
Huang L, Li DL, Wang KP et al. A survey on performance optimization of high-level synthesis tools. JOURNAL OF

COMPUTER SCIENCE AND TECHNOLOGY 35(3): 697–720 May 2020. DOI 10.1007/s11390-020-9414-8

A Survey on Performance Optimization of High-Level Synthesis Tools

Lan Huang1,2, Distinguished Member, CCF, Da-Lin Li1,3, Kang-Ping Wang1,2,∗, Teng Gao1, and Adriano Tavares4

1College of Computer Science and Technology, Jilin University, Changchun 130012, China
2Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education

Jilin University, Changchun 130012, China
3Zhuhai Laboratory of Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education

Zhuhai College of Jilin University, Zhuhai 519041, China
4Algorithm Center, University of Minho, Guimaraes 4800058, Portugal

E-mail: huanglan@jlu.edu.cn; dlli16@mails.jlu.edu.cn; wangkp@jlu.edu.cn; gaoteng18@mails.jlu.edu.cn
E-mail: yannitavares@gmail.com

Received January 18, 2019; revised December 11, 2019.

Abstract Field-programmable gate arrays (FPGAs) have recently evolved as a valuable component of the heterogeneous

computing. The register transfer level (RTL) design flows demand the designers to be experienced in hardware, resulting in

a possible failure of time-to-market. High-level synthesis (HLS) permits designers to work at a higher level of abstraction

through synthesizing high-level language programs to RTL descriptions. This provides a promising approach to solve these

problems. However, the performance of HLS tools still has limitations. For example, designers remain exposed to various

aspects of hardware design, development cycles are still time consuming, and the quality of results (QoR) of HLS tools is

far behind that of RTL flows. In this paper, we survey the literature published since 2014 focusing on the performance

optimization of HLS tools. Compared with previous work, we extend the scope of the performance of HLS tools, and present

a set of three-level evaluation criteria, covering from ease of use of the HLS tools to promotion on specific metrics of QoR.

We also propose performance evaluation equations for describing the relation between the performance optimization and the

QoR. We find that it needs more efforts on the ease of use for efficient HLS tools. We suggest that it is better to draw an

analogy between the HLS development process and the embedded system design process, and to provide more elastic HLS

methodology which integrates FPGAs virtual machines.

Keywords evaluation criterion, field-programmable gate array (FPGA), high-level synthesis (HLS), performance opti-

mization, quality of results (QoR)

1 Introduction

In recent years, due to a combination of physical

limitations and economic factors, it is hard for Moore’s

Law to go forward. The high-performance computing

(HPC) community starts to treat heterogeneous com-

puting as an alternative approach for high-throughput

and energy-efficient processing, as the common process-

ing and controlling parts are designated to processors

and the computing-intensive parts are accelerated by

application-specific customized hardware [1].

Field-programmable gate arrays (FPGAs) have re-

cently been an arising accelerator of the heterogeneous

computing. Different from CPUs and graphics pro-

cessing units (GPUs), FPGAs are integrated circuits

that can run without instructions and operating sys-

tems, providing FPGAs an advantage in delay and

power consumption over the processors of von Neu-

mann architecture [2]. FPGAs are designed by hard-

ware description languages (HDLs). Programming in

HDLs is actually a process of functional circuits de-

scription, where functionalities are specified at a low

Survey

This work was supported by the National Natural Science Foundation of China under Grant No. 61772227, the Development
Project of Jilin Province of China under Grant Nos. 20190201273JC and 2020C003, Guangdong Key Project for Applied Fundamental
Research under Grant No. 2018KZDXM076, and Jilin Provincial Key Laboratory of Big Date Intelligent Computing under Grant
No. 20180622002JC.

∗Corresponding Author

©Institute of Computing Technology, Chinese Academy of Sciences 2020

http://dx.doi.org/10.1007/s11390-020-9414-8

698 J. Comput. Sci. & Technol., May 2020, Vol.35, No.3

level of abstraction. It is time-consuming and requires

the algorithm designers being specialized in hardware.

In order to increase productivity and promote FP-

GAs to a wider user community, new design methodolo-

gies in a high-level design abstraction have been present

in recent years, including FPGA High-Level Synthesis

(HLS) [3] and FPGA overlay [4–6]. HLS accepts design in

high-level language (e.g., C, C++, and SystemC) and

generates synthesizable cycle-accurate register transfer

level (RTL) through code transformations and synthesis

optimizations. FPGA overlay is a coarse-grained design

abstraction layer over fine-grained FPGAs resources,

and the abstraction layer should be pre-implemented

for dedicated applications [7–9]. The design in high-level

language will be complied, scheduled, and mapped to

the overlay architecture [10].

HLS has many advantages, for instance, accomplish-

ing FPGA design in higher level abstraction with less

hardware knowledge, exploring design space faster with

little modification of the programs, richer and more

convenient verification and debugging methods, etc.

HLS also has obvious drawbacks: designers remain ex-

posed to various aspects of hardware design; develop-

ment cycles are still time consuming; the quality of re-

sults (QoR) of HLS tools is far behind that of RTL

flows. To address these problems, the HLS community

contributes a lot on optimizing the performance of the

HLS tools. The QoR has improved with the newest

generation of HLS tools. HLS has recently been ap-

plied to a variety of applications (e.g., medical imaging,

convolutional neural networks, and machine learning),

with significant benefits in terms of performance and

energy consumption [11].

In this paper, we survey the scientific literature pub-

lished since 2014 focusing on the performance improve-

ment of HLS tools. Our work has four main contribu-

tions:

• a set of three-level evaluation criteria, covering

from the ease of use of the HLS tools to promotion on

specific metrics of QoR (Section 3);

• performance evaluation equations for describing

the relation between the performance optimization con-

tributions and the QoR of the HLS tools (Section 3);

• a survey of the literature suggesting research di-

rections and ways to improve HLS (Section 4);

• a deep discussion on the challenge and develop

trends of the HLS tools (Section 5).

This survey shows that HLS is a promising way to

improve the productivity of FPGAs. However, it still

needs more efforts on the ease of use for efficient HLS

tools. We suggest that it is better to draw an analogy

between the HLS development process and the embed-

ded system design process, and to provide a more elastic

HLS methodology.

2 Overview of HLS Tools

In this section, we firstly briefly review the develop-

ment history of HLS tools. Secondly, we introduce

the general working process of HLS tools. Thirdly,

we present an overview of HLS tools in use. Lastly,

for further understanding the design philosophy and

the advantages/limitations of HLS tools, we compare

FPGA HLS with FPGA overlay, another approach to

increasing the design productivity using high-level de-

sign abstraction, in terms of design flows, development

efficiency, and performance.

2.1 Brief History of HLS Tools

Until the late 1960s, the design, optimization, and

lay-out of ICs were processed manually. Gate-level sim-

ulation appeared in the early 1970s. Cycle-based sim-

ulation was introduced in 1979. Automatic design ap-

proaches, such as schematic circuit capture, formal veri-

fication, place-and-route, and static timing analysis be-

came available during 1980s. Later, the emergence of

Verilog (1986) and VHDL (1987), which were named

hardware description languages (HDLs), strengthened

the capability of simulation tools. The first generation

of commercial high-level synthesis (HLS) tools was in-

troduced in the 2000s, which was mainly designed for

data path applications [12, 13]. Almost the same period,

more research work was invested in hardware-software

co-design methods, which includes exploration, esti-

mation, partitioning, communication, interfacing, co-

simulation and synthesis [14]. The IP cores, which are

actually reuse techniques, emerged at the same time.

Driven by the growth of the silicon capability and

the increase of the application complexity, design tools

and methodologies in higher abstraction levels are de-

sired. Nowadays, the new emerging HLS tools are more

oriented to raise the abstraction levels and automate

the processes of the synthesis and the verification, so

that the design space exploration can be more rapidly

and efficiently.

2.2 Working Process of HLS Tools

With HLS tools, untimed high-level language de-

scriptions (C, C++, SystemC, Java, etc.) are trans-

lated into a cycle-based implementation automatically

Lan Huang et al.: A Survey on Performance Optimization of High-Level Synthesis Tools 699

or semi-automatically. Besides the communication in-

terfaces and the memory banks, the generated imple-

mentation is expressed in RTLs, which contains a con-

troller and a data path (i.e., multiplexers, registers,

functional modules, and buses), following the require-

ment of the functional specification and the constraints

designed by the designer. As shown in Fig.1, the task

of an HLS tool contains the following steps:

• compiling high-level language description;

• transforming functional specification into hard-

ware controlling structures according to the directives

from the designer;

• allocating hardware resources (storage compo-

nents, functional units, buses, and so on);

• scheduling the operations to dedicated clock-

cycles;

• binding the operations to customized or integrated

functional units;

• binding variables to storage components (LUTs,

flip-flops, or BRAMs);

• binding data transfers to specific buses;

• generating the RTL description.

High-Level

Program

C/C++/

System C/

OpenCL/

Java

Compilation

Transformation

Allocation

Scheduling Binding

Synthesizable

RTL

Logic

Synthesis

Unrolling

Pipelining

Dataflow

Inline

…

Generation

Allocation

Scheduling Binding
Library

Directive

Fig.1. Typical high-level synthesis (HLS) flow.

2.3 Overview of HLS Tools in Use

After years of development, more than 30 kinds of

HLS tools have been implemented [15]. For various rea-

sons (e.g., abandoned by communities or purchased by

commercial companies), some of them are no longer

used. In this paper, we only introduce the HLS tools

still in use when writing this article. We distinguish the

HLS tools between two categories: academic ones and

commercial ones. Their general information is listed in

Table 1.

2.3.1 Academic Tools

The academic version of LegUp [16] was first released

in 2011 at the University of Toronto, and its newest

version is 4.0. LegUp is oriented to Altera FPGA

families specifically, and it synthesizes software threads

automatically into parallel-operated hardware modules

through supporting Pthreads and OpenMP. Most C fea-

tures are supported except memory allocation and re-

cursion. Based on bit mask analysis and variable range

of static compile-time, LegUp can automatically shrink

data path widths by reducing bit width. Register re-

moval and multi-cycle path analysis are also supported,

where the registers on some paths completed in more

than one cycle are removed and the constraints for the

back-end of the tool flow are generated accordingly.

GAUT [17] is an open-source HLS tool which is de-

signed specifically to digital signal processing (DSP) ap-

plications. The potential parallelism of the applications

is first extracted prior to the scheduling, allocation, and

binding tasks. Then a potentially pipelined architec-

ture is generated, consisting of processing and memory

modules, together with a communication unit with a

GALS/LIS interface. The throughput and the clock

period are mandatory constrained during the synthesis

process, and the I/O timing diagram and the memory

mapping are optional.

BAMBU [18] is an open source HLS tool with a

modular framework, and it supports both ASIC and

FPGA technologies. It exploits novel and efficient sto-

rage architectures to implement most of the constructs

in C language without requirements of any three-state.

Floating-point operations are also integrated. The syn-

thesis flow, such as constraints, transformation passes,

synthesis scripts and options, is customized through

XML files. The test-benches are generated automat-

ically. Finally, BAMBU proposes a validation of the

results against the corresponding high-level description.

DWARV [19] translates common C-code into VHDL

for unlimited applications. It is developed from the

CoSy 1○ framework, which constructs a compiler which

1○http://www.ace.nl, Dec. 2018.

700 J. Comput. Sci. & Technol., May 2020, Vol.35, No.3

Table 1. HLS Tools in Use

License Application Compiler Owner Input Output Year Test FP FixP
Domain Bench

Commercial All VivadoHLS Xilinx C/C++/
SystemC

VHDL/Verilog/
SystemC

2013 Yes Yes Yes

FPGA SDK
for OpenCL

Intel C VHDL/Verilog/
System-Verilog

2013 Yes Yes Yes

LegUp LegUp Computing
Inc.

C Verilog 2015 Yes Yes No

Cyber-
WorkBench

NEC BDL VHDL/Verilog 2011 Cycle/
Formal

Yes Yes

eXCite Y Explorations C VHDL/Verilog 2001 Yes No Yes
Catapult-C Calypto Design

Systems
C/C++/
SystemC

VHDL/Verilog/
SystemC

2004 Yes No Yes

Stratus Cadence C/C++/
SystemC

Verilog 2004 Yes Yes Yes

Bluespec BluSpec Inc. BSV System-Verilog 2007 No No No

Dataflow MaxCompiler Maxeler MaxJ RTL 2010 No Yes No

DSP Synphony Synopsys C/C++/
SystemC

VHDL/Verilog/
SystemC

2010 Yes No Yes

Streaming DK Design
Suite

Mentor Graphics Handel-C VHDL/Verilog 2009 No Yes No

Academic DSP GAUT U.Bretagne C/C++ VHDL 2008 Yes No Yes

Streaming ROCCC UC.Riverside C subset VHDL 2010 No Yes No

All LegUp U.Toronto C Verilog 2011 Yes Yes No
Bambu PoliMi C Verilog 2012 Yes Yes No
DWARV TU.Delft C subset VHDL 2012 Yes Yes Yes

Note: The “application domain” column represents which application domain the tools are designed for, such as, dataflow languages,
DSP or data streaming applications. The “all” in this column indicates the tools can be used in all application domains including but
not limited to the previous mentioned specific ones. The “test bench” column shows whether the automatic test bench generation is
supported by the tools. The “FP” and “FixP” in the last two columns demonstrate the capability of supporting floating-point and
fixed-point arithmetic respectively.

is highly modularized and can integrate standard or

customized optimizations easily.

