
Sha S, Hu JY, Luo YW et al. Huge page friendly virtualized memory management. JOURNAL OF COMPUTER SCIENCE

AND TECHNOLOGY 35(2): 433–452 Mar. 2020. DOI 10.1007/s11390-020-9693-0

Huge Page Friendly Virtualized Memory Management

Sai Sha1,2,3, Member, ACM, Jing-Yuan Hu1, Ying-Wei Luo1,2,3,∗, Member, CCF, ACM
Xiao-Lin Wang1,2,3, Member, CCF, ACM, and Zhenlin Wang4, Member, ACM

1School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China
2Peng Cheng Laboratory, Shenzhen 518052, China
3Shenzhen Key Laboratory for Cloud Computing Technology & Applications, School of Electronic and Computer

Engineering, Peking University Shenzhen, Shenzhen 518000, China
4Department of Computer Science, Michigan Technological University, Michigan 49246, U.S.A.

E-mail: {ss boom, hujingyuan0303, lyw, wxl}@pku.edu.cn; zlwang@mtu.edu

Received May 7, 2019; revised October 14, 2019.

Abstract With the rapid increase of memory consumption by applications running on cloud data centers, we need more

efficient memory management in a virtualized environment. Exploiting huge pages becomes more critical for a virtual

machine’s performance when it runs large working set size programs. Programs with large working set sizes are more

sensitive to memory allocation, which requires us to quickly adjust the virtual machine’s memory to accommodate memory

phase changes. It would be much more efficient if we could adjust virtual machines’ memory at the granularity of huge

pages. However, existing virtual machine memory reallocation techniques, such as ballooning, do not support huge pages.

In addition, in order to drive effective memory reallocation, we need to predict the actual memory demand of a virtual

machine. We find that traditional memory demand estimation methods designed for regular pages cannot be simply ported

to a system adopting huge pages. How to adjust the memory of virtual machines timely and effectively according to the

periodic change of memory demand is another challenge we face. This paper proposes a dynamic huge page based memory

balancing system (HPMBS) for efficient memory management in a virtualized environment. We first rebuild the ballooning

mechanism in order to dispatch memory in the granularity of huge pages. We then design and implement a huge page

working set size estimation mechanism which can accurately estimate a virtual machine’s memory demand in huge pages

environments. Combining these two mechanisms, we finally use an algorithm based on dynamic programming to achieve

dynamic memory balancing. Experiments show that our system saves memory and improves overall system performance

with low overhead.

Keywords virtualization, huge page, ballooning, memory balancing

1 Introduction

In this big data era, the memory demand of appli-

cations running on cloud data centers has been rapidly

increasing, which puts more pressure on memory mana-

gement especially in virtualized environments. One

performance bottleneck due to a large dataset stems

from a large number of translation lookaside buffer

(TLB) misses. For memory-intensive applications with

a large memory footprint, TLB cannot efficiently cache

these translations due to its limited size. One solution

to mitigate the overhead is to use huge pages [1], which

can help significantly reduce TLB miss rate.

Transparent huge page (THP) is a simple adoption

of huge pages in Linux kernel since version 2.6.38 [2].

The operating system (OS) automatically establishes a

Regular Paper

Special Section of ChinaSys 2019

The work was supported by the National Key Research and Development Program of China under Grant No. 2018YFB1003604,
the National Natural Science Foundation of China under Grant Nos. 61472008, 61672053 and U1611461, Shenzhen Key Research
Project under Grant No. JCYJ20170412150946024, the National Science Foundation of USA under Grant No. CSR-1618384, and
Beijing Technological Program under Grant No. Z181100008918015.

∗Corresponding Author

©Institute of Computing Technology, Chinese Academy of Sciences 2020

http://dx.doi.org/10.1007/s11390-020-9693-0


434 J. Comput. Sci. & Technol., Mar. 2020, Vol.35, No.2

huge page mapping by tagging the page table’s page

middle directory (PMD) entry as a huge page. This

means that the virtual and real address conversion is

reduced from four page tables to three, which improves

the conversion efficiency and saves the amount of mem-

ory used by the page tables. Linux kernel uses, by de-

fault, a huge page size of 2 MB, which is 512 times as

much as the regular page size. This means that the OS

requires fewer address translation entries in TLB. The

number of TLB misses is also greatly reduced. A study

shows that up to 25% TLB miss reduction and 37.5%

overall performance improvement can be achieved by

using Linux THP for SPEC CPU2006 and PARSEC 3.0

workloads [3]. Especially for applications with working

set size (WSS), the huge page mechanism can signifi-

cantly improve system performance.

However, adopting huge pages brings new challenges

in memory management for virtualized environments.

Compared with the applications with small datasets,

the performance of a large dataset application is highly

relevant to the available memory size for a virtual ma-

chine (VM) where the application is running. For the

applications with gigabytes of memory consumption,

such as 631.deepsjeng s, 649.fotonik3d s in SPECCPU

2017 1○, and Graph in CloudSuite 2○, reducing a few

megabytes of memory from the VM can degrade its

performance several times as shown in Fig.1. This in-

dicates that we need to adjust quickly once memory im-

balance occurs in a multi-VM environment. Using huge

pages allows a hypervisor to adjust memory quickly.

Ballooning is an efficient method to adjust VMs’ mem-

ory and has been used by many hypervisors such as

KVM, Xen and VMware. However, previous balloon-

ing mechanisms do not support huge pages. The bal-

looning process demotes the 2 MB huge pages to 4 KB

regular pages for dispatching, which results in a signif-

icant performance loss. In addition, GB-level memory

ballooning often takes several seconds to complete the

dispatch. In order to solve this problem, we design and

implement huge pages-based ballooning in KVM and

QEMU.

Dynamic memory management needs to accurately

predict the memory demand of each VM. OS uses a con-

cept of WSS to represent memory demand. WSS was

first defined by Denning [4], which represents the total

number of memory pages accessed by a process during

a certain period of time. We find that it becomes more

challenging to estimate the WSS when huge pages are

heavily used. To estimate the WSS, one common metric

is page miss ratio curve (MRC), which maps memory

size to page miss ratio. Mattson’s stack algorithm [5] is

usually used to construct an MRC. In the stack, each

item records a page, and the stack distance (reuse dis-

tance) refers to the distance from an item to the top

of the stack. The coverage of a huge page is much

larger than that of a regular page. According to pro-

gram locality, a sequence of memory instructions are

more likely to access a same huge page than a same

small page. Therefore, the proportion of small distance

reuses will be very high in huge pages environments.

Our experiments on SPEC CPU2017 workloads show

that over 99.9% of reuse distances are smaller than

20. The reuse distance distribution in huge pages en-

vironments is more unbalanced. The unbalance leads

to challenges in controlling memory tracking overhead

and maintaining high miss ratio precision. We adopt

a dynamic hot set to control overhead. Meanwhile, we

analyze the impact of a hot set for MRC construction

and propose a method to restore the accurate MRC

based on a heuristic equation.

0

11

10

9

8

7

6

5

4

3

2

1

64

631.deepsjeng_s
649.fotonik3d_s
Graph

128

Memory Reduction (MB)

N
o
rm

a
li
z
e
d
 E

x
e
c
u
ti
o
n
 T

im
e

192 256

Fig.1. Performance degradation due to reduction of memory.

VM memory balancing based on regular 4 KB pages

does not apply to programs with large WSSs. Combin-

ing the huge page ballooning and the huge page WSS

estimation, we design an algorithm for memory real-

location based on dynamic programming. Our design

goal is to adjust the memory of VMs in real time accord-

ing to their memory phases. The algorithm attempts to

ensure the performance while saving the overall mem-

ory as much as possible. In this paper, we propose a

1○https://www.spec.org/cpu2017/index.html/, March 2020.
2○http://cloudsuite.ch/, March 2020.



Sai Sha et al.: Huge Page Friendly Virtualized Memory Management 435

comprehensive huge page based virtual machine mem-

ory balancing mechanism in order to improve the mem-

ory utilization of multiple VMs running large working

set programs. In particular, we make the following con-

tributions:

• a huge pages based WSS estimation mechanism

in a virtual execution environment, which guides VM

memory balancing [5];

• an efficient ballooning mechanism based on huge

pages which allows VM memory adjustment without

huge pages demotion [6];

• a dynamic memory balancing scheme in a vir-

tual execution environment, which integrates huge page

based WSS estimation and huge pages based balloon-

ing.

This paper is a summary and extension of [5] and [6].

Its main new contribution is to integrate the two tech-

nologies of [5, 6] and implement a memory balancing

system with huge page in a virtualized environment.

The rest of the paper is organized as follows. In Sec-

tion 2, we analyze WSS estimation based on huge pages

and pay attention to swap handling. Section 3 details

the ballooning mechanism and how we reconstruct it to

support huge pages. Section 4 describes the architec-

ture and algorithms of our huge pages based memory

balancing system. Section 5 presents experimental re-

sults including the verification of the WSS estimation,

huge page ballooning, and the whole memory balanc-

ing. Section 6 discusses related work and and Section 7

concludes the paper.

