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Abstract Neuromorphic computing is considered to be the future of machine learning, and it provides a new way of

cognitive computing. Inspired by the excellent performance of spiking neural networks (SNNs) on the fields of low-power

consumption and parallel computing, many groups tried to simulate the SNN with the hardware platform. However, the

efficiency of training SNNs with neuromorphic algorithms is not ideal enough. Facing this, Michael et al. proposed a

method which can solve the problem with the help of DNN (deep neural network). With this method, we can easily convert

a well-trained DNN into an SCNN (spiking convolutional neural network). So far, there is a little of work focusing on the

hardware accelerating of SCNN. The motivation of this paper is to design an SNN processor to accelerate SNN inference

for SNNs obtained by this DNN-to-SNN method. We propose SIES (Spiking Neural Network Inference Engine for SCNN

Accelerating). It uses a systolic array to accomplish the task of membrane potential increments computation. It integrates

an optional hardware module of max-pooling to reduce additional data moving between the host and the SIES. We also

design a hardware data setup mechanism for the convolutional layer on the SIES with which we can minimize the time of

input spikes preparing. We implement the SIES on FPGA XCVU440. The number of neurons it supports is up to 4 000

while the synapses are 256 000. The SIES can run with the working frequency of 200 MHz, and its peak performance is

1.562 5 TOPS.

Keywords spiking neural network (SNN), field-programmable gate array (FPGA), neuromorphic, systolic array, spiking

convolutional neural network (SCNN), integrete and fire (I&F) model, hardware accelerator

1 Introduction

As we all know, the human brain has a good perfor-

mance of power efficiency, and it computes in a para-

llel way. Inspired by its attractive performance, peo-

ple want to simulate the behaviors of neurons so that

we can make further research on the brain. Many

researchers tried to imitate biological neurons on the

hardware platform. However, most of them worked

inefficiently because of the large number of data ope-

rations in the procedure of SNN (spiking neural net-

work) simulation. The demand for hardware accelera-

tor for SNN simulation is increasing quickly.

To support the massive scale of SNN simulation,

Akopyan et al.
[1] from IBM proposed the TrueNorth

chip. They used an event-driven simulation approach

to improve the efficiency of data processing. Geddes

et al.
[2] from Stanford University worked out the Neu-

rogrid system, which improved the efficiency of Neu-

rocore chip with mixed-analog-digital hardware design.

Schemmel et al. [3] from Heidelberg proposed a scheme

called BrainScaleS, and they used analog circuits to

simulate neurons with a 10 000-time speedup compared

with the real biological process. Furber et al.
[4] from

Manchester showed a scheme called SpiNNaker. They

used 18 ARM968 and 96 Kb on-chip memory on each

core chip to reduce additional off-chip data moving.
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Davies et al. [5] from Intel Laboratory proposed a neu-

ronal multicore processor called Loihi. They provided

a spike-based computation platform which has an ad-

vantage of configurable synaptic learning rules.

These researches are for SNNs which are trained by

neuromorphic algorithms. As we know, the classifying

accuracy of this kind of SNN is lower than that of the

corresponding DNN (deep neural network) which has

the same topology [6, 7]. Fortunately, we have a replace-

ment scheme [6–8], and we can convert a trained DNN

into the corresponding SNN which we call SCNN (spik-

ing convolutional neural network). With this method,

we can speed up the procedure of SNN training with

the help of the corresponding DNN. Since SNN has an

advantage of low power consumption, we can use SCNN

to accomplish the task of inference on the area of power

restricted hardware. At the same time, the recognizing

precision of SCNN is almost the same as that of DNN.

So far, there have been a few studies which focus on the

hardware acceleration of SCNN.

Aiming to accelerate the procedure of SCNN infer-

ence, we propose an SNN inference engine called SIES

(Spiking Neural Network Inference Engine for SCNN

Accelerating). We integrate all the computation units

in a systolic array to accelerate the computation of

membrane potential increment. To reduce unnecessary

data moving, we implement an optional max-pooling

module and design a hardware mechanism to accelerate

the procedure of input spikes preparing. With this de-

sign, we can significantly improve the efficiency of data

processing and increase the parallelism of the hardware

SNN. Note, though this design is similar to the classic

DNN accelerator, our inference engine is for SCNN. It

can support the updating of neuron membrane poten-

tial while the DNN accelerators such as TPU cannot.

SIES is for SNN.

The main contributions of this paper are as follows.

• We propose an SNN inference engine called SIES

to accelerate SCNN. It uses a systolic array to accel-

erate the procedure of membrane potential increment

computation.

• We implement an optional max-pooling module

and design a hardware data setup mechanism for con-

volutional layer on SIES. With these modules, we can

reduce additional data moving and make the SIES effi-

cient.

• We implement SIES on the FPGA (field-

programmable gate array) platform of XCVU440 and

verify the functions with a VGG-16 SNN. SIES can run

with a frequency of 200 MHz, and its peak performance

is 1.562 5 TOPS.

The content of the paper is as follows. We introduce

related work in Section 2 and talk about the prelimi-

naries in Section 3. Section 4 provides the architecture

of SIES, and we explain the design details of functional

modules in Section 5. We design the hardware data

setup mechanism of the convolutional layer on the SIES

in Section 6. In Section 7, we show the procedure of

SNN inference on SIES. Then, we give a top view of

our experimental setup and have an in-depth discus-

sion of the experimental results in Section 8. Finally,

we conclude and introduce the future work of our team

in Section 9.