2.3.2 Commercial Tools

Vivado HLS 2○ was first developed by AutoESL,

named AutoPilot [20]. Xilinx purchased AutoPilot in

2011 and released the first Vivado HLS based on

LLVM [21] in 2013. Vivado HLS takes C, C++, and

SystemC as input and generates HDL descriptions in

Verilog, VHDL, and SystemC. The generation process

can be fine-tuned through the integrated design envi-

ronment and the abundant features provided by Vi-

vado HLS. Multiple optimization options are proposed,

such as loop pipelining, loop unrolling, operation chain-

ing, and memory mapping. Both streaming and shared

memory type interfaces are supported for simplifying

the integration among accelerators.

FPGA SDK for OpenCL was first published by Al-

tera. It provides a heterogeneous parallel program-

ming environment based on the enhanced OpenCL

standards [22]. In October 2018, Intel published Intelr

FPGA SDK for OpenCL™ Pro Edition 3○. FPGA SDK

for OpenCL divides the applications into two main

parts: the host program managing the application

and FPGA accelerator, and the FPGA programming

bitstream(s) [23]. During the compiling, the OpenCL

Compiler compiles the OpenCL kernels to an image file

used by the host program for programming the FPGA.

The host-side C compiler compiles the host program

and links it to the Intel FPGA SDK for OpenCL run-

time libraries. The FPGA compiler automatically un-

rolls the loops, while the unrolling also can be carried

out manually by directives if the automatic unrolling

results are not satisfied.

From 2015, the commercial version LegUp 4○ has

been proposed with the additional characteristics of

eclipse-based GUI, multi-FPGA vendor support, and

cloud application acceleration.

Synphony 5○, formerly PICO [24], is an HLS tool for

2○https://www.xilinx.com/support/documentation/sw manuals/xilinx2018 3/ug902-vivado-high-level-synthesis.pdf, Dec. 2018.
3○https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/opencl-sdk/aocl programming guide.pdf,

Dec. 2018.
4○http://www.legupcomputing.com/docs/legup-6.3-docs/index.html, Dec. 2018.
5○https://www.synopsys.com/Tools/Implementation/RTLSynthesis/Pages/SynphonyC-Compiler.aspx, Dec. 2018.

Lan Huang et al.: A Survey on Performance Optimization of High-Level Synthesis Tools 701

DSP design released by Synopsys. It supports both

streaming and memory interfaces and provides fine-

tuned performance optimizations (e.g., loop unrolling

and loop pipelining). Synphony only supports fixed-

point arithmetic.

CyberWorkBench [25] is a system-level design tool

set consisting of synthesis, verification, and simulation.

It takes the behavioral description language (BDL) as

input, which is a superset of the C language with ext-

ended constructs for hardware concept expression, e.g.,

variables of customized bitwidth, designation of concur-

rency or synchronization, and explicit clock boundary

definition.

In eXCite 6○, for describing the communication be-

tween the software and the hardware, users have to in-

sert the communication channels manually, which can

be blocking, streaming, or indexed (e.g., for array trans-

mission).

Catapult-C 7○ is a commercial HLS tool which is

flexible in choosing the objective technology and li-

braries, setting the cycle frequency, and mapping func-

tion parameters to either streaming interfaces, regis-

ters, RAM, or ROM. Now, it mainly focuses on low-

power FPGA solution.

Stratus 8○ supports formal verification between RTL

and gates, and power analysis. It also provides a num-

ber of optimizations, e.g., support for FP operations

with IEEE-754 single/double precision and industry-

standard IEEE 1666 SystemC, C, and C++.

Bluespec Compiler (BSC) 9○ takes Bluespec Sys-

tem Verilog (BSV) as the input language. Inspired by

Haskell, BSV is a high-level functional HDL derived

from Verilog, as functional modules are implemented

as a set of rules under Verilog grammar. The rules are

named guarded atomic actions which express behavior

through concurrent cooperation finite state machines

(FSMs) [26]. BSC requires designers with specific ex-

pertise.

MaxCompiler 10○ is a dataflow-oriented tool, which

accepts MaxJ, a Java-based language, as input. It pro-

duces synthesizable HDL description for the dataflow

engines running on Maxeler’s hardware platform. Max-

Compiler splits applications into three components:

kernel(s), manager configuration, and CPU application.

The first component takes charge of the computational

parts of the application on FPGAs. The second compo-

nent connects kernels to the CPUs, engine RAMs, other

kernels and other dataflow engines through MaxRing.

The last component communicates with the dataflow

engines for transferring data to the kernels and engine

RAMs.

DK Design Suite 11○ involves Handel-C as the input

language. Handel-C is a subset of the C language and

extended with hardware-specific constructs. However,

the designers are required to specify timing specifica-

tions and to code the concurrence and synchronization

components definitely. Besides, the users also have

to map data to different storage elements manually.

Hence, the designers need advanced hardware know-

ledge due to these additional features.

The ROCCC 12○ mainly focuses on the parallelization

of the applications with heavy-compute-density and lit-

tle control. This limits applying it to streaming appli-

cations. And also only a subset of the C language is

accepted as the design language. For instance, only in-

teger array operations and perfectly nested loops with

fixed stride are permitted.

2.4 Comparison Between FPGA HLS and

FPGA Overlay

FPGA HLS and FPGA overlay are new design

methodologies using high-level design abstractions to

promote FPGA to more user communities than the

traditional HDL methods. Both of them treat C-like

high-level language programs as inputs. However, they

transform and deploy the programs on the FPGAs

through different approaches [27, 28].

2.4.1 Design Flows

High-Level Synthesis (HLS). As shown in Fig.2, an

HLS tool directly maps programs to FPGAs through a

design flow which mainly includes scheduling, binding,

and control logic extraction 13○. Scheduling plans the

6○http://www.yxi.com/products.php, Dec. 2018.
7○https://www.mentor.com/hls-lp/catapult-high-level-synthesis/, Dec. 2018.
8○https://www.cadence.com/content/dam/cadence-www/global/en US/documents/tools/digital-design-signoff/stratus-ds.pdf,

Dec. 2018.
9○https://bluespec.com/54621-2/, Dec. 2018.
10○https://www.maxeler.com/products/software/maxcompiler/, Dec. 2018.
11○http://www.mentor.com/ products/fpga/handel-c/dk-design-suite, Dec. 2018.
12○http://roccc.cs.ucr.edu/DOCUMENTATION-0.7.6/ROCCC-Overview.pdf, Dec. 2018.
13○https://www.xilinx.com/support/documentation/sw manuals/ug998-vivado-intro-fpga-design-hls.pdf, Dec. 2018.

702 J. Comput. Sci. & Technol., May 2020, Vol.35, No.3

void foo (int IN[9], char A, char B, char C, int OUT[3]){
int x, y;
for (int i=0; i < 9; i++){

x = IN[i]; y =A*X + B + C;
OUT[i] = y;

}
}

+

+

*

y

OUT_data

x

B

C

A

IN_data

Scheduling

Phase

Initial

Binding

Phase

AddSub AddSub
Memory
Access

MUL

AddSub

Target

Binding

Phase

LUTs LUTs
Block
RAMs DSP48

Control

Logic

Extraction
C0 C1 C2 C3

Finite State Machine (FSM)

Clock Cycle

+

IN_addr

IN_ce

OUT_addr

OUT_ce

OUT_we

Fig.2. Scheduling, binding, and control logic extraction phases of HLS design flow.

operations of each clock cycle; binding allocates hard-

ware resources for the scheduled operations; control

logic extraction creates a finite state machine (FSM) to

sequence the operations in the RTL design. In the end,

all the operations and data are mapped to hardware

resources of the FPGA chip, and the mapping strategy

is mainly directed by the designer.

FPGA Overlay. Different from HLS, as shown in

Fig.3, an overlay tool first maps the high-level language

programs to the overlay which consists of an array

of pre-implemented directly connected simple configu-

rable processing elements (CPEs). Each CPE performs

primitive compute operations according to a small local

sequencer at each clock cycle, and the operations and

data are translated into instructions of CPEs by the

scheduler. After the mapping process, the overlay tools

output the RTL implementation of the overlay. The de-

signer need not consider the structure of the hardware,

but only direct how many hardware resources will be

involved through a parallelism factor.

2.4.2 Development Efficiency

High-Level Synthesis (HLS). The Xilinx HLS tool

first compiles the high-level language programs into in-

termediate representation with a high-level language

compiler, and then synthesizes the representation into

the RTL code. At last, the RTL code is mapped to

FPGAs chips through implementation process. All the

processes are automatic and can be directed by the

users [29]. However, there are two main drawbacks.

Firstly, the synthesis and implementation cost a long

time. Secondly, the users are still exposed to various

aspects of hardware design. For example, if the users

want to design a high-efficient pipeline, they have to

find out and relieve the data dependencies, reconstruct

the dataflow of the programs to be suitable for the FP-

GAs architecture (e.g., moving if statement into loops),

Lan Huang et al.: A Survey on Performance Optimization of High-Level Synthesis Tools 703

C Program

Instruction Memory

F
F

F
F

F
F

F
F

F
F

Data
Mem

Q1
D1

Q2
D2

W/R1
ADDR
1

W/R2
ADDR

2

N
S
W
E
M

N
S
W
E
M

User Design

FPGA Device

Scheduler

SCGRA Overlay

BRAMs
LUTs

DSPs FFs

A
L
U

Fig.3. Overlay compiling flow. FF: flip-flops.

and elaborate on the combination of BRAMs 14○ for the

required bandwidth.

FPGA Overlay. Until now, no commercial FPGA

overlay tool has been released. The authors in [30] pro-

vided an overlay architecture for pipelined execution of

data flow graphs (DFGs) and a tool mapping DFGs to

overlays. The design flow is divided into two parts: ex-

tracting DFGs from high-level language programs, plac-

ing and routing the DFG nodes onto the overlay. There

is no need to consider aspects of hardware design and

the FPGAs architecture when extracting DFGs. DFGs

can be mapped to overlays in seconds with the provided

tool, and the functional units (FUs) on the overlay are

pre-compiled and configurable, which shorten the whole

FPGA design time. However, the users have to get the

DFGs manually or through third-party tools, and the

FUs should be pre-designed according to the function

of the high-level programs.

2.4.3 Performance

In [31], the authors provided a performance compa-

rison between Vivado HLS [32] and ArchSyn [28], an

FPGA overlay tool. This comparison focuses on com-

putation intensive scenarios, and two benchmarks are

tested, i.e., matrix-matrix multiplication (50 × 50 and

25× 25 in size, respectively) and fast Fourier transform

(8 192 and 1 024 in length, respectively). The evalua-

tion metrics consist of computation latency, dynamic

power consumption, power-delay product, and energy-

delay product. The results show that FPGA overlay is

8x–39x faster than FPGA HLS in computation perfor-

mance. But FPGA HLS performs better in dynamic

power consumption metric, achieving up to 17x lower

power consumption than FPGA overlay. Under the

provided benchmarks, FPGA overlay has better perfor-

mance than FPGA HLS, but more hardware resource

must be invested than that in FPGA HLS for the same

function. In addition, the authors [31] only used loop

unrolling directive in Vivado HLS to exploit computa-

tion parallelism, so that the ultimate performance of

Vivado HLS has not been reached.

3 Evaluation Criteria and Optimization

Equation of High-Level Synthesis Tools

Evaluation criteria are used for evaluating the per-

formance of solutions designed by the HLS tools. The

HLS tools are designed to promote the abstraction

level of FPGAs programming so that the designers can

specify hardware functionalities with software specifica-

tions. Therefore, the criteria should evaluate not only

the QoR of the synthesized implementations [33], but

also the ease of use of the HLS tools. More efficient

tools and development process can help designers find

the optimal solution in shorter time.

The drawbacks of HLS tools are mainly reflected in

three aspects: designers remain exposed to various as-

pects of hardware design, development cycles are still

14○https://www.xilinx.com/support/documentation/sw manuals/xilinx2019 1/ug871-vivado-high-level-synthesis-tutorial.pdf, Dec.
2018.

704 J. Comput. Sci. & Technol., May 2020, Vol.35, No.3

time consuming, and the quality of results (QoR) of

HLS tools is far behind that of RTL flows. Performance

optimization work should improve these defects.

To evaluate the performance optimization contribu-

tions on them, we propose a set of three-level evalua-

tion criteria, as shown in Fig.4. These three levels are

named ease of use, development cycles optimization,

and promotion on specific metrics.

