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Abstract In recent years, the convolutional neural networks (CNNs) for single image super-resolution (SISR) are becoming

more and more complex, and it is more challenging to improve the SISR performance. In contrast, the reference image guided

super-resolution (RefSR) is an effective strategy to boost the SR (super-resolution) performance. In RefSR, the introduced

high-resolution (HR) references can facilitate the high-frequency residual prediction process. According to the best of our

knowledge, the existing CNN-based RefSR methods treat the features from the references and the low-resolution (LR)

input equally by simply concatenating them together. However, the HR references and the LR inputs contribute differently

to the final SR results. Therefore, we propose a progressive channel attention network (PCANet) for RefSR. There are

two technical contributions in this paper. First, we propose a novel channel attention module (CAM), which estimates

the channel weighting parameter by weightedly averaging the spatial features instead of using global averaging. Second,

considering that the residual prediction process can be improved when the LR input is enriched with more details, we perform

super-resolution progressively, which can take advantage of the reference images in multi-scales. Extensive quantitative and

qualitative evaluations on three benchmark datasets, which represent three typical scenarios for RefSR, demonstrate that

our method is superior to the state-of-the-art SISR and RefSR methods in terms of PSNR (Peak Signal-to-Noise Ratio) and

SSIM (Structural Similarity).
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1 Introduction

Image super-resolution (SR) aims to predict a high-

resolution (HR) image from a low-resolution (LR) ob-

servation. One LR image can correspond to many

HR observations, which makes the LR to HR map-

ping process much difficult. Traditional interpolation-

based methods, such as bilinear and bicubic interpo-

lation, utilize the local statistics of the LR image to

estimate the HR image, which cannot produce realis-

tic details. Later on, learning-based approaches, espe-

cially deep learning based approaches, are proposed to

estimate the mapping between LR and HR, showing

great success in the SR field [1–9]. However, most exist-

ing methods still suffer from smooth results at upscal-

ing factor 4x or larger, especially when there are very

rich details in the original HR image but they are lost

in the corresponding LR image. Meanwhile, with the

explosive growth of Internet images, storage capacity,

and the multiview capturing devices, it is likely to find

similar images from the Internet, personal albums, and

multiview imaging systems. Therefore, the reference

image guided SR (RefSR), which hallucinates the HR

image with the guidance of similar reference images,

is proposed [10–12]. RefSR utilizes the abundant detail

textures from HR reference images to make up for the
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lost details of LR images. The first RefSR [10] utilizes

retrieved reference images to assist reconstruction via

patch matching and patch fusion. Hereafter, the sparse

learning based methods, which estimate the parameters

via sparse coding, are proposed to improve the fusion

process [13, 14]. However, the hand-crafted priors can-

not effectively deal with different similarity levels. Re-

cently, the deep learning based RefSR [11, 12, 15, 16] have

been proposed. The work in [15, 16] explores both the

internal and the external correlations in the pixel space

to upsample the LR input. Meanwhile, Zhang et al.

proposed to enrich the HR details by transferring simi-

lar textures from the reference images [11] via matching

in the neural space. These methods have achieved supe-

rior performance compared with the single image based

SR (SISR).

However, the above deep learning based RefSR

methods just simply merge the reference feature and

the LR feature together, without considering the rele-

vance levels of different channels. To address this issue,

we propose a novel RefSR method by incorporating the

channel attention module in the feature fusion process.

Our contributions are summarized as follows.

• We propose a novel channel attention module,

which estimates the channel weighting parameter by

adaptively merging the spatial features instead of us-

ing the average pooling. With the proposed channel

attention module, we can assign larger weight to the

reference block which has a larger similarity to the LR

input.

• Considering that the residual prediction can be

improved when the LR input is enriched with more de-

tails, we propose to upsample the LR image progres-

sively. At each upsampling level, the high-frequency

residual details are predicted by using the information

from the reference images, the original LR input, and

the SR result from the previous upsampling level.

• We evaluate the proposed method on three bench-

mark datasets and our method achieves the best SR re-

sults in both subjective and objective measurements.

The ablation study demonstrates that the proposed

channel attention module and the progressive recon-

struction strategy greatly improve the RefSR perfor-

mance.

2 Related Work

In this section, we give a brief review of deep learn-

ing based single image SR, RefSR, and the attention

module in convolutional neural networks.