2 WSS Estimation Based on Huge Pages

We estimate the WSS of a VM by constructing

an MRC. The MRC construction relies on accurately

tracking page accesses of a workload or VM. However,

most memory accesses from guest OSs are transpar-

ent to the hypervisor. Our approach to track memory

accesses in a virtualized system is to modify the per-

mission bits of the page table entry of a memory page.

By revoking a page’s access permission, next access to

the page will trigger a page fault, which allows the hy-

pervisor to extract access address and calculate reuse

distance. Fig.2 shows an overview of LRU-based WSS

estimation.

2.1 LRU-Based MRC Construction

We adopt Mattson’s stack algorithm to construct an

MRC at run time. The algorithm was initially proposed

by Mattson et al. in 1970 [7] to reduce trace-driven pro-

cessor cache simulation time. The main idea of Mattson

et al.’s stack algorithm is to take advantage of the in-

clusion property in many cache/memory replacement

algorithms such as the commonly used Least Recently

Used (LRU) policy.

LRU Stack
Page Fault

Huge Pages Access

Setting Bits

Page Fault

Reuse Distance
Distribution

 

MRC

WSS

Hot Set

Fig.2. Overview of LRU-based WSS estimation.

In the LRU stack, each item holds the physical

frame number (PFN) of a huge page. The size of the

LRU stack is the number of huge pages that the current

guest OS can allocate. Reuse distance (LRU distance)

is the distance from the top of the stack to each item

in the LRU stack. We build a reuse distance histogram

(RDH), hist, which shows reuse distance distribution

(RDD). In our design, each item i in the stack has a

property hist(i). When a page is accessed, we first look

up the item in the stack to find its reuse distance d, and

hist(d) increases by 1. If the page is not in the stack,

it is a cold miss and hist(∞) increases by 1. Given

a memory size of s huge pages, the page miss ratio is

calculated as MISS (s) =
∑

∞

j=s hist(j)
∑

∞

i=0
hist(i) . In other words,

when the guest OS has s huge pages, its page miss ratio

is MISS(s).

2.2 Hot Set

The LRU-based method provides an accurate MRC,

but it requires a full trace of memory accesses. It is pro-

hibitive to intercept every memory page access as it will

cause a lot of system overhead. One solution is to ap-

ply memory address sampling [8], which only monitors a

small subset of addresses. Unfortunately, this approach

does not work for huge pages. Compared with regular

pages RDD, huge pages RDD changes significantly for

the same VM or application. Most reuse distances be-

come small distances due to spatial locality brought by

huge pages. However, due to the precision requirement,



436 J. Comput. Sci. & Technol., Mar. 2020, Vol.35, No.2

we have to track a sufficient number of long-distance

reuses. Page sampling may lose track of some large

reuse distances, which may result in a significant error

in the WSS estimation. We instead adopt a hot set [9]

to solve this problem.

We divide the memory pages into a hot page set and

a cold page set. When a new page table is populated

(e.g., when creating a new process), all pages are cold.

In subsequent fetches, the system captures a cold page,

records its address, and moves it to a hot set. The

hot set is an FIFO queue with a limited size, which

stores PFNs. The purpose is to keep the pages that

are used frequently in the hot set, and only track them

when they exit the FIFO queue so as to avoid tracking

a large number of short-distance reuses. When a page

is dequeued from the hot set, we modify its permission

bits in the extended page table (EPT) to trigger a page

fault for its next access. For large WSS applications,

we are less interested in small reuse distances as they

only help provide the miss ratios for a memory alloca-

tion bounded by the hot set size. As long as we do not

use a hot set that is too large, the resulting MRC is

still effective for the WSS estimation, which is verified

in Subsection 5.3.

2.3 Restoring RDD and Constructing MRC

With a hot set, only the pages dropped from the hot

set will be tracked, and then rejoin the hot set after its

next access when its reuse distance is recorded. Appar-

ently the tracked memory accesses sequence with a hot

set is different from the sequence without one. We need

to examine its impact on RDD and MRC.

Although the sequence of memory accesses changes,

the distribution of long reuse distances remains the

same. Fig.3(a) and Fig.3(b) show examples of the dis-

tributions of reuse distance with and without a hot

set. Fig.3(a) presents the distribution with a hot set

of 500 MB (250 huge pages), while Fig.3(b) presents

the distribution without a hot set. The workload is

605.mcf s in SPEC CPU2017. We simulate the com-

plete benchmark execution with the Intel Pin 3○ toolset

to obtain the memory trace and implement an LRU

stack to collect its reuse distance distribution. Al-

though the hot set filters most of short reuse distances,

the rest part shows almost the same shape as the lower

one without a hot set. We run other workloads in SPEC

CPU2017 with the memory consumption of more than

2.7 GB and reach the same conclusion. Our approach

thus assumes that using a hot set will not change RDD

for the distances larger than the hot set size.

Fig.3(c) shows three types of MRCs: MRC without

hot set (MRC), MRC with hot set (MRC HOT), and

MRC with hot set with modification. We can observe

that the shapes of the MRCs are very close but the

(b)

C
o
u
n
t

0 500 1000

Reuse Distance

(a)
Reuse Distance

(c)

MRC_HOT
MRC
MRC_HOT_MOD

M
is

s 
R

a
ti
o

Memory (GB)

1500 2000

0 500 1000 1500 2000

1012

1010

108

106

104

102

100

100

10-1

10-2

10-3

10-4

10-5

10-6

10-7

10-8

10-9

C
o
u
n
t

1012

1010

108

106

104

102

100

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Fig.3. Comparison of reuse distance distributions and MRCs with and without a hot set using PIN simulation. (a) Reuse distance
distribution with a hot set of 500 MB. (b) Reuse distance distribution without a hot set. (c) MRCs of 605.mcf s. The y-axes in the
figure are plotted in a logarithmic scale of 10, to present a complete view.

3○https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool, Feb. 2020.



Sai Sha et al.: Huge Page Friendly Virtualized Memory Management 437

MRC directly derived from the filtered reuse distance

distribution overestimates the miss ratios. It is because

the filtered reuse distances are short ones and typically

result in cache hits. To deliver an acceptable MRC, we

estimate the amount of filtered reuse distances and add

them back to the reuse distance distribution.

Note that a memory access results in either a cold

miss, if its location is first touched, or a reuse with a

distance calculated through the LRU stack approach.

The total number of reuse distances is mem inst −

cold miss, where mem inst is the total number of

memory accesses and cold miss is the number of cold

misses. The cold miss count is the number of the dis-

tinct pages being tracked. Theoretically, the filtered

memory access count, filtered, can be estimated as:

mem inst −mem tracked − cold miss. mem tracked

is the memory accesses whose reuse distances we are

able to track. We add the filtered part back to the

reuse distance distribution. As we observe that 99.9%

of huge pages reuse distances are less than 20, we make

99.9% filtered reuses evenly distributed from distance

1 to 20 and the rest 0.1% from 20 to the hot set size.

Fig.3(c) shows the miss ratio curve, MRC HOT MOD,

constructed from the restored reuse distance distribu-

tion. The new MRC is highly overlapped with the accu-

rate MRC, expect for the memory size less than the hot

set size. The less accurate portion of MRC HOT MOD

will cause a minimal impact in practice as a system is

rarely configured with an amount of memory less than

the hot set size.

In our implementation in an Intel machine, the met-

ric mem inst can be determined using the Intel perfor-

mance monitoring unit (PMU). We monitor the per-

formance events MEM INST RETIRED.ALL LOADS

and MEM INST RETIRED.ALL STORES and use the

sum formem inst. Other two metrics are monitored by

our memory tracking system.

2.4 Dynamic Hot Set (DHS)

The overhead of the memory tracking system is

highly relevant to the hot set size, as it determines the

number of page faults introduced by memory tracking.

We find that using a fixed hot set size of 20 huge pages

could generate page faults at 10-million level for each

one hundred billion memory accesses. For the work-

loads in SPEC CPU2017 that are not sensitive to page

faults, the total overhead is less than 5%. For the work-

loads sensitive to page faults, millions of page faults can

cause a slowdown of 7 times. 631.deepsjeng s in SPEC

CPU2017 is one of this type. To further reduce the

overhead, one solution is to adopt a dynamic hot set.

During memory tracking, the hot set is re-sized depend-

ing on the number of memory instructions between two

tracked adjacent page faults, denoted as Mem Tracked.

Through experiments, we need to cap Mem Tracked to

below a million to achieve an acceptable overhead.

Our DHS algorithm introduces two thresholds,

THmax and THmin, to help control the hot set. We

set THmax and THmin to 10 million and 1 million,

respectively.

These two thresholds are constantly modified

in experiments with 649.McF s, 619.Lbm s, and

631.Deepsjeng s programs separately. The reason for

selecting these three programs is that their memory

access characteristics contain many different features:

619.lbm s is a single program with memory stages and

good locality, 649.McF s has poor locality and complex

stages, and 631.Deepsjeng s is a program with a single

stage but poor locality.

The default hot set size is 500 MB (250 huge

pages). During the memory tracking step, we record

Mem Tracked after the hot set is full. If the memory in-

struction count is larger than THmax, it means the time

interval between two faults is too long, and the obtained

reuse distances are insufficient and the hot set is over-

sized. To determine the degree of re-sizing, we calculate

Mem Tracked/THmax. The hot set size is reduced by

a certain percentage based on the quotient and we will

drop the corresponding number of huge pages from the

hot set. If the memory instruction count is smaller than

THmin, we increase the hot set size using the same ap-

proach. We calculate THmin/Mem Tracked and en-

large the hot set proportionally.

