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Abstract Dynamic changes of traffic features in unstructured road networks challenge the scene-cognitive abilities of

drivers, which brings various heterogeneous traffic behaviors. Modeling traffic with these heterogeneous behaviors would

have significant impact on realistic traffic simulation. Most existing traffic methods generate traffic behaviors by adjust-

ing parameters and cannot describe those heterogeneous traffic flows in detail. In this paper, a cognition-driven traffic-

simulation method inspired by the theory of cognitive psychology is introduced. We first present a visual-filtering model

and a perceptual-information fusion model to describe drivers’ heterogeneous cognitive processes. Then, logistic regression

is used to model drivers’ heuristic decision-making processes based on the above cognitive results. Lastly, we apply the

high-level cognitive decision-making results to low-level traffic simulation. The experimental results show that our method

can provide realistic simulations for the traffic with those heterogeneous behaviors in unstructured road networks and has

nearly the same efficiency as that of existing methods.

Keywords unstructured road network, traffic simulation, cognition-driven, heterogeneous

1 Introduction

Unstructured road networks are road networks

in which traffic features (e.g., topological structures,

traffic signs, and traffic accidents) change dynami-

cally. These changes occur frequently and they are

unpredictable [1, 2], challenging drivers’ cognitive and

decision-making abilities and leading to various hete-

rogeneous traffic behaviors. It is a daunting task to

model these heterogeneous traffic behaviors and gene-

rate a realistic traffic flow in these networks.

Existing traffic-simulation methods mainly focus on

physical-based and data-driven traffic simulations [3–8].

In physical-based traffic simulations, heterogeneous

traffic behaviors are generated by simply adjusting

parameter values [9]. In data-driven traffic simulations,

the richness of heterogeneous traffic-behavior simula-

tions is mainly determined by data quality. These

methods cannot offer detailed traffic simulations in

unstructured road networks. Scholars in the field

of traffic psychology have analyzed the psychological

changes of drivers in unstructured road networks by

considering driving experience, gender, and personality

characteristics [10–14]; however, most of these studies fo-

cused on driver aptitude tests. They usually do not

show mathematical descriptions. Therefore, it is diffi-

cult to directly use them in traffic simulations.

To tackle the aforementioned challenges, in this pa-

per we introduce a cognition-driven traffic-simulation

method inspired by the theory of cognitive psychology.

The framework of our method is shown in Fig.1. There

are three processes in our method: the heterogeneous

cognitive process, the heuristic decision-making pro-

cess, and the low-level-traffic simulation process. We
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Fig.1. Framework of our method.

first introduce a visual-filtering model that considers

driving speed and experience, and an information-

fusion model that considers the environment familiar-

ity of the driver to model the heterogeneous cognitive

process. We then use logistic regression to model the

heuristic decision-making process based on the above

cognitive results. Finally, we apply the high-level cog-

nitive decision-making results to a low-level traffic sim-

ulation and introduce an integrated traffic-simulation

model that considers environments, drivers and vehi-

cles. Specifically, the input data of our method are

environmental-information sets and their spatial lo-

cations. In the heterogeneous cognitive process, in-

put data are environmental information, and output

data are environmental information finally perceived

by drivers. In the heuristic decision-making process,

input data are the environmental information that is

finally perceived by drivers, and output data are the

corresponding driving decisions. In the low-level traffic

simulation process, input data are drivers’ driving de-

cisions and vehicle properties, and output data are ve-

hicles’ final behavior. We outline efficiency analysis to

demonstrate the merits of our method. We also demon-

strate that our method could successfully reconstruct

traffic flows in typical unstructured road networks.

The main contributions of this paper are as follows.

1)Modeling the Relationship Between Environments

and Drivers. A heterogeneous cognitive process and

a heuristic decision-making process are introduced to

model the relationship between environmental informa-

tion and driving behaviors in unstructured road net-

works. They can simulate heterogeneous driving beha-

vior in detail.

2) Modeling the Relationship Among Environments,

Drivers, and Vehicles. The high-level cognitive

decision-making results are applied to low-level traffic

simulation, and an integrated traffic-simulation model

is presented, considering drivers, vehicles, and environ-

ments. It can successfully reconstruct traffic flows in

unstructured road networks.

3) High Efficiency. The proposed method has high

computational efficiency. It has nearly the same effi-

ciency as that of classical traffic simulations.