2.1 Deep Learning Based Single Image

Super Resolution

Traditional SISR methods mainly utilize example-

based approaches to learn a mapping between LR and

HR patches [17–22]. The hand-crafted mapping strat-

egy limits the SR performance. In recent years, deep

learning based SISR has presented significant advan-

tages in both quantitative and qualitative results com-

pared with traditional algorithms. Dong et al. first

introduced CNN into the SR field by building a three-

layer convolutional network SRCNN [1], which achieved

outstanding performance compared with previous work.

VDSR [3] and DRCN [23] were proposed by Kim et al.

They extended CNN to 20 layers and effectively im-

proved the SR performance by using residual learning.

However, these methods need to first interpolate the

input LR to the target scale, which is computationally

intensive. Therefore later researchers proposed to per-

form convolution operations on the initial LR image

and used the network to upsample it to the target size

at the last layer. Shi et al.
[24] introduced a sub-pixel

convolutional layer at the end of the network to re-

place traditional interpolation, which is more efficient

for reconstruction. LapSRN [4] was proposed to pro-

gressively upsample the LR images to its desired res-

olution. Ledig et al. introduced SRResnet [25] based

on ResNet [26] for image super resolution. They also

proposed SRGAN [25], which utilizes GAN [27] and per-

ceptual loss [28] to improve the visual quality of the SR

results. EDSR [6] proposed by Lee et al., stood on the

shoulders of SRResnet, and used residual blocks to re-

store the HR image. Recently, RCAN [8] has been pro-

posed, which introduces channel attention module in

the residual blocks, and achieves state-of-the-art SISR

performance.

From SRCNN to RCAN, the SR performance is

greatly improved. However, we also observe that the

network structures are becoming more and more com-

plex, while the improvement is becoming smaller. In

this paper, we utilize reference images to boost the SR

performance.

2.2 Reference-Based Super Resolution

Unlike SISR, where only one single LR image is used

for input, RefSR utilizes similar HR reference images to

guide the SR process. Landmark [10] proposed by Yue

et al., is the first work for RefSR, which super resolves

the LR input by traditional patch matching and blend-

ing scheme. Then the work in [13] introduces sparse

coding to improve the parameter estimating process in
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Landmark. The two methods are both based on hand-

crafted priors, which limit their SR performance.

Recently, the CNN-based RefSR methods have

emerged. Yue et al. [16] and Yang et al. [15] proposed

CNN-based RefSR methods which explore both the in-

ternal and the external correlations. Crossnet [12] was

proposed to deal with light field image SR, and the HR

reference images have only small displacements com-

pared with the LR input. This enables CrossNet to

utilize optical flow to align the HR reference with the

LR input. However, this makes it cannot deal with

reference images with large displacements with the LR

input. Zhang et al. [11] proposed SRNTT to adaptively

transfer textures from reference images according to

their textural similarity, which can take advantage of

reference images with different similarity levels. How-

ever, the neural space matching will degrade the SR

performance when the reference images are similar to

the LR input.

Besides, all the CNN-based RefSR methods do not

introduce attention modules to adaptively utilize the

features from LR input and reference images. In this

paper, we propose a channel attention module to assign

larger weights to the reference block which has a larger

similarity to the LR input.

2.3 Attention Mechanisms

The purpose of the attention mechanism in neural

networks is to recalibrate the feature response for the

most beneficial and important part of the previous layer

input. Recently, some work has focused on integrating

attention modules into a series of tasks, such as im-

age classification [29], image generation [30], and image

restoration [7, 8, 31]. By studying the inter-dependence

between convolutional feature channels in the network,

Hu et al. [29] introduced a channel attention mecha-

nism called squeeze and excitation (SE) block to adap-

tively recalibrate the channel feature response for im-

age classification. Inspired by SE networks, Zhang et

al. [8] proposed RCAN which combines channel atten-

tion with residual blocks to form a very deep residual

network, achieving the state-of-the-art performance of

SISR. Furthermore, CBAM [32] explores both channel-

wise and spatial-wise relationship of feature maps via

CA and SA modules. However, the above-mentioned

attention methods all utilize global average/max pool-

ing to get channel/spatial wise statistics information.

Different from them, we propose a weighted average

pooling method for channel attention.

