
Jin ZH, Shi H, Hu YX et al. CirroData: Yet another SQL-on-Hadoop data analytics engine with high performance.

JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 35(1): 194–208 Jan. 2020. DOI 10.1007/s11390-020-9536-z

CirroData: Yet Another SQL-on-Hadoop Data Analytics Engine with

High Performance

Zheng-Hao Jin1, Haiyang Shi2, Ying-Xin Hu1, Li Zha3,4, Member, CCF, and Xiaoyi Lu2, Member, ACM, IEEE

1Business-Intelligence of Oriental Nations Corporation Ltd., Beijing 100102, China
2Department of Computer Science and Engineering, The Ohio State University, Ohio 43210, U.S.A.
3Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
4University of Chinese Academy of Sciences, Beijing 101408, China

E-mail: jinzhenghao@bonc.com.cn; shi.876@osu.edu; huyingxin@bonc.com.cn; char@ict.ac.cn; lu.932@osu.edu

Received July 15, 2019; revised October 14, 2019.

Abstract This paper presents CirroData, a high-performance SQL-on-Hadoop system designed for Big Data analytics

workloads. As a home-grown enterprise-level online analytical processing (OLAP) system with more than seven-year research

and development (R&D) experiences, we share our design details to the community about how to achieve high performance

in CirroData. Multiple optimization techniques have been discussed in the paper. The effectiveness and the efficiency of

all these techniques have been proved by our customers’ daily usage. Benchmark-level studies, as well as several real appli-

cation case studies of CirroData, have been presented in this paper. Our evaluations show that CirroData can outperform

various types of counterpart database systems in the community, such as “Spark+Hive”, “Spark+HBase”, Impala, DB-X/Y,

Greenplum, HAWQ, and others. CirroData can achieve up to 4.99x speedup compared with Greenplum, HAWQ, and Spark

in the standard TPC-H queries. Application-level evaluations demonstrate that CirroData outperforms “Spark+Hive” and

“Spark+HBase” by up to 8.4x and 38.8x, respectively. In the meantime, CirroData achieves the performance speedups for

some application workloads by up to 20x, 100x, 182.5x, 92.6x, and 55.5x as compared with Greenplum, DB-X, Impala,

DB-Y, and HAWQ, respectively.

Keywords CirroData, high performance, SQL-on-Hadoop, online analytical processing (OLAP), Big Data

1 Introduction

Many data processing systems are deployed in mod-

ern data centers to handle both operational workloads

(i.e., many small transactions with a high portion of up-

dates, known as online transaction processing or OLTP)

and analytical workloads (i.e., complex queries travers-

ing large volume of data, known as online/offline ana-

lytical processing or OLAP).

Fig.1 represents a typical data processing architec-

ture on modern data centers. In this architecture, pro-

duction systems keep generating a large volume of data,

or Big Data into a layer of OLTP relational databases.

These OLTP databases construct the data sources for

data analytics jobs from different OLAP systems.

To meet the requirements of different analytics, we

usually deploy multiple OLAP systems on top of the

same collection of data sources within OLTP databases.

The box of data processing cluster in Fig.1 shows that

a batch data processing cluster with Apache Big Data

Stacks (i.e., ABDS [1, 2]), such as Hadoop [3], Spark [4],

Hive [5], Impala [6], is usually built up to run customized

data analytics jobs over PB-level (petabyte-level) or

even larger datasets, which cannot be easily handed on

traditional symmetric multi-processing (SMP) or mas-

sively parallel processing (MPP) database systems.

Some of the data stored in OLTP databases and

the results from batch processing can be stored in a

Regular Paper

Special Section on Applications

This research is supported in part by the Strategic Priority Research Program of the Chinese Academy of Sciences of China under
Grant No. XDA19020400.

©Institute of Computing Technology, Chinese Academy of Sciences & Springer Nature Singapore Pte Ltd. 2020

http://dx.doi.org/10.1007/s11390-020-9536-z

Zheng-Hao Jin et al.: CirroData: A High-Performance SQL-on-Hadoop Data Analytics Engine 195

Data Market

Batch Data Processing

Data Processing Cluster

Hadoop Distributed

Computing

Hive Pig

MapReduce

HDFS

Data Query & Analysis

MPP Database

Data Warehouse

Data Analysis ClusterData Query Cluster

Data Market

Data Market

Data Market

SMP Database

OLTP Relational Database

Building Data Markets Constructing Data Model

VolumeValue Density

O
L
A

P

Fig.1. Typical OLTP and OLAP workloads running on modern data centers.

data warehouse system backed by an MPP database,

which is shown in the box of data analysis cluster in

Fig.1. The data warehouse system can support rich

ETL (i.e., extract, transform and load) operations and

construct meaningful data models for decision making.

The data warehouse system usually cleans the raw data

and significantly reduces the size of data to store. To

support fast OLAP queries, the data in the warehouse

system can be further analyzed and reduced to form

up many data markets, which can be stored in SMP

database systems, as shown in the box of data query

cluster in Fig.1. The value density of the data stored

in SMP databases is much higher than that of the par-

tially processed or raw data. Fig.1 summarizes how the

data flows from the OLTP side to the OLAP side and is

processed in different OLAP systems on modern data

centers.

Among these OLAP systems, Apache Hadoop has

become the de-facto standard software infrastructure

for building cheap and scalable OLAP systems. Even

though Hadoop MapReduce seems losing market share

due to the increasing popularities of the strong competi-

tors such as Spark and Flink, Hadoop has still estab-

lished itself as the most reliable and productive software

base for OLAP systems. One of the most important

reasons for this is the wide adoption of its distributed

file system layer, HDFS.

However, achieving high performance Big Data

analytics on Hadoop-based OLAP systems is a nontriv-

ial issue, because there are many system-level perfor-

mance related factors such as data locality, distributed

coordination, task scheduling, and so on, which may

become significant bottlenecks. In the meantime, there

are not many design articles from the companies to

expose their design architecture and technical details.

This situation could become a burden to preventing re-

searchers from academia and engineers from industry

to exchange their ideas on designing efficient SQL-on-

Hadoop OLAP systems.

In this paper, we present a seven-year-old product

— CirroData, which is a high-performance OLAP data

analytics engine designed with the SQL-on-Hadoop

architecture. With achieving high performance and

flexibility as the major goals in mind, we have pro-

posed many optimized designs in CirroData, such as

distributed SQL plan execution, runtime code gene-

ration with LLVM, distributed metadata management,

locality-aware and load balanced task scheduling, hy-

brid row-column partitioning, and so on.

Our evaluation results show that CirroData can

outperform various types of counterpart database

systems in the community, such as “Spark+Hive”,

“Spark+HBase”, Greenplum, Impala, DB-X/Y, and

HAWQ [7] in many different representative application

scenarios. For instance, CirroData can achieve up to

4.99x speedup compared with Greenplum, HAWQ, and

Spark in the standard TPC-H queries. For some ap-

plication scenarios, CirroData can achieve the perfor-

mance speedups by up to 20x, 100x, 182.5x, 92.6x,

and 55.5x as compared with Greenplum, DB-X, Im-

pala, DB-Y, and HAWQ, respectively.

To summarize, this paper has made the following

196 J. Comput. Sci. & Technol., Jan. 2020, Vol.35, No.1

contributions.

• We present a real SQL-on-Hadoop database pro-

duct, CirroData. We share our design and development

details to the community about how to achieve high

performance and flexibility in CirroData.

• We discuss several optimization techniques in Cir-

roData with details. The effectiveness and the efficiency

of all these techniques have been proved by our cus-

tomers’ daily usage.

