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Abstract There is a large amount of heterogeneous data distributed in various sources in the upstream of PetroChina.

These data can be valuable assets if we can fully use them. Meanwhile, the knowledge graph, as a new emerging technique,

provides a way to integrate multi-source heterogeneous data. In this paper, we present one application of the knowledge

graph in the upstream of PetroChina. Specifically, we first construct a knowledge graph from both structured and un-

structured data with multiple NLP (natural language progressing) methods. Then, we introduce two typical knowledge

graph powered applications and show the benefit that the knowledge graph brings to these applications: compared with the

traditional machine learning approach, the well log interpretation method powered by knowledge graph shows more than

7.69% improvement of accuracy.
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1 Introduction

Exploration and production (E&P), also known as

the upstream sector of the oil and gas industry, is

the process of searching for oil and gas deposits and

taking measures to extract these resources from the

earth for commercial sale. During the process of E&P,

PetroChina accumulates a large amount of data, such

as raw data, production data, and results data. These

data are viewed as one of the most important assets in

the upstream area of PetroChina. Consequently, how

to manage the data asset such that they can be fully

utilized becomes an urgent challenge.

In recent years, the knowledge graph has received

much attention from both academics and industry due

to its wide application in many industry domains. As

a way of organizing the information, knowledge graphs

provide a unified way to represent and store different

kinds of heterogeneous data. Therefore, knowledge

graphs are a good choice to integrate multi-source hete-

rogeneous data in the E&P area and make full use of

the data asset.

To this end, we construct an E&P knowledge graph

in the upstream area of PetroChina and develop several

applications based on the knowledge graph. Specifi-

cally, we make the following contributions.

First, we build an E&P knowledge graph from the

production data of the upstream of PetroChina. We

first integrate all the heterogeneous data from various

sources into a unified format and then map them into

triplets with respect to a pre-defined ontology. We also

apply the same process flow to the online encyclope-

dia of the petroleum industry, which provides a high-

quality source of semi-structured oil knowledge.

Second, to further enrich the knowledge graph, we

try to extract triplets directly from the petroleum doc-

uments crawled from online websites. Since the docu-

ments are unstructured, we use multiple NLP methods

to achieve the goal.

Last, we develop two applications based on the E&P

knowledge graph: semantic search and well log interpre-

tation. We show that the knowledge graph plays a key

role in both applications.

The rest of the paper is organized as follows. We
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review related work in Section 2. In Section 3, we intro-

duce the process of constructing the knowledge graph.

In Section 4, we demonstrate two typical applications

based on the knowledge graph. In Section 5, we con-

clude the paper.

2 Related Work

2.1 Information Extraction

Information extraction (IE) is a fundamental com-

ponent in any knowledge graph construction pipeline.

The goal of an IE system is to extract useful informa-

tion from raw data, usually text or Web pages.

2.1.1 Named Entity Recognition

Named entity recognition (NER) is the task of locat-

ing and classifying named entities in texts. It is usually

one of the first processing steps in IE. Traditional NER

systems require a large amount of specific knowledge

and hand-crafted features, which are expensive to con-

struct and maintain [1–3]. Recently, many systems have

been introduced by research studies that outperform

traditional NER systems. These novel systems com-

bine traditional methods with neural network architec-

tures such that feature engineering is not necessary any

more. For instance, Limsopatham and Collier [4] used a

bidirectional LSTM neural network to leverage ortho-

graphic features and achieve the first place on WNUT-

2016 shared task 1○. A new architecture based on bidi-

rectional LSTM and conditional random fields (CRF)

was proposed by [5]. Their system obtains the state-

of-the-art performance without relying on hand-crafted

features. Ma and Hovy [6] proposed a neural network ar-

chitecture that benefits from both word- and character-

level representations automatically, by using a combi-

nation of bidirectional LSTM, convolutional neural net-

works (CNN) and CRF. This system is truly end-to-

end, i.e., it requires neither feature engineering nor data

preprocessing. In our task, we choose to use BERT [7]

for NER because BERT currently defines the state of

the art.

2.1.2 Relation Extraction

Most researchers construct knowledge bases by ex-

tracting triplets information from massive unstructured

data. Early researches mainly used a dependency

parser to analyze the semantic information in sen-

tences. For example, the OpenIE [8] system from Stan-

ford University provides a dependency parsing method

to extract relation triplets from plain text without

any labeled data. Meanwhile, the research team from

Carnegie Mellon University used their NELL [9, 10] sys-

tem to extract over 50 million beliefs, which only uses

a small amount of labeled data as seeds to extract in-

formation from Web pages. Christensen et al. [11, 12]

applied semantic role labeling on open information ex-

traction and achieved good results.