In order to reveal the relation between the perfor-

mance of the HLS tools and the three-level evaluation

criteria, we propose a set of performance evaluation

equations. In these equations, we use a QoR trail func-

tion to describe the relation between the performance

optimization of the HLS tools and the QoR of the HLS

tools. We set each item of the criteria as one factor of

the trail function, so that designers can use it to eva-

luate the possibility of achieving higher QoR and to find

chance to improve the performance of HLS tools in the

future.

Verification &
Debugging

Design Space
Exploration

Optimizations for
 Applications of
Particular Fields

Benchmark
Functions

Loop

Optimization

Libraries

Optimizations for
Floating-Point Operations

Memory Space
Allocation

imizations for

Power Efficient
Improvement

Top-Level: Ease of Use

Mid-Level: Development Cycles Optimization

Bottom-Level: Promotion on Specific Metrics

ent Cycles Optimization

Trade-off Between
Performance and Resource

Optimizations of
Scheduling

Optimizations of the HLS Flow

Fig.4. Three-level evaluation criteria.

3.1 Three-Level Evaluation Criteria

The three-level evaluation criteria target different

stage of designing with HLS tools.

3.1.1 Top-Level: Ease of Use

The top-level consists of three parts: optimizations

of the HLS flows, verification and debugging, and li-

braries. With HLS tools, the gap between algorithm de-

sign and hardware design becomes narrow, which opens

hardware design to algorithm designers who have little

hardware design experience. However, the HLS tools

do not take over all the hardware-related tasks. The

designers still need to think in hardware elements level,

e.g., registers, clocks, and fan-out. The design process

is more like embedded system design [34] than high-level

software design.

In order to further reduce the workload of designers,

it is better to provide more design assistant approaches.

An optimized HLS tools flow can improve coding effi-

ciency with less consideration on the hardware struc-

tures. Advanced verification and debugging tools can

accelerate convergence of program stability. Libraries

package specific functions, which can both speed up

coding efficiency and performance of the generated cir-

cuits.

3.1.2 Mid-Level: Development Cycles Optimization

The development cycles of HLS tools consist of three

steps [35]. First, the designers describe the algorithms

in high-level languages, and design a set of synthesis di-

rective based on the considerations (e.g., latency, area,

power consumption). Then, the high-level language de-

signs are compiled into RTL designs by the HLS tools.

At last, the RTL implementations are transformed into

device configuration through logic synthesis and imple-

mentation by the general FPGA design suites. The last

two steps are automatical but time consuming, and the

designers can only get the performance of the designs

when the last step finished. In order to find a better

solution, the designers modify the description and the

directive according to the reports in the last step, and

begin a new round of the last two steps. As a result,

the development cycles are very long.

The goal of development cycles optimization is to

find the best solution with the lowest possible time cost.

Therefore, we design the mid-level of our evaluation cri-

teria including design space exploration, optimizations

of scheduling, optimizations for applications of particu-

lar fields, and trade-off between performance and re-

source. Because the last step of development cycles is

mainly decided by the FPGA design suites, most of

the contributions optimize the performance of the HLS

tools from the perspective of the first two steps.

3.1.3 Bottom-Level: Promotion on Specific Metrics

The QoR of the designs are influenced by many

factors [36]. We extract the most significant parts of

them to construct the bottom level of our evaluation

criteria. As shown in Fig.4, there are loop optimization,

memory space allocation, power efficient improvement,

optimizations for floating-point operations, and bench-

mark functions in this level. The implementation of the

loop affects the delay and the throughput of designs. A

Lan Huang et al.: A Survey on Performance Optimization of High-Level Synthesis Tools 705

better memory space allocation can promote bandwidth

and increase the scale of the designs. Floating-point

operations affect the area of the solutions. The power

efficiency can be promoted through many approaches,

e.g., decreasing the resource for the designs, and opti-

mizing the layout to involve less clock regions. Bench-

mark functions provide baselines for evaluating various

solutions.

3.2 Performance Evaluation Equations of HLS

Tools

As stated at the beginning of this section, the per-

formance of the HLS tools should consider both the

QoR and the ease of use (EoU). Therefore, in our work,

the performance of HLS tools is defined as

PHLS = (QoR,EoU).

We also define QoR as

QoR = (F,L, T,R, P),

where F is the frequency, L is the latency, T is the

throughput, R is the resource utilization, and P is

the power efficiency, all of which are main concerns of

FPGA designs and are obtained from the reports of the

HLS tools [37]. In order to evaluate the performance of

HLS tools, we set the QoR of manual RTL flows as the

optimal QoR ((QoR)o), and define the QoR satisfying

performance requirements as (QoR)r, and the QoR of

HLS tools as (QoR)h.

Normally, the designs satisfying performance re-

quirements are obtained through multiple iterations.

Based on the discussion in Subsection 3.1, we define

the trial function of (QoR)h as

T i
HLS = eC(xi)T

= e (D,TO,A, S, LP,B, PE,M,FF)

(xi
D, xi

TO, x
i
A, x

i
S , x

i
LP , x

i
B , x

i
PE , x

i
M , xi

FF)
T,

where i is the i-th iteration, e is the coefficient quan-

tified by EoU , C is the capability vector of the

HLS tools, D, TO, A, S, LP, B, PE, M and FF rep-

resent the capabilities of design space exploration,

trade-off between performance and resource, optimiza-

tion for applications of particular fields, optimiza-

tion of scheduling, loop optimization, benchmark func-

tions, power efficient improvement, memory space

allocation, and optimization for floating-point ope-

rations in our three-level evaluation criteria, respec-

tively, xi is the elaboration vector of the designers, and

xi
D, xi

TO, x
i
A, x

i
S , x

i
LP , x

i
B , x

i
PE , x

i
M and xi

FF repre-

sent the efforts of the designers in the corresponding

aspects, such as refactoring the codes to match the

hardware structure, and adjusting the bit width of data

according to the accuracy requirements of specific prob-

lems. The value of T i
HLS is proportional to the value of

(QoR)h.

(QoR)h is generated in each iteration, and then the

designers modify one or several components of x to im-

prove (QoR)h in the next iteration. A larger value of

e, which is promoted by the EoU of the tools, can also

accelerate the convergence of (QoR)h.

We define the error between (QoR)o and the (QoR)h
of the i-th iteration as

E = (QoR)o − (QoR)h,

and the termination conditions for HLS iteration as
{

E = 0,

(QoR)r = (QoR)h.

The iteration terminates when any of the equations

in the termination conditions is satisfied.

The performance of the HLS tools is reflected by

e and C in the trial function. HLS tools with higher

performance converge faster to the final designs. When

the iteration terminates, the smaller the value of i is,

the better the performance of the HLS tool is.

4 Performance Optimization of HLS Tools

HLS accelerates the FPGA design by raising the

level of design abstraction beyond RTL, which signifi-

cantly promotes design productivity and reduces engi-

neering cost. However, the performance of the HLS

tools, such as the ease of use and the quality of results,

is still behind those of manual RTL flows. In order to

narrow the performance gap between them, a lot of stu-

dies are carried out to improve HLS. Some of them are

inspired by the compiler community, while the others

are dedicated for hardware design. In this section, we

present a survey of literatures in this field.

4.1 Ease of Use

Easy-to-use tools should have the following features:

easy to understand, smooth learning curve, strong user

assistance, etc. [38] HLS promises designers a higher

level abstraction for FPGA designing than the tradi-

tional HDL. However, the designers now remain ex-

posed to various aspects of hardware design. They have

to be experienced in hardware for high-performance

706 J. Comput. Sci. & Technol., May 2020, Vol.35, No.3

HLS designs. Therefore, the performance improvement

work should elaborate on the above problems. In this

paper, we consider the ease of use of HLS tools in the

following aspects: optimizations of the HLS flow, veri-

fication and debugging, and libraries.

4.1.1 Optimizations of the HLS Flow

In order to decrease the considerations on hardware,

an efficient performance optimization approach is intro-

ducing new steps to the HLS design flow.

In [39], the authors used sequential model based

optimization (SMBO) methods to select directive set-

ting combinations automatically. They also optimized

SMBO so that the proposed tool can further improve

the convergence rate over the standard method. How-

ever, the proposed framework only can select the cur-

rent directive settings. The directive settings of previ-

ous design process cannot be inherited, which decreases

the optimization efficiency.

The authors of [40] used the embedded domain-

specific language (DSL) of Haskell as the higher-order

abstract expression layer. The parallel structure of the

programs is first expressed in DSL, and then compiled

to low level virtual machine intermediate representa-

tion (LLVM IR), which is then integrated into the HLS

tools. However, the proposed method can only deal

with MapReduce process, and it also needs to be im-

proved in time scheduling.

Another rapid prototyping method to reduce the

design time is introduced in [41]. The method con-

verts the problem of hardware structure compiling to

the problem of graphic searching. However, the de-

signers have to pre-design the hardware models for the

graphic nodes, which cannot be predicted when facing

new problems.

Template-based approaches are provided in [42,43],

where composable and parameterizable templates of

common computation patterns are optimized for para-

llel hardware structure. With these templates, de-

signers can further shorten programming time. How-

ever, these studies only promote the efficiency of code

generation when the parameters in the templates are

changed. The performance of the generated hardware

implements through these approaches still needs to be

improved.

4.1.2 Verification and Debugging

Verification and debugging remain time-consuming

parts of any design projects. Hence, it is of great im-

portance that the HLS tools support the verification

and debugging throughout the design process. Further-

more, improving their efficiency is also valuable.

HLS tools provide efficient module-level behavioral

verification, but the non-behavioral factors of the gene-

rated RTL still have to be verified, e.g., the results of in-

terface synthesis and component integration. To tackle

this problem, the authors of [44] provided a method-

ology of reducing the RTL verification requirements,

which refines the control and data-path by using se-

mantic stubs as well as high-level control models. With

this methodology, the cover goals of both high level

and RTL verification are met in a semantically sound

fashion, without the need of re-establishment in RTL.

However, the proposed method only implements the

function verification. Another important factor, time

sequence, is not mentioned in this work.

A source-level debugging framework for HLS is of-

fered in [45]. The framework supports gdb-like soft-

ware debugging environment, inspection of the values

of logic signals in the hardware from the perspective

of C source code, and consistence verification between

the logic signal in the hardware and the corresponding

variable of the logic signal in software. The proposed

method focuses on the source code consistence before

and after synthesis. However, the time sequence debug-

ging is still not mentioned.

In [46], a debugging approach, Hybrid Quick Error

Detection (H-QED), is presented. H-QED runs soft-

ware and hardware versions of the same function sepa-

rately, and generates software and hardware signatures

during the execution. Finally, the sequence of software

signatures is compared with that of hardware signa-

tures, and any mismatch indicates bug detection. The

authors proposed an effective approach to keep the con-

sistency between the hardware and the software codes,

but the debugging processing is time consuming.

The authors of [47] provided a method to improve

the debugging visibility of HLS tools through extending

the source-level visibility into in-system simulation, co-

simulation, and hardware execution. The method can

help to find bugs with little or without effect on the

resource usage, timing, latency, or throughput of the

design. However, due to the source-to-source transfor-

mation adopted in the work, the original sources have to

be verified again when the debugging process finished.

To further reduce bug detection latency, a just-in-

time (JIT) trace-based debugging framework is pro-

posed in [48]. This framework upgrades HLS debug-

ging by JIT traces and automated insertion of verifica-

tion code into the generated RTL. The earliest instance

Lan Huang et al.: A Survey on Performance Optimization of High-Level Synthesis Tools 707

of execution mismatch can be identified quickly; mean-

while, the framework provides detailed information on

the faulty signal and its corresponding variable in the

application source. However, because of the inserted

debugging code, the original codes have to be verified

again before being deployed on FPGAs chips.

4.1.3 Libraries

Library is another approach to improving the effi-

ciency and quality of HLS designs. Normally, the li-

braries concentrate on one specific area, such as im-

age processing, floating-point arithmetic. They provide

interfaces for dedicated functions and are parameter-

izable. Moreover, they are always deeply optimized

in terms of hardware structure implementation. Thus,

users can save developing time and be less experienced

for favorable implementations.

A C-based library for accelerating image processing

was proposed in [49]. It is composed of generic build-

ing blocks which are applicable of multitude of image

processing applications. The library is compactly rep-

resented so that the control performance and resource

requirements are achieved easily. The performance of

the library is optimized through an efficient memory ar-

chitecture that facilitates easy integration of point and

local image processing operators. This work proposes

a flexible library for image processing, and provides a

reference for the libraries dedicated in other fields.

The authors of [50] provided a C++ based image

processing library which focuses on imagine process-

ing applications that can be expressed as stream-based

dataflow graphs (DFGs). The library provides users a

coding template, and the users can use this template

to define a DFG via functions in the library with fewer

considerations of implementation details. Also, image

border handling modes can be selected just by a tem-

plate parameter and the whole algorithm can efficiently

be parallelized with a global constant. However, the

performance of the generated designs still need to be

improved.