2 Related Work

With the growing of DNN scale, many people turned

to accelerate the procedure of data processing with

hardware accelerators. Du et al.
[9] proposed an idea

of reusing the input data to make the CNN simulate

efficiently in the design of ShiDianNao. Guan et al.
[10]

proposed an FPGA-based accelerator for LSTM-RNNs,

and they accelerated the procedure of multiplication

with fine-tuned pipelines. Zhou et al.
[11] introduced

a 5-layer accelerator for MNIST (Mixed National In-

stitute of Standards and Technology Database) digit

recognition task, which uses the scheme of fixed point

presentation. These researches showed the detail of

hardware accelerator designing and inspired the imple-

mentation of the SIES.

There is also some work focusing on the field of

SNN hardware accelerating [1–5]. Neil [12] proposed an

event-driven FPGA-based spiking network accelerator

which makes a trade-off between accuracy and latency.

Wang et al.
[13] proposed a time multiplexing scheme

for SNN simulating, which gets a significant advantage

in the field of real-time pattern recognition. Glackin et

al.
[14] introduced a scheme for the implementation of

large-scale spiking neural network which adopts a fully

parallel implementation strategy. Cheung [15] proposed

an accelerator which parallelizes the synaptic process-

ing with run time proportional to the firing rate of the

network. However, a little of the work focuses on the

SCNN accelerating.

On the other hand, there are a series of DNN-to-

SNN methods. Rueckauer et al.
[7] proposed a series

of spiking equivalents operations to replace the corre-

sponding CNN operations. Diehl et al. [6] introduced a

set of optimization techniques to minimize performance

loss in the procedure of DNN-to-SNN transformation.

Rueckauer et al.
[8] proposed several powerful tools to
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convert a larger and more powerful class of deep net-

works into SNNs. These studies proved the correctness

of the DNN-to-SNN method and showed the advantage

of SCNN on the area of SNN training. The research

of SCNN hardware accelerating is becoming more and

more pressing.

3 Background and Preliminaries

3.1 Neuron Model

As we know, the biological neuron of the human

brain consists of three components (i.e., dendrites,

soma, and axon) [16]. The dendrites are used to receive

spikes from other neurons. The soma is responsible for

membrane potential updating. It can generate spikes

to give feedback to the membrane potential changing.

The axon is used to pass the spikes to the post neurons.

The biological neuron also has a period of silence time

after one spike action. It will not give any feedback to

the membrane changing in this special period of time

which we call the refractory period.

Since it is too complex to express all the details of

biological neuron behaviors directly, people expressed

the procedure of the neuronal membrane potential up-

dating with differential equations. Hodgkin et al.
[17]

proposed the Hodgkin-Huxley model, which can simu-

late the neuronal behavior in a precise way with four

complex differential equations. Izhikevich et al. [18]

proposed the Izhikevich model, and it can model the

biological neuron with two simple differential equations.

Brunel et al. [19] proposed the Integrate and Fire (I&F)

model, which expresses the behavior of the neuron in

a much more simplified way compared with others.

There are also many variants [20–22] which made fur-

ther improvements of the I&F model. There are many

other models [23–25], but we typically focus on these

three models. They can represent different levels of

complexity in the field of the hardware implementation

of biological neurons.

Concerning the model selection, the Hodgkin-

Huxley model can express the procedure of neuronal

membrane potential updating accurately, but it is hard

to implement. It is too complex, especially on the hard-

ware resources limited FPGA platform. The Izhikevich

model can model the behavior of biological neuron, but

it still needs to handle the complex differential equa-

tions. The I&F model is much more straightforward

than the Izhikevich model, and we can transform the

single differential equation into a simple form with the

Euler integration method [26, 27]. It will significantly

reduce the challenge of hardware implementation on

FPGA. There are also many variants of I&F model,

which can fulfill the need of different researching scenes.

Concerning the potential of the hardware accelerator

simulation ability, we choose the I&F model to be our

simulation target of the neuron model. We implement

the I&F model neuron with hardware.

3.2 I&F model

The working procedure of the I&F model can be

considered as a procedure of membrane potential up-

dating. It follows (1) [28], where τm is a time constant

and V denotes the membrane potential. EL is the ini-

tial membrane potential of the neuron, and R denotes

abstract resistance. Ie denotes the action current of the

neuron.

τm
dV

dt
= EL − V +RIe. (1)

With the Euler integration method, (1) transforms

into (2).

V (t) = EL+RIe+(V (t0)−EL+RIe) exp
−(t−t0)

τm . (2)

Since Ie is a constant in a little time period of dt, the

membrane potential updating process can be expressed

in (3).

V (t+ dt) = V (t) + (V (t0)− EL +RIe) exp
−(t−t0)

τm ×

(exp
−dt
τm −1). (3)

Using ∆V to replace the long string of

symbols where ∆V symbolizes (V (t0) − EL +

RIe) exp
−(t−t0)

τm (exp
−dt
τm −1), (3) turns to (4).