• We present both benchmark-level and real

application-level studies of CirroData with insightful

performance numbers taken from multiple real cluster

deployments.

The rest of the paper is organized as follows. Sec-

tion 2 presents the overall architecture and key com-

ponents for CirroData. Section 3 discusses the system

optimization in CirroData. Section 4 and Section 5 de-

scribe our detailed evaluations with TPC-H benchmark

queries and several real application workloads respec-

tively. Section 6 discusses related studies. Finally, we

conclude the paper in Section 7.

2 CirroData Design Overview

This section presents the system architecture and

key components of CirroData.

2.1 Bird’s-Eye View of CirroData

Fig.2 describes the overall software architecture of

CirroData. As a production OLAP system, CirroData

has to support all kinds of requirements from both ap-

plication execution and system maintenance perspec-

tives. CirroData includes five core engines (i.e., front

end engine, distributed query plan engine, distributed

scheduling engine, query engine, and distributed sto-

rage engine) and three common services (i.e., cluster

state management, monitoring & controlling tools, and

metadata management).

The front end engine is responsible for authenti-

cating user accesses, token dispatching, session mana-

gement, handling JDBC requests, etc. The distributed

query plan engine is responsible for SQL parsing, se-

mantic checking, query planning and optimization, etc.

The distributed scheduling engine is in charge of the

dispatch of query execution plans, tracking task ex-

ecutions, data distribution across computing nodes,

etc. The query engine is responsible for converting

the logic execution plans to physical plans and re-

serving the required resources to complete the execu-

tions. The execution results in query engines will be

returned back to upper layer components by the dis-

tributed scheduling engine. The distributed storage en-

gine provides data storage service and supports high-

performance read/write mechanisms, including efficient

data organization, encoding, partitioning, and compres-

sion, etc. The cluster state management service pro-

vides the health status report of the whole cluster and it

uses ZooKeeper to synchronize the status of each node

across the cluster. Monitoring and controlling tools

provide utilities for cluster deployment, node startup

Front End Engine Cluster State
Management

Monitoring &
Controlling

Tools

Distributed
Transaction

HDFS ZooKeeper

Distributed Query
Plan Engine

• Query Planning

• Query Optimization

• Load Planning

Distributed
Scheduling Engine

• Scheduling Service

• Data Packet Transmission

Query
Engine

• Plan Executor

• JIT Optimizer

Distributed Storage Engine

• Data Compression

• Self-Adaptive Data Organization

• Storage Management

• Concurrency Control

• Hybrid Row-Column Partitioning

Metadata
Management

Multidimensional

Analysis
Ad-Hoc Query

Massively Parallel

Processing
Batch Data Processing Big Data Query

• Session Management

• Certification & Authorization Service

• Token Dispatch

Fig.2. Software architecture of CirroData.

Zheng-Hao Jin et al.: CirroData: A High-Performance SQL-on-Hadoop Data Analytics Engine 197

and shutdown, running status monitoring, resource us-

age monitoring, etc. The metadata management service

provides metadata storage and management service. In

this paper, we cannot explain all the details in each of

these components due to the space constraints. We will

cover some key components and optimizations in Sub-

section 2.2 and Section 3.

Fig.3 represents the SQL query execution flow on

the five core engines in CirroData. It gives an overview

of how an SQL query is executed in CirroData with the

cooperation among different components. In addition

to the core engines, we also highlight one important ser-

vice in CirroData, i.e., metadata management, because

it is providing critical support for the whole system run-

ning efficiently.

Front End

Engine

Distributed Query

Plan Engine

Metadata

Management

Distributed

Scheduling Engine

Query Engine

Distributed

Storage Engine

SQL

• Certification &

Authorization

• Query Queues

• Metadata Definition

• SQL Parsing

& Optimization

• Execution Plan

Generation

• Task Dispatch, Launch

& Monitoring

• Data Scheduling

• Relational Query
 Evaluation

• LLVM Expression
 Evaluation

• Concurrency Control

• Data Compression

Fig.3. SQL execution flow on CirroData engines.

2.2 Key Components

Distributed and efficient data storage and query exe-

cution are the two most important aspects of designing

high-performance OLAP systems. Thus, we describe

these two key components in the following subsections.

2.2.1 Distributed Storage Engine on HDFS

To avoid data moving back and forth among sys-

tems, one key design principle of CirroData is to store

all the data in a shared distributed storage engine,

which is backed by HDFS. We decide to use HDFS as

the backend storage engine, which is mainly because

HDFS can provide good support on storage scaling,

high availability, high throughput, and acceptable I/O

latency. These are all important factors for designing

high-performance OLAP systems. In addition, on top

HDFS, CirroData can design efficient and independent

workload scheduling and balancing mechanisms by tak-

ing advantages of data locality information in HDFS.

In particular, CirroData instruments the HDFS block

placement policy to determine where the blocks are

replicated. With this locality information, CirroData

can ensure fast local I/O whenever possible with the

short-circuit reads in HDFS.

To achieve higher I/O performance, CirroData uses

the libhdfs JNI library instead of the normal HDFS

Java filesystem APIs to access the storage layer. This

is mainly because the core execution engines in Cir-

roData are implemented with C++ programming lan-

guage, which enables CirroData to efficiently work with

libhdfs.

To provide fast and efficient data storage, Cirro-

Data proposes a hybrid row-column data organization

scheme based on Parquet 1○. The logical unit of the

hybrid row-column partition is row group, which con-

sists of a chunk of continuous data for each column in

the table. By combining the advantages of row par-

titioning and column partitioning, hybrid row-column

partition performs well in data compression and I/O

optimization. Moreover, hybrid row-column partition-

ing can also improve query performance with the Min-

Max indexing technique. For example, range queries

would be significantly accelerated if there are two fields

in each row group indicating the min and max values

of the data range in the row group. By being com-

pared with these MinMax indexes, CirroData can pre-

vent many unnecessary data accesses by skipping some

row groups. CirroData supports multiple compression

schemes for this hybrid row-column data organization,

which can achieve around 3:1–20:1 compression ratio.

2.2.2 YARN-Bypassed Distributed Query Execution

The distributed query execution in CirroData en-

ables query statements to be executed across multiple

compute nodes efficiently. A typical workflow is sum-

marized as follows. 1) The distributed query plan en-

gine converts an incoming query statement into a dis-

tributed query execution plan, which consists of a series

of sub query plans. These sub query plans are executed

on compute nodes across the cluster, which may include

local computations and necessary data movements via

reading remote tables on other compute nodes. 2)

The distributed query plan engine typically determines

1○http://parquet.apache.org/, Nov. 2019.

198 J. Comput. Sci. & Technol., Jan. 2020, Vol.35, No.1

an optimal set of compute nodes to process these sub

query plans based on a defined cost model. 3) The dis-

tributed scheduling engine then dispatches the logical

query plans to query engines, which reside on compute

nodes. The query engines optimize and execute the

query plans locally (shown in Fig.4). 4) The local query

engine acknowledges distributed scheduling engine once

a query execution is completed.

To achieve high-performance distributed query exe-

cutions, the cost model for the distributed query plan

engine in step 2 takes data locality, system load, and

the cost for executing sub query plan into account to

construct optimized execution plans. In the meantime,

query plans in step 3 are compiled to machine code

and cached to expedite subsequent executions, in order

to alleviate compilation overhead and achieve optimal

performance.