The rest of the paper is organized as follows. We

describe related work in Section 2. In Section 3, the

method of cognition-driven traffic simulation is outlined

in detail. In Section 4, experimental evaluation is pre-

sented. Finally, the conclusions are given in Section 5.

2 Related Work

Our work is a cross-section of research in the fields

of both traffic simulations and traffic psychology. In

this section, we give a brief review of prior work, first

in traffic simulations, and then in traffic psychology.

2.1 Traffic Simulation

With the increasing volume of traffic data and soft-

ware tools capable of modeling urban scenes, much re-

search has been conducted on traffic simulations in the

field of computer graphics [3–8, 15–22]. The microscopic

method is a famous traffic-simulation method where

each vehicle is regarded as an agent, and a set of rules

are employed to generate natural traffic behaviors. Car-

following models are typical microscopic models. In the

car-following models, vehicles make decisions (accelera-

tion or deceleration) according to a variety of factors,

such as the state of vehicles in front of them in the cur-

rent lane, speed limits, and road conditions [23]. Other
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models, such as the generalized force model (GFM)

proposed by Helbing and Tilck [23], and the intelligent-

driver model (IDM) proposed by Treiber et al. [24] can

also simulate many different traffic conditions well.

These models mainly focus on physical-based traffic

simulations. They simulate multiple traffic behaviors

in unstructured road networks by simply adjusting the

values of model parameters. Xu et al. [25] introduced the

Smog Full Velocity Difference Model (SMOG-FVDM)

to simulate how the weather affects drivers’ behaviors.

Lin et al. [26] presented an agent-based approach to ani-

mate microscopic mixed traffic involving cars and mo-

torcycles in unstructured road networks. There are few

descriptions about drivers’ heterogeneous cognitions.

Some data-driven traffic-simulation methods have also

been proposed [4, 19, 20]; however, the richness of hete-

rogeneous traffic-behavior simulations in these methods

is mainly determined by data quality.

2.2 Traffic Psychology

Currently, scholars in the field of traffic psycho-

logy mainly analyze driving behaviors from the aspects

of driving experience [10, 11], gender [12–14, 27, 28], in-car

interference [29–31], weather, and climate [32]. However,

little research has been aimed at simulating driving

behaviors in unstructured road networks. There are

still some important theoretical achievements. For ex-

ample, according to the theory of anchoring effect, diffe-

rent drivers may show different driving behaviors due

to their different environment familiarities [33, 34]. In

addition, according to the theory of the chameleon

effect, there are herd behaviors between nearby ve-

hicles, especially when environmental information is

insufficient [10]. The abilities of drivers’ herd beha-

viors are determined in some ways by their driving

experiences [35]. These theories focus on drivers’ apti-

tude tests and do not introduce mathematical descrip-

tions; thus, they cannot be directly used for traffic sim-

ulations.

In the field of cognitive science, there are some well-

known cognitive models, such as the Adaptive Charac-

ter of Thought-Rational (ACT-R) model and the State,

Operator and Result (SOAR) model, which model hu-

man cognitive processes [36]. Most of these models have

a series of complex processes, and it is difficult to use

these models for traffic simulations due to their comple-

xity and large time consumption.

In summary, in the field of traffic psychology,

there are few efficient mathematical models for driving-

behavior simulations in unstructured road networks.

3 Cognition-Driven Traffic Simulation

Vehicles move along lanes under drivers’ control.

Drivers make reasonable decisions by perceiving the

surrounding environmental information, and then drive

their vehicles safely and smoothly. In this section, we

give detailed descriptions of the three processes in our

method.

3.1 Heterogeneous Cognitive Process

About 90% of the information that drivers per-

ceive from the environment is obtained from vision [37].

Therefore, our cognitive process focuses on visual per-

ceptions.

Let the traffic environmental-information set be

D = (X1,X2, ...,XN ), where N represents the maxi-

mum amount of traffic environmental information, and

Xj(j ∈ [1, N ]) is the j-th information set, the ele-

ments of which are mutually exclusive (for example,

red/green/yellow light). It is described as follows:

Xj = (d1j , d2j , ..., dmjj)
T, (1)

where mj represents the number of elements, and

dij(i ∈ [1,mj]) represents the probability of occurrence

of the i-th element in the j-th information set in envi-

ronments. dij ∈ [0, 1] and ∀j,
∑i=mj

i=1 dij = 1.