2.5 VM Memory Demand Calculation

The WSS derived from an MRC is based on the idea

of saving memory by tolerating acceptable performance

loss. The past experiences with a regular page MRC

consider that the miss ratios are highly correlated to

the performance [10]. A threshold of miss ratio is cho-

sen to denote the acceptable performance loss. The

memory size corresponding to the chosen miss ratio is

then defined as the WSS. We observe that the precision

of a regular page MRC is typically at 10−3. The huge

page miss ratio can reach a precision level of 10−8. The

miss ratio at this level of precision does not correlate

well with performance gain or penalty when the mem-

ory allocation is changed. In fact, we can analyze the



438 J. Comput. Sci. & Technol., Mar. 2020, Vol.35, No.2

distribution of reuse distance over a period of time to

determine the actual memory demand of the applica-

tion. We design experiments to explore the relationship

between the reuse distance distribution and the actual

memory demand of a program.

We select programs with memory demand over

1 GB from SPEC2017. We keep track of the program

memory pages every 1 second, and record the distribu-

tion of reuse distance and the number of memory pages

(2 MB huge pages). We define:

• Footprint: the size of memory accessed by a pro-

gram every 1 second;

• 99%RD, 95%RD: the memory size covered by 99%

and 95% reuse distance collected every 1 second after

hot page set filtering respectively;

• Full Reused: the memory size covered by 100%

reuse distance;

• MAX: the memory size of all memory pages ac-

cessed by the program.

The experimental results show that for most appli-

cations, the results of 99%RD and Full Reused are close

to Footprint which reflects the real memory demand of

a program. Both of their average error are less than

1%, but the error of 95%RD is up to 10%. Therefore,

95%RD is not appropriate to reflect the actual mem-

ory demand of a program. For example, Fig.4 shows

comparison of the memory demand curves of 605.mcf s

under different conditions. Fig.4(a) is comparison of

memory changes at full execution time. Fig.4(b) and

Fig.4(c) zoom in memory change curves by extracting a

30-second window under two different memory stages.

605.mcf s has obvious memory stage and volatility. The

memory demand increases sharply in a short time and

then quickly returns to stability. In the steady state,

the memory demand of 99%RD and Full Reused are

close (see Fig.4(c)). When the memory demand fluctu-

ates, 99%RD and Full Reused are significantly different

(see Fig.4(b)).

Through experiments, we find that compared with

Full Reused, the 99%RD is more suited to reflect the

actual memory demand of a program in a huge page

environment than Full Reused. For most programs,

99%RD typically reflects true memory demand as well

as Footprint. In extreme cases, Full Reused could re-

flect real memory requirements well, but it is likely to

reflect the program’s access for a few memory pages,

and cannot reflect the actual memory demand. In ad-

dition, Full Reused has to bring frequent memory ad-

justment, because it is sensitive. It is more appropriate

to choose 99%RD that can reflect the memory access

characteristics of the program stably.

0

6

5

4

3

2

1

0

100 200 300

Time (s)

M
e
m

o
ry

 (
G

B
)

6

5

4

3

2

1

0

M
e
m

o
ry

 (
G

B
)

6

5

4

3

2

1

0

M
e
m

o
ry

 (
G

B
)

(a)

Footprint
99%RD
95%RD
Full_Reused
MAX

Footprint
99%RD
95%RD
Full_Reused
MAX

400 500

30 35 40 45

Time (s)

(b)

50 55 60

80 85 90 95

Time (s)

(c)

100 105 110

Footprint
99%RD
95%RD
Full_Reused
MAX

Fig.4. Comparison of memory demand of 605.mcf s under diffe-
rent conditions. (a) Memory changes at full execution time. (b)
(c) Memory changes under two different memory states with 30 s
windows.



Sai Sha et al.: Huge Page Friendly Virtualized Memory Management 439

2.6 Dynamic Memory Growth

In fact, the above method can only estimate WSS

no larger than the current memory size of the guest

OS. When the guest OS encounters an out-of-memory

condition, the constructed MRC can no longer pre-

dict memory requirement. A straightforward way

to solve this problem is to track the record of the

swap space. The size of the working set on the

swap space is the extra memory required by the

guest OS. Our system reads SwapTotal and SwapFree

from /proc/memoryinfo, which is used to calculate the

amount of swap that has been used. Linux kernel pro-

vides a lazy mechanism 4○ for swap processing: if the

program does not access the data that exists in the swap

area, the data will stay in the swap area even if addi-

tional free memory has been given to the OS. Therefore,

we cannot determine whether a VM is swapping by the

amount of swap that has been used. Instead, we save

the latest s used swap values of each VM. If the last

value is greater than the mean of the latest s values,

the VM is considered as swapping. For a VM under

swap process, the sum of the current memory and the

swap amount is used as the predictive WSS.

3 Huge Page Ballooning

3.1 Ballooning Mechanism

Ballooning consists of two main phases: inflation

and deflation. Fig.5 illustrates the inflation and the

deflation phases of ballooning. Fig.5(a) and Fig.5(b)

present the status of VM during the ballooning pro-

cess. Inflation refers to the hypervisor sending a re-

quest to the guest OS to return a certain amount of

memory to the hypervisor. After obtaining the target

balloon size, the balloon driver allocates some guest

physical pages inside the VM and pins them. Pinning is

achieved through the guest operating system interface,

which ensures that the pinned pages cannot be paged

out to disk under any circumstances. Once the memory

is allocated, the balloon driver notifies the hypervisor

the page frame numbers of the pinned guest physical

memory so that the hypervisor can reclaim the corre-

sponding host physical pages [11]. Deflation means that

the hypervisor returns a certain amount of memory to

the guest OS and the principle is the same as inflation.

3.2 Problem Under KVM and QEMU

The WSS of many applications is fast growing in

the big data era. Dozens of GB or even hundreds of

GB memory requirements become a norm. This type of

applications and small WSS applications often coexist;

therefore most operating systems still run on regular

pages mixed with huge pages. However, for large work-

ing set applications, memory performance is dragged by

4 KB pages more and more due to high TLB misses and

page fault frequency. Hardware constraints prevent us

from increasing TLB entries significantly. Large work-

ing sets yield a large number of TLB misses, which,

in turn, incur substantial page walk overhead. In vir-

tual execution environments, the performance loss is

VM VM

App AppBalloon

Balloon

Free Pages Pinned PagesBallooning

Ballooning

Inflating

Deflating

Guest
Kernel

Guest
Kernel

Hypervisor
(QEMU)

Hypervisor
(QEMU)

(b)(a)

Fig.5. Ballooning mechanism.

4○https://www.linuxquestions.org/questions/linux-general-1/reclaim-swap-memory-849992/, March 2020.



440 J. Comput. Sci. & Technol., Mar. 2020, Vol.35, No.2

even worse as memory virtualization results in addi-

tional address translation. Huge pages can help relieve

TLB pressure, but virtualization and huge pages do not

work in concert currently.

In our experimental system with Linux Kernel 4.2.4,

THP is enabled in both the host and the guests. How-

ever, we find that the ballooning process will lead to

huge page demotion, which, in both the guests and the

host, generates a large number of regular pages. This is

because the current KVM ballooning mechanism, inde-

pendent of the guest system and the host system’s THP

mechanisms, can only operate on the default 4 KB reg-

ular pages. Huge page demotions can thus degrade a

virtual machine’s performance, in particular, when bal-

looning is triggered. On the other hand, demotion also

affects the efficiency of the ballooning process itself.

In the existing KVM and QEMU environments,

pages exchanged in the ballooning process are all reg-

ular pages. When the balloon is deflated in QEMU,

memory is returned to the guest as regular pages. This

phenomenon can be verified by comparing the number

of huge pages in the host before and after deflation. We

observe that the proportion of huge pages in the QEMU

process will be reduced due to deflation.

In KVM and QEMU, the hardware-managed ext-

ended page table (EPT) is used to complete the mem-

ory address translation of a virtual machine. EPT-

assisted address translation is divided into two parts:

from a VM virtual address to a VM physical address,

and from a VM physical address to a host physical

address. The memory address translation from the

VM’s physical addresses to the host’s physical addresses

will incur additional overhead. Compared with regular

pages, huge pages can help reduce pressures on TLB,

page walk cache, and the page walk penalty. As shown

in Fig.6, the page walk for regular pages traverses four

page table queries, while the page walk for huge pages

touches only three.

Regular Page Translation

After Regular Page Translation

Regular Page Translation

Huge Page Translation

Without Ballooning/
After Hugepage Ballooning

Huge Page Translation

Guest
VA

PT

PT
PT

PT

PT

PT
PT

PT

PT

PT

PT

PT

Guest

QEMU

PT
PT

Guest
VA

Guest
PA

Host
PA

Host
PA

Guest
PA

Guest
PA

Guest
PA

Fig.6. Page translation in host and guest OS.