3 Proposed Method

In this section, we first give an overview of the pro-

posed method and then present the details for each

module.

3.1 Framework Overview

Given an LR image IL as input, we aim to re-

cover the HR image ÎH from IL with the guidance of

similar HR reference images {IR1 , IR2 , ..., IRn } 1○. Since

the reference images are captured with different view-

points, focal lengths, and illuminations, and may con-

tain different objects, it is unreasonable to directly con-

catenate the LR input and reference image together

to infer the HR details. Therefore, we perform the

LR to the HR mapping at the patch level. To im-

prove the patch matching accuracy, we first align the

reference images with the LR input. Then we re-

trieve similar patches from the aligned reference im-

ages {ĨR1 , ĨR2 , ..., ĨRn }. Hereafter, we feed the matched

HR patches and the original LR patch into the pro-

posed progressive channel attention network (PCANet)

to infer the HR details. After recovering all the HR

patches, they are blended together via averaging in the

overlapped regions to produce the predicted HR image

ÎH .

In the following, we give details of patch matching

and the proposed PCANet.

3.2 Reference Image Alignment and Patch

Matching

3.2.1 Reference Image Alignment

Directly searching for similar patches from the refe-

rence images not only involves huge computing comple-

xity but also may miss the most similar patches since

there is deformation between the reference image and

the LR input. Therefore, we propose to first align the

reference images with the LR input according to their

matched feature points. For a given reference image

IR and the bicubic interpolation version of IL, denoted

as (IL)↑, whose size is our target size, we first extract

their SIFT [33] feature points. Then, we perform the

feature matching using the matching criteria proposed

in [33] to find the matched points between IR and (IL)↑.

Hereafter, we utilize the matched points to regress a

1○These reference images can be obtained via image retrieval from cloud database, photo albums, videos, or multi-view imaging
systems, which is out of the scope of this paper.



554 J. Comput. Sci. & Technol., May 2020, Vol.35, No.3

homography transform matrix using the RANSAC [34]

algorithm. Finally, we get the aligned reference image

ĨR by transforming the reference image IR with the

corresponding homography matrix to make ĨR have a

similar scale and viewpoint to (IL)↑. For more infor-

mation, please refer to [10].

3.2.2 Patch Matching

For the LR patch (PL)↑ in (IL)↑, we aim to find

its matched high frequency (HF) details QHF from

{ĨR1 , ĨR2 , ..., ĨRn }. Considering that the super-resolving

process will keep the low frequency information, we

construct a new HR reference using the original low fre-

quency (LF) information and the HF information from

the reference image, namely PR = (PL)↑ +QHF .

Therefore, we decompose the reference image into

HF and LF parts. The LF part of ĨR is obtained by

first downsampling it and then upsampling it to the

original resolution, denoted by (ĨR)
↓↑
. The dowm-

sampling and upsampling ratio is the same as our

targeted upsampling ratio for the LR input IL. In

this way, each reference image can be decomposed

as ĨR = (ĨR)↓↑ + (ĨR)HF . Then, for each patch

(PL)↑ in (IL)↑, we search for its matched patches QL

from {(ĨR1 )↓↑, (ĨR2 )↓↑, ..., (ĨRn )↓↑}. Considering (ĨRi )↓↑ is

aligned with (IL)↑, for a patch (PL)↑ of size m×m cen-

tered at position(x, y), we constrain the search window

to be a region of size 2m × 2m centered at (x, y), de-

noted asWP . The best matched k patches are obtained

by minimizing the Euclidean distance, i.e.,

D((PL)↑, QL
j ) = ‖(PL)↑ −QL

j ‖
2
2,

where QL
j is the candidate patch, densely sampled

from the region WP of {(ĨR1 )↓↑, (ĨR2 )↓↑, ..., (ĨRn )↓↑}.

After obtaining the best matched k patches

{QL
1 , Q

L
2 , ..., Q

L
k }, we extract their correspond-

ing HF patches {QHF
1 , QHF

2 , ..., QHF
k } from

{(ĨR1 )HF , (ĨR2 )HF , ..., (ĨRn )HF }. Finally, we construct

the reference patches by

PR
i = (PL)↑ +QHF

i , i ∈ {1, 2, ..., k},

for the input (PL)↑.