V (t+ dt) = V (t) + ∆V. (4)

The updating procedure of the membrane potential

can be treated as a simple adding and accumulating

process. The membrane potential of the next cycle is

the membrane potential of the current cycle, adding

with the increment of membrane potential. With (4),

the neuron can accomplish the procedure of membrane

potential updating. In our scheme, the membrane po-

tential increment equals the dot product of spikes and

weights. Here, we use a fixpoint scheme of 32 bits to

express the membrane potential and the weight and 1-

bit scheme to express the spike. ∆V equals
∑n

i=0 S
l
iW

l
i

in value.

3.3 Systolic Array

The theory of systolic array was proposed to im-

prove the throughput of data with the limited band-

width of storage [29]. It typically uses a systolic array
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to replace the simple PE (processing element). Since

the systolic array consists of a series of PEs which are

organized regularly, we can control the data flows in

the systolic array accurately. We can also get an accel-

eration of data processing with the help of multi-PE.

Unlike the technology of pipeline, the directions of data

flow in the systolic array are different, and the PEs in

the different rows or columns share the same data flows.

In this way, the systolic array reuses the data flow so

that it can reduce the unnecessary data moving. We

can treat the systolic array as a combination of pipeline

and SIMD (single instruction multiple data).

There are many variants of the systolic array such

as the 1-D systolic array, the 2-D systolic array, and

so on [30, 31]. Since the 2-D systolic array is a natural

match to the CNN for the character of the convolution

operation, we generally use the 2-D systolic array to

accomplish the task of convolution. In our scheme, we

introduce a 2-D systolic array to speed up the procedure

of membrane potential increment computation, which

equals
∑n

i=0 S
l
iW

l
i . We implement the dot product of

spikes and weights with the help of PEs. The PEs in

the same row share the same data flow of spikes, and

the PEs in the same column share the same data flow

of weights.

3.4 Spiking Convolutional Neural Network

So far, the task of training SNNs with pure STDP

(Spiking Timing Dependent Plasticity) algorithm is in-

efficient. The classifying accuracy of STDP-trained

SNN is lower than that of DNN, which has the same

topology. To solve these problems, Diehl et al. [6] pro-

posed a novel method which can quickly transform

a trained DNN into the corresponding SNN (called

SCNN). The classifying accuracy of the SNN is almost

as same as the original DNN. With the development

in DNNs, we can train DNNs in many ways and get a

considerable classifying accuracy. That means we can

make the task of training the SNN more efficient and

take advantage of the SNN on the field of power con-

sumption.

The conversion from the DNN to the SNN is an

equivalent replacement. We typically implement SNN

based on DNN, which means DNN shares the same

topology with the corresponding SNN. Since the spikes

cannot express the number between “0” and “1”, the

average pooling process of SNN cannot be realized. We

replace pooling layers with max-pooling layers. We use

the method of random sampling, which follows the Pois-

son distribution to make a data conversion. We convert

all the input pixels into the corresponding sequence of

spikes. All these are accomplished by a software pro-

gram. Here, we use “1” to denote the spike and “0” to

no spike. We use a fixpoint scheme of 32 bits to express

the weight. All the spikes and weights are processed in

the same way as the corresponding DNN operations.

4 SIES Architecture

Fig.1 shows all the nine modules of SIES. They are

the spikes buffer (IB), the weights buffer (WB), the sys-

tolic controller (systolic ctrl), the array of PEs (PEs),

the membrane potential updating and spike generating

module (MU&SG), the spikes accumulating and max-

pooling module (SA&MP), the results buffer (RB), the

bypass logic, and the post controller (post ctrl). To

save the time of spikes preparing, we design the mod-

ule of data setup which can arrange the spikes in the

right order to fulfill the timing requirement of the SIES.

IB

A
X

I

In
te

rf
a
c
e
s

WB
IB

D
a
ta

 S
e
tu

p

RB

MU&SG SA&MPBypass 

Logic

post_ctrl

PEs

systolic_array Post Process Mechanism

systolic_ctrl

Fig.1. All the modules in the SIES. It also shows the directions
where the internal data flows.

These modules are divided into two parts. The first

part is used to compute the membrane potential incre-

ments which we call systolic array. The second part

is used to accomplish the tasks of membrane poten-

tial updating and max-pooling, which we call it the

post process mechanism. The first part consists of four

modules (i.e., the spikes buffer, the weights buffer, the

systolic controller, and the array of PEs). The sec-

ond part consists of the rest modules (i.e., the mem-

brane potential updating and spike generating module,

the spikes accumulating and the max-pooling module,

the results buffer, the bypass logic, and the post con-

troller). They work together to accomplish tasks such

as membrane potential updating, spiking generating,

and max-pooling. Here, the process of max-pooling

is a free choice based on different SNN architectures

(shown in Fig.2). We use the bypass logic to control

the direction of the internal dataflow.

We use IB to store the input spikes and WB to store

the weights. The array of PEs fetches the spikes and
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Fig.2. Architecture of the SIES.

the weights in pair and computes the intermediate re-

sults of membrane potential increments. All the inter-

mediate results of membrane potential increment are

accumulated in the corresponding PEs. In the systolic

controller, we use a clock counter to record the clock

cycles of computation. When all the PEs finish the

computation, we pop the potential increments to the

post process mechanism. We use MU&SG to accom-

plish the task of membrane updating and spike gener-

ating. Then, we accumulate the spikes belonging to the

same neuron in the SA&MP, and process all the spikes

in batch. Note, the process of max-pooling is optional

based on the SNN. The final results are stored in the

results buffer and then passed to the host.