Sai Sha et al.: Huge Page Friendly Virtualized Memory Management 441

When a huge page is demoted into regular pages in

QEMU due to deflation, accesses to the corresponding

pages in the guest, either the demoted regular pages or

the huge page, can lead to address translation in QEMU

and the host. This layer of translation becomes regular

page translation which costs more. In short, the ex-

isting ballooning mechanism causes QEMU huge pages

to downgrade, which can increase the pressure on TLB

and increase page walk penalty.

3.3 Huge Page Support

We have modified the ballooning mechanism to sup-

port huge pages. Fig.7 shows the framework of huge

page ballooning. The ballooning in QEMU-KVM con-

sists of three parts: the balloon driver in the guest

kernel, the communication between the guest kernel

and the host QEMU, and the balloon module in the

host QEMU. After receiving a ballooning instruction,

QEMU computes the difference between the given bal-

loon size and the existing ballooning size. It then in-

vokes the balloon module to inflate or deflate balloon

according to the difference. The pages exchanged be-

tween the guest balloon driver and the QEMU balloon

module are handled in all three parts in sequence; thus

all of them need to be adjusted to support huge pages.

Kernel

alloc_pages()
adjust_managed_

memory()

VIRTIO_BALLOON DEVICE

(through virtio_bus)

virtio_balloon_handle_output()

qemu_madivse()QEMU

Guest OS

Host 

put_pages()

fill_balloon() leak_balloon()

Fig.7. Framework of ballooning.

In QEMU, information is transmitted through vir-

tio bus, using a signal-slot mechanism similar to Qt,

a cross-platform application framework and widget

toolkit 5○. And the second memory allocation size is

stored in the config file, and the page information

of the specific deployment is saved in a queue. In

our implementation, the page information is updated

to describe a huge page. Related fields include page

frame number, page number, PAGE SHIFT , and

other information. balloon page() is called in func-

tion virtio balloon handle output() to handle the

memory queue in VIRTIO BALLOON DEVICE. Func-

tion balloon page() invokes qemu madvies() to in-

flate or deflate memory. Here we adjust the page size

to add support for huge pages, which means changing

the page size from 4 K to 2 M.

In the guest OS, we mainly modify some parame-

ters of the balloon driver. The structure virtio balloon

holds the main information of the entire balloon mech-

anism, including the page frame number list pfns

passed to the hypervisor and num pfns is used for

counting. VIRTIO BALLOON PAGES PER PAGE

indicates the granularity of the num pfns

count. It is defined as PAGE SIZE >>

V IRTIO BALLOON PFN SHIFT (V BPS), where

PAGE SIZE is 4K (212) and V IRTIO BALLOON

PFN SHIFT = 12, which means V IRTIO BALLO

ON PAGES PER PAGE = 1. When we implement

huge page ballooning, PAGE SIZE has changed from

4K to 2M (221); therefore we set V BPS to 21 to ensure

the correctness of the pfn count.

Functions fill balloon() and leak balloon()

perform the operations for allocating and return-

ing memory respectively. After that, they call

adjust managed memory() to update memory in-

formation. The fill balloon() function re-

quests the page by calling balloon page enqueue()

and leak balloon() releases the page via

balloon page dequeue(). Allocating a regular page is

different from allocating a huge page, using different al-

location functions, different GFP (get free page) masks

and an additional page number order. We change

the page in balloon page enqueue() from a regu-

lar page to a composite page to support huge pages.

The adjust managed memory() function accepts the

changed number of pages as a parameter and com-

pletes the maintenance of memory information such as

the number of pages, MemFree, and MemAvailable. We

modify the changed number of pages in each update

from 1 to 512 as one huge page equals 512 regular

pages.

5○https://https://www.qt.io/, March 2020.



442 J. Comput. Sci. & Technol., Mar. 2020, Vol.35, No.2

4 Dynamic Memory Balancing

Fig.8 shows the framework of the proposed huge

page based dynamic memory balancing system. We

bind each VM to a host physical core. After starting,

the system will monitor the memory access pattern of

each VM and detect their memory phases using the

Intel PMU. When detecting memory imbalance, WSS

estimation is triggered to estimate memory demand of

each VM. After that, Balancer makes memory realloca-

tion strategy and triggers huge page based ballooning

to implement the strategy.

4.1 Memory Phase Detection

An application typical shows different phases of

memory consumption. To identify a proper metric

for memory phase detection, we try several Intel PMU

events and compare their variation trend with the mem-

ory demand. We confirm that DTLB MISS is suitable

as used by Zhao et al. [12] DTLB MISS is the sum

of DTLB LOAD MISS.WALK COMPLETED and

DTLB STORE MISS.WALK COMPLETED. The ab-

solute value of DTLB MISS can vary significantly in

a short period of execution. We use a data smoothing

technique to handle the TLB miss variation [12]. TLB

holds translation tables of virtual addresses to physical

addresses. When VM memory demand increases, a

large number of new virtual/real conversion relation-

ships are generated. And there are no corresponding

entries in TLB; therefore DTLB MISS will increase

significantly. Memory phases can be defined by count-

ing the number of TLB failures during the program’s

run time.

In our implementation, we monitor DTLB MISS of

each VM every 0.1 s. To avoid the interference of small

TLB miss counts, we only consider DTLB MISS larger

than 5 000 within a monitoring window. By saving the

average of the recent k DTLB MISS counts for each

VM, we compare the current average value with the

mean of the previous k average values, noted as ratio.

We define an upper and a lower threshold to determine

memory phase. If the ratio of a VM lies out of the

range, we consider that the VM enters a new phase

and the system will check the memory usage of the VM

by sending an SSH request. Once a VM has insufficient

memory, the Controller will start memory tracking to

estimate the WSSs of all VMs.

4.2 VM Memory Demand Prediction

In a huge page environment, the amount of mem-

ory dispatched can reach gigabyte level and the huge

page swap of a VM can degrade the performance signifi-

cantly. To eliminate memory imbalance between VMs,

we firstly need to accurately predict the memory de-

mand of each VM.

We classify a VM’s current memory phase as two

states: stable and unstable. We use DTLB MISS to de-

Controller

Core 0 Core 1

VM 1 

Phase 
Detection

WSS 
Calculation

VM 0

Hot Set Expected

WSS

Balancer

Yes

WSS

LRU

Ballooning

Intel PMU
DTLB
Miss

Data SignalControl Signal

Hypervisor

Hardware

MRC

Ballooning Driver

Fig.8. System overview of dynamic memory balancing.



Sai Sha et al.: Huge Page Friendly Virtualized Memory Management 443

termine the memory states. If the ratios did not exceed

the threshold in the last k memory phases as described

in Subsection 4.1, the memory state is stable; otherwise,

it is unstable. For each VM, we consider three cases. 1)

A VM is swapping. 2) There is no swapping, the VM’s

memory state is stable, and the huge page ratio is over

90%. 3) There is no swapping, but the memory state is

unstable or the huge page ratio is less than 90%. The

pages in the swap area are regular pages; therefore once

“swap in” occurs, regular pages will remain in the VM

until they are released by the program. Experiments

show that if the huge page ratio is less than 90%, the

accuracy of huge page based WSS estimation decreases

significantly.

In the first case, the memory of the VM is seri-

ously insufficient and swap occurs; therefore the ex-

pected memory is the sum of the current VM’s memory

plus the amount of swapped out memory. In the sec-

ond case, we construct an MRC to calculate WSS as

described in Section 2. In the third case, the memory

demand of VM is uncertain, but it is temporarily suffi-

cient because no swap occurs. We predict that the VM

does not need more memory and the memory demand

remains unchanged.

4.3 Memory Balancing Algorithm

According to whether the total available memory of

VMs is sufficient, there are two cases. If the sum of the

memory expected by all VMs is less than or equal to

total available memory, then the memory is allocated

as expected. And if there is still surplus memory, it is

evenly distributed to each VM in proportion to the ex-

pected memory. When the host machine cannot meet

all VMs’ memory demands, we use a dynamic program-

ming algorithm to generate a memory allocation scheme

that minimizes the overall number of page faults as used

by Wang et al. [9]

The objective is to achieve the best overall perfor-

mance. The state transfer function for the dynamic

programming algorithm is as follows:

Miss[i, j]

= min{Miss[i− 1, j − k] + PMi[k]|Li 6 k 6 Hi},

where Miss[i, j] is the minimum number of page faults

when the first i VMs are allocated a total of j MB.

Li and Hi are the lower and the upper bounds of VM

i’s memory size, respectively. PM i[k] is the number

of page faults when VM i obtains k MB, which can

be derived from the VM’s MRC. Note that we do not

apply the dynamic programming algorithm to all VMs

but only to the VMs that are not under swap process.

The LRU-based WSS estimation is only triggered for

the VMs that are not swapping.

5 Evaluation

5.1 Experimental Setup

Our experiments are conducted on an Intelr I7

6700 machine, with 32 GB of physical memory and four

3.4 GHz cores. Both the host and the guest OSs run

CentOS 7.0. The kernel versions are 4.2.4 for the host

and 4.18.12 for the guests, respectively. The hypervisor

is QEMU-KVM version 2.4.9. All the experiments are

conducted on the KVM, with hardware assisted mode

enabled. Both the host and the guests enable transpar-

ent huge pages.

