] Lewis G, Morris E, Smith D et al. Service-oriented migra-

tion and reuse technique (SMART). In Proc. the 13th IEEE

Int. Workshop on Software Technology and Engineering

Practice, September 2005, pp.222-229.

[23] Smith D. Migration of legacy assets to service-oriented ar-

chitecture environments. In Proc. the 29th Int. Conf. Soft-

ware Engineering, May 2007, pp.174-175.

[24] Inaganti S, Behara G K. Service identification: BPM and

SOA handshake. BPTrends, 2007, 3: 1-12.

[25] del Grosso C, di Penta M, de Guzman I G R. An approach

for mining services in database oriented applications. In

Proc. the 11th European Conf. Software Maintenance and

Reengineering, March 2007, pp.287-296.

[26] Yeh D M, Li YW, Chu W. Extracting entity relationship di-

agram from a table-based legacy database. Journal of Sys-

tems and Software, 2008, 81(5): 764-771.

[27] Strobl S, Bernhart M, Grechenig T et al. Digging deep:

Software reengineering supported by database reverse engi-

neering of a system with 30+ years of legacy. In Proc. the

25th IEEE Int. Conf. Software Maintenance, September

2009, pp.407-410.

[28] Zhang Z P, Yang H J. Incubating services in legacy systems

for architectural migration. In Proc. the 11th Asia-Pacific

Software Engineering Conf., November 2004, pp.196-203.

[29] Zhang Z P, Liu R M, Yang H J. Service identification

and packaging in service oriented reengineering. In Proc.

the 17th International Conference on Software Engineer-

ing and Knowledge Engineering, July 2005, pp.620-625.

[30] Chen F, Li S Y, Yang H J et al. Feature analysis for service-

oriented reengineering. In Proc. the 12th Asia-Pacific Soft-

ware Engineering Conf., December 2005, pp.201-208.

[31] Guo H, Guo C Y, Chen F et al. Wrapping client-server ap-

plication to Web services for Internet computing. In Proc.

the 6th Int. Conf. Parallel and Distributed Computing Ap-

plications and Technologies, December 2005, pp.366-370.

[32] Li S, Tahvildari L. JComp: A reuse-driven componen-

tization framework for Java applications. In Proc. the

14th IEEE Int. Conf. Program Comprehension, June 2006,

pp.264-267.

[33] Cuadrado F, Garćıa B, Dueñas J C et al. A case study on

software evolution towards service-oriented architecture. In

Proc. the 22nd Int. Conf. Advanced Information Network-

ing and Applications-Workshops, March 2008, pp.1399-

1404.

[34] Marchetto A, Ricca F. Transforming a Java application in

an equivalent web-services based application: Toward a tool

supported stepwise approach. In Proc. the 10th Int. Symp.

Web Site Evolution, October 2008, pp.27-36.

[35] Marchetto A, Ricca F. From objects to services: Toward

a stepwise migration approach for Java applications. Int.

Journal on Software Tools for Technology Transfer, 2009,

11(6): 427-440.

[36] Huang G, Liu T C, Mei H et al. Towards autonomic comput-

ing middleware via reflection. In Proc. the 28th Annual Int.

Computer Software and Applications Conference, Septem-

ber 2004, pp.135-140.

[37] Huang G, Mei H, Yang F Q. Runtime software architecture

based on reflective middleware. Science in China Series F:

Information Sciences, 2004, 47(5): 555-576.

[38] Albertini B, Rigo S, Araujo G et al. A computational reflec-

tion mechanism to support platform debugging in SystemC.

In Proc. the 5th IEEE/ACM Int. Conf. Hardware/Software

Codesign and System Synthesis, September 2007, pp.81-86.

[39] Albertini B, Rigo S, Araujo G. Computational reflection

and its application to platform verification. Design Automa-

tion for Embedded Systems, 2012, 16(1): 1-17.