Note that, all the operations are performed in the

brightness channel and the DC component is removed

in patch matching since there are usually differences

in illumination and chromaticity between the LR input

and the reference images. In our experiments we set the

patch size m×m to be 20×20. On the one hand, an LR

patch with a larger size includes more structure infor-

mation, but it increases the matching error if there is

no exactly matched patch. On the other hand, a patch

with a smaller size is more flexible in finding matched

patches, but it will limit the receptive field of the fol-

lowing PCANet. In our experiments, we find 20× 20 is

suitable for most cases.

3.3 Proposed PCANet

The proposed PCANet progressively upsamples the

LR input to a large resolution. For a given upsam-

pling scale S, our network contains log2S levels. For

example, our network has two levels when the up-

sampling scale S is 4. Fig.1 presents our PCANet

at 4x upsampling. The input of our network is the

original LR patch PL from IL and the reconstructed

HR reference patches {PR
1 , PR

2 , ..., PR
k }. Then, we

perform the first 2x upsampling using bicubic inter-

polation on PL. Correspondingly, the HR reference

patches are downsampled by the scaling factor of 2 to

match the resolution of (PL)↑2x. Then, (PL)↑2x and

{(PR
1 )↓

1

2
x, (PR

2 )↓
1

2
x, ..., (PR

k )↓
1

2
x} are concatenated to-

gether to go through the first-level HF detail prediction

network. Hereafter, the SR result of the first-level, i.e.,

P̂H1 is further upsampled by a factor of 2 using the

sub-pixel convolution [24]. This process is denoted by

fup(P̂
H1). Then, we concatenate fup(P̂

H1), (PL)↑4x,

and {PR
1 , PR

2 , ..., PR
k }, and feed them into the second-

level HF detail prediction network. Finally, we get the

SR result at the second level, denoted by P̂H2 . In the

following, we give details of the proposed PCANet.

3.3.1 Network Structure

We only present the network details of the first-level

upsampling since the network structures of the follow-

ing levels are the same as those of the first level. As

shown in Fig.1, the PCANet is constructed by the chan-

nel attention module (CAM) and the residual channel

attention module (RCAM). In the following, we give

details about the two modules.

1) Channel Attention Module. Assume that Fin is

the input feature of CAM and Fout is its output feature.

The relation between Fin and Fout can be formulated

as:

Fout = fsc(Fin, fex(fsq(Fin))),

where fsq, fex, and fsc represent the squeeze, excita-

tion, and scaling processes, respectively. In the pre-

vious work [8, 29], the squeeze process simply utilizes

global average pooling to extract statistics information

of the channels. The excitation process excites the in-

formation through the sigmoid layer to produce channel

weights, and the scaling process multiplies the feature
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Fig.1. Framework of the proposed PCANet. PL and PR are the LR patch and corresponding reference patches, respectively. P̂Hi

denotes the output of the i-th level. C is the number of channels

maps Fin with the channel weights. In this way, the fea-

tures which contribute more to the final result are mul-

tiplied with higher weights. This strategy works well

in high-level vision problems, such as image classifica-

tion and semantic segmentation. However, in RefSR,

it is coarse to estimate the channel weights using the

statistic information obtained by global average pooling

since the features in different spatial positions may have

different contributions to the final result. Therefore, we

propose to give different weights to the pixels/features

in different spatial positions in the pooling process of

the squeeze process. The proposed squeeze process is

defined as:

γ = fsq(Fin) =
1

HW

∑

h,w

Fin × fs(fc(Fin)),

where fc denotes the convolution operation to get the

weight for each point, and fs is the Softmax function

to normalize weights in the same channel. × repre-

sents pixel-wise multiplication. The sum operation is

performed along the height (H) and the width (W ) di-

mensions. In this way, we extend the original global

average pooling to weighted average pooling.

Our excitation process is denoted by

fex(γ) = σ(W(γ)),

where W is the fully connection layer (realized by 1× 1

convolution) and σ is the sigmoid layer. This process

produces the weights for each channel. Hereafter, each

channel of the feature map Fin, i.e., F
c
in, is multiplied

by the scalar weight γc, namely F c
out = γcF

c
in. The

framework of the proposed CAM module is depicted in

Fig.1.