For communicating with the host processor, we also

implement an AXI (advanced extensible interface) for

data writing and two for reading. Since one PE corre-

sponds to one hardware neuron, we can simulate 4 096

biological neurons once with the scale of 64×64 PEs.

Note, every 64 neurons share the 64 synapses and the

bit width we use to express the membrane potential and

weights is 32 bits in fixed point.

5 Modules Design

5.1 PE Array

The PE of SIES is responsible for the computation

of membrane potential increment. One PE corresponds

to one neuron in SNN (shown in Fig.3). It receives

spikes and weights from the former PE and passes them

to the next PE directly. It generally has four inputs,

i.e., pre spike, pre res, pre weight, and switch in. It

has three outputs (i.e., spike, weight, and res). We also

implement a series of internal registers to buffer the

intermediate result of membrane potential increment.

=0?

pre_spike

switch_in Res

MUX

pre_res

spike_reg

Weight

weight_reg

control_reg

accumulate_reg

result_reg

pre_weight

+

Spike

Fig.3. Architecture of single processing element. Res: Result.

The spikes and weights are used to participate in the

operation of the dot product. Since the spike is logical

“1” or “0”, we implement the multiplication with a se-

lector and an adder. As you see, if the spike denoting

“1” is coming, the weight which the PE received is ac-

cumulated and added to the history membrane poten-

tial. If the spike denoting “0” is coming, the weight is

dumped. Each step of the dot product needs one clock

cycle. Here, though we dump the weight correspond-

ing to the spike of “0”, the PE still need to wait for

one clock cycle for the concerning of timing alignment.

The PE computes the membrane potential increment

with the help of weights accumulating. When the PE

collects all the weights of the corresponding pixel, it

works out the result of the dot product (i.e., the value

of
∑n

i=0 S
l
iW

l
i ).

Since we need a series of spikes and weights to work

out one dot product, we accumulate all the intermediate
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results in the local regs of the corresponding PE. When

the PE gets all the spikes and weights, it works out

the final membrane increment. We use a control wire

called switch in to decide when to pass the final result

value. The switch in is generated by systolic ctrl, where

we count the clock cycles with an internal counter. If

switch in is set to “0”, the PE passes the intermediate

accumulated result to the next PE at each clock cycle,

and this intermediate result is abandoned at the last

PE of this row. If switch in is set up to “1”, the cur-

rent accumulated result value is passed, and we store it

at the last PE of this row.

In SIES, the PEs are organized in a systolic array.

The PEs in the same row share the same spike trains,

and these spikes are passed from the former PE to the

next PE one by one. The PEs in the same column

share the same weights, and these weights are passed

in the same way as the spike trains. We implemented

a time counter in the systolic ctrl module to count the

clock cycles. With this counter, the systolic ctrl mod-

ule can correctly set up the switch in of each row. The

intermediate and final computation results are passed

in the same channel, and they are passed one by one.

We count the clock cycles to decide when to store the

final computation results and get them at the last PE

of each row.

5.2 Membrane Potential Updating and Spike

Generating Module

This module is responsible for membrane poten-

tial updating and spike behavior simulating (shown in

Fig.4). The procedure of membrane potential updat-

ing can be expressed in two steps. One step is to work

out the membrane potential increment of the current

neuron, which is processed by the systolic array part.

It can be expressed in (5). The parameter of m de-

notes the membrane potential, and l denotes the neu-

ron number of the current layer. We use N to denote

the total neuron number and w to denote the weight.

Each PE corresponds to one neuron. When all the PEs

finish the computation, the systolic array part pops the

membrane potential increments to this module. Each

row of PEs corresponds to one MU&SG module.

∆ml
j =

N l−1∑

i=1

(wl
ij(t)spike

l−1
i (t)). (5)

The other step is to update the membrane poten-

tial, which means adding the membrane potential incre-

ment to the accumulated membrane potential in his-

tory. We implement a series of on-chip ram banks

to store the accumulated membrane potentials. Every

time we get a new membrane at the last PE of each row,

we add it to the corresponding accumulated membrane

potential and work out a result called the added result.

Then, we store the new membrane potential into the

corresponding bank of ram. In each clock cycle, this

module updates one membrane potential of the corre-

sponding neuron. We update all the neuron one by

one. Note, if the added result is over the threshold, the

new membrane potential is reset to a fixed value called

RESET V ALUE. Otherwise, we store it into a bank

of RAM directly. It can be expressed with Algorithm 1.

From 
systolic_array

To
SA&MP

history_m0

history_m23
RAM

+ CMP

spike_gen

updatem_reg

next_m reg

current_m reg 

history_m1

Fig.4. Directions of internal data flowed and the procedure of
membrane potential updating where m denotes the membrane
potential.

Algorithm 1. Membrane-Potential-Updating

1: Initialization: ml
j = 0; T = Thr;

2: ∆ml
j = 0;R = RESET V ALUE;

3: While j ← 0 to l

4: do SUM(ml
j)← ml

j−1 +∆ml
j

5: ⊲ Working out the added result.
6: If SUM(ml

j) > T

7: ml
j ← ml

j−1 +∆ml
j

8: If SUM(ml
j) < T

9: ml
j ← R

10: ⊲ Storing the updated membrane potential to
the corresponding bank of RAM.