In [51], the authors provided a set of design steps to

implement scalable spatial FPGA algorithms with HLS,

and introduced the open source library hlslib 15○ to aid

productivity. Hlslib is designed from the perspective of

high-performance computing (HPC), providing classes

of host (CPUs) side and of device (FPGAs) side respec-

tively. In the device side, hlslib contains classes such as

DataPack for easing SIMD parallelization, Flatten for

flatten loop nests, AXI for AXI stream interface and

so on. Experimental results show that the applications

developed with hlslib outperform the others in power

consumption. However, the latency of the implementa-

tions is not mentioned in the work, which could be a

weakness of the performance due to the design philos-

ophy of hlslib.

Besides libraries, the authors of [52] developed an

approach implementing HLS based upon parameteri-

zable templates that can be composed using common

data access patterns. The templates are divided into

multi-levels. The hardware kernels are packaged as level

0 templates by the hardware experts, and the upper

level 1 are composed of the level 0 templates. If needed

by more complex functions, the level 1 templates can

be used for constructing level 2 templates. Experimen-

tal results show that the template approach always run

faster than the Optimized Software Code (OSC) ap-

proach. This work optimizes the HLS design flow by

the hierarchy method, which proposes a good reference

for the HLS tools.

4.2 Development Cycles Optimization

Development cycles cover from designing algorithm

to verifying products [53, 54]. Especially for FPGAs de-

signing, it is time consuming to find the optimal solu-

tion. The higher level abstraction of HLS promises de-

signers to explore the optimal solution with lower time

cost. In addition, the HLS community contributes a lot

to further optimizing the development cycles.

4.2.1 Design Space Exploration Capabilities

HLS tools promise to reach better productivity com-

pared with manual RTL flows, measured by the time

for an acceptable solution. They usually generate an

RTL description corresponding to a given software al-

gorithm, considering specific performance targets (fre-

quency, latency, throughput, area, power consump-

tion, etc.), which is defined as design space exploration

(DSE). As a result of the DSE on the given algorithm,

only the designs with which designers are concerned are

the Pareto-optimal designs. Pareto-optimality can be

loosely defined as those designs which are impossible to

improve one performance goal without making at least

another performance goal worse.

In this paper, we define the design space as the QoR

discussed in Subsection 3.2. The expression of our de-

sign space is shown as follows:

DS = (F,L, T,R, P),

15○https://github.com/definelicht/hlslib, Dec. 2018.

708 J. Comput. Sci. & Technol., May 2020, Vol.35, No.3

where DS is the design space, F is the frequency, L is the

latency, T is the throughput, R is the resource utiliza-

tion, and P is the power efficiency. The values of these

parameters vary according to the specific requirements.

Sometimes only one of the parameters is concerned.

The process of DSE is normally described as shown

in Fig.5. All the concerned constraints are entered from

the left side. According to the constraints, potentially

infinite state space is generated. There are different

kinds of space exploration algorithms in the middle

box, such as machine learning, evolutionary algorithms,

pruning, or graph searching. After the exploration, the

alternative solutions are filtered.

Goals

Constraints

Strategies

Initial
Design

Alternative
Solution 1

Alternative
Solution 2

Alternative
Solution 3

Alternative
Solution 4Design Space Exploration

Potentially Infinite
State Space

Fig.5. Design space exploration.

However, the DSE process of current HLS tools is

usually done manually and acceptable for well-informed

users. The researchers of the HLS community have

tried a lot on improving the capability of DSE.

In [55], the authors proposed a design space explo-

ration framework named “Design-Trotter”. This frame-

work explores the design space before the high-level

synthesis. There are two sub-goals in the framework.

The first one is to demonstrate all the possible paral-

lelism of the application through a graph representa-

tion. The second one is to conduct the high-level syn-

thesis processes by means of dynamic estimates, which

are represented by parallelism vs delay trade-off curves.

A point in the curves represents a possible solution in

terms of parallelism options for both processing (ALUs)

and data-transfer (memory access) operations. These

curves could be used as a guide for the designers to

choose better implementations while high-level synthe-

sizing. However, the work constructs the design space

through traversing, which makes the design space too

large to find the optical solution in limited time.

The authors of [56] also presented a design space ex-

ploration methodology considering the metrics of com-

putation parallelism and memory bandwidth. Based

on an area/delay tradeoff estimation, the authors pro-

vided a pruning method to mitigate the complexity of

the exploration process. The pruning method proposed

in this work accelerates the exploration, which provides

performance improvement during DSE.

Focusing on minimizing the hardware area while

meeting a minimum throughput constraint through

pipelines, the authors of [57] explored the design space

by module selection and resource sharing. Further-

more, they took data introduction interval and sys-

tem frequency as the performance metrics. To simplify

design space, two methods are used for reducing the

complexity of the module selection and the scheduling

algorithm, respectively. The optical solutions selected

by the proposed method tend to minimize the area,

whereas the bandwidth is limited.

A predictive model DSE method based on machine

learning is presented in [58], which first constructs a

predictive model from a training set until a specified

error threshold is achieved and then explores the design

space using the model. The provided method is faster

than genetic algorithm (GA) and simulated annealer

(SA) based DSEs with comparable results. However, it

is hard to construct the training set.

In order to promote the prediction accuracy of DSE,

a performance analysis tool named Lin-Analyzer is pro-

posed in [59]. Lin-Analyzer provides an accurate perfor-

mance estimation of FPGA designs using the dynamic

data dependence graph (DDDG), which can avoid time-

consuming HLS runs and the false data dependen-

cies generated from the static analysis methodologies

adopted in most existing techniques including commer-

cial HLS tools. This work proposes a graph-based

method for the solution exploration, which provides an

acceleration of the exploration process.

Without making the decision manually, an au-

tonomous DSE flow is proposed in [60], which uses an

iterative and greedy strategy to ensure a fast conver-

gence towards a satisfactory solution in a short time.

The proposed flow strictly respects user constraints

about resource usage and target frequency. By han-

dling profiling annotations, the DSE always focuses on

the most critical sections, and the flow presents a good

scalability. This work provides an automatic method

for DSE. However, there is not enough optimization for

the exploration strategy, which leads to a long explo-

ration time.

To further involve the HLS tools in the DSE, the

authors of [61] directly used the directive knobs of the

HLS tools to construct the design space. The DSE

is accelerated by first classifying these knobs accord-

ing to the underly implications of each of these knobs

Lan Huang et al.: A Survey on Performance Optimization of High-Level Synthesis Tools 709

and then exploring them sequentially. In order to fur-

ther accelerate the DSE, a probabilistic method is pro-

posed, which computes the probability of each micro-

architecture generated from constraints exploration pe-

riod. As a result, new dominating designs are discov-

ered, and the following exploration only focuses those

with the highest probabilities. This work provides an

efficient exploration strategy. However, the definition

of the underly implications of the knobs is still time

consuming.

The area information of the reports of HLS tools

is inaccurate, and should be confirmed through logic

synthesis. The work in [62] presents a pruning-based

DSE method, which uses adaptive windowing meth-

ods to choose the candidate designs for logic synthesis.

The adaptive windowing is inspired by the Rival Penal-

ized Competitive Learning (RPCL) model and is used

for classifying designs which need to be synthesized to

search for the true Pareto-optimal designs. Experimen-

tal results show that the pruning-based DSE method

generates similar quality trade-off curves and decreases

the exploration time compared with the methods which

execute a logic synthesis as long as a new design gene-

rated. The proposed method decreases the DSE time,

but the optimal design has to be confirmed manually

in a second round of research.

The authors of [63] proposed a cluster-based heuris-

tic DSE method, which accelerates the DSE through

decreasing the solutions needed to be synthesized. This

method first clusters solutions which have a high degree

of similarity, and then combines only the most effec-

tive HLS directives characterizing each cluster. With

this method, only a subset of possible configurations

for an HLS design need to be explored, and the close

approximation of the Pareto Frontier can be achieved.

However the cluster-based heuristic algorithm has to be

pre-designed.

Evolutionary algorithms perform well in solving

multi-objective optimization problems. Researchers

also involve them in DSE. The genetic algorithm (GA)

is used for DSE in [64], and the two presented encoding

methods, named priority-based encoding and binding-

base encoding, achieve better performance than tra-

ditional approaches. A multi-structure genetic algo-

rithm is introduced for optimizing DSE in [65], with

a cost function evaluating execution time and power

consumption considering registers, functional units, de-

multiplexers, multiplexers, and clock frequency oscilla-

tor. This method performs better than a previous GA

based heuristic approach. Non-dominated Sorting Ge-

netic Algorithm II (NSGA II) is also introduced in [66],

and is able to converge to the true Pareto front obtained

from exhaustive search. Another work [67] applies simu-

lated annealer algorithm (SA) on DSE for searching the

smallest and the fastest designs, and experimental re-

sults showed that it can reduce the total runtime by an

average of 66% compared with a brute force approach.

Due to the property of evolutionary algorithms [68], the

final solution proposed by these methods may not be

optimal.

4.2.2 Optimizations for Applications of Particular

Fields

FPGA performs superior performance in some spe-

cial application areas, such as imagine and signal pro-

cessing, sorting. To further improve the performance of

FPGA in these areas, many efforts are invested.

In [69], the authors proposed Data-Level Paral-

lelism (DLP) method for imagine processing, where

loop coarsening is used for improving the hardware ef-

ficiency on top of loop tiling. In [70], for promoting

the performance of real-time image processing, a source

code and directive manipulation strategy is presented.

The strategy improves performance through carefully

designing the order of different optimization forms. In

order to speed up the development process, a very high-

level synthesis method is presented in [71]. With this

method, designers can fast prototype and verify the im-

age processing designs in the MATLAB environment.

These three studies propose optimizations from diffe-

rent stages of image processing problems.

To improve the portability and maintainability of

sorting algorithms implemented on FPGA, the work

in [72] provides a framework which is composed of 10

basic sorting architectures. Users with not enough ex-

perience in hardware can construct hybrid sorting ar-

chitectures with these basic architectures quickly. The

proposed framework constructs new sorting architec-

tures with pre-defined blocks. However, the connections

between blocks are not optimized, which will limit the

performance when the scale of the problems increases.

Memory intensive algorithms are another common

problem with FPGAs. In [73], a memory interface that

supports parallel memory subsystems and enables im-

plementing atomic memory operations is designed to

optimize the memory access. In [74], the authors pro-

moted the performance through a new design method-

ology, based on dedicated application- and data array-

specific caches. These studies focus on the bandwidth

of memory, but the memory reuse is not mentioned.

710 J. Comput. Sci. & Technol., May 2020, Vol.35, No.3

4.2.3 Optimizations of Scheduling

As described in Subsection 2.4, scheduling allocates

clock circles for the operations, which decides the se-

quence of operations, and affects the performance of

the HLS-generated circuits. HLS tools in use almost

universally generate statically scheduling, which implies

that circuits generated by HLS tools have a hard time

exploiting parallelism in code with potential memory

dependencies, with control-dependent dependencies in

inner loops, or where performance is limited by long la-

tency control decisions. Researchers do many efforts to

promote the performance of scheduling. We summarize

the main work as described in the follows.

Multi-cycling is a well-known strategy to improve

performance in digital design. In [75], the multi-

cycling is introduced in HLS, and the software pro-

filing is also used for guiding multi-cycling optimiza-

tions, which optimizes the scheduling utilizing hard-

ware design tricks. Efficient pipeline scheduling is an-

other difficulty for scheduling. Taking the area mini-

mization of throughput-constrained, mapping-aware

pipeline scheduling problem as the primary objective,

an exact formulation is proposed in [76] so as to mit-

igate the pessimism inherent in static delay estimates

and improve resource utilization. However, these stu-

dies only proposed the static loop dependency analysis.

In [77, 78], dynamic dependency analysis is intro-

duced for resource allocation which is executed before

scheduling. Dynamic dependency analysis can improve

the qualify of the resource allocation, and then sim-

plify and accelerate the scheduling. However, the per-

formance of the proposed dynamic dependency is still

poor, which leads to a long scheduling time.

In [79], the authors presented the dynamical

scheduling by describing the implementation of a pro-

totype synthesizer which generates a particular form

of latency-insensitive synchronous circuits. Compared

with static scheduling, the performance of the circuits

generated from the dynamical scheduling is very signifi-

cantly improved at an affordable cost. This work pro-

poses an excellent reference on optimizing the schedul-

ing, further to improve the synthesis and development

cycles.

4.2.4 Trade-off Between Performance and Resource

An important approach to improve the performance

of the FPGA design is to invest more resources. How-

ever, the amount of resources is limited. Therefore,

there should be a trade-off between performance and

resources. The trade-off can be affected by many fac-

tors, such as the experience of the designers, the opti-

mization of the compliers, and so on. The community

also makes a lot effort on optimizing it.

In order to achieve a better system-level through-

put of the applications with multiple nested loops un-

der a given area budget, the authors of [80] developed

an algorithm to determine the optimal resource usage

and initiation intervals for each loop in the applications,

which obtains an average of 31% performance speedup

over state-of-the-art HLS solutions according to the ex-

perimental results. However, the proposed method only

can deal with the loops without dependency.

Considering the communication between parallel

modules, a memory management method is described

in [81], which reduces memory contention among hard-

ware units that operate in parallel on the basis of saving

connection resources among the memory banks. How-

ever, this method pays more memory resource for sav-

ing the connections.