5.2 Benchmarks

As our huge page based memory management fo-

cuses on applications with large memory consumption,

we choose a set of 15 benchmarks that require mem-

ory no less than 1 GB. Table 1 lists the details of our

benchmarks, including their peak memory consumption

and execution time when running on a single VM with

sufficient memory. In an actual multi-virtual machine

environment, the execution time will be longer due to

interference among VMs.

Table 1. Benchmarks

Label Benchmark Memory (GB) Time (s)

A 602.gcc s 7.5 484

B 603.bwaves s 11.6 7 902

C 605.mcf s 3.8 522

D 607.cactusBSSN s 6.9 1 911

E 619.lbm s 3.3 945

F 631.deepsjeng s 7.0 308

G 638.imagick s 4.3 21 800

H 649.fotonik3d s 9.8 878

I 654.roms s 10.6 2 957

J Graph-4 3.4 17

K Graph-5 4.5 24

L Memcached 4.1 23

M Numeric calculate 1.0 430

N Sequential read 5.0 300

O Sequential write 5.0 300

P Random write 5.0 300

Q Random read 5.0 300

R Random read write 1.8 40



444 J. Comput. Sci. & Technol., Mar. 2020, Vol.35, No.2

The benchmarks from A to I are picked from SPEC-

CPU 2017. Graph and Memcached are chosen from

CloudSuite. Graph’s peak memory demand is based

on the number of input nodes. J and K are set to 4

million and 5 million nodes, respectively. M to R are

hand-coded micro-benchmarks. M is a CPU intensive

program consisting of a series of numeric calculations.

N to R are memory-intensive programs with different

memory access characteristics.

5.3 Evaluation of WSS Estimation

5.3.1 MRC Accuracy

We first evaluate the accuracy of our MRC con-

struction method. We use the Intel Pin to simulate

benchmark execution. Pin is a dynamic binary instru-

mentation framework for the IA-32, x86-64 and MIC

instruction-set architectures that enables the creation

of dynamic program analysis tools. We use Pin to sim-

ulate the execution of a benchmark and get the trace

of the memory accesses, collect its RDD, and construct

an MRC. We then compare it with the MRC generated

in KVM through our MRC construction method. It

takes the Pin tool hundreds to thousands hours to sim-

ulate a selected benchmark to completion. We instead

only simulate 50 billion memory instructions of each

chosen benchmark. We fast forward 10 billion mem-

ory instructions to bypass the warming-up phase. For

fair comparison, we also track the first 10 to 60 billion

instructions in KVM.

The experimental results are shown in Fig.9. The

three miss ratio curves in each sub figure are the MRC

constructed through Pin simulation (PIN), and the

MRCs restored in KVM by the approach described in

Subsection 2.3, with a fixed hot set (KVM FHS MOD)

and with a dynamic hot set (KVM DHS MOD). The

fixed hot set size is set to 40 MB, while the dynamic

hot set is set to 500 MB to start. The results show that

the restored MRCs highly overlap with the accurate

MRCs.

It can be seen that the MRCs of the three sets of

experiments are highly coincident when the memory

size is large relatively. This suggests that our memory

tracking system is able to track almost all the long reuse

distances. The error of using DHS is a bit larger than

that of using FHS, as DHS starts with a much larger

hot set size. We also can observe a significant estima-

tion error for memory sizes from 0 to about half of their

dataset size. The error is mostly from small memory

sizes as our approach approximates the distribution of

small distances. The other error source is from the diffe-

rent testing environments between Pin and KVM. In

Pin, we assume that all memory instructions will access

huge pages. However, Linux THP cannot achieve 100%

huge page utilization. We notice many regular pages

accesses in KVM. The MRC obtained by Pin counts

the reuse distances of those regular page accesses, which

are not tracked in KVM. Another source of errors comes

from extra huge pages monitored by KVM. Our mem-

ory tracking system monitors the memory accesses of

the whole VM. As a result, the tracked huge pages in-

clude those from the OS and other processes running in

the guest OS. In practice, the error for small memory

sizes has little impact as we seldom allocate memory

less than a half of an application’s dataset size.

5.3.2 Overhead of Memory Tracking System

We evaluate the memory tracking system overhead

with both a fixed-size hot set (FHS) and a dynamic hot

set (DHS) and Table 2 presents the results. The second

column WSS lists the WSS of each benchmark. “Run-

time base” shows the baseline execution time without

memory tracking, except for memcached where the ave-

rage access latency is shown. “Runtime FHS” presents

the execution time when memory tracking with a fixed-

size hot set is turned on. We set the hot set size for each

benchmark to half its WSS. “Overhead FHS” lists the

percentage slowdown due to memory tracking with a

fixed-size hot set size. “RD count FHS” is the total

number of reuse distances tracked by memory track-

ing, which is also the page fault count introduced by

memory tracking. The last three columns present the

results of runtime, overhead, and reuse distance count

respectively when applying a dynamic hot set in mem-

ory tracking.

The results show that the average overhead of our

memory tracking method with FHS is 74.83% and that

with DHS is 1.44%. In the FHS case, 631.deepsjeng s

stands out with an overhead of 729% and tracked reuse

distances of 136 million, as most of its reuse distances

are long ones. Except for this workload, the average

overhead of the rest can reach 1.93%. By using a dy-

namic hot set, the page faults added by our memory

tracking system are all reduced to a 100s of thousand

level. Over half of the benchmarks show an overhead

of within 1%. The performance of 631.deepsjeng s is

highly improved by DHS when compared with FHS,

but it still has a slowdown of 7.2%. Most of its reuse

distances appear at its peak memory usage time, and



Sai Sha et al.: Huge Page Friendly Virtualized Memory Management 445

PIN
KVM_FHS_MOD
KVM_DHS_MOD

PIN
KVM_FHS_MOD
KVM_DHS_MOD

PIN
KVM_FHS_MOD
KVM_DHS_MOD

PIN
KVM_FHS_MOD
KVM_DHS_MOD

PIN
KVM_FHS_MOD
KVM_DHS_MOD

PIN
KVM_FHS_MOD
KVM_DHS_MOD

PIN
KVM_FHS_MOD
KVM_DHS_MOD

PIN
KVM_FHS_MOD
KVM_DHS_MOD

PIN
KVM_FHS_MOD
KVM_DHS_MOD

PIN
KVM_FHS_MOD
KVM_DHS_MOD

0 2 4 6

Memory (GB)

(a)

8

0 2 4 6

Memory (GB)

(e)

8

0 1 2 3

Memory (GB)

(b)

4

0 1 2 3

Memory (GB)

(d)

4

0 1 2 3

Memory (GB)

(i)

4

10 12

0 2 4 6

Memory (GB)

(g)

8 10 12 0 2 4 6

Memory (GB)

(h)

8 10 12

0.0 0.5 1.0 1.5

Memory (GB)

(f)

2.0

0.0 0.5 1.0 1.5

Memory (GB)

(j)

2.0

2.5

0 1 2 3

Memory (GB)

(c)

4 5 6

M
is

s 
R

a
ti
o

100

10-1

10-2

10-3

10-4

10-5

10-6

10-7

10-8

M
is

s 
R

a
ti
o

100

10-1

10-2

10-3

10-4

10-5

10-6

10-7

10-8

M
is

s 
R

a
ti
o

100

10-1

10-2

10-3

10-4

10-5

10-6

10-7

10-8

M
is

s 
R

a
ti
o

100

10-1

10-2

10-3

10-4

10-5

10-6

10-7

10-8

M
is

s 
R

a
ti
o

100

10-1

10-2

10-3

10-4

10-5

10-6

10-7

10-8

M
is

s 
R

a
ti
o

100

10-1

10-2

10-3

10-4

10-5

10-6

10-7

10-8

M
is

s 
R

a
ti
o

100

10-1

10-2

10-3

10-4

10-5

10-6

10-7

10-8

M
is

s 
R

a
ti
o

100

10-1

10-2

10-3

10-4

10-5

10-6

10-7

10-8

M
is

s 
R

a
ti
o

100

10-1

10-2

10-3

10-4

10-5

10-6

10-7

10-8

M
is

s 
R

a
ti
o

100

10-1

10-2

10-3

10-4

10-5

10-6

10-7

10-8

Fig.9. Comparison of MRC in PIN and KVM. The three curves in each sub-figure present the MRC in PIN, the MRC restored in
KVM with a fixed 40MB hot set, and that with a dynamic hot set. The x-axis presents the memory size in GB, and the y-axis presents
the miss ratio in a logarithmic scale of 10. Benchmark graph only accesses 1.7 GB of memory in 50 billion memory instructions. (a)
603.bwaves s. (b) 605.mcf s. (c) 607.cactusBSSN s. (d) 619.lbm s. (e) 631.deepsjeng s. (f) 638.imagick s. (g) 649.fotonik3d s. (h)
654.roms s. (i) Memcached. (j) Graph.