11: j ← j + 1

The procedure of neuronal spiking can be treated as

a process of membrane comparison. If the added result

is over the threshold, the module works out a spike de-

noting “1”. Otherwise, it works out a spike of “0”. It

can be expressed with Algorithm 2, where Thr denotes

the threshold.

Algorithm 2. Spike-Generating

1: Initialization: spikelj = 0; T = Thr;

2: While j ← 0 to l

3: do ⊲SUM(ml
j) comes from Algorithm 1.

4: If SUM(ml
j) > T

5: spikelj ← 1

6: If SUM(ml
j) < T

7: spikelj ← 0

8: ⊲ Passing the generated spike to the module of
SA&MP.

9: j ← j + 1
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5.3 Spikes Accumulating and Max-Pooling

Module

This module is designed for spikes accumulating and

max-pooling (shown in Fig.5). In the procedure of SNN

simulation, we often need to simulate the same neurons

with multi-cycle, which means we need to repeat the

procedure of membrane potential accumulating and up-

dating with the same neurons. If we do not accumulate

the spikes, we need to store the membrane potentials

every time when we finish a simulation cycle. When

we start a new simulation cycle of the same neurons,

we should transform these pass membrane potentials

to SIES. We need to repeatedly transport the mem-

brane potentials between the host and SIES. For the

reason of reducing additional data moving, we design

this module to accumulate a certain number of spikes

so that we can efficiently accomplish the max-pooling

operation. We can accumulate all the spikes of the same

neurons with multi cycles and process them in batch.

We can simulate the same neurons in the same SNN

layer with multi-cycle and store all the spikes in this

module. When we finish the simulation of the same

neurons, we release the banks of RAM so that the SIES

can start a new simulation cycle. With this method, we

can save both the time of membrane potentials trans-

formation and the resources of RAM.

From MU&SG

Spike 0Spike 1Spike 23

Batch 16

Max-Pooling

To RB

RAM

Batch 0

Batch 1

Fig.5. Procedure of spikes accumulating where the batch denotes
that all the data of the same neurons at the current time step
have been processed.

Since the spikes in SNN are a series of “0” or “1”,

we cannot express the result of the average-pooling ope-

ration. It means there is only the max-pooling ope-

ration in SNN. The scheme we adopt for the max-

pooling operation is a logical operation of OR. If there

is one spike denoting “1” in the domain of max-pooling

perceived, this module works out a spike denoting “1”.

If there are not any spikes of “1”, this module works

out a spike of “0”. Note, this module is optional based

on SNN.

5.4 On-Chip Buffers

The on-chip buffers contain three parts (i.e., the

spikes buffer, the weights buffer, and the results buffer).

To hide the time of input data preparing, we imple-

ment the input data buffers (i.e., the spikes buffer and

the weights buffer) in double. We can reduce the wait-

ing time of input data preparing with the technology of

Ping-Pong. Each time, we prepare the data of current

simulation cycle and start up SIES. Then, we fill the

data of the next simulation cycle in the copy of input

buffers. Note, SIES is processing the data of the current

simulation cycle at the same time. When we process the

data of the next simulation cycle, we fill new data in

the former input buffers. In this manner, we can signifi-

cantly reduce the waiting time of input data preparing

and improve both the efficiency of SNN simulating and

the utilization rate of hardware resources.

5.5 Internal Controllers

The internal controllers consist of two parts (i.e.,

the systolic controller and the post controller). The sys-

tolic controller module controls the behaviors of the sys-

tolic array part, and the post controller module plays

the same role in the post process mechanism part. They

both implement internal counters to count the clock cy-

cles. Each counter shares the same value. In this way,

we can control the simulating procedure accurately at

every clock cycle.

6 Data Setup

The data setup module is designed for the convo-

lution layer on SIES. It can change the order of spikes

to fit the computation timing requirement of the sys-

tolic array. It means reordering the spikes of the input

feature map (from the host processor or other accel-

erators) into an appropriate order so that each spike

can compute with the corresponding weight correctly.

Although we can do the same thing with a software

program, we need a hardware data setup mechanism

for the reason of efficiency. If we use the software pro-

gram to reorder all the spikes, we should transform the

spikes back to the host. When the software program

finishes the reordering process, we need to transform

the ordered spikes back to SIES. That will lead to a

series of additional data moving between the host and

SIES. What is more, if we use a large number of SIESs

to build a big system, we need to reorder the output

spikes of one SIES to fit the need of the next SIES. It
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will significantly increase the processing time using the

software on the host. Therefore, we need a hardware

module to handle the task of spikes reordering. Con-

cerning the hardware design, we have three choices (i.e.,

indirect setup, direct setup, and multi-lane setup).

6.1 Indirect Setup Strategy

The first one is called Indirect Setup strategy

(shown in Fig.6). First, we store the input feature map

of spikes in a RAM. Then, we use an address generator

to generate the fetching addresses. The buffer fetches

the spikes in sequence based on the fetching addresses.

We can reorder the spikes with the help of ordered ad-

dresses sequence. It uses a few of hardware resources,

but its efficiency is restricted by the reading channels

of RAMs. Since most of the RAMs only have two read-

ing channels, we will never get the full speed of spikes

reordering. On the other hand, if we implement a spe-

cialized RAM with multi-reading channels, we need to

implement the corresponding address generator for each

of the reading channels. It leads to a significant waste

of hardware resource. What is more, concerning the

convolution algorithm, we need to fetch the spike with

the same address repeatedly, which will aggravate the

problem of reordering inefficiency.
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Fig. 6. Implementation details of the indirect setup strategy
where the RC symbolizes the read channel.