[40] López P G, Fernández-Casado E, Angles C et al. Enabling

collaboration transparency with computational reflection.

In Proc. the 16th Int. Conf. Collaboration and Technology,

September 2010, pp.249-264.

[41] Bellman K L, Nelson P R, Landauer C. Active experimen-

tation and computational reflection for design and testing

of cyber-physical systems. In Proc. the Poster Workshop at

the 2014 Complex Systems Design & Management Inter-

national Conference Co-Located with the 5th International

Conference on Complex System Design & Management,

November 2014, pp.251-262.

[42] Demers F N, Malenfant J. Reflection in logic, functional and

object-oriented programming: A short comparative study.

In Proc. the IJCAI’95 Workshop on Reflection and Met-

alevel Architectures and Their Applications in AI, August

1995, pp.29-38.

Su Zhang is a Ph.D. candidate

in Key Laboratory of High-Confidence

Software Technology and School of Elec-

tronics Engineering and Computer Sci-

ence, Peking University, Beijing. His

current research interests include system

software and software engineering. text

text text text text text text text text

text text text text text text text text text

Hua-Qian Cai is now a postdoctoral

researcher in Peking University, Beijing.

He received his Ph.D. degree in com-

puter software and theory from Peking

University, Beijing, in 2018. His current

research interests include programming

language and software engineering.text

text text text text text text text text

text text text text

178 J. Comput. Sci. & Technol., Jan. 2020, Vol.35, No.1

Yun Ma is now a postdoctoral

researcher in School of Software, Ts-

inghua University, Beijing. He received

his Ph.D. degree in computer software

and theory from Peking University,

Beijing, in 2017. His current research

interests include Web engineering and

mobile computing. text text text text

text text text text text text

Tian-Yue Fan is a senior manager

and the intelligent manufacturing

manager in Project Implementation

Department of Hengyi Petrochem-

icals CO., LTD., Hangzhou. His

research interests include intelligent

manufacturing, industrial big data

and informatization of business mana-

gement.text text text

Ying Zhang is an assistant profes-

sor at Peking University, Beijing. He

received his Ph.D. degree in computer

software and theory from Peking Uni-

versity, Beijing, in 2012. His current re-

search interests include mobile comput-

ing and cloud computing.text text text

text text text text text text text text

text text text text text text text text text text text text

text text text text text text

Gang Huang is a full professor at

Peking University, Beijing. He received

his Ph.D. degree in computer software

and theory from Peking University,

Beijing, in 2003. His current research

interests include operating systems,

cloud computing, and Internetware.text

text text text text text text text text

text text text text text text text text text text text text

text text text text text text text

	1 Introduction
	2 Related Work
	2.1 Integrating Legacy Industrial Systems
	2.2 Generating APIs During the Development Phase
	2.3 Generating APIs for Legacy Systems
	2.3.1 Wrapping Approaches
	2.3.2 Reengineering Approaches

	2.4 Computational Reflection

	3 Approach Overview
	4 Computational Reflection FrameworkBased on Behavioral Runtime Model
	4.1 Behavioral Runtime Model
	4.1.1 Formal Definition
	4.1.2 Execution Variation Model
	4.1.3 Data Variation Model

	4.2 Constructing the Behavioral Runtime Model
	4.2.1 Key Mechanism 1: Rolling Forward Strategy
	4.2.2 Key Mechanism 2: Three-Level Filter

	5 API Generation via Computational Reflection
	5.1 Generation of Model Fragments
	5.2 Construction of Data Dependence
	5.3 Parameterization of Interactive Variables

	6 Case Study
	6.1 Background
	6.2 Generating Process
	6.3 Comparison with Other Approaches

	7 Discussion
	7.1 Generality
	7.1.1 Programming Language of Application
	7.1.2 Operating Environment of Application
	7.1.3 Complexity of Application

	7.2 Performance
	7.3 Security

	8 Conclusions