446 J. Comput. Sci. & Technol., Mar. 2020, Vol.35, No.2

Table 2. Memory Tracking Overhead

Benchmark WSS Runtime Runtime Overhead RD Count Runtime Overhead RD Count

(GB) Base (s) FHS (s) FHS (%) FHS DHS (s) DHS (%) DHS

603.bwaves s 11.6 7 902.00 8 716.00 10.30 395 751 7 957.00 0.70 203 287

605.mcf s 3.8 522.00 529.00 1.42 518 476 527.00 1.07 376 805

607.cactusBSSN s 6.9 1 912.00 1 923.00 0.60 834 170 1 916.00 0.21 33 184

619.lbm s 3.3 945.00 961.00 1.74 1 834 941 956.00 1.29 702 675

631.deepsjeng s 7.0 308.00 2 245.00 729.00 136 983 318 330.00 7.20 783 437

638.imagick s 4.3 21 800.00 21 861.00 0.28 5 317 790 21 851.00 0.23 672 930

649.fotonik3d s 9.8 878.00 897.00 2.17 494 227 885.00 0.83 202 348

654.roms s 10.6 2 957.00 2 980.00 0.74 686 323 2 978.00 0.72 629 374

Graph 3.4 866.00 882.00 1.80 423 074 880.00 1.60 373 857

Memcached 4.1 22.96 23.02 0.26 723 826 23.00 0.20 213 465

Average overhead 74.83 1.44

Note: For Graph, we run graph 50 times with four million nodes. For Memcached, we use average latency (ms) to evaluate overhead.

dynamically increasing the hot set size cannot reduce

the reuse distance count efficiently.

5.4 Evaluation of Huge Page Ballooning

5.4.1 Ballooning Overhead

We compare the overhead of our proposed huge page

ballooning (HPB) with the original regular page bal-

looning (RPB). We measure both execution time and

TLB misses. Compared with RPB, HPB shows a great

advantage in its execution time. We trigger ballooning

when running the random write program in our micro-

benchmark suite. We inflate the guest balloon by a

fixed amount and then deflate the same amount. The

result is shown in Fig.10. HPB takes 0.42 ms when in-

flating 256 MB of memory, and 46 ms for 10 GB. In con-

trast, RPB takes 92 ms to balloon 256 MB and 3 336 ms

for 10 GB. The results show that HPB runs 70 times

faster than RPB. It takes RPB seconds to balloon giga-

bytes of memory, while HPB only spends dozens of mil-

liseconds. Fig.11 compares the TLB miss count. The

miss counts caused by HPB are actually 3 to 4 times

lower than RPB.

In the Linux kernel, the size of a huge page is 2 MB

and a regular page is 4 KB. This means that the OS

using regular pages needs 512 regular page TLB entries

to cover a huge page. The OS needs to go through 512

TLB misses and 512 page faults to map 2 MB of ap-

plication space to physical memory. By utilizing huge

pages, the system will spend less time on page walk and

also trigger less TLB misses.

Huge Balloon Inflate

Huge Balloon Deflate

Regular Balloon Inflate

Regular Balloon Deflate

3 500

3 000

2 500

2 000

1 500

1 000

500

0B
a
ll
o
o
n
in

g
 T

im
e
 (

m
s)

0 1 024 2 048 3 072 4 096

Memory Ballooning (MB)

5 120 6 144 7 168 8 192

Fig.10. Ballooning execution time comparison.

8

7

6

5

4

3

2

1

0

T
L
B

 M
is

s 
C

o
u
n
t 

p
e
r 

O
p
e
ra

ti
o
n
 (
Τ
1
0

4
)

0 1 024 2 048 3 072 4 096

Memory Ballooning (MB)

5 120 6 144 7 168 8 192

Huge Balloon Inflate Huge Balloon Deflate

Regular Balloon Inflate Regular Balloon Deflate

Fig.11. Ballooning TLB miss count comparison.

5.4.2 Varying Workloads and Varying Phases

To further evaluate the performance of HPB, we de-

sign two sets of experiments, varying workloads and

varying phases. For varying workloads, we consider

that different benchmarks with different working set

sizes will run on the same VM. After the first bench-

mark finishes, the host will first adjust the guest mem-



Sai Sha et al.: Huge Page Friendly Virtualized Memory Management 447

ory to the minimum amount of 512 MB, and then re-

store the memory to the second benchmark’s work-

ing set size. We use Intel PMU to collect the TLB

miss count and other CPU events to monitor the sec-

ond benchmark’s performance. We also analyze the

effect of ballooning on the guest memory by counting

its huge page ratio. Since the first benchmark serves

as a warming-up benchmark, we create a warming-up

workload by mixing random reads and random writes.

The new workload consumes a maximum of 5 GB of

memory. For varying phases, we consider that a bench-

mark’s memory demand varies during different phases

of its execution. We detect phases and adjust the guest

memory according to its current memory demand. This

is the main objective of ballooning to improve memory

utilization in VMs. Our micro-benchmark suite is de-

signed to have clear phases and fits well for this set of

experiments.

We run 15 benchmarks after executing the warming-

up micro-benchmark. We measure their execution

time under three settings: no ballooning, RPB, and

HPB. “No ballooning” does not change memory alloca-

tion between the warming-up workload and the testing

workload. Table 3 lists the TLB miss count increases

and the percentages of runtime overhead when com-

pared with no ballooning. The results show that these

benchmarks suffer a significant number of TLB misses

with RPB. HPB results in a minimal performance im-

pact with a maximum overhead of 1%, while RPB can

cause up to 9% slowdown. As discussed in Section 3,

the disparity of TLB miss count between huge page

and regular page ballooning comes from QEMU. We

Table 3. TLB Miss & Slowdown Compared with No Ballooning

Benchmark TLB Miss Increment (%) Slowdown (%)

RPB HPB RPB HPB

A 6.45 2.03 1.93 0.01

B 1 839.88 19.42 0.06 0.03

C 4 420.49 70.49 8.51 0.02

D 1 497.48 3.39 7.13 0.27

E 21 733.39 7.25 1.87 0.02

F 52.02 0.26 6.02 0.05

G 667.01 19.49 0.12 0.06

H 365.43 6.71 0.41 0.04

I 911.97 2.64 0.91 0.05

J 2 654.40 8.39 1.89 0.33

L 53.41 0.65 0.59 0.09

N 17.80 0.30 1.51 1.21

O 31.57 0.01 2.26 0.11

P 528.07 15.44 1.21 1.08

Q 530.80 26.40 2.07 0.08

measure the huge page utilization of the host OS and

find that after HPB, the QEMU process still uses huge

pages. However, after regular page ballooning, the bal-

looned part of QEMU process’ memory uses 100% reg-

ular pages.

We find that most of the selected workloads do not

show clear phases or their phases fluctuate frequently.

We instead use the micro-benchmarks to evaluate the

impact of ballooning on varying application phases. We

inflate and deflate the balloon in the guest according

to the actual demand of the micro-benchmarks in the

current phase. The guest OS receives 5 GB of mem-

ory when the benchmark consumes 5 GB, and down

to 1 GB when it only needs 1GB. We set the micro-

benchmarks to alternate their memory demands 10

times during their execution. Fig.12 shows the nor-

malized TLB misses and runtime slowdown over the

“no ballooning” baseline. HPB causes minimal run-

time and TLB overhead while regular page ballooning

can cause over 150% slowdown. The results show that

sequential benchmarks perform much better than ran-

dom benchmarks, due to TLB prefetching and locality.

It also shows that random write performs worse than

random read, because write operation modifies TLB

entry’s dirty flag which leads to update of TLB. With

HPB, the TLB miss count of random read and write is

reduced by 89.6% and 62.7% respectively.

ran
dom

_re
ad

seq
uent

ial_
rea

d

ran
dom

_wirte

seq
uent

ial_
wirte

(a)

No Ballooing

Huge Page Ballooning

Regular Page Ballooning

No Ballooing

Huge Page Ballooning

Regular Page Ballooning

N
o
rm

a
li
z
e
d
 T

L
B

M
is

s 
(%

)

1 000

800

600

400

200

0

N
o
rm

a
li
z
e
d

R
u
n
ti
m

e
 (

%
)

300

250

200

150

100

50

0

ran
dom

_re
ad

seq
uent

ial_
rea

d

ran
dom

_wirte

seq
uent

ial_
wirte

(b)

Fig.12. Normalized TLB misses and performance slowdown.



448 J. Comput. Sci. & Technol., Mar. 2020, Vol.35, No.2

5.5 Evaluation of Memory Balancing

5.5.1 Experimental Design

The design goal of the memory balancing system

includes: 1) if the total available memory of VMs is

sufficient, the system can quickly find and adjust mem-

ory effectively when there is memory imbalance during

the execution; 2) if insufficient, the system can ensure

that the original memory-rich VMs still have sufficient

memory, while free memory will be reclaimed and real-

located to out-of-memory VMs, to improve the overall

memory utilization and performance.

We conduct eight sets of experiments. Table 4 shows

the workloads and initial memory allocations of the

VMs of each group. The benchmarks of each work-

load is desrcibed in Table 1. In order to demonstrate

the effect of VM memory phases, we stitch multiple

benchmarks to run on a VM in order. The overall ex-

perimental results of all groups are shown in Table 5.