To promote the performance of the algorithms with

complicated data structures (such as heaps, trees, and

so on), a method for decoupling complex data struc-

tures with a latency-insensitive interface is presented

in [82]. As shown in the experimental results, this

method is capable of achieving very promising speedups

without causing significant area overhead. However,

the decoupling process increases the risk of the stabil-

ity of the programs, and designers have to verify the

programs with more test cases.

Before synthesis, the source code must be com-

piled by the high-level language compiler. The work

in [83] exploits the effect of the optimization config-

urations of the LLVM compiler, and presents a new

performance optimization approach that interferes the

compiling process manually according to the prejudg-

ment of the compilation results. In [84], the authors

proposed an automatic compiling optimization method

based on machine learning method. These two studies

optimize the performance of the HLS through interfer-

ing the compiling optimization process, which proposes

good exploration on optimizing HLS tools.

4.3 Promotion on Specific Metrics

As discussed in Subsection 3.2, the metrics of QoR

contain frequency, latency, throughput, resource uti-

lization, power efficient, etc. FPGA design require-

ments usually expect solutions to be optimal in several

of these metrics. Therefore, designers elaborate on the

Lan Huang et al.: A Survey on Performance Optimization of High-Level Synthesis Tools 711

designs so that the designs can match the requirements.

The HLS community has also contributed many efforts

for optimizing the HLS tools, which can help the FPGA

designs to achieve better performance on these metrics

without extra efforts of the designer.

4.3.1 Loop Optimization

Loop is the most commonly operation in algo-

rithms. A high-efficient hardware acceleration of loop

can greatly optimize the runtime of algorithms.

There are three factors need to be considered for

loop design optimization as shown in Fig.6. We define

them as the loop design space.

DSloop = (LPU,LPP, II),

8 Cycles

1 Cycle4 Cycles

1 Cycle 1 Cycle

3 Cycles

(b)(a)

(c) (d)

void func(m, n, o) {

for (i=2; i>=0; i--)

 op_Read;

 op_Compute;

 op_Write;

 }

}

Fig. 6. Loop optimization. (a) For loop. (b) Without loop
pipeline. (c) With loop pipeline. (D) Loop unroll.

where LPU is the loop unroll factor, LPP is the loop

pipeline factor, and II is defined as the initiation in-

terval for loop pipeline. As shown in Fig.6, loop unroll

achieves a SIMD-like effect. Loop pipeline allows start-

ing a new loop iteration before the completion of its

predecessor, which improves the utilization of comput-

ing components and the throughput. If loop pipeline

is adopted, II must be considered. It is the number

of clock cycles between two adjacent loop iterations. In

order to promote the throughput, II should be as small

as possible, ideally 1, where a new loop iteration starts

every cycle. Resource constraints and loop-carried de-

pendencies are the two key factors for the minimum

II. Resource constraints are mainly caused by input-

output conflictions. For example, there are one load

operation and two store operations in a loop body. In

this scenario, it is impossible to achieve an II less than

2 if the memory has two ports, as there are three mem-

ory operations in each loop iteration. With respect to

loop-carried dependencies, reducing II is restricted if a

loop iteration cannot start without the result computed

in its prior iteration, which is named data dependency.

Considering loop-carried dependencies among mul-

tiple nested loops, the authors in [85] found the op-

timized loop acceleration solutions through DSE. An

algorithm used for deriving the Pareto-optimal curve is

developed, and it can effectively prune the dominated

points in the design space. However, the provided opti-

mal solution searching strategy is not efficient enough,

and the synthesis process is still time consuming.

To reduce II of loop pipelining, a customized

affine+ISS (ISS) algorithm, where ISS is the acronym

for Index-Set Splitting, is developed in [86]. The au-

thors used ISS as a complementary transformation to

extract additional loop-level parallelism and further re-

duced II of affine programs which are a class of pro-

grams with regular loop bounds and array accesses. ISS

is then optimized based on memory port conflict de-

tection for separating out conflict-free loop iterations

leading to further latency improvements. However, the

method proposed in this work cannot deal with loop

dependency scenario.

Another method to reduce II is introduced in

[87]. The method is based on an automated source-

to-source code transformation, which first finds the it-

erations violating loop-carried dependencies, and then

inserts statically-determined parametric pipeline breaks

to split the loop into pieces. This can optimize the de-

pendence patterns and improve the throughput. This

work proposes a method for loop dependency, but the

proposed method will increase the scale of the generated

circles.

Focusing on the dependencies between loops and ar-

rays, the framework proposed in [88] represents these

dependencies as a graph and finds the optimized loop

pipelining through traversing the combinations of the

access and partition pattern of arrays. However, the

proposed method only can deal with static dependen-

cies between loops and arrays.

In [89], an open-source program optimizer named

SOAP3 is proposed, which can automatically rewrite a

given program to alleviate data dependencies between

loop iterations. SOAP3 takes runtime, accuracy, and

area as metrics for the rewritten programs, and mini-

mizes the latency of loops with controlled accuracy of

floating-point computations. This work proposes an ef-

fective solution on resolving the loop dependencies.

712 J. Comput. Sci. & Technol., May 2020, Vol.35, No.3

Although loop unrolling improves the throughput, it

can also lead to schedule additional operations, at the

cost of more resource sharing, larger MUX size, and

delay. A recent work [90] devotes to exploiting the best

loop unrolling factor in a behavioral specification, which

uses design space pruning methods to predict controller

and datapath delays. However, the proposed method

only can deal with loops without dependency.

Since it is challenging to analyze the loops with un-

balanced workload, irregular dependence patterns, and

irregular memory accesses, most of the HLS tools im-

plement the pipeline of the loops conservatively, which

sacrifices performance for maintaining presumed reg-

ularity. The authors of [91] expanded loop pipeline

with dynamic scheduling to adapt to data-dependent

behaviors, while employing static compile-time opti-

mizations to minimize the hardware overhead associ-

ated with runtime optimization. Another work in [92]

addresses this problem based on application-specific dy-

namic hazard resolution. The method first generates an

aggressive pipeline at compile-time, and then resolves

hazards with memory port arbitration and squash-and-

replay at run-time. These two studies propose methods

on improving the performance of the pipelines.

4.3.2 Memory Space Allocation

In order to enhance the storage capability, FP-

GAs are equipped with multiple memory banks in the

form of distributed block RAMs (BRAMs), which can

speed up memory accesses at low latency via partition-

ing and mapping software data structures onto dedi-

cated BRAMs. Consequently, multiple memory ope-

rations can be scheduled in one cycle if they access

different data in the same cycle without confliction.

BRAMs expand the available parallelism. However, the

customization of memory accesses should be carefully

planned due to the limited memory ports of BRAMs.

There are four aspects that need to be considered

for memory allocation. We define them as the design

space of memory:

DSmem = (BW,BD,FO,LT),

where BW is the bit width, BD is the bandwidth, FO

is the fanout, and LT is the latency. Bit width is de-

cided by the data type of the algorithms. If the preci-

sion meets the requirements of the algorithms, a smaller

bit width is preferred. Bandwidth mainly varies accord-

ing to the degree of parallelism. Fanout is defined as the

number of connections of the same storage units, and

its value is decided by the number of read/write ope-

rations to the same variable at the same time. There is

a fanout limitation for the storage units. If the connec-

tions exceed the limitation, the routing algorithms use

LUTs to expand the connections. This costs additional

FPGA resource. Therefore, the read/write of the vari-

ables in the algorithm needs elaboration. By taking the

BRAMs as the storage units, there will be an additional

delay cycle for writing. This must be considered during

the time sequential design.

A generalized memory-partitioning framework for

high data throughput of on-chip memories is proposed

in [93]. The framework generalizes cyclic partition-

ing into block-cyclic partitioning to expand the design

space. In addition, the framework also provides a con-

flict detection algorithm on polytope emptiness test-

ing, and uses integer points counting in polytope for

intra-bank offset generation. According to the experi-

mental results, the framework can save more BRAMs

while achieving comparable throughput. This work is

the first to use a polyhedral model to formulate and

solve the bank access conflict problem, which is a novel

approach for improving the bandwidth of BRAMs.

In [94], the authors proposed a memory optimiza-

tion method on improving the area efficiency of the

memory components. First, they constructed a mem-

ory controller to schedule the data accesses of all the

processes on the same physical memories. Second, they

designed an algorithm to automatically determine an

optimal architecture of the memory subsystem under a

formal description of the data exchanges among the ac-

celerator processes. Once the description contains mul-

tiple accelerators which operate in time-multiplexing,

the algorithm derives opportunities to enforce the shar-

ing of physical memories among the accelerator pro-

cesses to reduce the overall memory footprint. The

proposed method transforms the memory optimization

problem into the DSE problem. However, the work does

not propose an efficient DSE strategy.

LegUp [95] is an HLS tool which permits synthesiz-

ing multi-threaded software into parallel hardware. In

order to promote the memory bandwidth of the par-

allelized threads, the authors of [96] designed an ap-

proach which can automatically partition the arrays of

the multi-threaded programs into sub-arrays. This ap-

proach is accomplished with trace-based profiling, and

allocates dedicated memories to each thread, which re-

duces memory access contention and arbitration. How-

ever, the work focuses less on memory reuse, and the ef-

ficiency of memory utilization can be further improved.

Lan Huang et al.: A Survey on Performance Optimization of High-Level Synthesis Tools 713

It will be another difficulty for HLS tools if dynamic

memory allocation or dynamic, pointer-based data

structures are involved in applications. The authors of

[97] tackled this difficulty in two steps. First, they per-

formed a static analysis for pointer-manipulating pro-

grams where heap-allocated data structures are auto-

matically split into disjoint, independent regions. Sec-

ond, they designed an algorithm to automatically trans-

form source code for loop parallelization and memory

partitioning using off-the-shelf HLS tools. However, in

order to avoid the memory access arbitration, the au-

tomatic transformation algorithm decreases the perfor-

mance of the algorithms.

4.3.3 Optimizations of Floating-Point Operations

Floating-point operations are common in algo-

rithms, which are resource-intensive and operational or-

der sensitive. The high-level languages used by HLS

tools inherit the limitations when they are used for

general purpose processors, such as bit width (32 or 64

bits only), established standards (C11 or IEEE-754).

In order to handle floating-point operations in a

completely non-standard way, the work in [98] presents

an attempt on generating efficient designs. The com-

pliance with the C11 and IEEE-754 standards is re-

placed by the restrict of a high-level accuracy specifi-

cation. According to the experiments on floating-point

summation-reduction pattern, the proposed work opti-

mizes both accuracy and latency by an order of magni-

tude for comparable area.

In [11], the authors exhibited the performance of

the C language described floating-point cores provided

in LegUp, which can be customized to non-compliant

variants with superior performance and area features,

for instance, reduced-precision floating point, or cores

without full IEEE 754 exceptions support. Com-

pared with the optimized RTL FP cores, the software-

specified HLS-generated cores are close to them in

terms of area/performance.

Both of the HLS tools implement limited operators

for floating-point data type, which need to be enriched

in the future work.

4.3.4 Power Efficient Improvements

Power consumption is a very important metric for

the digital circuits, which is mainly proportional to the

complexity of the algorithms. We express the relation

among power consumption affecting factors as follows:

PC = Fre ×N × p,

where PC is the power consumption of FPGAs designs,

Fre is working frequency, N is the number of working

units (LUTs, DSPs, BRAMs, IOs, etc.) during power

calculation, and p is the average power consumption

per unit.

There are also special efforts in the community to

reduce the power consumption of the circuits generated

by HLS tools.

In [99], a centralized and fine-grained microarchite-

cture-level clock gating method is proposed for lower-

ing the power of the designs generated by HLS tools.

The method mainly utilizes the existing signals of finite

state machine to control the datapath clock network,

where only the clock sub-tree of the current state is

enabled and the other clock sub-trees are disabled.

The authors of [100] provided an automated Low

Power-High Level Synthesis (LP-HLS) methodology,

which aims to integrate low power techniques, specifi-

cally power shut-off (PSO), within a model-based hard-

ware flow. LP-HLS realizes automatic low power design

mainly through deriving power intent information using

set of pragmas and a directive file.

[99] and [100] lower the power-consumption through

dynamically disabling the unused elements of FPGAs

chips, which also decrease the stability of the FPGAs.

4.3.5 Benchmark Functions

Standard benchmarks are of great importance while

quantitatively evaluating the new emerged ideas and

algorithms. Communities need benchmark functions

to facilitate comparisons between tools, evaluate and

stress-test new synthesis techniques, and establish

meaningful performance baselines to track progress of

the HLS technology.

A C-based benchmark library, named CHStone, is

proposed in [101]. There are 12 programs in CH-

Stone, including multiple application fields, e.g., me-

dia processing, arithmetic, microprocessor, security,

and so on. CHStone is now widely used by the HLS

communities [46–48].

S2CBench, a benchmark suite compiled with Sys-

temC language, is introduced in [102]. There are four

main features in S2CBench: programs selected from

multiple application fields, specific test methods for the

optimization of the programs, easy comparison of QoR

among HLS tools, and completeness test of the HLS

tools.