Unlike many other SQL-on-Hadoop systems, such as

Vortex or VectorH [8], which are still based on in-band

or out-of-band YARN scheduling, CirroData chooses

to fully bypass the Hadoop YARN layer. The choice

of fully bypassing YARN is mainly because CirroData

aims to achieve low latency for query executions and

fine-grained resource management. However, YARN

cannot satisfy these requirements because the latencies

of interactions with YARN services are relatively high

compared with the direct communications and coor-

dinations among CirroData components. In addition,

YARN requires jobs to manage the resource consump-

tions in containers, which brings additional container

launching and reclaiming overhead and coarse-grained

resource management. In many OLAP application sce-

narios, we need to fully and flexibly control different

kinds of resources such as memory, CPU, and I/O de-

vices. With bypassing YARN, CirroData can combine

the best properties of both MPP-style query execution

and HDFS-based scalable data management into one

system.

3 System Optimization

3.1 Distributed Coordination and Metadata

Management

The master/slave architecture adopted in Apache

Hadoop becomes popular in designing distributed data

processing systems. Fig.5(a) depicts a typical topology

of the master/slave architecture. At the very beginning,

CirroData employed the master/slave architecture as

well. However, many experiments in real deployments

show that the master node easily becomes a bottleneck

of the entire system if there exist more than 50–100

slave nodes and many huge tables in the cluster. It

is well-known that, in the pure master/slave architec-

ture, the master is a potential bottleneck because of its

responsibility of maintaining metadata as well as coor-

dinating slave nodes.

Motivated by this observation, instead of using the

define i32 @add2(i32 %a, i32 %b) {

entry:

 %tmp1 = icmp eq i32 %a, 0

 br i1 %tmp1, label %done,

label %recurse

recurse:

 %tmp2 = sub i32 %a, 1

 %tmp3 = add i32 %b, 1

 %tmp4 = call i32 @add2(i32

%tmp2, i32 %tmp3)

 ret i32 %tmp4

done:

 ret i32 %b

Logical Plan Physical Plan LLVM Expressions

SQL

Local Query Execution Engine

Query Optimizer Data Loader JIT Expression Engine Efficient Data Structures

Interactive Analysis Engine Batch Processing Engine

Query Executor

OutputXO

OrderbyXO

PackXO

InvisibleJoinXO

ScanXO ScanXO ScanXO

Output

Sort

Join

Scan Scan

ScanJoin

Fig.4. Overview of the CirroData’s local query execution engine.

Zheng-Hao Jin et al.: CirroData: A High-Performance SQL-on-Hadoop Data Analytics Engine 199

static master/slave architecture, CirroData now adopts

a more dynamic and balanced architecture as illus-

trated in Fig.5(b). The advantages of CirroData’s ar-

chitecture are summarized as follows.

Slaves

Master
(Active)

Master
(Hot Backup)

...

Metadata

ZooKeeper

(b)(a)

Fig.5. Architecture comparison. (a) Master/slave architecture.
(b) CirroData’s architecture.

• High Concurrency. Any compute node in Cir-

roData can act as a global coordinator to coordinate

distributed query processing. Scheduling distributed

query processing among all compute nodes eliminates

single-node bottlenecks and improves data balance and

concurrency.

• High Reliability. CirroData’s metadata is stored

onto HDFS with the N -way replication scheme, which

enables metadata to be accessed across the cluster as

well as guarantees consistency and reliability.

• Horizontal Scalability. CirroData makes use of

consistency guarantees in ZooKeeper [9] to achieve near

linear scalability. Lightweight status management (e.g.,

active server list), distributed locking mechanism, etc.,

are implemented with the help of ZooKeeper’s atomic

read/write.

3.2 Load-Balanced and Locality-Aware Task

Parallelism

Considering the advantage of massive parallel pro-

cessing (MPP) and its wide employment in modern

databases such as Teradata and Greenplum, CirroData

simply adopted MPP design concepts to gain high hori-

zontal scalability at the first several versions. The MPP

approach splits a query statement into sub query plans

which are finally executed by multiple compute nodes in

parallel; thus MPP typically delivers both performance

and scalability. To be able to handle huge amounts

of data, the data in MPP solutions is usually split

among compute nodes such that each node processes

only its local data and shares nothing with other com-

pute nodes. However, the shared-nothing assumption

of MPP is not valid for CirroData, because CirroData

uses HDFS as a shared storage layer as presented in

Section 2. Simply using shared storage together with

MPP is a huge overkill, which results in more comple-

xity, higher network utilization, less scalability, and less

parallelism.

Fig.6 depicts the distributed, load-balanced, and

locality-aware task parallelism solution currently em-

ployed by CirroData. In contrast to conventional MPP

SQL: SELECT T1.id, T2.name FROM T1 JOIN T2 ON T1.id = T2.id WHERE T1.balance > 100

SCAN(T1) SCAN(T2)

JOIN(T1, T2)

MERGE

L
o
g
ic

a
l
P
la

n

SCAN(T1{1,4})

∂N

SCAN(T1{2,3})

∂N

SCAN(T2{1,6})

∂N

SCAN(T2{2,4})

∂N

SCAN(T2{3,5})

∂N

MERGE

∂N

JOIN(T1, T2)

@N2

JOIN(T1, T2)

@N3

JOIN(T1, T2)

@N4

JOIN(T1, T2)

@N5

Data & Task

Distribution

MERGE

∂N

SCAN(T1{1,4})

∂N

JOIN(T1, T2)

∂N

SCAN(T2{1,6})

∂N

JOIN(T1, T2)

∂N

SCAN(T1{2,3})

∂N

JOIN(T1, T2)

∂N

SCAN(T2{2,4})

∂N

JOIN(T1, T2)

∂N

SCAN(T2{3,5})

∂N

n
T1
Replica

n T2
Replica

1 4 2

3 4 5

N

1 3 4

1 4 6

N

1 2 3

4 3 5

N

2 3 1

2 4 6

N

2 1 2

3 5 6

N

Elastic Computing

Fig.6. Task parallelism in CirroData.

200 J. Comput. Sci. & Technol., Jan. 2020, Vol.35, No.1

designs, the CirroData design gives more fine-grained

data slicing and distributed query plan scheduling. The

most frequently used data slicing policy is using hash

distribution which is able to align tables efficiently to

improve the performance of some query patterns. As

shown in Fig.6, with the knowledge of data distribu-

tion across compute nodes, the distributed query exe-

cution engine is able to schedule and dispatch sub query

plans taking into account where the data is located.

A query plan consists of several relational operators,

such as scans, joins, sorts, merges. As illustrated in

Fig.6, join and merge operations require data shuffling

to guarantee correct results. Shuffling introduces extra

CPU and network overhead, thus the distributed query

plan engine often generates a plan considering: 1) the

co-location of data, 2) existing data distribution, 3) sys-

tem load of involved compute nodes, and 4) minimiz-

ing resource consumption by generating an appropriate

number of sub query plans (e.g., joins). Overall, the

task scheduling and execution design in CirroData has

three optimizations compared with conventional MPP

designs: 1) efficient data slicing policies, 2) locality op-

timization, and 3) elastic resource scheduling.

3.3 Runtime Code Generation with LLVM

Just-In-Time (JIT) query compilation has been

used to eliminate the effects of interpretation overhead.

On receiving a query for the first time, the query en-

gine compiles (a part of) the query into a routine that

gets subsequently executed. The Low Level Virtual

Machine (LLVM) [10] has been proven to be one of the

most efficient compilers to process JIT compilation in

many modern databases (e.g., HyPer [11, 12], Impala [6],

MemSQL [13], Vitesse DB [14]). LLVM is a collection

of widely-used modules and libraries for building com-

pilers. The LLVM libraries provide a modern target-

independent optimizer working on LLVM intermedi-

ate representation (LLVM IR), along with assembly

and machine code generation support for various hard-

ware platforms (e.g., x86, ARM, PowerPC). The use of

LLVM in code generation can keep the benefit of being

architecture-independent, while still maintaining tight

control over the generated code. Moreover, using gene-

ral and specific optimizations in the LLVM optimizer

results in noticeable performance improvement in query

executions.