6.2 Direct Setup Strategy

The second way to reorder the spikes is a direct

setup strategy (shown in Fig.7). The mechanism re-

ceives the spikes one by one and reorders them with

a series of buffers. The number of buffers equals the

kernel size of the current convolution layer. Each col-

umn of the buffer banks denotes a complete convolution

kernel. Every time we get a spike, we store this spike

in the corresponding banks of the buffers. The banks

where this spike will be stored are decided by the cor-

responding arranging information called pre arg. Note,

this arranging information is calculated by a software

program in advance and stored in the on-chip RAM.

The buffer fetches the arranging information and the

spike in pair. In this way, we only need to fetch the

same spike once and reorder it as soon as the buffer

fetches it. The buffer stores the spike in the proper

banks of different convolution kernels. With this strat-

egy, we can improve the efficiency of spikes reordering.

We will never be restricted by the reading channels of

RAM.
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Fig.7. Implementation details of the direct setup strategy. The
symbol of × in pre arg denotes not to store the spike in the cor-
responding buffer bank.

6.3 Multi-Lane Setup Strategy

The above two strategies both work in a serial

way. It means we need to fill in the spikes one by

one. If we try to increase the speed of spikes reorder-

ing, we are limited by the pace of the spikes filled

in. When we reorder a big input feature map, we

should wait a long time to prepare the input spikes.

Facing this, we propose the third strategy. It is a

data reusing scheme called Multi-Lane Setup strategy

(shown in Fig.8). Note, the data-parallel lanes [37]

which are used for the zero-skipping computation,

are used for data setup which reorders spikes in the

right order to fulfill the computation timing of SIES.

The procedure is as follows. First, we divide the in-

put spikes into some smaller overlapping sequences.

We combine all the convolution kernels in the same

row of input feature map into one group. We process
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Fig.8. Implementation details of the multi-lane setup strategy.

them with the same series of hardware units (called

hardware lane). We use a hardware lane to process a

part of the origin spikes sequence. Since there are many

overlapping pixels between different convolutional ker-

nels, we can reuse these pixels to reduce the fetching

operation of spikes. We only need to implement a se-

ries of small fetching buffers. The bank number of each

buffer equals the size of the convolution kernel. Then,

we fetch the spikes one by one, and all the spikes in

the local RAM are fetched once. When the first convo-

lution kernel of each hardware lane finishes buffering,

we put spikes into the IB. After that, the buffer only

fetches the new spikes. The buffer reuses the spikes of

the former convolutional kernel to find the rest convo-

lution kernels. In each clock cycle, the buffer fetches

one spike. Fig.9(a) shows the locations of spikes in

the input feature map. A series of spikes found one

convolution kernel. Fig.9(b) shows the status of the

fetch buffer at different clock cycles. We fill the fetch-

ing buffer with spikes and send the spikes to the IB as

soon as all the spikes of the same convolutional kernel

are reached. The color of grey denotes the spikes which

can be reused in the fetching buffer. The buffer reuses

these spikes to find the convolutional kernel with inter-

nal data moving. The array line shows the direction of

internal data moving.

Since we should store all the smaller spikes se-

quences with on-chip RAM, this strategy will waste

many resources of RAM. However, we can process all

the smaller spikes sequences in parallel. That is a sig-

nificant advantage in the field of reordering speed. Be-

sides, it is easy to control the behavior of the hardware

setup mechanism for the regular pattern of spikes mov-

ing in the fetch buffer. Compared with the two schemes

we propose before, it has the potential for accelerating.

It can significantly reduce the processing time of re-

ordering procedure. It shows a significant advantage of

efficiency among all the schemes we propose, especially

for the big input feature map.

7 Working Procedure of SIES

We simulate the SNN layers in a sequence which

means we simulate the layers one by one. We need to

simulate the neurons in the same layer with multi sim-

ulation cycles if the neuron number of the current layer

is over 4 096. We prepare the input feature map of the

current simulating SNN layer and reorder the spikes ac-
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Fig.9. Principle of data reusing in multilane strategy where K symbolizes the kernel and T denotes in the cycle. (a) Spikes needed for
convolution kernels. (b)Status of the fetch buffer.
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cording to the convolution algorithm. Note, the original

order of spikes in the input feature map is in a sequence

which we call a pure feature map and the spikes do not

order in a convolution way which the SNN hardware

core processing needs. Thus we need a mechanism to

reorder the spikes (shown in Fig.10). We typically use

software to accomplish this task.
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Fig.10. Procedure of data reordering. Each digital symbolizes a
biological neuron which we should simulate in the layer of SNN.
The size of input feature map we use here is 6× 6.

The processing procedure is as follows. We store the

sequences of spikes and weights into the corresponding

input buffers and start up SIES (shown in Fig.11). We

fill the spikes and weights into SIES one by one, and

each of the spikes and weights differs one cycle. Note,

we use 32 bits to denote one weight and 1 bit to denote

one spike. Since the weights can be reused in multi sim-

ulation cycles while simulating the neurons in the same

layer of SNN, we only need to fill the weights into the

hardware accelerator once. In contrast, the spikes need

to fill in every time we start a new simulation cycle. Af-

ter a series of processing, SIES finishes the simulation

and stores all the results (i.e., store the output feature

map into the buffers).
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Fig.11. Results of data reordering and the timing arrangement
of the systolic array computation.