Different from the previous benchmarks suits which

are primarily comprised of small textbook-style func-

tion kernels, Rosetta [103] provides fully-developed com-

714 J. Comput. Sci. & Technol., May 2020, Vol.35, No.3

plex applications. These applications are associated

with realistic performance constraints, and optimized

by advanced features of modern HLS tools.

All of the proposed benchmark functions focus on

evaluating the parallel capability of FPGAs, and do

not provide good test cases for exploring the pipeline

capability of FPGAs.

4.4 Summary of the Performance Optimiza-

tion Work of HLS Tools

In this subsection, we summarize the contribu-

tions and insufficiencies of the performance optimiza-

tion work of HLS tools in Table 2. With this table, we

hope to provide a perspective of the performance op-

Table 2. Summary of the Performance Optimization Work of HLS Tools

Criteria
Level

Sub-Metric Work Contribution Insufficiency

Ease of use Optimizations of
the HLS Flow

Kuga et al. [40],
Josipovic et al. [42],
Kastner et al. [43]

Providing higher design abstract
level with DSL and templates, etc;
therefore, designers can consider less
on hardware structures

The methods are only dedicated for
problems of specific modes, e.g.,
problems with summation

Verification &
debugging

Doucet and
Kurshan [44],
Calagar et al. [45],
Campbell et al. [46],
Yang et al. [48]

Transplanting high-level language
debugging approaches (tools and
modes) to hardware debugging to
improve FPGAs debugging effi-
ciency

The methods debugs only functions,
without timing; the final hardware
functions have to be confirmed be-
fore deployment due to the insertion
of hardware debugging codes

Libraries Schmid et al. [49],
Özkan et al. [50],
Licht et al. [51]

Providing library functions for com-
mon application domains (graphics
and maths, etc.); therefore, design-
ers pay less attention to the details
of the implementations

The quality of circuits synthesized
from library functions needs to be
further improved

Development
cycles
optimization

Design space
exploration

Moullec et al. [55],
Bilavarn et al. [56],
Liu and Schäfer [62],
Ferretti et al. [63],
Schafer et al. [67],
Liu et al. [68]

Automating the process of exploring
the optimal solution under the user
defined performance targets

Before the automatic process starts,
designers have to do many prepa-
ration works manually; most of the
proposed methods cost long running
time.

Optimizations for
applications of
particular fields

Schmid et al. [69],
Li et al. [70],
Matai et al. [72],
Minutoli et al. [73]

Improving the performance (band-
width, throughput, etc.) for specific
problems (graphic, sorting, etc.)

The resource costs caused by the
performance improvements are not
assessed in the work

Optimizations of
scheduling

Garibotti et al. [77],
Garibotti et al. [78],
Josipovic et al. [79]

Improving scheduling through dy-
namic dependency analysis

The performance of dynamic depen-
dency analysis algorithms needs to
be improved to decrease the time
cost

Trade-off between
performance and
resource

Li et al. [80],
Choi et al. [81],
Dai et al. [84]

Achieving the trade-off through op-
timizing the results of the high-level
language compilers, reducing the ini-
tiation intervals of loops, and saving
routing resource

Only one of the resources (timing or
routing) can be traded off, even with
the cost of other kind of resource
(storage)

Promotion
on specific
metrics

Loop
optimization

Liu et al. [87],
Pham et al. [88],
Gao et al. [89],
Panda et al. [90]

Improving pipeline and unrolling
of loops through optimizing loop-
carried dependency and data depen-
dency

The codes have to be rewritten,
which may affect the accuracy of the
algorithms

Benchmark
functions

Hara et al. [101],
Schafer and
Mahapatra [102]

Providing baselines for comparison
between tools, evaluation of new
synthesis technologies

The proposed benchmark functions
mainly focus on the parallel capabi-
lity of HLS, but less on other capa-
bilities

Power efficient
improvement

Alam et al. [99],
Qamar et al. [100]

Lowering the power consumption
through dynamically disabling the
unused elements of FPGAs chips

The running stability of the FPGAs
is decreased

Memory space al-
location

Wang et al. [93],
Chen and
Anderson [96],
Winterstein [97]

Improving memory usage by decom-
posing memory access and enhanc-
ing memory reuse

The decomposing and reuse should
be accomplished by code conversion,
which may affect the accuracy of the
algorithms

Optimizations for
floating-point ope-
rations

Uguen et al. [98],
Zhang et al. [11]

Replacing standard floating-point
(IEEE-754) with customized
floating-point, which saves storage
and computation resource

The proposed studies only imple-
ment limited floating-point ope-
rators

Lan Huang et al.: A Survey on Performance Optimization of High-Level Synthesis Tools 715

timization work and a reference for the future work of

readers.

5 Discussion

In the common processor (e.g., CPUs and GPUs)

programming field, the high-level language gradually

replaces the assembly language along with the growth of

the scale and complexity of the software. Taking this as

a reference, the FPGA community considers that HLS

is a promising way to resolve the problems in FPGA

design. However, there are still research challenges re-

maining open.

First of all, the high-level languages are designed

for procedure description on processors with instruc-

tion systems, whereas the FPGA designs are descrip-

tions of circuit structures. This make the designers still

have to understand the rules of hardware design and to

learn how to describe hardware structures with high-

level language. Most of the designers start by learning

the high-level languages for procedure description, and

it is hard for them to change their thinking habits.

Secondly, different from the compilers of the com-

mon processors, the compilers of HLS cannot com-

pletely take over the optimization of the designs. Most

of the HLS tools provide directives for the users to

manually direct the optimizing process, which makes

the optimization process time-consuming and highly

depend on the hardware experience of the designers.

Even worse, the designers have to reconstruct the pro-

grams to match the rescheduling rules, which helps the

synthesizer to perform better during feature extraction.

Due to the lack of rules documents, the program recon-

struction is again converted to a DSE problem.

According to our survey of the literature, the HLS

community has contributed a lot on the performance

optimization of the HLS tools, for instance, making the

exploring of the design space faster and automatically

(discussed in Subsection 4.2.1), establishing libraries to

improve the code reuse (discussed in Subsection 4.1.3),

improving the efficiency of verification and debugging

(discussed in Subsection 4.1.2), exploring better paral-

lelism approaches (discussed in Subsection 4.3.1, Sub-

section 4.3.2, and Subsection 4.2.3), and providing pre-

defined programming templates (discussed in Subsec-

tion 4.1.1). In addition, most of the academic tools are

source open, and the commercial tools strive to pro-

vide richer documents. The QoR of the HLS tools has

been significantly improved with the newest generation

of HLS tools.

Based on our research on HLS and FPGA design,

we also provide some advice on the future optimization

of HLS tools.

First, the performance optimization of HLS tools

should not only focus on the performance of the gene-

rated circuits, such as the area, the latency, and the

throughput, but also consider the ease of use of the

HLS tools, for example, automatic code generation, au-

tomatic test framework generation, and more visible de-

bugging. After all, programming takes up most of the

HLS design.

Second, in order to decrease the requirements of

hardware knowledge for designers, it is better to draw

an analogy between the HLS design process and the

embedded system design process (e.g., system design

on ARM-based systems 16○). The embedded system de-

sign tools normally integrate the hardware operations

into open source application programming interfaces

(APIs) packages. The designers specify functionalities

by the APIs without consideration on hardware struc-

tures, so that they can focus on the algorithms [104]. For

fine-grained operations, designers can operate the hard-

ware directly by the instructions, or modify the source

code of the libraries to match the functionality and

performance requirements. In the future generation of

HLS tools, similar ideas can be offered. API packages

are provided through open source libraries. Designers

with less hardware knowledge can complete FPGAs de-

signs in a low time cost. Different from the previous

libraries [105], the APIs should be realized in RTL lan-

guages to guarantee the performance. If the perfor-

mance optimization is needed, the designers can get

into lower level operations and resource management

through the open source of the libraries. In this way,

more resilient HLS tools will be provided.

Finally, FPGAs virtual machines can be provided,

which provide unified programming models. The vir-

tual machines should be a higher level abstraction of the

processing abilities of FPGAs, consisting of customiz-

able parallelized or pipelined processing units. With

the virtual machines, designers turn their attentions to

the unified programming models, and implement the al-

gorithms from the perspective of parallel computing or

heterogeneous computing [106, 107]. The FPGA overlay

discussed in Subsection 2.4 is considered as a kind of

FPGA virtual machines. However, the abstraction level

16○http://infocenter.arm.com/help/index.jsp, Dec. 2018.

716 J. Comput. Sci. & Technol., May 2020, Vol.35, No.3

is not enough. The kernels still have to be pre-designed

by the designers.

6 Conclusions

In this paper, we proposed a survey of literature

on the performance improvement of HLS tools. First of

all, a set of three-level evaluation criteria was proposed,

which includes the ease of use of the HLS tools, develop-

ment cycles optimization, and promotion on specific

metrics. The literature was then classified according

to the evaluation criteria. After a deep analysis of the

literature, we found that the main work of optimization

of HLS tools is focusing on improving the QoR. Insuf-

ficient attention has been paid to improve the ease of

use of the HLS tools. In order to propose our advice on

the future optimization of HLS tools, we discussed the

challenge of the HLS tools, and drew an analogy be-

tween the HLS and the embedded system in the design

process. In the end, we suggested that more elastic HLS

methodology based on open source libraries should be

proposed.

References

[1] DiCecco R, Lacey G, Vasiljevic J, Chow P, Taylor G, Areibi

S. Caffeinated FPGAs: FPGA framework for convolutional

neural networks. In Proc. the 2016 International Confe-

rence on Field-Programmable Technology, December 2016,

pp.265-268.

[2] Ahmed E, Rose J. The effect of LUT and cluster size

on deep-submicron FPGA performance and density. IEEE

Transactions on Very Large Scale Integration (VLSI) Sys-

tems, 2004, 12(3): 288-298.

[3] Coussy P, Adam M. High-level Synthesis: From Algorithm

to Digital Circuits. Springer, 2008.

[4] Jain A, Fahmy S A, Maskell D L. Efficient overlay architec-

ture based on DSP blocks. In Proc. the 23rd IEEE Inter-

national Symposium on Field-Programmable Custom Com-

puting Machines, May 2015, pp.25-28.

[5] Koch D, Beckhoff C, Lemieux G F. An efficient FPGA over-

lay for portable custom instruction set extensions. In Proc.

the 23rd International Conference on Field Programmable

Logic and Applications, September 2013, Article No. 43.

[6] Capalija D, Abdelrahman T S. Tile-based bottom-up com-

pilation of custom mesh-of-functional-units FPGA overlays.

In Proc. the 24th International Conference on Field Pro-

grammable Logic and Applications, September 2014, Article

No. 79.

[7] Lin C Y, So K H. Energy-efficient dataflow computations on

FPGAs using application-specific coarse-grain architecture

synthesis. ACM SIGARCH Computer Architecture News,

2012, 40(5): 58-63.

[8] Abdelfattah M S, Han D, Bitar A et al. DLA: Compiler and

FPGA overlay for neural network inference acceleration.

In Proc. the 28th International Conference on Field Pro-

grammable Logic and Applications, August 2018, pp.411-

418.

[9] Najem M, Bollengier T, Lann J L, Lagadec L. Ext-

ended overlay architectures for heterogeneous FPGA cluster

management. Journal of Systems Architecture: Embedded

Software Design, 2017, 78: 1-14.

[10] Jain A K, Maskell D L, Fahmy S A. Resource-aware Just-in-

Time OpenCL compiler for coarse-grained FPGA overlays.

arXiv:1705.02730, 2017. https://rxiv.org/abs/1705.02730,

Dec. 2019.

[11] Zhang C, Li P, Sun G, Guan Y, Xiao B, Cong J. Optimizing

FPGA-based accelerator design for deep convolutional neu-

ral networks. In Proc. the 2015 ACM/SIGDA International

Symposium on Field-Programmable Gate Arrays, February

2015, pp.161-170.

[12] Knapp D W. Behavioral Synthesis: Digital System Design

Using the Synopsys Behavioral Compiler (Har/Dskt edi-

tion). Prentice Hall, 1996.

[13] Elliott J P. Understanding Behavioral Synthesis: A Practi-

cal Guide to High-Level Design. Kluwer Academic Publish-

ers, 1999.

[14] Wolf W. A decade of hardware/software codesign. IEEE

Computer, 2003, 36(4): 38-43.

[15] Nane R, Sima V M, Pilato C et al. A survey and evalua-

tion of FPGA high-level synthesis tools. IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Sys-

tems, 2016, 35(10): 1591-1604.

[16] Najjar W A, Böhm A P W, Draper B A, Hammes J, Rinker

R, Beveridge J R, Chawathe M, Ross C. High-level language

abstraction for reconfigurable computing. IEEE Computer,

2003, 36(8): 63-69.

[17] Coussy P, Chavet C, Bomel P, Heller D, Senn E, Martin E.

GAUT: A high-level synthesis tool for DSP applications. In

High-Level Synthesis: From Algorithm to Digital Circuit,

Coussy P, Morawiec A (eds.), Springer Netherlands, 2008,

pp.147-169.