With the rise of deep learning and the proposal of

large-scale datasets, many deep learning based meth-

ods have been proposed. Santos et al. [13] and Wang et

al. [14] considered the relation extraction process as a

pipeline which consists of two steps: entity extraction

and relation classification. Due to the lack of labeled

data, Zeng et al. [15] applied distant supervision method

to relation extraction, which uses relation triples from

an existing knowledge base to obtain labeled data. To

reduce the impact of error accumulation in a pipeline,

joint learning based methods were proposed. Miwa and

Bansal [16] and Zheng et al. [17] combined the entity ex-

traction model and the relation extraction model by

jointly training the two models simultaneously, while

[18] proposes a novel tagging scheme to extract entities

and relations simultaneously. Since different methods

have their unique advantages, we choose to merge the

results from dependency parsing and semantic role la-

beling as our triplet candidates.

2.2 Knowledge Graph Embedding

In the recent years, a variety of methods of rep-

resentation learning for knowledge graphs have been

introduced, many of which encode both entities and re-

lations into a continuous low-dimensional vector space.

TransE [19] projects both entities and relations into the

same continuous low-dimensional vector space. Here,

relations are considered to be translation operations

between head and tail entities. The energy function

is defined as follows:

E(h, r, t) = ||h+ r − t||,

which indicates that the tail embedding t should be the

nearest neighbour of h + t. TransE is both effective

and efficient when tackling 1-to-1 relations, but model-

ing more complicated entities and relations may lead to

problems. To address this issue, TransH [20] attempts to

interpret relations as translation operations on relation-

specific hyperplanes, allowing entities to play different

roles in different relationships. TransR [21] models enti-

ties and relations in separate entity and relation spaces.

1○http://noisy-text.github.io/2016/ner-shared-task.html, Dec. 2019.
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It uses relation-specific matrices to project entities from

entity spaces to relation spaces. TransD [22] further con-

siders the diversities of both entities and relations. It

uses a dynamic mapping matrix for multiple represen-

tations of entities. In our application, we choose to use

TransR because of its efficiency and effectiveness on N -

to-N relations.

2.3 AI in Petroleum Industry

Recent years have witnessed the rapid develop-

ment of machine learning and AI techniques, which

also benefit many industries, such as educational

industry [23, 24], transportation industry [25, 26] and en-

ergy industry [27, 28]. Along this line, more and more

researchers leverage machine learning methods in the

petroleum industry, such as for the inspection of oil

pipelines [28, 29], and drilling report mining with natural

language processing (NLP) techniques [30–32]. One of

the most important research fields that has just been

emerged is petroleum knowledge management. Data

in petroleum industries is complex in nature and of-

ten poorly organized, duplicated, and heterogeneous.

Without a good organization, knowledge can hardly be

extracted, understood or applied. Thus, the search for a

method of petroleum data and knowledge management

is an urgently vital task. Early studies like [33] pre-

sented a petroleum exploration domain ontology-based

knowledge integration and a sharing system frame-

work. This framework minimizes the complexity of

heterogeneous data, and enhances the power of know-

ledge integration and information sharing among diffe-

rent operational units. As far as we know, we are among

the first group who leverages a knowledge graph for

petroleum knowledge management on a large-scale real-

world dataset.

3 Knowledge Graph Construction

In this section, we introduce how we construct the

knowledge graph (i.e., PetroKG) with the data in the

upstream (E&P) of PetroChina. We firstly design the

concept architecture of PetroKG. Specifically, PetroKG

contains five concept categories, i.e., Geology, Top De-

sign, Activity, Document and Material, and each con-

cept encompasses definitions of the entities, proper-

ties and relations between the entities. In PetroKG,

there are 876 well entities, 47 438 stratum entities and

15 787 concept entities with all the related properties

and relations. We collect the data mainly from three

sources. The first is production data from the up-

stream of PetroChina, which is structured but hete-

rogeneous. The second source is an online encyclope-

dia of the petroleum industry, which is a collection

of semi-structured web pages. For these two kinds

of data, we first integrate them into a unified format

and then map them into formal triplets. The last

data source is the literature, which is composed of un-

structured petroleum documents. We directly extract

triplets from these documents with information extrac-

tion techniques. The data sources are summarized in

Fig.1.