Table 4. Experimental Configuration

Group VM ID Benchmark Memory (GB)

Best B&D

1 VM1 NM 5.3 3.3

VM2 MN

2 VM1 EFCC 7.3 5.7

VM2 FECF

3 VM1 FCCC 7.3 4.9

VM2 CFCC

VM3 CCFC

VM4 CCCF

4 VM1 HEE 10.2 5.8

VM2 EHE

VM3 EEH

5 VM1 ACCC 7.8 6.4

VM2 CCAC 7.8

VM3 DC 7.2

6 VM1 ECF 7.0 6.3

VM2 EFE

VM3 EFE

7 VM1 J 3.7 2.7

VM2 R

VM3 R

8 VM1 R 4.8 3.0

VM2 K

VM3 R

Note: The benchmark is from Table 1. B&D: baseline and dy-
namic balancing.

For each set of experiments, there are two con-

trol groups: best and baseline, and one experimental

group named as balancing. “Best” presents the re-

sults when each VM is provided with enough mem-

ory. In “baseline”, the memory provided remains un-

changed during the entire execution process. In “bal-

ancing”, we use our dynamic huge pages memory bal-

ancing system to adjust VMs’ memory sizes. In our

experiments, the initial memory size for each VM in

“best” is set to its peak memory, as shown in Table 1.

In “baseline” and “balancing”, the initial memory size

(IMS) is set to the same value, which is calculated as:

IMS = max {Mi|0 6 i 6 k} /n + C, where n is the

number of VMs, k is the execution time, and Mi is

the sum of used memory of all VMs at moment i. In

addition, the VM itself needs a certain amount of mem-

ory to start and it also reserves some free memory. We

represent those two parts of memory as a constant C.

According to the experience, we set C to 300 MB in our

experiments.

Table 5. Memory Balancing Slowdown

Group AvgSlowdown FairSlowdown MaxSlowdown

1 1.08 1.08 1.09

2 1.04 1.04 1.04

3 1.03 1.02 1.04

4 1.03 1.03 1.04

5 1.05 1.04 1.06

6 1.05 1.04 1.07

7 1.41 1.34 3.44

8 1.86 1.35 3.52

5.5.2 Experimental Results with Multiple VMs

In the first six experiments, the total memory of

VMs is sufficient, but memory imbalance occurred dur-

ing the execution. We take the first set of experiments

as an example.

We track the changes in available memory (to-

tal memory) and used memory (used memory) for each

VM as shown in Fig.13. Initially, both VMs run with-

out out-of-memory. As the memory requirements of

the two VMs continue to increase, VM2 has sufficient

memory but VM1 begins to swap. Memory balancing is

triggered. According to our memory balancing strategy,

the expected memory size of VM1 is the current mem-

ory and the amount of swap. VM2’s expected memory

is measured using huge page WSS estimation. Then,

ballooning based on huge pages is triggered.

During the balancing process, VMs may experience

multiple rounds of ballooning, because the VM that

lacks memory may not get enough memory in the first

round. The system will detect memory imbalance again



Sai Sha et al.: Huge Page Friendly Virtualized Memory Management 449

0 100 200 300 400 500

5 000

4 000

3 000

2 000

1 000

0

Time (s)

M
e
m

o
ry

 (
M

B
)

600 700 800 900

VM1_total_memory
VM1_used_memory
VM2_total_memory
VM2_used_memory

Fig.13. Memory balancing between two VMs.

and continue to replenish the memory for the VM until

the memory is sufficient. As shown in Fig.13, at about

half way of execution cycle, the second memory imbal-

ance occurs, and the balancing process is roughly the

same as the first time.

Compared with “baseline”, the execution time of

VM1 and VM2 in memory balancing, is reduced by

97.5% and 97.4%, respectively. Compared with best,

the average slowdown of balancing is only 8%. The

average slowdown (AvgSlowdown) for the other groups

is shown in Table 5.

5.5.3 Memory Overcommitment

In an actual multi-VM system, each VM is indepen-

dent, and it is difficult to ensure that there will be no

shortage of total physical memory due to a sudden in-

crease in memory requirement of an individual VM. In

this case, memory balancing follows the principle be-

low: we try to claim memory from other VMs to the

VM short of memory, while we ensure that the perfor-

mance of other VMs does not drop significantly.

We conduct two sets of experiments (groups 7 and 8)

and use the group 7 as an example. As shown in Fig.14,

as the memory demand grows, VM1 runs out of mem-

ory and begins to swap. The memory balancing system

firstly estimates memory demand of each VM and finds

memory overcommitment. Under the condition of the

current total memory shortage, memory balancing uses

the dynamic programming algorithm to calculate the

optimal memory allocation scheme. Memory balanc-

ing recycles as much memory as possible from VM2 and

0 7 14 21 28 35 42 49 56 63 70

Time (s)

(a)

0 7 14 21 28 35 42 49 56 63 70

Time (s)

(b)

4 000

3 000

2 000

1 000

0

M
e
m

o
ry

 (
M

B
)

4 000

3 000

2 000

1 000

0

M
e
m

o
ry

 (
M

B
)

VM1_total_memory
VM1_used_memory

VM2_total_memory
VM2_used_memory

0 7 14 21 28 35 42 49 56 63 70

Time (s)

(c)

4 000

3 000

2 000

1 000

0

M
e
m

o
ry

 (
M

B
) VM3_total_memory

VM3_used_memory

Fig.14. Multi-VM memory balancing with memory overcommit-
ment. (a) VM1. (b) VM2. (c) VM3.



450 J. Comput. Sci. & Technol., Mar. 2020, Vol.35, No.2

VM3, and then allocates it to VM1 at 23 s. At 45 s,

the programs on VM2 and VM3 finish, and the two

VMs have more free memory. At this time, part of the

memory of the two VMs is reallocated to VM1, which

further alleviates the memory shortage of VM1.

Obviously, the performance degradation caused by

the lack of total physical memory cannot be completely

solved, but the loss is controlled through dynamic mem-

ory balancing. Our experiments show that compared

with “best”, the average performance loss of “baseline”

is 23% higher than memory balancing, which means

dynamic huge page memory balancing reduces the per-

formance loss significantly.

5.5.4 Evaluation of Fairness and Quality of Service

We use two metrics, FairSlowdown and MaxSlow-

down, to evaluate the fairness and the quality of ser-

vice of memory balancing respectively. FairSlowdown

is the harmonic average slowdown of memory balanc-

ing compared with “best” of all VMs, which balances

both fairness and performance between different VMs.

MaxSlowdown emphasizes QoS and performance, which

represents the upper bound of the performance losses of

the balancing programs. It is the maximum slowdown

of each VM with memory balancing when compared

with “best”.

As shown in Table 5, the FairSlowdown and MaxS-

lowdown of each group from 1 to 6 are less than 1.1.

This indicates that the dynamic allocation achieves bal-

anced and good performance of each VM when the total

available memory is sufficient. However, the two indi-

cators in group 7 and group 8 are very high. The high

FairSlowdown indicates that the performance of each

VM is not balanced. In order to achieve the overall op-

timal performance, there will be some performance loss

for part of VMs when the total memory is insufficient.

This can also be demonstrated by MaxSlowdown.

6 Related Work

WSS estimation is a core part for a dynamic mem-

ory balancing system. In a regular page environment,

the typical method of estimating an application’s WSS

is to construct an MRC by measuring reuse distances

and construct an LRU histogram [7, 8, 13–16]. Another

method is to derive an MRC using a reuse time his-

togram with the footprint theory [17] and the AET

theory [18, 19]. Compared with these two technologies,

reuse distance based methods provide a more accurate

MRC with a larger runtime overhead.

With respect to memory balancing, the most closely

related work is that focusing on dynamic memory

management for virtualized systems using ballooning

techniques [9, 10, 20–24]. They are all designed for mem-

ory management via 4 KB regular pages, while our work

focuses on applications with large memory consump-

tion that can benefit from huge pages instead of regu-

lar pages. For example, memory balancer (MEB) pro-

posed by Wang et al. [9], dynamically adjusts virtual

machines’ memory based on ballooning in Xen. MEB

detects memory phases, predicts the memory need of

each VM via a least recently used (LRU) histogram,

and uses a dynamic programming algorithm to adjust

memory.

In commercial virtual machines, there also exist cor-

responding memory allocation mechanisms. For exam-

ple, in VMware’s memory management mechanism [11],

according to the available memory margin, host mem-

ory has four states, high, soft, hard and low. When the

available memory reaches the high state, the balloon-

ing or Swap mechanism will not be started. When it is

between the high state and the soft state, the balloon-

ing mechanism is activated. The host uses the drivers

in VMware tools to scan a VM’s memory usage regu-

larly to see how much active memory it has. The host

will calculate the shares-per-page ratio of each VM, and

start the balloon driver for the virtual machine with the

smallest share of shares-per-page ratio. VMware’s bal-

looning mechanism is mainly to ensure that the host

has enough free memory to facilitate timely allocation.

However, its ballooning-based recycling process is ex-

tremely slow and usually takes a few minutes. This does

not meet the timeliness requirement of virtual machine

memory provisioning, especially for VMs running large

working set programs.

7 Conclusions

With the continuous development of virtualization,

the memory management becomes more important for

applications with a large amount of memory consump-

tion. This paper proposed an efficient memory balanc-

ing system for large working set applications in a multi-

virtual machine environment. The results showed that

our system can effectively reallocate memory among

virtual machines while maintaining the overall VMs’

performance with low overheads.