[18] Pilato C, Ferrandi F. Bambu: A modular framework for

the high level synthesis of memory-intensive applications.

In Proc. the 23rd International Conference on Field Pro-

grammable Logic and Applications, September 2013, Article

No. 56.

[19] Nane R, Sima V M, Olivier B, Meeuws R, Yankova Y, Ber-

tels K. DWARV 2.0: A CoSy-based C-to-VHDL hardware

compiler. In Proc. the 22nd International Conference on

Field Programmable Logic and Applications, August 2012,

pp.619-622.

[20] Cong J, Liu B, Neuendorffer S, Noguera J, Vissers K, Zhang

Z. High-level synthesis for FPGAs: From prototyping to de-

ployment. IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, 2011, 30(4): 473-491.

[21] Lattner C, Adve V. LLVM: A compilation framework for

lifelong program analysis & transformation. In Proc. the

2nd IEEE/ACM International Symposium on Code Gene-

ration and Optimization, March 2004, pp.75-86.

[22] Muslim F B, Ma L, Roozmeh M, Lavagno L. Efficient FPGA

implementation of OpenCL high-performance computing

applications via high-level synthesis. IEEE Access, 2017,

5: 2747-2762.

Lan Huang et al.: A Survey on Performance Optimization of High-Level Synthesis Tools 717

[23] Kobayashi R, Oobata Y, Fujita N, Yamaguchi Y, Boku

T. OpenCL-ready high speed FPGA network for recon-

figurable high performance computing. In Proc. the Inter-

national Conference on High Performance Computing in

Asia-Pacific Region, January 2018, pp.192-201.

[24] Kathail V, Aditya S, Schreiber R, Rau B R, Cronquist D

C, Sivaraman M. PICO: Automatically designing custom

computers. IEEE Computer, 2002, 35(9): 39-47.

[25] Wakabayashi K, Okamoto T. C-based SoC design flow and

EDA tools: An ASIC and system vendor perspective. IEEE

Transactions on Computer-Aided Design of Integrated Cir-

cuits and Systems, 2000, 19(12): 1507-1522.

[26] Nikhil R. Bluespec system Verilog: Efficient, correct RTL

from high level specifications. In Proc. the 2nd ACM/IEEE

International Conference on Formal Methods and MOD-

ELS for Co-Design, June 2004, pp.69-70.

[27] Dang V, Skadron K. Acceleration of frequent itemset min-

ing on FPGA using SDAccel and Vivado HLS. In Proc.

the 28th IEEE International Conference on Application-

Specific Systems, Architectures and Processors, July 2017,

pp.195-200.

[28] Lin Y. ArchSyn: An energy-efficient FPGA high-level syn-

thesizer [Ph.D. Thesis]. University of Hong Kong, Hong

Kong, 2012.

[29] Oussama K, Naeem R, Abbes A, Khalida G, Fatima C.

Design and evaluation of Vivado HLS-based compressive

sensing for ECG signal analysis. In Proc. the 16th IEEE

International Conference on Dependable, Autonomic and

Secure Computing, the 16th Int. Conf. Pervasive Intelli-

gence and Computing, the 4th Int. Conf. Big Data Intelli-

gence and Computing and the 3rd IEEE Cyber Science and

Technology Congress, August 2018, pp.457-461.

[30] Capalija D, Abdelrahman T S. A high-performance over-

lay architecture for pipelined execution of data flow graphs.

In Proc. the 23rd International Conference on Field Pro-

grammable Logic and Applications, September 2013, Article

No. 119.

[31] Lin C Y, Jiang Z H, Fu C, So K H, Yang H. FPGA high-level

synthesis versus overlay: Comparisons on computation ker-

nels. ACM SIGARCH Computer Architecture News, 2017,

44(4): 92-97.

[32] Neuendorffer S, Martinez-Vallina F. Building zynqr accel-

erators with Vivador high level synthesis. In Proc. the

2013 ACM/SIGDA International Symposium on Field-

Programmable Gate Arrays, February 2013, pp.1-2.

[33] Nane R, Sima V M, Pilato C et al. A survey and evalua-

tion of FPGA high-level synthesis tools. IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Sys-

tems, 2016, 35(10): 1591-1604.

[34] Farhat W, Sghaier S, Faiedh H, Souani C. Design of efficient

embedded system for road sign recognition. Journal of Am-

bient Intelligence & Humanized Computing, 2019, 10(2):

491-507.

[35] Goeders J, Wilton S J E. Allowing software deve-

lopers to debug HLS hardware. arXiv: 1508.06805, 2015.

https://arxiv.org/abs/1508.06805, Dec. 2019.

[36] Lahti S, Sjovall P, Vanne J, Hämäläinen T D. Are we there

yet? A study on the state of high-level synthesis. IEEE

Transactions on Computer-Aided Design of Integrated Cir-

cuits and Systems, 2018, 38(5): 898-911.

[37] Schäfer B C. Enabling high-level synthesis resource shar-

ing design space exploration in FPGAs through auto-

matic internal bitwidth adjustments. IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Sys-

tems, 2017, 36(1): 97-105.

[38] Mathieson K, Keil M. Beyond the interface: Ease of use

and task/technology fit. Information & Management, 1998,

34(4): 221-230.

[39] Lo C, Chow P. Model-based optimization of high level syn-

thesis directives. In Proc. the 26th International Confe-

rence on Field Programmable Logic and Applications, Au-

gust 2016, Article No. 60.

[40] Kuga M, Fukuda K, Amagasaki M, Iida M, Sueyoshi T.

High-level synthesis based on parallel design patterns using

a functional language. In Proc. the 8th International Sym-

posium on Highly Efficient Accelerators and Reconfigurable

Technologies, June 2017, Article No. 23.

[41] Mori J Y, Werner A, Fricke F, Hüebner M. A rapid pro-

totyping method to reduce the design time in commercial

high-level synthesis tools. In Proc. the 2016 IEEE Inter-

national Parallel and Distributed Processing Symposium

Workshops, May 2016, pp.253-258.

[42] Josipovic L, George N, Ienne P. Enriching C-based high-

level synthesis with parallel pattern templates. In Proc.

the 2016 International Conference on Field-Programmable

Technology, December 2016, pp.177-180.

[43] Kastner R, Matai J, Neuendorffer S. Parallel pro-

gramming for FPGAs. arXiv:1805.03648, 2018.

https://arxiv.org/abs/1805.03648, Dec. 2019.

[44] Doucet F, Kurshan R. A methodology to take credit

for high-level verification during RTL verification. Formal

Methods in System Design, 2017, 51(2): 395-418.

[45] Calagar N, Brown S D, Anderson J H. Source-level debug-

ging for FPGA high-level synthesis. In Proc. the 24th In-

ternational Conference on Field Programmable Logic and

Applications, September 2014, Article No. 124.

[46] Campbell K A, Lin D, Mitra S, Chen D. Hybrid quick error

detection (H-QED): Accelerator validation and debug using

high-level synthesis principles. In Proc. the 52nd Annual

Design Automation Conference, June 2015, Article No. 53.

[47] Monson J S, Hutchings B L. Using source-level transforma-

tions to improve high-level synthesis debug and validation

on FPGAs. In Proc. the 2015 ACM/SIGDA International

Symposium on Field-Programmable Gate Arrays, February

2015, pp.5-8.

[48] Yang L, Ikram M, Gurumani S, Fahmy S A, Chen D, Rup-

now K. JIT trace-based verification for high-level synthesis.

In Proc. the 2015 International Conference on Field Pro-

grammable Technology, December 2016, pp.228-231.

[49] Schmid M, Apelt N, Hannig F, Teich J. An image processing

library for C-based high-level synthesis. In Proc. the 24th

International Conference on Field Programmable Logic and

Applications, September 2014, Article No. 47.

[50] Özkan M A, Reiche O, Hannig F, Teich J. A highly efficient

and comprehensive image processing library for C++-based

high-level synthesis. In Proc. the 4th International Work-

shop on FPGAs for Software Programmers, August 2017,

pp.2-10.

718 J. Comput. Sci. & Technol., May 2020, Vol.35, No.3

[51] Licht J D F, Blott M, Hoefler T. Designing scalable FPGA

architectures using high-level synthesis. In Proc. the 23rd

ACM SIGPLAN Symposium on Principles and Practice of

Parallel Programming, February 2018, pp.403-404.

[52] Matai J, Lee D, Althoff A, Kastner R. Composable, pa-

rameterizable templates for high-level synthesis. In Proc.

Design, Automation & Test in Europe Conference & Exhi-

bition, August 2016, pp.744-749.

[53] Kneuper R. Sixty years of software development life cycle

models. IEEE Annals of the History of Computing, 2017,

39(3): 41-54.

[54] Yadav H B , Yadav D K. Defects prediction of early phases

of software development life cycle using fuzzy logic. In Proc.

the 4th International Conference on Confluence: The Next

Generation Information Technology Summit, Sept. 2013,

pp.2-6.

[55] Moullec Y L, Diguet J P, Gourdeaux T, Philippe J L.

Design-Trotter: System-level dynamic estimation task a

first step towards platform architecture selection. Journal

of Embedded Computing, 2005, 1(4): 565-586.

[56] Bilavarn S, Gogniat G, Philippe J L, Bossuet L. De-

sign space pruning through early estimations of area/delay

tradeoffs for FPGA implementations. IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Sys-

tems, 2006, 25(10): 1950-1968.

[57] Sun W, Wirthlin M J, Neuendorffer S. FPGA pipeline syn-

thesis design exploration using module selection and re-

source sharing. IEEE Transactions on Computer-Aided De-

sign of Integrated Circuits and Systems, 2007, 26(2): 254-

265.

[58] Schafer B C, Wakabayashi K. Machine learning predictive

modeling high-level synthesis design space exploration. IET

Computers & Digital Techniques, 2012, 6(3): 153-159.

[59] Zhong G, Prakash A, Liang Y, Mitra T, Niar S. Lin-

Analyzer: A high-level performance analysis tool for

FPGA-based accelerators. In Proc. the 53rd Annual Design

Automation Conference, June 2016, Article No. 136.

[60] Prost-Boucle A, Muller O, Rousseau F. Fast and standalone

design space exploration for high-level synthesis under re-

source constraints. Journal of Systems Architecture, 2014,

60(1): 79-93.

[61] Schäfer B C. Probabilistic multi knob high-level synthesis

design space exploration acceleration. IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Sys-

tems, 2016, 35(3): 394-406.

[62] Liu D, Schäfer B C. Efficient and reliable high-level syn-

thesis design space explorer for FPGAs. In Proc. the 26th

International Conference on Field Programmable Logic and

Applications, August 2016, Article No. 72.

[63] Ferretti L, Ansaloni G, Pozzi L. Cluster-based heuris-

tic for high level synthesis design space exploration.

IEEE Transactions on Emerging Topics in Computing.

doi:10.1109/TETC.2018.2794068.

[64] Ferrandi F, Lanzi P L, Loiacono D, Pilato C, Sciuto D.

A multi-objective genetic algorithm for design space explo-

ration in high-level synthesis. In Proc. IEEE Computer So-

ciety Symposium on VLSI, April 2008, pp.417-422.

[65] Sengupta A, Sedaghat R. Integrated scheduling, allocation

and binding in high level synthesis using multi structure

genetic algorithm based design space exploration. In Proc.

the 12th International Symposium on Quality Electronic

Design, March 2011, pp.486-494.

[66] Ram D S H, Bhuvaneswari M C, Logesh S M. A novel evolu-

tionary technique for multi-objective power, area and delay

optimization in high level synthesis of datapaths. In Proc.

IEEE Computer Society Symposium on VLSI, July 2011,

pp.290-295.

[67] Schafer B C, Takenaka T, Wakabayashi K. Adaptive sim-

ulated annealer for high level synthesis design space explo-

ration. In Proc. the 2009 International Symposium on VLSI

Design, Automation and Test, April 2009, pp.106-109.

[68] Liu C, Zhao Q, Yan B, Elsayed S M, Ray T, Sarker R

A. Adaptive sorting-based evolutionary algorithm for many

objective optimization. IEEE Transactions on Evolution-

ary Computation, 2019, 23(2): 247-257.

[69] Schmid M, Reiche O, Hannig F, Teich J. Loop coarsen-

ing in C-based high-level synthesis. In Proc. the 26th IEEE

International Conference on Application-Specific Systems,

Architectures and Processors, July 2015, pp.166-173.

[70] Li C, Bi Y, Benezeth Y, Ginhac D, Yang F. High-level syn-

thesis for FPGAs: Code optimization strategies for real-

time image processing. Journal of Real-Time Image Pro-

cessing, 2017, 27(9): 31-42.

[71] Li C, Bi Y, Benezeth Y, Ginhac D, Yang F. Fast FPGA pro-

totyping for real-time image processing with very high level

synthesis. Journal of Real-Time Image Processing, 2017,

27(9): 1-18.