3.1 Structure Knowledge Extraction

Most of the available production data is structured

data in our case. Although the data is structured,

they are in different formats and distributed in multi-

ple sources. The integration of these multi-source hete-

rogeneous data is a huge challenge for us.

3.1.1 Data Integration

As mentioned above, to construct our domain know-

ledge graph, we first integrate the multi-source struc-

tured production and concept data. As shown in Fig.2,

our structure data is mainly from four external sources:

well data, stratum data, block data, and PetroWiki

data. Specifically, the well data contains all the well

log information which is exported as CSV files by the

well log processing tool. The stratum data contains

all the description of the geologic stratums. The block

Production Data

Encyclopedia Data

Literature Data

Data Source

Structure 

Semi-Structure 

Unstructured

Data Type

JSON Files

Triplets

Data 
Integration

Information
Extraction

Data Mapping

Results

Fig.1. Data sources for knowledge graph.
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data contains information about an area, such as wells

and reservoirs in an area. Besides, the PetroWiki data

is a special source from the online encyclopedia 2○ of the

petroleum domain and this data is semi-structured.

Well Data
File System

Cloud Object
Storage Service

URL

Relation
Processing

Data
Aggregation

Data Mapping
Service

Knowledge
Base

Stratum Data

Block Data

Petrowiki Data

Fig.2. Data integration for knowledge graph.

Considering the different sources of the data, we de-

sign different processing and storage procedures. For all

the production data, i.e., well data, stratum data, and

block data, we first take all the production data files

from different external tools. Then, we use our data ag-

gregation module to merge the multi-source data into

a unified format. This format contains the log data of

the specified wells with related geologist stratum and

block information. At last, we use a cloud object sto-

rage service to save the whole data and send the data

URL to the next step, i.e., relation processing module.

In the relation processing module, we mainly extract

the relations from the structured production and con-

cept data. In this module, we do not use the well data

in the production source. This is because the relation-

ships between wells, such as well-adjacent relations and

stratum-sharing relations, are contained in stratum and

block data already. For these structured production

data, we conflate all the formal relations and convert

the knowledge into a unified JSON file. The storage

path of the whole data is added as an URL for the spe-

cified well. At the same time, we also extract knowledge

from semi-structured encyclopedia data. We transform

the concepts to the pre-defined JSON format. So far,

we have conflated all the structured multi-source data

and converted them into a unified format.

3.1.2 Data Mapping

After we integrate all the heterogeneous data in a

unified JSON format, we convert the JSON files into

triplets with pre-defined schema and artificial rules.

The procedure of data mapping mainly consists of two

steps.

First, we extract original triplets from the JSON

files. We create extraction rules according to the ad-

vice from oil and gas experts. Then, we extract all the

target key-value pairs from the JSON files using those

handcrafted rules and convert them into triplets.

Second, we map the original triplets into formal

triplets with respect to the predefined schema. To do

this, we calculate the similarity between the predicates

(properties or relations) of original triplets and the pre-

defined schema. We filter out all the predicates that are

not in the schema and map the remaining predicates to

the schema that has the highest matching scores.

To this end, we have built an E&P knowledge graph

from the structured and semi-structured data from the

upstream of PetroChina. The statistics of structured

knowledge extraction is shown in Table 1.

Table 1. Statistics of Structured Knowledge

Source Category Entity Triplet

Production data 3 113 167 448 586

Encyclopedia data 81 15 787 135 205

Total 84 128 954 583 791

3.2 Unstructured Knowledge Extraction

To further enrich the knowledge graph, we extract

more triplets from online petroleum documents. Since

these documents are unstructured, we utilize multiple

NLP methods to extract knowledge from them. The

overall framework is illustrated in Fig.3, which includes

three parts, namely 1) data preprocessing, 2) extrac-

tion processing, and 3) postprocessing. Technical de-

tails will be introduced in the following subsections.

3.2.1 Data Preprocess

The unstructured documents come from China

Petroleum Exploration 3○. In total, 200 papers in

HTML format and 452 papers in PDF format are

crawled. We use PDFMiner 4○ to transform the PDF

2○http://baike.yooso.com.cn, Dec. 2019.
3○http://www.xml-data.org/ZGSYKT/html/2019/3/20190301.htm, Dec. 2019.
4○https://pypi.org/project/pdfminer/, Dec. 2019.
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Fig.3. Framework of unstructured knowledge extraction. “Tok” means token.

files into text format. After data cleaning and dedu-

plication, we extract 593 papers in plain text format.