2) Residual Channel Attention Module. The pro-

posed RCAM module, as depicted in Fig.1, is mainly

constructed by two convolution layers and one CAM

layer. Namely, we integrate the CAM module into the

original residual block to make it give different weights

to different feature channels.

All the convolutional filters depicted in Fig.1 are of

size 3× 3 and the channel number is 96 except for the

output layer, whose channel number is 1 for gray im-

ages.

3.3.2 Loss Function

We optimize the proposed PCANet via minimizing

the L2 distance between the recovered HR patch P̂H

and the corresponding ground-truth HR patch PH at

each level. The objective function for training is formu-

lated as:

L(PH , P̂H ; Θ) =
1

N

N∑

i=1

log
2
S∑

s=1

‖PHs

i − P̂i

Hs

‖22,

where Θ denotes the network parameter, N is the num-

ber of training pairs in each minibatch, and s is the

upsampling level.
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3.3.3 Training Details

All RGB low-resolution images are generated by

downsampling the corresponding HR images using

bicubic interpolation. Since humans are more sen-

sitive to the luminance changes, we only perform

super-resolution on the luminance channel (Y) and the

chrominance channels (UV) are directly upsampled via

bicubic upsampling.

We utilize the training set released in the work

of [16], which contains 15 groups of landmark images.

Each target image is split into overlapped 20 × 20

patches at the step size of 4. We totally extract nearly

700 000 patches for training. During training, we per-

form data augmentation via flips and rotations.

In the training phase, the batch size is set to 128.

We train our networks with Adam [35] optimizer, where

the parameters of the optimizer are set as β1 = 0.9,

β2 = 0.999. The learning rate is initially set to 10−4

and reduced to 10−6 after 20 epochs. The training gene-

rally converges after 40 epochs. The proposed network

is implemented using TensorFlow 2○ and trained with

an NVIDIA GeForce GTX 1080TI GPU.

4 Experimental Results

In this section, we first give details about the testing

sets, then demonstrate the effectiveness of the proposed

modules via performing ablation study, and compare

the proposed method with state-of-the-art methods fi-

nally. All the experiments are conducted for 4x upsam-

pling.

4.1 Testing Sets

Since our training set only contains landmark im-

ages, we evaluate the proposed method using three

datasets to demonstrate the robustness of the trained

model. The three datasets are Landmark10 from the

work of [10], CUFED5 (containing 126 images) from

the work of [11], and the Face50 dataset randomly

selected from the VGGFace2 dataset [36]. The Land-

mark10 dataset contains 10 landmark images and its

references are the same building captured by different

people from various viewpoints at different time points.

The CUFED5 dataset is collected from albums, which

describes the most common events in our daily life, and

the reference images describe the same event. Face50 is

a face database randomly selected from the VGGFace2

dataset, which contains face images with large varia-

tions in pose, age, illumination, ethnicity, and profes-

sion. The three datasets represent three typical sce-

narios for RefSR. Some examples of our test images

from the three test sets are presented in Fig.2. Fig.3

presents the reference images for test images from the

three datasets. It can be observed that our test scenes

have a large variance, and the reference images also

vary in contents and viewpoints.

(a)

(b)

Fig.2. Some examples of testing images from (a) Landmark10 [10]

and (b) CUFED5 [11] datasets.

Ref-1 Ref-4Ref-2 Ref-3Target

(a)

(b)

(c)

Ref-2 Ref-4Ref-3Target Ref-1

Ref-1 Ref-2 Ref-4Target Ref-3

Fig. 3. Reference images for one target image from (a)
Landmark10 [10], (b) CUFED5 [11], and (c) Face50 [36] datasets.

4.2 Ablation Studies

In this subsection, we perform ablation study to

demonstrate the effectiveness of the proposed CAM

module and the progressively upsampling strategy.

2○https://www.tensorflow.org/, Apr. 2020.
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4.2.1 Ablation for CAM

To demonstrate the effectiveness of the proposed

CAM, we compare it with the scheme by replacing

the proposed CAM with SE [29] attention or removing

CAM, i.e., without channel attention. Except for the

attention module, all the other settings for the two vari-

ants are the same as those of our PCANet. Table 1

presents the ablation results for the proposed CAM

module in terms of PSNR and SSIM [37] values on the

three datasets. Note that the best results are high-

lighted in bold. All the values are calculated in the

luminance channel. It can be observed that, the results

of the scheme without channel attention (w/o CA, i.e.,

the baseline method) are the worst. Compared with the

baseline method, the scheme with the SE module im-

proves the average PSNR result by 0.27 dB. In contrast,

the proposed method, i.e., using CAM as the attention

module, improves the baseline method by 0.42 dB on

average. We also present the visual comparison results

in terms of PSNR/SSIM for the three schemes in Fig.4.