[72] Matai J, Richmond D, Lee D, Blair Z, Wu Q, Abazari

A, Kastner R. Resolve: Generation of high-performance

sorting architectures from high-level synthesis. In Proc.

the 2016 ACM/SIGDA International Symposium on Field-

Programmable Gate Arrays, February 2016, pp.195-204.

[73] Minutoli M, Castellana V G, Tumeo A, Lattuada M, Fer-

randi F. Enabling the high level synthesis of data analy-

tics accelerators. In Proc. the 11th IEEE/ACM/IFIP Inter-

national Conference on Hardware/Software Codesign and

System Synthesis, October 2016, Article No. 15.

[74] Liang M, Lavagno L, Lazarescu M T, Arif A. Acceleration

by inline cache for memory-intensive algorithms on FPGA

via high-level synthesis. IEEE Access, 2017, 5: 18953-18974.

[75] Hadjis S, Canis A, Sobue R, Hara-Azumi Y, Tomiyama

H, Anderson J. Profiling-driven multi-cycling in FPGA

high-level synthesis. In Proc. the 2015 Design, Automation

& Test in Europe Conference & Exhibition, March 2015,

pp.31-36.

[76] Zhao R, Tan M, Dai S, Zhang Z. Area-efficient pipelining

for FPGA-targeted high-level synthesis. In Proc. the 52nd

Annual Design Automation Conference, June 2015, Article

No. 157.

[77] Garibotti R, Reagen B, Shao Y S, Wei G Y, Brooks D.

Using dynamic dependence analysis to improve the quality

of high-level synthesis designs. In Proc. IEEE International

Symposium on Circuits and Systems, May 2017.

[78] Garibotti R, Reagen B, Shao Y S, Wei G, Brooks D. Assist-

ing high-level synthesis improve SpMV benchmark through

dynamic dependence analysis. IEEE Transactions on Cir-

cuits and Systems II: Express Briefs, 2018, 65-II(10): 1440-

1444.

Lan Huang et al.: A Survey on Performance Optimization of High-Level Synthesis Tools 719

[79] Josipovic L, Ghosal R, Ienne P. Dynamically scheduled

high-level synthesis. In Proc. the 2018 ACM/SIGDA Inter-

national Symposium on Field-Programmable Gate Arrays,

February 2018, pp.127-136.

[80] Li P, Zhang P, Pouchet L N, Cong J. Resource-aware

throughput optimization for high-level synthesis. In Proc.

the 2015 ACM/SIGDA International Symposium on Field-

Programmable Gate Arrays, February 2015, pp.200-209.

[81] Choi J, Brown S, Anderson J. Resource and memory mana-

gement techniques for the high-level synthesis of software

threads into parallel FPGA hardware. In Proc. the 2015

International Conference on Field Programmable Techno-

logy, December 2015, pp.152-159.

[82] Zhao R, Liu G, Srinath S, Batten C, Zhang Z. Improv-

ing high-level synthesis with decoupled data structure op-

timization. In Proc. the 53rd Annual Design Automation

Conference, June 2016, Article No. 137.

[83] Huang Q, Lian R, Canis A, Choi J, Xi R, Calagar N, Brown

S, Anderson J. The effect of compiler optimizations on high-

level synthesis-generated hardware. ACM Transactions on

Reconfigurable Technology & Systems, 2015, 8(3): Article

No. 14.

[84] Dai S, Zhou Y, Zhang H, Ustun E, Young E F, Zhang

Z. Fast and accurate estimation of quality of results in

high-level synthesis with machine learning. In Proc. the

26th IEEE Annual International Symposium on Field-

Programmable Custom Computing Machines, April 2018,

pp.129-132.

[85] Zhong G, Venkataramani V, Liang Y, Mitra T, Niar S. De-

sign space exploration of multiple loops on FPGAs using

high level synthesis. In Proc. the 32nd IEEE International

Conference on Computer Design, October 2014, pp.456-

463.

[86] Li P, Pouchet L, Cong J. Throughput optimization for high-

level synthesis using resource constraints. In Proc. the 4th

International Workshop on Polyhedral Compilation Tech-

niques, January 2014.

[87] Liu J, Wickerson J, Constantinides G A. Loop splitting for

efficient pipelining in high-level synthesis. In Proc. the 24th

IEEE International Symposium on Field-Programmable

Custom Computing Machines, May 2016, pp.72-79.

[88] Khanh P N, Singh A K, Kumar A, Aung K M K. Exploit-

ing loop-array dependencies to accelerate the design space

exploration with high level synthesis. In Proc. the 2015 De-

sign, Automation & Test in Europe Conference & Exhibi-

tion, March 2015, pp.157-162.

[89] Gao X, Wickerson J, Constantinides G A. Automatically

optimizing the latency, area, and accuracy of C programs for

high-level synthesis. In Proc. the 2016 ACM/SIGDA Inter-

national Symposium on Field-Programmable Gate Arrays,

February 2016, pp.234-243.

[90] Panda P R, Sharma N, Kurra S, Bhartia K A, Singh N K.

Exploration of loop unroll factors in high level synthesis.

In Proc. the 31st International Conference on VLSI De-

sign and the 17th International Conference on Embedded

Systems, January 2018, pp.465-466.

[91] Dai S, Liu G, Zhao R, Zhang Z. Enabling adaptive loop

pipelining in high-level synthesis. In Proc. the 51st Asilo-

mar Conference on Signals, Systems, and Computers, Oc-

tober 2017, pp.131-135.

[92] Dai S, Zhao R, Liu G, Srinath S, Gupta U, Batten C, Zhang

Z. Dynamic hazard resolution for pipelining irregular loops

in high-level synthesis. In Proc. the 2017 ACM/SIGDA In-

ternational Symposium on Field-Programmable Gate Ar-

rays, February 2017, pp.189-194.

[93] Wang Y, Li P, Cong J. Theory and algorithm for general-

ized memory partitioning in high-level synthesis. In Proc.

the 2014 ACM/SIGDA International Symposium on Field-

Programmable Gate Arrays, February 2014, pp.199-208.

[94] Pilato C, Mantovani P, Guglielmo G D, Carloni L P.

System-level memory optimization for high-level synthe-

sis of component-based SoCs. In Proc. the 2014 Interna-

tional Conference on Hardware/Software Codesign & Sys-

tem Synthesis, October 2014, Article No. 18.

[95] Canis A, Choi J, Aldham M, Zhang V, Kammoona A, Cza-

jkowski T, Brown S D, Anderson J H. LegUp: An open-

source high-level synthesis tool for FPGA-based proces-

sor/accelerator systems. ACM Transactions on Embedded

Computing Systems, 2013, 13(2): Article No. 24.

[96] Chen Y T, Anderson J H. Automated generation of

banked memory architectures in the high-level synthesis

of multi-threaded software. In Proc. the 27th International

Conference on Field Programmable Logic and Applications,

September 2017, Article No. 99.

[97] Winterstein F J. Separation Logic for High-level Synthesis.

Springer, 2017.

[98] Uguen Y, de Dinechin F, Derrien S. Bridging high-level syn-

thesis and application-specific arithmetic: The case study of

floating-point summations. In Proc. the 27th International

Conference on Field Programmable Logic and Applications,

September 2017, Article No. 38.

[99] Alam M R, Salehi M, Fakhraie S M. Power efficient high

level synthesis by centralized and fine-grained clock gat-

ing. IEEE Transactions on Computer-Aided Design of In-

tegrated Circuits and Systems, 2015, 34(12): 1954-1963.

[100] Qamar A, Muslim F B, Iqbal J, Lavagno L. LP-HLS:

Automatic power-intent generation for high-level synthe-

sis based hardware implementation flow. Microprocessors

& Microsystems, 2017, 50: 26-38.

[101] Hara Y, Tomiyama H, Honda S, Takada H, Ishii K. CH-

Stone: A benchmark program suite for practical C-based

high-level synthesis. In Proc. the 2008 IEEE International

Symposium on Circuits and Systems, May 2008, pp.1192-

1195.

[102] Schäfer B C, Mahapatra A. S2CBench: Synthesizable Sys-

temC benchmark suite for high-level synthesis. IEEE Em-

bedded Systems Letters, 2014, 6(3): 53-56.

[103] Zhou Y, Gupta U, Dai S et al. Rosetta: A realistic high-

level synthesis benchmark suite for software programmable

FPGAs. In Proc. the 2018 ACM/SIGDA International

Symposium on Field-Programmable Gate Arrays, February

2018, pp.269-278.

[104] Rodŕıguez A, Valverde J, Portilla J, Otero A, Riesgo T,

de la Torre E. FPGA-based high-performance embedded

systems for adaptive edge computing in cyber-physical sys-

tems: The ARTICo3 framework. Sensors, 2018, 18(6):

1877.

720 J. Comput. Sci. & Technol., May 2020, Vol.35, No.3

[105] O’Loughlin D, Coffey A, Callaly F, Lyons D, Morgan F.

Xilinx Vivado high level synthesis: Case studies. In Proc.

the 25th IET Irish Signals & Systems Conference and

2014 China-Ireland International Conference on Informa-

tion and Communities Technologies, June 2014, pp.352-

356.

[106] Beaumont O, Becker B A, DeFlumere A M, Eyraud-Dubois

L, Lambert T, Lastovetsky A L. Recent advances in matrix

partitioning for parallel computing on heterogeneous plat-

forms. IEEE Transactions on Parallel & Distributed Sys-

tems, 2017, 59(99): 218-229.

[107] Vesper M, Koch D, Vipin K, Fahmy S A. JetStream: An

open-source high-performance PCI Express 3 streaming li-

brary for FPGA-to-Host and FPGA-to-FPGA communica-

tion. In Proc. the 26th International Conference on Field

Programmable Logic and Applications, August 2016, Arti-

cle No. 36.

Lan Huang is currently a professor

and a supervisor of Ph.D. candidates

at Jilin University, Changchun. She

received her B.S., M.S. and Ph.D.

degrees in computer science and techno-

logy from Jilin University, Changchun,

in 1994, 1999, and 2003 respectively.

She is mainly engaged in intelligent

computing, data mining theory and application research,

and high-performance computing. She is a distinguished

member of CCF.

Da-Lin Li received his B.S. and

M.S. degrees in mechatronic engineering

from the Liaoning Technical University,

Fuxin, in 2005 and 2008 respectively. He

is currently pursuing his Ph.D. degree

in computer science from the College of

Computer Science and Technology, Jilin

University, Changchun. His current

research interests include high-performance computing,

swarm intelligence and machine learning.

Kang-Ping Wang received his B.S.,

M.S. and Ph.D. degrees in computer

science and technology from Jilin Uni-

versity, Changchun, in 2000, 2003 and

2008 respectively. He is now a faculty

of the College of Computer Science

and Technology at Jilin University,

Changchun. In past several years, his

research interest includes heterogeneous computing and

deep learning.

Teng Gao received his B.S. degree

in computer science and technology

from China University of Geosciences,

Changchun, in 2018. He is currently

a Master student in Jilin University,

Changchun. His research interest is

FPGAs.text text text text text text

text text text text text text text text

text text text text text text text

Adriano Tavares is currently an

associate professor at University of

Minho, Braga. He received his B.S.

degree in informatics, M.S. degree in

information technology, both from Uni-

versity of Coimbra, Coimbra, in 1990

and 1993 respectively. He received his

Ph.D. degree in industrial electronics

from University of Minho, Braga, in 2000. His main

research interests are embedded systems modeling and

design, system software design, system-on-chip design

and engineering education. He published more than 100

book chapters and papers in international conferences

and journals related to embedded systems design and two

books on assembly and C programming.

	1 Introduction
	2 Overview of HLS Tools
	2.1 Brief History of HLS Tools
	2.2 Working Process of HLS Tools
	2.3 Overview of HLS Tools in Use
	2.3.1 Academic Tools
	2.3.2 Commercial Tools

	2.4 Comparison Between FPGA HLS and FPGA Overlay
	2.4.1 Design Flows
	2.4.2 Development Efficiency
	2.4.3 Performance

	3 Evaluation Criteria and Optimization Equation of High-Level Synthesis Tools
	3.1 Three-Level Evaluation Criteria
	3.1.1 Top-Level: Ease of Use
	3.1.2 Mid-Level: Development Cycles Optimization
	3.1.3 Bottom-Level: Promotion on Specific Metrics

	3.2 Performance Evaluation Equations of HLS Tools

	4 Performance Optimization of HLS Tools
	4.1 Ease of Use
	4.1.1 Optimizations of the HLS Flow
	4.1.2 Verification and Debugging
	4.1.3 Libraries

	4.2 Development Cycles Optimization
	4.2.1 Design Space Exploration Capabilities
	4.2.2 Optimizations for Applications of Particular Fields
	4.2.3 Optimizations of Scheduling
	4.2.4 Trade-off Between Performance and Resource

	4.3 Promotion on Specific Metrics
	4.3.1 Loop Optimization
	4.3.2 Memory Space Allocation
	4.3.3 Optimizations of Floating-Point Operations
	4.3.4 Power Efficient Improvements
	4.3.5 Benchmark Functions

	4.4 Summary of the Performance Optimization Work of HLS Tools

	5 Discussion
	6 Conclusions