It is easy to prove that D is not a matrix and

that it is difficult to operate it in our subsequent

simulations. To facilitate the computation process of

the simulations, we give the matrix form of D here:

A = (dij)M×N , where M = max{m1,m2, ...,mN} and

dij ≡ 0 (j ∈ [1, N ], i ∈ (mj ,M ]).

We then introduce a visual-filtering model and an

information-fusion model to model the heterogeneous

cognitive process. The pipeline of the cognitive pro-

cess is shown in Fig.2. A is the matrix form of the

traffic environmental-information set. In the visual-

filtering model (Subsection 3.1.1), we first obtain A1,

which describes the environmental information located

in the driver’s visual field. We then get A2, which

describes the environmental information captured by

drivers’ vision. In the information-fusion model (Sub-

section 3.1.2), we obtain Alast, which describes the

environmental information that is finally perceived by

drivers.

3.1.1 Visual Filtering Model

Environmental information enters drivers’ percep-

tion systems through their vision. Drivers with diffe-

rent levels of driving experience use different methods
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to capture environmental information. Considering the

complexities of our method, in this paper we only take

into account situations in which drivers drive at day-

time when the sky is bright. Driver stadia are consis-

tent in our simulation. Next, we model how to deter-

mine drivers’ horizontal and vertical visual angles.

Information FusionVisual Filtering

…

A AlastAA

Fig.2. Pipeline of heterogeneous cognitive process.

Drivers with more driving experience have broader

visual fields and more effective searching methods

compared with those of inexperienced drivers [38–40].

We use the following formulas with a curve-fitting

method to model the relationship between drivers’ hori-

zontal/vertical visual angles and their driving speed

and experience according to the datasets created by

Yuan [41]:

anglelevel = ω1(a1 × vb1 + c1), (2)

anglevertical = ω1(a2 + b2v + c2v
2), (3)

where anglelevel represents the horizontal visual angle,

anglevertical represents the vertical visual angle, and

v represents vehicle speed. a1, b1, c1, a2, b2, c2 are

constant. a1 = −0.633 7, b1 = 1.088, c1 = 136.6,

a2 = 149.5, b2 = −0.201 4, and c2 = −0.005 2. ω1

describes the driving experience, ω1 ∈ (0, 1]. The value

of ω1 is determined by the driver’s experience: if the

driver has rich driving experience, we let ω1 ≡ 1. If the

driver does not have driving experience, we let ω1 ∝ 0

(for example, ω1 ≡ 0.01). Otherwise, we let ω1 ∈ (0, 1)

randomly.

Environmental information in A cannot be per-

ceived by drivers if it is out of the drivers’ visual

field. The visual frustum constructed by anglelevel and

anglevertical is used to clip A and obtainA1. Obviously,

SUM(A1) 6 SUM(A), and SUM(•) is the sum of the

matrix elements.

In general, inexperienced drivers’ visual-filtering

processes are disorderly on some level. A driver with

better skills can obtain more environmental informa-

tion, even though they have the same visual frustum.

In this paper, in order to simulate the differences be-

tween drivers with different levels of experience, we let

the information captured by drivers beA2 = (dij)M×N ,

and

A2 = A1B. (4)

Here B = BN×N is a diagonal matrix, the value of

each diagonal element is randomly either 0 or 1, and

SUM(B) = ⌊ω1N⌋, where ω1 is the same as that in

(2) and (3). It is easy to prove that the value of each

element in B is determined by drivers’ skills. More ele-

ments are set to 1 if the driver had better experience.

Considering that our method is used for traffic simu-

lations, which give low-level descriptions of drivers, we

let each element in B randomly be either 0 or 1 for sim-

plicity. It is also easy to prove that the interpretation

of (4) is simply and randomly filtering environmental

information in A1, and drivers with better skills can

obtain more environmental information after the filter-

ing of (4).

3.1.2 Information-Fusion Model

From the viewpoint of traffic psychology, the infor-

mation perceived by drivers is mainly from their vision

and their memories. Therefore, some environmental in-

formation entering a driver’s vision may not be per-

ceived by them, and some environmental information

that does not enter drivers’ vision may be perceived by

drivers because of their memories. The reason for this

is that there is a process of information fusion [42]. The

famous Fuzzy-Logic Model of Perception (FLMP) [43]

provides an information-fusion method by integrating

scene and feature information. Here, we use it to simu-

late the perception process of information fusion about

environmental information.