In the future, we plan to implement a memory pool,

which helps reserve memory for future bursty virtual

machine memory demand. As long as a swap process is



Sai Sha et al.: Huge Page Friendly Virtualized Memory Management 451

detected for a VM, the reserved memory will be given

to the VM before the normal memory balancing pro-

cedure starts in order to mitigate the swap overhead.

The existing swap mechanism does not fully support

huge pages. We intend to implement a more huge page-

friendly swap mechanism to further improve the system

performance.

References

[1] Khalidi Y A, Talluri M, Nelson M N, Williams D.

Virtual memory support for multiple pages. Technical

Report, Sun Microsystems Laboratories, Inc., 1993.

http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=

AA2CA3D6205E02FDA1FC545D691C5C20?doi=10.1.1.32.

6162&rep=rep1&type=pdf, Sept. 2019.

[2] Arcangeli A. Transparent hugepage support. In Proc. the

2010 KVM Forum, August 2010.

[3] Wang X, Luo T, Hu J, Wang Z, Luo Y. Evaluating the

impacts of hugepage on virtual machines. Science China

Information Sciences, 2017, 60(1): Article No. 12103.

[4] Denning P J. The working set model for program beha-

vior. In Proc. the 1st ACM Symposium on Operating Sys-

tem Principles, October 1967, Article No. 15.

[5] Hu J, Bai X, Sha S et al. Working set size estimation

with hugepages in virtualization. In Proc. the 2018 IEEE

ISPA/IUCC/BDCloud/SocialCom/SustainCom, Dec. 2018,

pp.501-508.

[6] Hu J, Bai X, Sha S et al. HUB: Hugepage ballooning in

kernel-based virtual machines. In Proc. International Sym-

posium on Memory Systems, Oct. 2018, pp.31-37.

[7] Mattson R L, Gecsei J, Slutz D R, Traiger I L. Evaluation

techniques for storage hierarchies. IBM Systems Journal,

1970, 9(2): 78-117.

[8] Waldspurger C A, Park N, Garthwaite A T, Ahmad I.

Efficient MRC construction with SHARDS. In Proc. the

13th USENIX Conference on File and Storage Technolo-

gies, February 2015, pp.95-110.

[9] Wang Z, Wang X, Hou F, Luo Y, Wang Z. Dynamic memory

balancing for virtualization. ACM Transactions on Archi-

tecture and Code Optimization, 2016, 13(1): Article No. 2.

[10] Zhao W, Wang Z, Luo Y. Dynamic memory balancing for

virtual machines. ACM SIGOPS Operating Systems Re-

view, 2009, 43(3): 37-47.

[11] Waldspurger C A. Memory resource management in

VMware ESX server. ACM SIGOPS Operating Systems Re-

view, 2002, 36(5): 181-194.

[12] Zhao W, Jin X, Wang Z, Wang X, Luo Y, Li X. Low cost

working set size tracking. In Proc. the 2011 USENIX An-

nual Technical Conference, June 2011, Article No. 14.

[13] Zhou P, Pandey V, Sundaresan J, Raghuraman A, Zhou Y,

Kumar S. Dynamic tracking of page miss ratio curve for

memory management. ACM SIGOPS Operating Systems

Review, 2004, 38(5): 177-188.

[14] Wires J, Ingram S, Drudi Z, Harvey N J, Warfield A, Data

C. Characterizing storage workloads with counter stacks. In

Proc. the 11th USENIX Symposium on Operating Systems

Design and Implementation, October 2014, pp.335-349.

[15] Niu Q, Dinan J, Lu Q, Sadayappan P. PARDA: A fast

parallel reuse distance analysis algorithm. In Proc. the 26th

International Parallel and Distributed Processing Sympo-

sium, May 2012, pp.1284-1294.

[16] Tam D K, Azimi R, Soares L B, Stumm M. RapidMRC: Ap-

proximating L2 miss rate curves on commodity systems for

online optimizations. In Proc. the 14th International Confe-

rence on Architectural Support for Programming Languages

and Operating Systems, March 2009, pp.121-132.

[17] Xiang X, Bao B, Ding C, Gao Y. Linear-time modeling of

program working set in shared cache. In Proc. the 2011 In-

ternational Conference on Parallel Architectures and Com-

pilation Techniques, October 2011, pp.350-360.

[18] Hu X, Wang X, Zhou L, Luo Y, Ding C, Wang Z. Ki-

netic modeling of data eviction in cache. In Proc. the 2016

USENIX Annual Technical Conference, June 2016, pp.351-

364.

[19] Hu X, Wang X, Zhou L, Luo Y, Wang Z, Ding C, Ye C. Fast

miss ratio curve modeling for storage cache. ACM Trans-

actions on Storage, 2018, 14(2): Article No. 12.

[20] Xiao Z, Song W, Chen Q. Dynamic resource allocation using

virtual machines for cloud computing environment. IEEE

Transactions on Parallel and Distributed Systems, 2012,

24(6): 1107-1117.

[21] Tasoulas E, Haugerund H, Begnum K. Bayllocator: A

proactive system to predict server utilization and dynam-

ically allocate memory resources using Bayesian networks

and ballooning. In Proc. the 26th Large Installation Sys-

tem Administration Conference on Strategies, Tools, and

Techniques, December 2012, pp.111-122.

[22] Gordon A, Hines M, Silva D, Ben-Yehuda M, Silva M,

Lizarraga G. Ginkgo: Automated, application-driven mem-

ory overcommitment for cloud computing. In Proc. the 2011

Workshop on Runtime Environments/Systems, Layering,

and Virtualized Environments, May 2011.

[23] Nitu V, Kocharyan A, Yaya H, Tchana A, Hagimont D, Ast-

satryan H. Working set size estimation techniques in virtu-

alized environments: One size does not fit all. Proceedings

of the ACM on Measurement and Analysis of Computing

Systems, 2018, 2(1): Article No. 19.

[24] Liu H, Jin H, Liao X, Deng W, He B, Xu C. Hotplug

or ballooning: A comparative study on dynamic memory

management techniques for virtual machines. IEEE Trans-

actions on Parallel and Distributed Systems, 2015, 26(5):

1350-1363.

Sai Sha is a Ph.D. candidate in the

School of Electronics Engineering and

Computer Science, Peking University,

Beijing. Before that, he received his

Bachelor’s degree in computer science

from Beijing Institute of Technology,

Beijing, in 2018. His research interests

include system software, virtualization,

domestic operating system, and deep learning.



452 J. Comput. Sci. & Technol., Mar. 2020, Vol.35, No.2

Jing-Yuan Hu is an assistant re-

searcher at the Institute of Information

Engineering, Chinese Academy of

Sciences, Beijing. He got his Ph.D.

degree in computer science from Peking

University, Beijing, in 2019. His cur-

rent research interests include system

virtualization, memory management,

data mining and information security.

Ying-Wei Luo received his Ph.D.

degree in computer science from Peking

University, Beijing, in 1999. He is a

full professor of computer science in the

School of Electronics Engineering and

Computer Science (EECS) in Peking

University, Beijing. His research inter-

ests include operating system, system

virtualization, and cloud computing.

Xiao-Lin Wang received his

Ph.D. degree in computer science from

Peking University, Beijing, in 2001.

He is now a full professor of School of

Electronics Engineering and Computer

Sciences, Peking University, Beijing.

His research interests include system

software, system virtualization, and

cloud computing.

Zhenlin Wang received his Ph.D.

degree in computer science in 2004

from the University of Massachusetts,

Amherst. He is now a full professor

of Department of Computer Science,

Michigan Technological University,

Michigan, USA. His research interests

are broadly in the areas of compilers,

operating systems and computer architecture with a focus

on memory system optimization and system virtualization.

He is a recipient of NSF (National Science Foundation)

Career Award.


	1 Introduction
	2 WSS Estimation Based on Huge Pages
	2.1 LRU-Based MRC Construction
	2.2 Hot Set
	2.3 Restoring RDD and Constructing MRC
	2.4 Dynamic Hot Set (DHS)
	2.5 VM Memory Demand Calculation
	2.6 Dynamic Memory Growth

	3 Huge Page Ballooning
	3.1 Ballooning Mechanism
	3.2 Problem Under KVM and QEMU
	3.3 Huge Page Support

	4 Dynamic Memory Balancing
	4.1 Memory Phase Detection
	4.2 VM Memory Demand Prediction
	4.3 Memory Balancing Algorithm

	5 Evaluation
	5.1 Experimental Setup
	5.2 Benchmarks
	5.3 Evaluation of WSS Estimation
	5.3.1 MRC Accuracy
	5.3.2 Overhead of Memory Tracking System

	5.4 Evaluation of Huge Page Ballooning
	5.4.1 Ballooning Overhead
	5.4.2 Varying Workloads and Varying Phases

	5.5 Evaluation of Memory Balancing
	5.5.1 Experimental Design
	5.5.2 Experimental Results with Multiple VMs
	5.5.3 Memory Overcommitment
	5.5.4 Evaluation of Fairness and Quality of Service


	6 Related Work
	7 Conclusions