CirroData takes advantage of LLVM-based runtime

code generation to produce query-specific versions of

functions to improve efficiency in utilizing CPU and

cache. Relational algebra trees in CirroData are com-

piled into efficient machine code using LLVM compiler

backend.

Fig.7 presents the workflow of runtime code gene-

ration in CirroData. The workflow consists of three

steps in general: 1) parsing query statements into ab-

stract syntax trees (AST) by applying lexical and syn-

tactic analysis, 2) generating and optimizing intermedi-

ate representations (IR) according to the data structure

of ASTs, and 3) caching IRs and executing queries by

calling Just-In-Time (JIT) functions. The performance

benefit comes from JIT compilation in step 2 (i.e., IR

SELECT C1 + C2 AS Result FROM Dual

A

+

C1 C2 Column-Node

Operate-Node

Allocate-Node

Step 1:

Query Statement

Parsing

Step 2:

IR Optimizations

& Generation

Semantic
Checking

Branch
Prediction

Inlining
Loop

Opts

LLVM
Bitcode

Generation

LLVM

Bitcode

Parsing

LLVM
Optimization

LLVM
Compilation

define i32 @add (i32 %a,

i32 %b) {

entry:

 %tmp = add i32 %a, %b

 ret i32 %tmp

}

Step 3:

IR Caching &

Query Execution

C1

10

20

30

C2

10

20

30

JIT Function Pointer

Result

20

40

60

Fig.7. Workflow of runtime code generation in CirroData.

Zheng-Hao Jin et al.: CirroData: A High-Performance SQL-on-Hadoop Data Analytics Engine 201

generation and optimization), which tries to maximize

data locality and predictable branches, and prefers in-

lined functions rather than having a lot of function calls

and method dispatches.

Fig.7 shows a representative query in which runtime

code generation speeds up the execution significantly.

The add operation summing up two columns must be

called for every record in every data file scanned. For

a data file consisting of billions of records or more, the

efficiency of the add operation will therefore be critical

to the query performance of CirroData. In the mean-

time, since runtime information is not known at compile

time (e.g., it is unknown if the add operation is to han-

dle integers, strings or floats), the add operation can

only be designed in a general-purpose manner, which

is sub-optimal. With code analysis and runtime infor-

mation, JIT optimizer and compiler can make the add

operation to be inlined and parameterized into some

specific type, like integers. Therefore, the performance

of the example query gains significant improvement.

Overall, runtime code generation in CirroData results

in large query speedups by eliminating branches, un-

rolling loops, propagating constants, inlining functions,

etc.

4 Evaluation with TPC-H Query Workload

In this section, we conduct our experiments on

the standard TPC-H benchmark with a scale factor of

SF30. In these experiments, we compare the execution

time of CirroData with Greenplum (version 5.12.0),

HAWQ (version 2.3.0.0), and Spark (version 2.2.0).

Our cluster for the TPC-H benchmark consists of five

nodes, each of which is equipped with 256 GB memory.

One of the five nodes acts as namenode/master, and the

other four nodes work as datanodes/segments/workers.

In the case of Greenplum, we test both row-oriented

and column-oriented storage types, which are both sup-

ported by Greenplum. For the experiments on the row-

oriented storage type, zlib(5) compression algorithm is

employed to compress the tables. On the other hand,

the tables are not compressed during the experiments

on the column-oriented storage type. Our results of

Greenplum experiments show that the column-oriented

storage type outperforms the row-oriented for all the

TPC-H queries. Therefore, we only include the results

for column-based Greenplum in Fig.8.

In the meantime, tables are config-

ured as ORIENTATION = PARQUET ,

COMPRESSTY PE = SNAPPY for the experi-

ments with HAWQ. While there are many configura-

tions available for Spark, we choose a small but optimal

set of configurations for our experimental cluster.

Fig.8 gives the execution time of Greenplum,

HAWQ, Spark, and CirroData for all TPC-H queries.

Among these four databases, CirroData outperforms

the other three in sequential scan queries (i.e., Q1 and

Q2), index scan queries (i.e., Q4 and Q14), hash join

queries (i.e., Q3, Q7, Q8, etc.), sort queries (i.e., Q5,

Q6, Q12, etc.) and most of nested loop joins (except

for Q11 and Q17). Quantitatively, compared with the

other three databases, CirroData gains a speedup of

1.28x–1.64x for sequential scan queries, 1.54x–4.99x for

index scan queries, 1.30x–4.99x for hash join queries,

1.21x–4.60x for nested loop join queries, and 2.47x–

4.60x for sort queries.

For a traditional MPP architecture based system,

such as GreenPlum, its computation and storage en-

0

30

60

90

120

150

Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

E
x
e
c
u
ti
o
n
 T

im
e
 (

s)

Greenplum HAWQ Spark CirroData

Greenplum 90.96 7.41 22.48 19.79 19.79 12.81 22.71 19.48 45.64 18.86 3.35 15.53 18.85 12.87 13.68 6.16 109.33 42.05 16.07 29.95 56.51 12.09

HAWQ 27.57 8.00 18.44 14.31 17.76 9.58 24.62 17.24 21.07 16.26 2.72 16.81 4.85 11.47 14.60 4.30 30.23 27.51 14.73 17.42 51.89 5.19

Spark 28.44 16.57 31.66 32.46 26.85 18.89 32.86 36.84 39.89 26.33 14.36 26.18 50.28 20.48 24.31 23.51 31.67 85.26 22.67 52.33 129.35 22.91

CirroData 16.8 5.8 10.7 9.3 17.2 2.4 20.1 10.8 17.4 8.3 4.2 6.3 8.7 2.3 5.6 3.9 37.6 27.9 3.2 7.2 28.3 4.0

Fig.8. Performance comparisons of Greenplum, HAWQ, Spark, and CirroData on TPC-H query workload.

202 J. Comput. Sci. & Technol., Jan. 2020, Vol.35, No.1

gines are tightly coupled. The data stored in this type

of systems is usually distributed by hashing, which can

cause limited horizontal scaling capability. To improve

the scalability of GreenPlum-like systems, the commu-

nity has proposed enhanced designs on top of it, such

as HAWQ. HAWQ also chooses to use HDFS as its sto-

rage layer (like GreenPlum-on-HDFS), which can de-

couple the computation and storage layer. However,

HAWQ is based on the master/slave architecture as de-

picted in Fig.5(a). The master is responsible for SQL

execution plan generation, task execution scheduling

and tracking, etc., which easily makes itself become a

system bottleneck. Compared with them, CirroData

fully decouples the computation and storage layer, and

the main computation engine in CirroData is stateless

while HDFS-based storage engine can scale horizon-

tally. With these advantages, we see that CirroData

outperforms both GreenPlum and HAWQ in most of

the above-mentioned TPC-H queries.

In the Hadoop community, Spark-based OLAP so-

lutions are also very popular. These solutions typically

are also based on HDFS with good scalability. But

their computation engines and scheduling mechanisms

are mainly designed for batch processing workloads.

Thus, their execution latencies are usually very high.

One of the major performance bottlenecks in these sys-

tems is their data shuffling mechanisms [15, 16]. Due to

the high latencies in these systems, they cannot provide

the desired high performance for SQL query executions.