Our method recovers the most details compared with

the two variants.

Table 1. Ablation Study for the CAM Module

Algorithm Landmark [10] CUFED5 [11] Face50 [36]

w/o channel 25.59/0.773 1 25.21/0.775 8 31.46/0.844 8

attention

SE [29] 25.95/0.791 5 25.46/0.783 9 31.66/0.851 2

CAM(ours) 26.23/0.8030 25.60/0.7940 31.71/0.8516

w/o CA

27.38/0.780 4

SE

27.76/0.766 0

CAM

27.96/0.804 2

GT

PSNR/SSIM

Img001 from Landmark10

Img004 from CUFED5 GT

PSNR/SSIM

CAM

25.23/0.874 4

27.96/0.804 2

25.23/0.874 4

SE

25.15/0.864 6

w/o CA

24.55/0.849 4

(b)

(a)

Fig.4. Visual comparison for ablation study of the CAM module. We show the close-up of the rectangle regions for better observation.
(a) Img001 from Landmark10 and the visual comparison results. (b) Img004 from CUFED5 and the visual comparison results.

4.2.2 Ablation for Progressive Reconstruction

To demonstrate the effectiveness of the proposed

progressive reconstruction strategy, we compare it with

directly upsampling. Namely, we only utilize one level

upsampling to upsample the LR input to the desired

resolution. For a fair comparison, we set the network

depth of the directly upsampling the same as our pro-

gressive upsampling to make the two networks have

similar amount of parameters. Table 2 presents that

the average PSNR result on the three datasets for di-

rectly upsampling is 27.54 dB, and our progressive up-

sampling (for 4x) strategy outperforms it by 0.3 dB.

The visual comparison results are presented in Fig.5.

It can be observed that the proposed progressive recon-

struction strategy recovers dense structures while the

one level upsampling can only recover limited struc-

tures since dense structures are hard to be predicted

by one level upsampling.

Table 2. Ablation Study for Progressive Reconstruction

Algorithm Landmark [10] CUFED5 [11] Face50 [36]

Bicubic 23.12/0.699 3 22.77/0.654 6 29.42/0.792 3

Directly 25.88/0.789 8 25.30/0.783 0 31.46/0.846 2

upsampling

Progressively 26.23/0.8030 25.60/0.7940 31.71/0.8516

upsampling
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Img001 from CUFED5
Directly Upsampling

24.47/0.841 6

Bicubic

20.73/0.610 0

Progressively Upsampling

24.98/0.861 1

GT

PSNR/SSIM

Fig.5. Visual comparison for ablation study of the progressively upsampling strategy. We show the close-up of the rectangle regions
for better observation.

4.2.3 Ablation for PCANet

To demonstrate the effectiveness of the proposed

PCANet, we compare it with directly merging the most

similar HR patches for each LR patch together via aver-

aging (denoted by patch averaging). Fig.6 presents the

visual comparison results. It can be observed that the

result of patch averaging contains many artifacts. In

contrast, the result of proposed PCANet is sharp and

clean. The reason is that the matched HR patches may

be not similar to the LR input, as shown in Fig.6(c).

Table 3 presents the quantitative comparison results.

The proposed PCANet greatly outperforms the patch

averaging strategy. This further demonstrates that the

proposed PCANet can deal with HR patches with diffe-

rent similarity levels to the LR input. In summary,

both objective and subjective comparisons prove that

the proposed method is good at using input information

and obtaining the best results.

4.3 Comparison with State-of-the-Art

Methods

We compare the proposed PCAnet with the state-

of-the-art SISR method EDSR [6] and RefSR methods,

including one traditional patch matching and blending

method Landmark [10] and three CNN-based methods,

i.e., SRNTT [11], CrossNet [12] and IENet [16]. All the

comparison results are obtained by the authors’ codes.