8 Experiment and Analysis

8.1 Experimental Setup

The SNN we tried to speed up is transformed from

four networks, i.e., three models and VGG-16. The ar-

chitecture of the three models is shown in Table 1. The

architecture of VGG-16 is shown in Fig.12 [32]. These

models were used to verify the function of SIES. They

can prove the fact that SIES can support the simula-

tion of different max-pooling layers and convolutional

layers. The image recognition datasets we used were

MNIST [40], SVHN [41], and CIFAR-10 [42]. The FPGA

platform we used was XCVU440, and it can easily han-

dle the task of large-scale hardware design. We used

Vivado 2018.3 1○ for synthesizing and used it to make a

standard evaluation of power, hardware resources con-

sumption, and timing. We designed SIES with 4 096

(64 × 64) PEs. We also synthesized SIES with Vivado

and implemented it on the FPGA board.

Table 1. Architecture of the Three Models

Layer No. Model 1 Model 2 Model 3

1 Conv(12c5) Conv(32c5) Conv(32c3)

2 MP MP Conv(32c3)

3 Conv(64c5) Conv(64c5) MP(p3s2)

4 MP MP Conv(64c3)

5 FC(10) Conv(32c5) Conv(32c3)

6 MP MP(p3s2)

7 FC(100) FC(512)

8 FC(10) FC(10)

Max Pooling

Convolution+ReLU

Softmax

Full Connect+ReLU

224 224 64 

112 112 128 

56 56 256 

28 28 512 

14 14 512 

7 7 512 

1 1 4 096 1 1 4 096 

Fig.12. Architecture of VGG-16 [32].

We evaluated the RAM resources requirement of

SIES with different scales PEs and show the hardware

1○The Vivado Design Suite HLx editions supply design teams with the tools and methodology needed to leverage C-based design
and optimized reuse, IP sub-system reuse, integration automation, and accelerated design closure.
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resources consumption of the SIES with the scale of

64×64 PEs in detail. To verify the function of SIES,

we chose a VGG-16 SNN to be the simulating target.

We firstly implemented a software DNN with the same

topology as the target SNN. Then, we transformed

it into the corresponding SNN style with MATLAB.

Then, we reorganized the input spikes and weights to

fulfill the timing requirement of SIES and started up

it to get the results. At last, we compared the speed

between the software SNN running on the PC of Intel

Core i7-7700 and the hardware simulation SNN running

on the SIES.

For validation, we evaluated the hardware data

setup module of convolution adopting three setup

strategies we proposed with the software simulator and

made a further comparison. We used input feature

maps of different layers in VGG-16 to evaluate the

RAM resource requirement of different scales of feature

maps. We also used a smaller layer of 36 (6×6) for time

consumption evaluation.

Though there are a few studies which use the

same method as us, we compared SIES with the

five famous neuromorphic schemes (i.e., TrueNorth [1],

Neurogrid [2], BrainScaleS [3], SpiNNaker [4], Loihi [5])

on the field of neurons and synapses supported in the

single hardware core. Concerning the fact that we im-

plemented SIES on the platform of FPGA, we also com-

pared the working frequency and throughput with a se-

ries of researches implemented on FPGA.

8.2 Experimental Result

8.2.1 Performance and Consumption

We compared the consumption of RAM resources

with different parts of SIES (shown in Fig.13) and found

that the parts which are related to the membrane incre-

ment computing and membrane potential accumulating

waste most of the RAM resources. This is because we

used 32 bits to symbolize one membrane potential while

using 1 bit to denote one spike. We compared the RAM

requirement of SIES with different scales of PEs in Ta-

ble 2 and found the RAM requirement increased in an

exponential form. This was caused by the array form

of PEs, and every time we increased the PEs, the RAM

resources increased in the same way. The hardware re-

sources consumption is shown in Table 3. Note that

since the spike was 1 or 0, the procedure of multipli-

cation could be treated as a selection of weights. We

implemented a multiplier with an adder and a selector,

which means we did not need DSP.
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Fig.13. RAM resources requirements for different parts of the
SIES with different scales of PEs.

Table 2. Total RAM Resource Requirements of SIES

Scale of PEs RAM Size (Kb)

16 × 16 21.25

32 × 32 85.00

64 × 64 340.00

128 × 128 1 360.00

256 × 256 5 440.00

Note: The number of PEs is the result of the multiplication, for
example 16× 16 means 256 PEs.

Table 3. Consumption Ratio of Devices for SIES on FPGA
XCVU440

Resources Consumption Utilization Rate (%)

LUT 302 797 11.95

FF 421 230 8.31

BRAM 192 7.62

I/O 646 44.37

BUFG 3 0.21

Note: The scale of PEs is 64× 64.

We also compared the speed of data processing be-

tween the software-implemented SNN running on the

host processor and the hardware-implemented SNN us-

ing SIES. The simulation target was a VGG-16 SNN.