The numbers shown in Fig.8 also demonstrate this ana-

lysis. Compared with Spark, CirroData can achieve

much better performance in almost all the queries (ex-

cept Q17).

We see that for some queries such as Q11, Q13, Q17,

and Q18, CirroData’s performance is on par with other

systems but not fully optimized. This is because the

execution engine of CirroData could potentially still

have some bottlenecks for some operations. For in-

stance, we have found that if the execution of some

queries must scan the data by row, it can cause perfor-

mance degradation and this situation is still being opti-

mized. We will keep optimizing CirroData and compar-

ing its performance with other systems by using TPC-H

queries in our future work.

5 Case Studies with Real Applications

In this section, we demonstrate the performance

benefits of CirroData by presenting several real applica-

tion case studies, each differing from each other based

on the goal to be achieved. The cluster setups involved

in each case study will be introduced in the correspond-

ing subsections.

5.1 Case Studies with Join Workloads

Multi-table based joins are very common and im-

portant demands in many of our customers’ daily data

analytics workloads. The goal of experiments in this

subsection is for demonstrating the performance bene-

fit of CirroData on join workloads. We choose the join

workloads in company-A as examples. Company-A is

one of the largest telecom companies in China and it

has around several hundreds of millions active users on

their systems.

Fig.9 shows two typical use cases of join operations

in company-A. Fig.9(a) presents a two-table based join

to analyze the trend of a particular type of user activity

between two different months. Since company-A has a

huge user base, the query executed in Fig.9(a) needs

to join two huge tables with 110 million rows and 120

million rows, respectively. Similarly, Fig.9(b) shows an-

other typical join query scenario in company-A, which

involves three huge tables. We deploy our CirroData

system on one of their clusters and run these queries

with their real datasets. The cluster has 43 nodes, and

each node has a 32-core 2.60 GHz Intelr Xeonr CPU,

128 GB memory, a 1 TB HDD, and a 10GigE network.

Among these nodes, two nodes are deployed as namen-

odes, three nodes run ZooKeeper services, and the rest

38 nodes are datanodes. As shown in Fig.9, our Cir-

roData can give very good performance for both types

of joins. The full executions have been optimized to

around 7.8 seconds and 11.3 seconds, respectively.

Join 7.8 Seconds

T2.b Data Size

2015.12 120

T1.a Data Size

2016.01 110

Join 11.3 Seconds

T2.b Data Size

2015.12 150

T1.a Data Size

2016.01 150

T3.c Data Size

2015.11 140

Size Unit:
Million Rows

(b)

(a)

Fig. 9. Join performance of CirroData. (a) Two tables. (b)
Multiple tables.

To further compare the performance of our Cir-

Zheng-Hao Jin et al.: CirroData: A High-Performance SQL-on-Hadoop Data Analytics Engine 203

roData with company-A’s existing deployed database

system (which is Greenplum as shown in Fig.10 and

Fig.11), we choose a 16-node partition from one of

their production running clusters. The configuration

of each node is similar to the above-mentioned clus-

ter nodes. Fig.10(a) shows the numbers for two-table

joins with an increasing number of records, from 70

million records to 200 million records for each table.

As we can see from Fig.10(a), our highly optimized

CirroData is able to achieve around 2.5x speedup for

200×200 million records join, compared with their cur-

rent Greenplum database. In Fig.10(b), we keep each

table to have 70 million records while we increase the

number of tables to be joined in the queries. As we can

see, CirroData can outperform Greenplum by achiev-

ing around 3x speedup. Here, the joins are hash-based

joins. As described in Subsection 3.2, the distributed

tasks for hash joins can be executed in a more bal-

anced manner, which is one of the key features deliv-

ered by CirroData. In addition, as mentioned in Sub-

section 3.3, the expressions in join queries are compiled

into more efficient machine code using LLVM compiler

backend. Thirdly, CirroData organizes the data in a

cache-friendly manner, which can lead to a more ef-

ficient execution pipeline. Lastly, the design of hash

function and hashtable structure in CirroData has also

been heavily optimized for these typical workloads. All

of these optimizations contribute to the large perfor-

mance gains as we see in Fig.10.

5.2 Case Studies with Aggregation and

Drill-Down Workloads

Among our customers’ workloads, there are also a

lot of demands on high-performance aggregation and

drill-down operations. The goal of experiments in this

subsection is for demonstrating the performance bene-

fit of CirroData on aggregations and drill-downs. We

choose the aggregation and drill-down workloads in

both company-A and company-B as examples.

Fig.11 shows the experiments we have done with

company-A’s real aggregation queries with their real

datasets. Fig.11(a) shows the numbers of single-

dimension aggregation with increasing data sizes from

100 million rows to 800 million rows. As we can see,

CirroData can speed up the performance of single-

dimension aggregation by 4x compared with Green-

plum. Here, the cardinality of the aggregated result

is 230. In CirroData, for this type of low-cardinality

aggregation, we first fully pre-aggregate the records lo-

0

18

36

54

72

90
Greenplum

CirroData

2.5x

E
x
e
c
u
ti
o
n
 T

im
e
 (

s)

70 70 70 140 140 140 200 200

Data Size (Million Rows)

0

40

80

120

160

200

240

2 3 7 9

Greenplum

CirroData

3x

E
x
e
c
u
ti
o
n
 T

im
e
 (

s)

Number of Tables

(b)(a)

Fig.10. Join performance between Greenplum and CirroData. (a) Joining two tables. (b) Joining multiple tables.

0

3

6

9

12

15

18

100 200 400 800

Data Size (Million Rows)

Greenplum

CirroData

4x

E
x
e
c
u
ti
o
n
 T

im
e
 (

s)

0

50

100

150

200

250

300

2 3 4 5

Dimensions

Greenplum

CirroData

20x

E
x
e
c
u
ti
o
n
 T

im
e
 (

s)

(b)(a)

Fig.11. Aggregation performance between Greenplum and CirroData. (a) Single dimension. (b) Multiple dimensions.

204 J. Comput. Sci. & Technol., Jan. 2020, Vol.35, No.1

cally to deduplicate the repeated records, which can

significantly reduce the data size on each node since the

aggregated records are much smaller than the original

data. For high-cardinality aggregation, we do not spend

much time on pre-aggregation since the pre-aggregated

data size will be similar to the original one. After pre-

aggregation, data will be sent to different nodes based

on the hash mechanism, and then the system can run

aggregation in parallel. To detect whether an aggre-

gation operation has low cardinality or high cardinal-

ity, CirroData has an algorithm to probe it by run-

ning a small sampling program. In this way, Cirro-

Data can adaptively optimize the executions for both

low-cardinality and high-cardinality aggregation ope-

rations. This is why we can see around 4x performance

speedup in Fig.11(a).

Then, we run another set of experiments for eval-

uating the performance of multi-dimensional aggrega-

tions with a fixed number of records (i.e., 200 million).

Fig.11(b) shows the numbers for these experiments. In-

terestingly, we see that with five dimensions, our Cirro-

Data can achieve 20x performance speedup compared

with Greenplum. Here, in addition to the optimizations

mentioned above, the benefit is also coming from our

well-designed task scheduling mechanism for executing

distributed computation operations in a load-balanced

manner.

Company-B is a branch of another telecom com-

pany in China. We choose company-B’s aggregation

and drill-down workloads from company-B’s daily data

analysis queries and datasets. CirroData is employed

on a four-node cluster and each node in this cluster has

four 4-core 1.87 GHz CPUs, 8 GB memory, four 300 GB

HDDs, and a 1GigE network. Before using our Cirro-

Data on their clusters, their applications were run over

DB-X database system.