Then, we use the Language Technology Platform (LTP)

system [34] for word segmentation and part-of-speech

(POS) tagging. Note that since LTP is trained on the

specific domain, it cannot obtain ideal performance in

our case. Consequently, we construct an external lex-

icon that consists of existing petroleum terminology,

keywords in crawled papers, and named entities recog-

nized by a pre-trained BERT model.

3.2.2 Extraction Process

Due to the lack of labeling data, we extract triplets

through dependency parsing and semantic role labeling.

Dependency parsing is defined as the task to analyze

the grammatical structure of a sentence and parse rela-

tionships as a tree structure. Fig.4 shows an example of

such a tree structure. Note that the red words are the

tags of parse relationships 5○. To be specific, we choose

some special verbs as predicates, such as “ u” (lo-

cated in) and “äk” (have). Then, we extract entities

which are centered on these predicates and connected

by specific dependency tags:

1) subject of verb (SBV) and object of verb (VOB),

from which we could obtain triplets like (dì�/buried

hill,  u/locate in, ℄�ÀÜ/eastern depression);

2) attribute relation (ATT) and object of verb

(VOB), from which we could obtain triplets like (dì�/buried hill, äk/have, �µ/background).

Semantic role labeling is defined as the task to

recognize arguments for a given predicate and assign

semantic role labels to them. As shown in the same

sentence, the predicate (REL) like “ u” (located

in) is the keyword in the sentence and expresses some

actions. It usually is a verb or an adjective word.

The core semantic role (ARG0), such as “HêB”

(Nanmazhuang) and “dì�” (buried hill), usually

ROOT

ATT

ATT
ATT

ATT

VOB

RAD

ATT SBV

VOB
ATT

HED

WP

west-low east-high of construct background eastern depression.have

RAD ATT

slope of Nanmazhuang buried hill locate in Baxian

Fig.4. Example of dependency parsing.

5○http://www.ltp-cloud.com/intro#dp how, Dec. 2019.
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indicates the performer of the action, while role

(ARG1), such as “u{” (Baxian) and “℄�ÀÜ”

(eastern depression), usually indicates the influence or

recipient of the action. After semantic role labeling, we

extract the semantic role of the performer and the recip-

ient of an action with the predicate to form a triplet like

(HêBdì�/Nanmazhuang buried hill, u/located

in, u{℄�ÀÜ/Baxian eastern depression). To ob-

tain better results, we add some manual rules to filter

out some wrong samples.

3.2.3 Postprocess

After obtaining triplet candidates, it is necessary to

filter the inappropriate ones.

Entity Refinement. First, we filter entities that do

not appear in the external dictionary and merge adja-

cent entities. Then, to obtain more meaningful entities,

we merge the entities with the words that have attribute

(ATT) relations in the dependency parsing tree or share

the same role labels in the result of semantic role label-

ing. As a result, we obtain more realistic entities such as

“HêBdì�” (Nanmazhuang buried hill) and “Ü$Àp��·�E�µ” (west-low east-high slope struc-

ture background) instead of meaningless words like “dì�” (buried hill) and “�µ” (background).

Predicate Refinement. Only the top 10% of frequent

predicates are kept since the rest appear very few times.

The relation frequency is shown in Fig.5. After that,

we merge the predicates whose meanings are similar.

Evaluation. In order to evaluate the postprocessing,

a human study is carried out, similar to [35]. Three ex-

perts with several years of experience in the petroleum

domain perform the evaluation. Specifically, we ran-

domly select 200 triples and test the precision. Some

instances of extracted triplets are shown in Table 2 and

the experimental results are summarized in Table 3.
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Fig.5. Relation frequency.

4 Applications of Knowledge Graph

Equipped with the knowledge graph, we can apply it

in many scenarios of E&P. In this section, we will show

two typical applications that benefit from the know-

ledge graph.

4.1 Semantic Search

In PetroChina, the researchers and engineers often

need to search a large amount of documents and indus-

trial data in their daily work. Therefore, an efficient

knowledge retrieval and semantic search service is es-

sential for researchers and engineers. In this subsection,

we will introduce a semantic search service based on the

knowledge graph.

In the process of constructing the E&P knowledge

graph, we have integrated different kinds of data from

multiple data sources in a single knowledge graph. In

this way, a unified data access interface can be pro-

vided for up-level applications. This is the basis for a

semantic search service.