Since the original CrossNet model is trained using light-

field images with small displacements, for a fair compa-

rison, we retrain the CrossNet model using the aligned

reference image. We choose the most similar image as

its reference since it can only utilize one reference im-

age. For SRNTT [11] and IENet [16], we directly uti-

lizes their pretrained model for testing. For SRNTT,

we present two kinds of results, i.e., SRNTT trained

with perceptual and adversarial losses, and SRNTT-l2
trained with l2 loss which tends to have high PSNR

results but smooth details. Therefore, for the visual

comparison, we only present the first version SRNTT

result.

Bicubic
24.73/0.738 2

Patch Avg.
24.40/0.707 1

GT
PSNR/SSIM

PCANet
27.36/0.836 9GT BicubicTop 1 Top 2Top 3

(b)

(c) 
 

(d)

(a)

Fig.6. Visual comparison with the patch averaging result. (a)
Ground truth, i.e., Img125 from CUFED5. (b) References of
Img125. (c) Top three similar HR patches for three LR patches.
(d) SR results generated by different methods.

Table 3. Quantitative Comparison Between Patch Averaging
and the Proposed PCANet

Algorithm Landmark [10] CUFED5 [11] Face50 [36]

Bicubic 23.12/0.699 3 22.77/0.654 6 29.42/0.792 3

Patch Averaging 24.76/0.720 8 23.70/0.710 4 30.13/0.811 9

PCANet 26.23/0.8030 25.60/0.7940 31.71/0.8516

Table 4 presents the quantitative comparison

results 3○ in terms of average PSNR and SSIM values

on three datasets, i.e., Landmark10 [10], CUFED5 [11],

and Face50 [36]. The best results are highlighted in

3○The PSNR and SSIM results are different from those presented in SRNTT [11], since their PSNR and SSIM values are calculated
in clipped luminance channel, whose values range from 15 to 235. If we calculate PSNR/SSIM in that way, the PSNR/SSIM values of
SRNTT-l2 and PCANet will be 26.00/0.765 1, and 26.90/0.808 4, respectively.
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bold. It can be observed that the proposed PCANet

outperforms the SISR method EDSR [6] by more than

Table 4. Comparison of Average SR Results on Three Datasets
in Terms of Average PSNR/SSIM Values

Algorithm Landmark [10] CUFED5 [11] Face50 [36]

Bicubic 23.12/0.639 3 22.77/0.654 6 29.42/0.792 3

EDSR [6] 24.93/0.738 8 25.04/0.759 3 31.34/0.836 0

Landmark [10] 24.76/0.720 8 23.70/0.710 4 30.13/0.811 9

CrossNet [12] 24.83/0.737 0 24.58/0.747 8 30.70/0.825 4

SRNTT [11] 23.73/0.687 5 24.05/0.708 5 29.62/0.799 1

SRNTT-l2 [11] 24.58/0.723 3 24.57/0.742 8 30.78/0.833 7

IENet [16] 25.74/0.785 8 25.15/0.778 2 31.39/0.845 7

PCANet 26.23/0.8030 25.60/0.7940 31.71/0.8516

1 dB on the Landmark10 dataset [10]. Compared with

the second best method IENet [16], our method achieves

more than 0.3 dB gain on all the three datasets.

Figs.7–9 present the visual comparison results for

several test images on the three datasets, respectively.

More visual comparison results are listed in the sup-

plementary material 4○. It can be observed that the

proposed PCANet recovers the most details, such as

the building structures presented in Fig.7. In contrast,

the result of EDSR has the least details since it only

utilizes the information of the LR image. The result

of CrossNet is a bit smooth since it cannot utilize

the reference image with large displacements well. The

Bicubic
20.79/0.621 2

SRNTT
21.09/0.677 3

Landmark
22.22/0.730 8

CrossNet
21.6/0.692 4

EDSR
21.93/0.714 1

IENet
23.10/0.775 4

PCANet
23.77/0.799 9

GT
PSNR/SSIM

GT
PSNR/SSIM

Bicubic
23.29/0.630 9

SRNTT
24.52/0.699 5

Landmark
24.55/0.694 3

CrossNet
24.63/0.705 9

EDSR
25.17/0.732 7

IENet
25.63/0.772 3

PCANet
26.06/0.787 6

GT
PSNR/SSIM

EDSR
23.58/0.676 6

Bicubic
22.54/0.597 4

SRNTT
22.34/0.623 0

Landmark
25.06/0.756 8

CrossNet
25.42/0.766 8

IENet
26.85/0.821 9

PCANet
27.40/0.839 5

(c)

(b)

(a)

Fig.7. Comparison with competing SR methods on the Landmark10 [10] dataset in terms of PSNR/SSIM. For better observation, in
each group, we present one highlighted region for each result (the top row) and provide the error heatmaps between the SR result and
the ground truth (the bottom row). The hotter the color, the larger the errors. (a) Img002 from Landmark10 and the results. (b)
Img008 from Landmark10 and the results. (c) Img009 from Landmark10 and the results.