Performance comparisons of aggregation and drill-

down analyses are depicted in Fig.12. The performance

comparisons are conducted on a real dataset which con-

sists of more than 160 million rows of records. With

optimizations on distributed query processing as well

as hybrid row-column based storage partitioning, Cir-

roData outperforms DB-X by 75x–100x on processing

aggregation and drill-down analyses.

Here, the DB-X is an SMP database running on a

single server, while our CirroData is running over four

nodes. Hence, CirroData indeed uses 4x resource com-

pared with DB-X, but we want to highlight that the

performance gain is as high as 75x to 100x. Another

technical reason for the performance gain is that DB-

X is based on pure row-based data storage, while Cir-

roData is using the hybrid row-column based storage

partitioning technique. The hybrid row-column sto-

rage scheme is much faster than the row-based storage

scheme for these aggregation and drill-down workloads.

628

6.3 6.9 3.3 5.13.8

294

555

250

480

0

200

400

600

800

E
x
e
c
u
ti
o
n
 T

im
e
 (

s)

DB-X CirroData

Agg
reg

ati
on

 1

Agg
reg

ati
on

 2

Dril
l-D

ow
n 1

Dril
l-D

ow
n 2

Dril
l-D

ow
n 3

Fig.12. Aggregation and drill-down performance between DB-X
and CirroData.

5.3 Case Studies for Comparing with

Spark-Based Data Analytics Frameworks

In this subsection, we study query performance on

real financial datasets from company-C. Company-C is

one of the big financial companies in China. The goal

of experiments in this part is for illustrating the per-

formance advantages of CirroData when we compare it

with Spark-based data analytics frameworks, such as

“Spark+Hive” and “Spark+HBase”, which are widely

used in many financial companies. “Spark+Hive”

means running Hive on top of Spark, on which users can

directly execute SQL. “Spark+HBase” means running

Spark-based analytics jobs on the data stored in HBase.

The cluster we used in these tests has five nodes. Each

node has 256 GB memory, 32-core 2.30 GHz CPU, a

1 TB HDD, and a 1GigE network.

Figs.13(a)–13(c) show that CirroData gains up to

2.1x, 8.4x, 6.0x speedups in querying on a single ta-

ble, two tables, and four tables, respectively, com-

pared with “Spark+Hive”. Meanwhile, compared with

“Spark+HBase”, the speedups that CirroData can

achieve reach up to 6.7x, 22.5x, and 38.8x when pro-

cessing data on a single table, two tables, and four ta-

bles, respectively.

Here, the “Spark+HBase” scheme performs the

worst which is mainly because HBase is not a good

storage engine for processing complex queries with a

large number of data accesses. HBase is mainly de-

signed for point query and some range queries with

the help of additional index techniques [17]. Compared

Zheng-Hao Jin et al.: CirroData: A High-Performance SQL-on-Hadoop Data Analytics Engine 205

Size Unit: Thousand Rows

D1 100

D2 5000

D3 30000

D4 100 10

D5 1000 100

D6 30000 2000

D7 100 10 10 10

D8 1000 100 100 100

D9 30000 2000 2000 2000

Spark+Hive Spark+HBase CirroData
0
.1

7
8

0
.2

2
5

0
.2

5
7

0
.6

3
3

0
.6

4
3

0
.7

0
8

0
.0

9
4

0
.1

0
9

0
.1

2
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

D1 D2 D3

0
.3

2
6

0
.5

1
4

4
.2

1
6

2
.2

4

4
.9

2
7

9
.2

1
6

0
.2

1
9

0
.2

1
9

0
.4

9
9

0

1

2

3

4

5

6

7

8

9

10

D4 D5 D6

0
.4

0
5

0
.7

2
1 1
0
.1

8
6

7
.0

1
7

1
0
.8

2
6

6
5
.3

5
6

0
.2

6
5

0
.3

1
2

1
.6

8
5

0

10

20

30

40

50

60

70

D7 D8 D9

E
x
ec

u
ti
o
n
 T

im
e

(s
)

(a) (b) (c)

Fig.13. Query performance comparisons among “Spark+Hive”, “Spark+HBase”, and CirroData. (a) Single table. (b) Two tables. (c)
Four tables.

with “Spark+Hive”, CirroData has a better distributed

query execution plan, and the tasks are scheduled in a

more load-balanced manner. The tasks are executed

in a pipeline fashion. CirroData can significantly re-

duce the I/O operations for the intermediate data ex-

changing, due to efficient data broadcasting and hash

distributing among the tasks.

5.4 Case Studies for Comparing with

MPP-Based Data Analytics Systems

In this subsection, the major goal is to show the

performance benefits of CirroData when we compare it

with several MPP-based data analytics systems. Ta-

ble 1 presents a detailed performance comparison on a

real insurance dataset from company-D. Company-D

is one of the big insurance companies in China. To fully

evaluate query performance, we choose several typical

query statements: 1) insert, 2) select with different con-

dition clauses, 3) update, 4) delete, and 5) multiple

rounds of delete and insert. The tests are run on a five-

node cluster. Each node has an Intelr Xeonr 2.30 GHz

CPU with 32 cores, a 5 TB SAS HDD, 128 GB memory,

and a 10GigE network.

For insert queries with no more than 100 million

rows, CirroData achieves up to 4.6x, 1.2x, and 1.9x

speedups compared with Impala, DB-Y, and HAWQ,

respectively. In the meantime, CirroData outperforms

Impala, DB-Y, and HAWQ by up to 22.8x, 5.9x and

5.9x, respectively, in inserting 1 000 million rows. In

inserting 4 000 million rows, CirroData performs 9.9x

better than DB-Y, while Impala and HAWQ are not

able to complete the queries.

For performing select queries without group by

clauses, CirroData reduces the execution time by up to

99.3% and 99.4% compared with Impala and HAWQ,

respectively, though performing a little worse than

DB-Y. However, CirroData outperforms DB-Y by up

to 2.6x in dealing with select queries with group by

clauses. Meanwhile, CirroData improves the join per-

formance by up to 182.5x, 2.8x, and 55.5x compared

with Impala, DB-Y, and HAWQ, respectively. Note

that Impala and HAWQ are not able to complete join-

ing large data sizes in our experiments.

For performance comparisons on updating and

deleting operations, CirroData improves the execution

time by up to 92.6x and 29.1x, respectively, compared

with DB-Y. Another important observation is that Cir-

roData is able to deal with up to 4 000 million rows for

both updating and deleting efficiently, while DB-Y can-

not handle these cases.

In the experiments of running multiple rounds of

delete and insert queries, we first delete one million rows

from the existing table and then insert the one million

deleted rows into the same table in each round. The re-

sult shows that CirroData reduces the execution time

by 64.4% compared with DB-Y. Note that for the up-

date and delete experiments, both Impala and HAWQ

cannot support running these tests due to missing the

corresponding functions.

5.5 Case Study for Scalability of CirroData

The goal of experiments in this subsection is for

illustrating the scalability of CirroData. These tests

are actually run on company-A’s cluster as described

in Subsection 5.1. Fig.14 shows the execution time

changes in a cluster scaled from 5 nodes to 10 nodes.