Table 2. Extracted Relation Triples

Subject Relation ObjectF¥u� (Jizhong depression)  u(locate in) u� (North China)�Y�/ (Qinshui basin)  u (locate in) ìÜ� (Shanxi province)�ë�/ (Erlian basin)  u (locate in) S��g£« (Inner Mongolia Autonomous Region)g
ñ (source rock) ´ (is a) )hñ (source rock of petroleum)Ñt' (Poisson’s ratio) ´ (is a) /�ñ5ëê (Stratigraphic lithology parameters)nY�/ (Sanshui basin) ´ (is a) �/ (basin)℄�±Æ (periphery of depression) /¤ (form) �È¥%(depocenter)�E� (structural layer) /¤ (form) �	ª½º (partition style fold)hí¿5 (hydrocarbon charging) /¤ (form) g�KN (hydrocarbon inclusion)
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Table 3. Results of Unstructured Knowledge Extraction

#Entities #Triplets Precision

Without postprocess 27 053 36 260 0.50

With postprocess 22 727 12 828 0.58

Note: # means number of.

The semantic search system consists of two parts:

the online and the offline part. The online part handles

user input and returns the answer. The offline part

mines query templates used in the online part. The

whole system is summarized in Fig.6.

Answer

User Input

Entity Linking &
Property Mapping

Query 
Conceptualization

Template
Matching

Template
Generation

Execute Query

Q&A
Corpus

Entity 
Recognition

Knowledge
Base

Predicate 
Extend

Offline

Online

Fig.6. Overview of semantic search service.

In the offline part, we generate query templates from

a question and answering (QA) corpus (user query log

in our case). To further improve the performance, we

manually write a few templates as well.

In the online part, whenever we get a user input, we

first recognize the entities and properties with entity

linking tools. In our system, we develop a dictionary

based entity linking tool. Specifically, we construct a

fine state automaton which encodes all known entities

and their aliases. In the running time, the Aho-Corasick

algorithm is used to match all token sequences in the

dictionary with the user input. With all the recognized

mentions, we link them to the entities in the knowledge

graph. The method of property recognition and map-

ping is similar to the aforementioned process.

After we get the entities and properties in the user

input, we will try to match the user input to one of the

query templates we mined in the offline part. Specifi-

cally, we first conceptualize the user input by replacing

the recognized entities and properties with special sym-

bols and then calculate the semantic similarity between

the conceptualized user input and the query templates.

Finally, we fill the matched template with the

proper values and perform the query in the know-

ledge graph. In our system, we use the Graph Engine

Service 6○ as our graph database to host the knowledge

graph. Thus, we convert the template into a Gremlin

query statement and execute the query.

To better illustrate the process of semantic search,

we provide a real user input and show the output of

each step. The example is shown in Fig.7.

User Input
Entity Linking

Property Mapping

Template
Matching

Generate Query
Statement

Return Answer

Fig.7. Example of semantic search.

6○https://www.huaweicloud.com/en-us/product/ges.html, Nov. 2019.
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4.2 Well Log Interpretation

In the petroleum industry, the most essential ope-

ration is oil and gas reservoir exploration. In the early

stage, the exploration mainly relies on the seismic fa-

cies analysis from the drilling data, such as well log

recording. The experts would spend much time to read

these massive recording data and compute the porosity

and permeability. Since the geological conditions may

be utterly disparate in two different fields, these tradi-

tional methods highly rely on the experts’ experience.

Thus, automated algorithms to determine reservoirs are

urgent requirements in the petroleum industry. Along

this line, in this subsection, we will introduce an au-

tomated well log interpretation module based on our

E&P knowledge graph.

In the real industrial scenario, reservoir exploration

mainly relies on experts’ interpretations on various well

logs. Manual interpretations are inefficient because of

the massive well log data. Moreover, the geological

conditions of reservoirs are complex and miscellaneous,

which makes traditional manual interpretations highly

relied on the experts’ experiences.

Indeed, after well logging, massive data of dig-

ital measurements for the geologic facies have been

recorded, such as gamma radiation (GR), resistivity,

spontaneous potential, which is difficult for both ex-

perts and AI systems to process all the data simultane-

ously. To overcome this challenge, we develop a unified

well log interpretation service to automatically detect

and classify reservoirs. As shown in Fig.8, the model

consists of two modules, i.e., the potential reservoirs

detection (PRD) and the reservoir classification (RC).