The number of the total operations of add which hard-

ware platforms need to handle is up to 89×106. We em-

ployed a software written by Python to simulate all the

add operations of VGG-16 SNN on the Intelr Corer

i7-7700 PC and used another program to evaluate the

total running time of VGG-16 SNN on SIES with the

same scale of add operations. We finally found that

the SIES worked better with the working frequency of

200 MHz and we could use the hardware accelerator

to get a 670× speedup compared with the host proces-

sor. SIES could accomplish 4 096 × 2 operations (one

multiply and one add) at each clock cycle, and got a

peak performance of 1.562 5 TOPS. The error rates of
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the DNNs and the corresponding SCNNs are shown in

Table 4. As shown, the SCNNs we ran on SIES could

get good accuracies, and the error rates of them were

almost the same as the corresponding DNNs.

Table 4. Error Rates of Different Networks

Model Dataset DNN.ER (%) SCNN.ER (%)

Model 1 MNIST 0.76 0.84

Model 2 SVHN 3.74 4.66

Model 3 CIFAR-10 14.07 18.20

VGG-16 CIFAR-10 8.30 8.54

Note: .ER denotes the error rate of the network. SCNN is con-
verted from DNN. The error rates come from [38, 39].

8.2.2 Evaluation of Different Setup Strategies

For the comparison of different hardware data setup

strategies, we evaluated the RAM requirement of re-

ordering using different hardware data setup strategies

with software which we wrote by ourselves according to

the designs we proposed.

We first fixed the condition of input feature map

with 224 × 224 (shown in Fig.14) and found that

the mechanism employing the indirect setup strategy

wasted the least RAM resources. The multi-lane setup

strategy wasted less of RAM resources compared with

that of the direct setup strategy.

Second, we fixed the condition of kernel size with

3×3 (shown in Fig.15) and found that the indirect setup

strategy mechanism wasted the least RAM resources.

The mechanism employing the multi-lane setup strat-

egy still wasted less RAM resources compared with the

direct setup strategy.

At last, we compared the cycles needed for re-

ordering using different strategies with the same in-

put feature map and kernel size (shown in Fig.16). We

found that the mechanism using the multi-lane strat-

egy worked the fastest. Though RAM resources wasted

more compared with the indirect setup strategy, we

still designed our hardware data setup mechanism using

the multi-lane strategy concerning the factor of spikes

preparing speed.

8.2.3 Comparison with State of the Art

In our scheme, the number of neurons supported

corresponds to the number of PEs and every 64 hard-

ware neurons share 64 synapses for the character of in-

put spikes and weights sharing in the same row. With

the comparison of neurons and synapses supported

in single hardware core with different neuromorphic

systems [1–5], we finally found that the SIES could sup-

port up to 4 000 neurons and 256 000 synapses and that

was a considerable number though less than the Neuro-

grid scheme in Table 5. We also compared the neurons

supported with [33], and the neurons supported by the

SIES were twice the number of [33].

Since we implemented SIES on FPGA, We com-

pared the working frequency with [12,15,34]. We found

that the SIES we proposed worked better with the fre-

quency of 200 MHz while [12] ran with the frequency of
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Fig.14. Trends of RAM requirements with different kernel sizes using different hardware data setup strategies under the condition of
using the same input feature map. The input feature map we used is the first layer of VGG-16 which has 50 176 (224 × 224) input
neurons. (a) RAM requirements trend of indirect setup strategy. (b) RAM requirements of direct and multilane setup strategies.
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135 MHz, [34] ran with 150 MHz and [15] ran with 100

MHz. We also compared the throughput with [35, 36].

As we know, SIES can reach a peak performance of

1.562 5 TOPS. We finally found SIES gets a 492x im-

provement compared with [35], and a 128x improve-

ment compared with [36].
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ture maps using different hardware data setup strategies under
the condition of using the same kernel size. The kernel size we
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ture map using different hardware data setup strategies under the
condition of using the same kernel size. For simplify, the input
feature map we used here is 6×6 and the kernel size is 3×3.

Table 5. Neurons and Synapses Supported in the Single Hard-
ware Core

Scheme Number of Number of
Neurons (×103) Synapses (×103)

TrueNorth [1] 0.25 256

Neurogrid [2] 64.00 100 000

BrainScaleS [3] 0.50 128

SpiNNaker [4] 1.00 1 000

Loihi [5] 1.00 16
SIES 4.00 256

Note: The concept of single hardware core mentioned here is the
basic processing units working independently in the system.

9 Conclusions

Inspired by the high performance of human brain,

the research of SNN has become more and more popu-

lar, and the demand for speeding up the data process-

ing with hardware accelerators is increasing. However,

there are a few researches proposed in the area of SCNN

accelerating. Concerning this, we proposed SIES which

can speed up the inference of SCNN. To improve the

on-chip data utilization of SIES, we introduced a sys-

tolic array to accelerate the computation of membrane

potential increment. We implemented an optional max-

pooling module which can significantly reduce the data

moving between the host and the SIES. We also de-

signed a hardware data setup mechanism so that we

can reduce the waiting time of data preparing. Note,

though the architecture of SIES is similar to that of the

DNN accelerator, it can support the updating of mem-

brane potential while the DNN accelerators cannot. It

is designed for SNN. We finally implemented SIES on

FPGA XCVU440. Experiments proved SIES can work

with a frequency of 200 MHz and get a peak perfor-

mance of 1.562 5 TOPS. In the future, we would like to

implement SIES with ASIC and organize SIESs into a

big array for the need of SNN simulation.
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