We observe that, by doubling the scale, the execution

time for aggregation and drill-down analyses have been

206 J. Comput. Sci. & Technol., Jan. 2020, Vol.35, No.1

Table 1. Performance Comparison with Other MPP-Based Data Analytics Systems

Query Statement Data Size (Million Rows) Impala DB-Y HAWQ CirroData

Insert 1 5.30 3.01 5.820 3.046
10 67.34 17.77 17.780 14.803
100 277.57 171.86 134.420 139.160
1000 11 268.34 2 938.25 2 913.050 495.000
4000 – 6 976.37 – 704.507

Select 1 0.88 0.02 0.215 0.880
100 46.50 0.24 60.150 0.340

Group by 2 columns 100 6.86 0.42 63.820 1.554
Group by 3 columns 100 6.06 1.31 68.200 4.633

4000 – 0.04 – 4.386
Group by 2 columns 4000 – 51.48 – 19.951
Group by 3 columns 4000 – 66.56 – 25.204

100 ⊲⊳ 100 5 788.54 45.82 1 759.080 31.713
100 ⊲⊳ 1000 – 93.75 – 34.085
1000 ⊲⊳ 4000 248.67 – 116.737
1000 ⊲⊳ 1000 ⊲⊳ 1000 – 236.43 – 106.729

Update 1 1.56 1.485
10 – 222.49 – 3.724
100 – 576.03 – 6.220
1000 – – – 45.490
4000 – – – 671.237

Delete 1 47.56 1.722
10 – 93.27 – 3.432
100 – 169.06 – 12.814
1000 – 986.66 – 33.964
4000 – – – 350.651

Delete and Insert 1000 – 7.72 – 2.749

reduced by 42%–59%. Thus, CirroData has near linear

scalability in these experiments. These numbers also

imply the advantages of performing task scheduling,

execution, and coordination, and metadata and data

management in a fully distributed manner in Cirro-

Data.

3.95

1.61
1.21 0.97

2.92

2.37 2.43

1.68

4.73 4.71

0

1

2

3

4

5

6

E
x
e
c
u
ti
o
n
 T

im
e
 (

s)

5 Nodes 10 Nodes

Agg
reg

ati
on

 1

Agg
reg

ati
on

 2

Agg
reg

ati
on

 3

Dril
l-D

ow
n 1

Dril
l-D

ow
n 2

Fig.14. Scalability of CirroData.

6 Related Work

A lot of work focusing on designing high-

performance and scalable database systems has been

done in the past. In this section, we discuss some of

the work related to the approaches taken in CirroData.

With the popularity of large-scale real-time analytic

applications in both industry and academia, various

vendors and academic groups have built database sys-

tems in two directions. MemSQL [13], IBM dashDB 2○,

HyPer [18], and Peloton [19] have proposed single-engine

solutions for both OLTP and OLAP requests. On the

other hand, Hive [20], Impala [6], VectorH [8], and IBM

Wildfire [21] have adopted SQL-on-Hadoop architecture

to process OLTP and OLAP separately in two different

sub-engines.

There are many studies focusing on optimizing dis-

tributed query processing. H-Store [22] has presented

a system model based on the coordination of multi-

ple single-threaded engines to provide more efficient

execution of distributed transactions in main mem-

ory database systems. A Markov model based ap-

proach proposed by [23] demonstrates to be helpful

for automatically selecting appropriate optimizations

to process distributed transactions. Accordion [24], E-

Store [25], and the design in [26] have proposed solu-

tions to improve the elasticity of distributed transaction

2○http://www.ibm.com/analytics/us/en/technology/cloud-data-services/dashdb, Nov. 2019.

Zheng-Hao Jin et al.: CirroData: A High-Performance SQL-on-Hadoop Data Analytics Engine 207

and query processing. Other studies like Granola [27],

SAP HANA [28, 29], Calvin [30], HAWQ [7], MemSQL [13],

Impala [6] illustrate fine-grained system architectures in

designing distributed database systems.

Motivated by some of the existing work, the home-

grown CirroData system is designed on top of HDFS

with a combination of many optimized techniques as

described in Section 2 and Section 3, such as distributed

coordination and metadata management, efficient data

storage on HDFS, YARN-bypassed query execution,

load-balanced and locality-aware task parallelism, run-

time code generation with LLVM, and so on. The major

design goal of CirroData is trying to support our cus-

tomers’ daily data analytics requirements on top of the

SQL-on-Hadoop architecture with high performance.

7 Conclusions

In this paper, we presented a real database product

— CirroData, which is a high-performance SQL-on-

Hadoop system designed for OLAP workloads. We have

shared some of our design and implementation experi-

ences to the community about how to achieve high per-

formance in CirroData. The effectiveness and the effi-

ciency of CirroData have been proved by our customers’

daily usage. With in-depth evaluations with TPC-H

benchmarks and several real application case studies,

we demonstrated that CirroData can outperform vari-

ous types of counterpart database systems in the com-

munity, such as “Spark+Hive”, “Spark+HBase”, Im-

pala, DB-X/Y, Greenplum, HAWQ, and others. For

some workloads (e.g., join), we can see CirroData can

achieve up to 182.5x performance speedup compared

with other systems.

As part of future work, we plan to explore more

advanced technologies on modern data center environ-

ments, such as high-speed networks, GPGPU, non-

volatile memory (NVM), and NVM express based SSD.

We believe these technologies will help to design a high-

performance and scalable database system.

References

[1] Fox G C, Qiu J, Kamburugamuve S, Jha S, Luckow A.

HPC-ABDS high performance computing enhanced Apache

big data stack. In Proc. the 15th IEEE/ACM International

Symposium on Cluster, Cloud and Grid Computing, May

2015, pp.1057-1066.

[2] Qiu J, Jha S, Luckow A, Fox G C. Towards HPC-

ABDS: An initial high-performance big data stack.

http://grids.ucs.indiana.edu/ptliupages/publications/nist-

hpc-abds.pdf, June 2019.

[3] Shvachko K, Kuang H, Radia S, Chansler R. The Hadoop

distributed file system. In Proc. the 26th IEEE Symposium

on Mass Storage Systems and Technologies, May 2010, Ar-

ticle No. 9.

[4] Zaharia M, Chowdhury M, Franklin M J, Shenker S, Stoica

I. Spark: Cluster computing with working sets. In Proc. the

2nd USENIX Workshop on Hot Topics in Cloud Comput-

ing, June 2010, Article No. 5.

[5] Thusoo A, Sarma J S, Jain N, Shao Z, Chakka P, Anthony

S, Liu H, Wyckoff P, Murthy R. Hive — A warehousing

solution over a Map-Reduce framework. Proceedings of the

VLDB Endowment, 2009, 2(2): 1626-1629.

[6] Kornacker M, Behm A, Bittorf V et al. Impala: A modern,

open-source SQL engine for Hadoop. In Proc. the 7th Bi-

ennial Conference on Innovative Data Systems Research,

January 2015, Article No. 5.

[7] Chang L, Wang Z W, Ma T et al. HAWQ: A massively para-

llel processing SQL engine in Hadoop. In Proc. the 2014

ACM SIGMOD International Conference on Management

of Data, June 2014, pp.1223-1234.

[8] Costea A, Ionescu A, Raducanu B et al. VectorH: Taking

SQL-on-Hadoop to the next level. In Proc. the 2016 Inter-

national Conference on Management of Data, June 2016,

pp.1105-1117.

[9] Hunt P, Konar M, Junqueira F P, Reed B. ZooKeeper:

Wait-free coordination for Internet-scale systems. In Proc.

the 2010 USENIX Annual Technical Conference, June

2010, Article No. 14.

[10] Chris L, Adve V. LLVM: A compilation framework for life-

long program analysis & transformation. In Proc. the 2nd

IEEE/ACM International Symposium on Code Generation

and Optimization, March 2004, pp.75-88.

[11] Neumann T. Efficiently compiling efficient query plans for

modern hardware. Proceedings of the VLDB Endowment,

2011, 4(9): 539-550.

[12] Neumann T, Leis V. Compiling database queries into ma-

chine code. IEEE Data Eng. Bull., 2014, 37(1): 3-11.