4○The supplementary material is avaliable at https://drive.google.com/open?id=1bVYl-rE5XDD182kP5YIb-9ECCLc5VdV8, Apr.
2020.
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Bicubic
21.97/0.707 8

SRNTT
21.82/0.741 2 

Landmark
22.43/0.720 3

CrossNet
23.95/0.793 8

EDSR
24.58/0.821 7

IENet
24.52/0.817 4

PCANet
24.88/0.826 2

GT
PSNR/SSIM

Bicubic

20.75/0.719 1

SRNTT

22.40/0.806 4

Landmark

22.67/0.819 9

CrossNet

23.20/0.831 2

EDSR

24.36/0.858 2

IENet

24.28/0.861 6

PCANet

24.71/0.873 1

GT

PSNR/SSIM

Bicubic

18.61/0.439 3

SRNTT

17.94/0.496 5

Landmark

19.71/0.591 4

CrossNet

19.92/0.589 1

EDSR

19.52/0.553 7

IENet

20.28/0.625 0

PCANet

20.71/0.656 3

GT

PSNR / SSIM

(b)

(a)

(c)

Fig.8. Comparison with competing SR methods on the CUFED5 [11] dataset in terms of PSNR/SSIM. For better observation, in each
group, we present one highlighted region for each result (the top row) and provide the error heatmaps between the SR result and the
ground truth (the bottom row). The hotter the color, the larger the errors. (a) Img002 from CUFED5 and the results. (b) Img006
from CUFED5 and the results. (c) Img007 from CUFED5 and the results.

result of SRNTT has rich high frequency details since it

utilizes perceptual and adversarial losses during train-

ing. However, the recovered details deviate from the

ground truth, which makes it have lower PSNR values.

IENet generates good results for most images, but it

also tends to blur the details for some images, such as

the result presented in Fig.8 and Fig.9. In a word, the

proposed method generates the best results in terms of

both objective and subjective comparisons.

5 Conclusions

In this paper, we proposed a progressive channel

attention network, PCANet, for the reference image

guided super-resolution (RefSR). To fully explore the

correlations between the reference patches and the LR

input, we proposed a novel channel attention module,

CAM, to assign higher weights to more correlated fea-

tures. Different from the traditional SE module for

channel attention, the proposed CAM estimates the

channel weights via weightedly averaging the spatial

features instead of using global averaging. We also

proposed a progressive upsampling strategy for RefSR,

which takes advantage of reference images in multiple

scales. The proposed method outperforms state-of-the-

art SR methods on three RefSR datasets in both sub-

jective and objective measurements.

In the future, we would like to extend the chan-

nel attention module to more reference image guided

processing applications, such as RefDenoise and RefDe-

blur. In addition, we would like to explore the appli-

cation of RefSR in other kinds of images, such as SAR

images, medical images and so on.
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Bicubic

29.50/0.851 0

SRNTT

30.04/0.856 5

Landmark

32.42/0.917 7

CrossNet

30.73/0.873 9

IENet

33.17/0.930 0

IENet PCANet

33.68/0.937 0

PCANet GT

PSNR/SSIM

GTEDSR

32.05/0.898 4

EDSR

Bicubic
26.70/0.751 4

Bicubic SRNTT
26.36/0.723 4

SRNTT Landmark
31.56/0.895 0

Landmark CrossNet
29.04/0.813 4

CrossNet

GT

PSNR/SSIM

GTPCANet

32.79/0.911 5

PCANetIENet

32.19/0.898 8

IENetEDSR

29.06/0.811 7

EDSR

Fig.9. Comparison with competing SR methods on the Face50 [36] dataset in terms of PSNR/SSIM.
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