For the i-th element in the j-th information set in

A2, cij describes the probability of occurrence of the

i-th element in the j-th information set in the driver’s

memory. According to the FLMP model, the proba-

bility that the driver perceives this information is as

follows:

pij =











dij×cij

(dij×cij)+(T
dij

×K
dij

)
, if cij 6= 0,

dij , if cij = 0, dij 6= 0,

cij , if dij = 0,

(5)

where Tdij
= 1− dij , Kdij

= 1− cij , and dij is the ele-

ment of A2, which was described in Subsection 3.1.1.

Then the final information that a driver finally per-

ceives is Alast = (pij)M×N . The amount of information

that drivers finally perceive may not be the same as

the amount of information captured by drivers after vi-

sual filtering. Sometimes the former is larger because of
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supplements from drivers’ memory, and sometimes the

latter is larger because there is a conflict between the

information in drivers’ memories and the information

captured by drivers after visual filtering.

3.2 Heuristic Decision-Making Process

Let the decision set be Q = (q1, q2, ..., qS), where S

represents the total number of decisions, qi (i ∈ [1, S])

represents the i-th decision, and qi ∈ {yi1, y
i
2, ..., y

i
t}.

yi1, y
i
2, ..., y

i
t represent mutually exclusive decisions (for

example, acceleration, deceleration, uniform speed and

stopping).

According to cognitive psychology, people usually

make decisions through a simple heuristic process [44].

The logistic-regression model is used to obtain drivers’

final decisions based on the above perception results

(shown in Fig.3):

P (qi = yij) =
e
β00+

M∑

i=1

N∑

j=1

βijpij

1+e
β00+

M∑

i=1

N∑

j=1

βijpij

,

where P (qi = yij) means the probability that qi = yij .

pij is the element of Alast, and βij (i ∈ [0,M ], j ∈

(0, N ]) is calculated by maximum likelihood estima-

tion. The input data of the estimation are the envi-

ronmental information finally perceived by drivers and

the corresponding driving decisions. It is difficult to

collect the data in practice. In this paper, we col-

lect them in a virtual evaluation system. Testers en-

tered virtual cars in virtual scenarios, and their horizon-

tal and vertical visual angles are not modeled and are

given randomly to exclude errors of cognitive processes.

Those testers watched their surrounding environment,

and then checked the environmental information that

they finally perceived (Alast) and their corresponding

driving decisions (Q).

Final Decision

…

…

Information Decision 

p
y


y
t

β
ij

p

p



s

Fig.3. Drivers’ heuristic decision-making process.

3.3 Integrated Traffic-Simulation Process

Drivers drive vehicles according to the above driv-

ing decisions. There are mainly three driving beha-

viors: following, cruising, and lane-changing behavior.

In this paper, the classical IDM model [24] is used to

model the following behavior and the integrated lane-

changing model proposed by Wang et al. [17] is used to

model lane-changing behavior. Let vehicle acceleration

under a driver’s cognition be ainf , which is equal to the

vehicle’s comfortable acceleration, 0, and maximum de-

celeration, if the driver’s decision is to accelerate, main-

tain uniform decelerate, and stop, respectively. Then,

vehicle acceleration a in the three behaviors above is as

follows.

1) Following Behavior. Following behavior is re-

sponsible for controlling a vehicle to maintain a safe

distance between it and the leader vehicle in the lane

and avoid collisions with the leader vehicle. Let the

vehicle’s acceleration obtained by IDM be aIDM; then,

a = min{ainf , aIDM}.

2) Cruising Behavior. In cruising behavior, there

are no leader vehicles. Drivers drive vehicles according

to the acceleration obtained by their cognition, that is,

a = ainf .

3) Lane-Changing Behavior. Lane-changing beha-

vior is motivated by lane-changing necessity. There are

mainly two types of lane-changing necessities.

• Discretionary lane change that is motivated by a

preference. For example, a driver changes lane to in-

crease speed.

• Mandatory lane change that is motivated by tran-

sit requirements. For example, a lane is closing.