[13] Shamgunov N. The MemSQL in-memory database system.

In Proc. the 2nd International Workshop on in Memory

Data Management and Analytics, September 2014, Article

No. 1.

[14] Tan C K. Vitesse DB: 100% PostgreSQL, 100X

faster for analytics. The 2nd South Bay PostgreSQL

Meetup, 2015. https://www.meetup.com/postgresql-

1/events/221039792/, Nov. 2019.

[15] Lu X, Liang F, Wang B, Zha L, Xu Z. DataMPI: Extending

MPI to Hadoop-like big data computing. In Proc. the 28th

International Parallel and Distributed Processing Sympo-

sium, May 2014, pp.829-838.

[16] Liang F, Lu X. Accelerating iterative big data computing

through MPI. Journal of Computer Science and Techno-

logy, Mar. 2015, 30(2): 283-294.

[17] Gugnani S, Lu X, Qi H L, Zha L, Panda D K. Characterizing

and accelerating indexing techniques on distributed ordered

tables. In Proc. the 2017 IEEE International Conference on

Big Data, December 2017, pp.173-182.

[18] Kemper A, Neumann T. HyPer: A hybrid OLTP&OLAP

main memory database system based on virtual memory

snapshots. In Proc. the 27th International Conference on

Data Engineering, April 2011, pp.195-206.

208 J. Comput. Sci. & Technol., Jan. 2020, Vol.35, No.1

[19] Pavlo A, Angulo G, Arulraj J et al. Self-driving database

management systems. In Proc. the 8th Biennial Conference

on Innovative Data Systems Research, January 2017, Arti-

cle No. 14.

[20] Thusoo A, Sarma J S, Jain N, Shao Z, Chakka P, Zhang

N, Antony S, Liu H, Murthy R. Hive — A petabyte scale

data warehouse using Hadoop. In Proc. the 26th IEEE In-

ternational Conference on Data Engineering, March 2010,

pp.996-1005.

[21] Barber R, Garcia-Arellano C, Grosman R et al. Evolving

databases for new-gen big data applications. In Proc. the

8th Biennial Conference on Innovative Data Systems Re-

search, January 2017, Article No. 2.

[22] Kallman R, Kimura H, Natkins J et al. H-Store: A high-

performance, distributed main memory transaction process-

ing system. Proceedings of the VLDB Endowment, 2008,

1(2): 1496-1499.

[23] Pavlo A, Jones E P, Zdonik S. On predictive modeling for

optimizing transaction execution in parallel OLTP systems.

Proceedings of the VLDB Endowment, 2011, 5(2): 85-96.

[24] Serafini M, Mansour E, Aboulnaga A, Salem K, Rafiq T,

Minhas U F. Accordion: Elastic scalability for database sys-

tems supporting distributed transactions. Proceedings of the

VLDB Endowment, 2014, 7(12): 1035-1046.

[25] Taft R, Mansour E, Serafini M, Duggan J, Elmore A J,

Aboulnaga A, Pavlo A, Stonebraker M. E-store: Fine-

grained elastic partitioning for distributed transaction pro-

cessing systems. Proceedings of the VLDB Endowment,

2014, 8(3): 245-256.

[26] Mahajan K, Chowdhury M, Akella A, Chawla S. Dynamic

query re-planning using QOOP. In Proc. the 13th USENIX

Symposium on Operating Systems Design and Implemen-

tation, October 2018, pp.253-267.

[27] Cowling J A, Liskov B. Granola: Low-overhead distributed

transaction coordination. In Proc. the 2012 USENIX An-

nual Technical Conference, June 2012, pp.223-235.

[28] Färber F, May N, Lehner W et al. The SAP HANA

database — An architecture overview. IEEE Data Eng.

Bull., 2012, 35(1): 28-33.

[29] Lee J, Kwon Y S, Färber F et al. SAP HANA distributed in-

memory database system: Transaction, session, and meta-

data management. In Proc. the 29th International Confe-

rence on Data Engineering, April 2013, pp.1165-1173.

[30] Thomson A, Diamond T, Weng S C, Ren K, Shao P, Abadi

D J. Calvin: Fast distributed transactions for partitioned

database systems. In Proc. the 2012 ACM SIGMOD Inter-

national Conference on Management of Data, May 2012,

pp.1-12.

Zheng-Hao Jin is the chief archi-

tect of Business-Intelligence of Oriental

Nations Corporation, Beijing. He re-

ceived his Master’s degree in computer

software and theory from Academy of

Mathematics and Systems Science, Chi-

nese Academy of Sciences, Beijing, in

2001. His current research interests in-

clude distributed DBMS, Big Data, cloud computing, and

data science.

Haiyang Shi is a Ph.D. student in

the Department of Computer Science

and Engineering, The Ohio State

University, Ohio, supervised by Dr.

Xiaoyi Lu. Before joining OSU, he

worked as a software engineer at Weibo

and MiningLamp, Beijing. He received

his Bachelor of Engineering degree in

computer science and technology from Tianjin University,

Tianjin, in 2012. His current research interests include

Big Data, distributed file system, and high-performance

erasure code.

Ying-Xin Hu is a software engineer

of Business-Intelligence of Oriental Na-

tions Corporation, Beijing. He received

his Master’s degree in optical engineer-

ing from Nankai University, Tianjin, in

2007. He spent several years working

in digital signal processing and high

performance computing. Currently, he

is engaged in distributed relation database research and

development, especially in HTAP architecture, execution

engine, and high-performance computing.

Li Zha is an associate professor in

Institute of Computing Technology,

Chinese Academy of Sciences, Bei-

jing. He received his Ph.D. degree in

computer science and technology from

Beijing Institute of Technology, Beijing,

in 2003. His current research interests

include distributed system, Big Data,

cloud computing, and database. He is also a member of the

Big Data Task Force of the China Computer Federation

(CCF).

Xiaoyi Lu is a research assistant pro-

fessor in the Department of Computer

Science and Engineering, The Ohio

State University, Ohio. He received his

Ph.D. degree in computer science and

technology from Institute of Computing

Technology, Chinese Academy of Sci-

ences, Beijing, in 2012. His current

research interests include high-performance interconnects

and protocols, big data analytics, parallel computing mod-

els, virtualization, cloud computing, and deep learning sys-

tems. He has published more than 100 papers in major in-

ternational conferences, workshops, and journals with mul-

tiple Best (Student) Paper Awards or Nominations. He

has been actively involved in various professional activities

in academic journals and conferences. He is a member of

ACM and IEEE. More details about Dr. Lu are available

at http://web.cse.ohio-state.edu/˜luxi.

http://web.cse.ohio-state.edu/~luxi

	1 Introduction
	2 CirroData Design Overview
	2.1 Bird's-Eye View of CirroData
	2.2 Key Components
	2.2.1 Distributed Storage Engine on HDFS
	2.2.2 YARN-Bypassed Distributed Query Execution

	3 System Optimization
	3.1 Distributed Coordination and Metadata Management
	3.2 Load-Balanced and Locality-Aware Task Parallelism
	3.3 Runtime Code Generation with LLVM

	4 Evaluation with TPC-H Query Workload
	5 Case Studies with Real Applications
	5.1 Case Studies with Join Workloads
	5.2 Case Studies with Aggregation and Drill-Down Workloads
	5.3 Case Studies for Comparing with Spark-Based Data Analytics Frameworks
	5.4 Case Studies for Comparing with MPP-Based Data Analytics Systems
	5.5 Case Study for Scalability of CirroData

	6 Related Work
	7 Conclusions