In the PRD module, we use the existing experts’

knowledge to detect potential reservoirs. Specifically,

we first apply some necessary preprocessing procedures

to the well log data. Then, for the parameter choosing,

we can build a geologic model to compute the criti-

cal geologic properties, such as porosity, permeability

and fluid saturation. From the expert rule interface,

we can obtain the basic geologic knowledge of the area

and expert rule on the geologic properties. Next, based

on the expert rule, we can easily analyze the relation-

ship between the geologic properties and probability of

reservoirs. To this end, we can filter the depth interval

with low potential.

In the RC module, we use machine learning meth-

ods to build a knowledge-based reservoir classification

model. Along this line, we first reload the well log data

of potential reservoirs filtered out by PRD. Then, from

the model loading, we can build a new model or choose

the checkpoint of our pre-trained model. Next, from

PetroKG, we can load the feature choice of experts,

and retrain or fine-tune the loading model. Finally, we

can generate the reservoir classification results by the

pre-trained machine learning model.

We conduct extensive experiments on the real in-

dustrial data of PetroChina. Indeed, from the RC mod-

ule, we can easily choose the base classification model,

such as k-nearest neighbors (KNN) [36], Random Forest

(RF) [37], Multilayer Perceptron (MLP) [38], and Gradi-

ent Boosting Machine (GBM) [39]. More specifically, we

set k = 5 with euclidean distance evaluation for KNN

classifier and for RF model, and we set the number of
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Fig.8. Overview of well log interpretation service.
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estimators to 100. For the MLP model, we develop

three layers, 128-dimensional perceptrons with the rec-

tified linear unit and a softmax function for the reser-

voir classification task. For the GBM model, we im-

plement two specific variants GBM-Naive and GBM-

KG. For GBM-Naive, we develop a naive GBM model

with the leaf-wise algorithm. We set the leaf number

to 150 and learning rate to 0.01. Moreover, we imple-

ment a variant GBM model (i.e., GBM-KG) which in-

corporates the feature engineering based on the experts’

knowledge in PetroKG. Table 4 demonstrates the com-

pared results of different base models. We can see that

with the application of PetroKG, our proposed well log

interpretation model has achieved 86% average accu-

racy on the oil and gas exploring task, with more than

7.69% improvement over the traditional machine learn-

ing approaches.

Table 4. Comparison Results of Different Base Models

Model Precision Recall F1-Score

KNN 0.67 0.68 0.67

RF 0.75 0.79 0.77

MLP 0.54 0.74 0.63

GBM-Naive 0.76 0.80 0.78

GBM-KG 0.82 0.86 0.84

Table 5 demonstrates the results of well log inter-

pretation in various reservoir layers. It is worth to note

that the results of the “Poor” layer and the “Oily Wa-

ter” layer are closed to zero. That is because the sample

of the “Poor” layer is very small. Moreover, the “Oily

Water” layer and the “Water” layer have very simi-

lar physicochemical properties in the well logs, and the

classification of these two layers is highly subjective.

Fig.9 demonstrates a sample result of well log interpre-

tation service. Visually, the interpretation of our model

is very similar to the experts’ interpretation results.

Table 5. Results of Well Log Interpretation

Layer Number of Precision Recall F1-Score

Samples

Water 196 392 0.89 0.97 0.93

Oil 14 273 0.67 0.37 0.47

Dry 18 358 0.72 0.67 0.69

Water-bearing oil 9 656 0.43 0.18 0.26

Gas 1 263 0.37 0.17 0.23

Poor 522 0.00 0.00 0.00

Oily water 4 720 0.02 0.00 0.00

Total 245 184 0.82 0.86 0.84

5 Conclusions

In this paper, we explored how to integrate

multi-sources heterogeneous data in the E&P area of

PetroChina. We reported the practical methods and

results in the process of constructing the knowledge

graph. Also, we introduced two typical applications
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Fig.9. Sample result of the well log interpretation on the well uNs=#3-60-2. The five first rows show the digital measurements as a
function of depth (in meters). Two facies rows illustrate the interpretation by experts and prediction by our model. The colorbar on
the bottom gives the correspondences to the reservoir class.
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of the E&P knowledge graph. We showed how to uti-

lize the knowledge graph in the applications. The se-

mantic search service directly returns the most match

answer to users from the knowledge graph instead of

an unstructured document and the well log interpre-

tation method improves the accuracy by more than

7.69% with the knowledge graph as an external source

of knowledge. With the benefit of knowledge graph, the

applications offer better services to users in the oil and

gas industry.
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