Once there is a feasible lane-changing trajectory,

and the vehicle has begun to change its lane, its ac-

celeration is as follows:

a = min{ainf , alane change},

where alane change is the acceleration determined by the

integrated lane-changing model [24].

4 Experimental Evaluation

In this section, we offer some comparisons of our

method and SMOG-FVDM presented by Xu et al. [25],

which is similar to ours. We also used our method to

reconstruct traffic simulations in typical unstructured

road networks.
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First, we created a virtual evaluation system. The

amount of traffic environmental information was 20

(N ≡ 20 in Section 3). We obtained 100 data groups

from the virtual evaluation system and then used SPSS

(Statistical Product and Service Solutions) software 1○

to compute the value of βij (i ∈ [0,M ], j ∈ (0, N ]) ac-

cording to the descriptions in Subsection 3.2. Note that

it only took very little time to finish the computation

(a few seconds).

4.1 Comparison Results

In this paper, we introduced a cognition-driven

traffic-simulation method to describe drivers’ hete-

rogeneous behaviors in unstructured road networks. In

our model, different drivers had different parameter

values. It was difficult to obtain them from exist-

ing open datasets (for example, NGSIM (Next Gene-

ration Simulation) 2○ and LiDAR (Light Detection and

Ranging) [45]), thereby we could not perform some vali-

dations for traffic simulations using real-word data. We

used our method and SMOG-FVDM to construct an in-

tersection scenario with improper traffic-light position-

ing. We then compared their simulation results.

The scenario with improper traffic-light positioning

depicted traffic behavior in an intersection where traf-

fic lights were located at the center. There were three

traffic lanes, and drivers could not perceive traffic sig-

nals in the westbound nearside lane. We simulated this

scenario using our method and SMOG-FVDM. In our

simulation, westbound-green-light duration in the in-

tersection was 30 s, the expected speed of traffic flows

was 6 m/s, and the maximum expected acceleration

was 2.7 m/s2. We also clipped drivers’ visual region

through (2) and (3) (Subsection 3.1.1).

Fig.4 shows some simulation snapshots gotten by

our method. Four snapshots in this figure were time-

ordered in one traffic signal cycle. Blue and red-

bordered translucent cones were used to describe the

visual fields of drivers in the westbound nearside lane.

In Fig.4(a), the westbound traffic light was red. The

leading yellow vehicle in the westbound nearside lane

remained still at the stop line. We can see that the

light was out of the driver’s visual field. In Fig.4(b),

the westbound traffic light turned green. Leading vehi-

cles in the westbound inner two lanes moved. However,

the yellow vehicle in the nearside lane remained still.

(b)(a)

West West

West West

(c) (d)

Fig.4. Snapshots of traffic simulation using our method in intersection with improper traffic-light positioning. Blue and red-bordered
translucent cones are drivers’ visual fields. (a)–(d) are four time-ordered snapshots. (a) The 86th frame. (b) The 99th frame. (c) The
114th frame. (d) The 134th frame.

1○Spss I N C. SPSS version 16.0. Chicago, IL: SPSS Incorporated, 2007.
2○FHWA, U.S. Department of Transportation. NGSIM—Next Generation SIMulation, July 2012. http://ops.fhwa.dot.gov/traff-

icanalysistools/ngsim.htm, July 2020.



Hua Wang et al.: Cognition-Driven Traffic Simulation for Unstructured Road Networks 881

The reason was that the light was out of the drivers’

visual field and the drivers could not perceive the light

changes (filtering by (2) and (3)). After a few seconds,

they saw their neighbors’ movements and then started

to go ahead (Fig.4(c)). The reason was that, in our

method, drivers begin to move if they perceive both of

the following types of environmental information: there

is a red light ahead, and vehicles in the neighboring

same-direction lanes are moving ahead.

Fig.5 shows some simulation snapshots using

SMOG-FVDM. Four snapshots in this figure were time-

ordered in one traffic signal cycle. We could not obtain

the visual fields of drivers in this model. In Fig.5(a), all

westbound vehicles remained still at the stop line be-

cause the westbound traffic light was red. In Fig.5(b),

the westbound traffic light turned green. All westbound

vehicles began to go ahead, which was inconsistent with

the fact that drivers in the westbound nearside lane

could not perceive traffic signals and would have a de-

layed response.

Fig.6 shows how the average speed of traffic-flow

changes as a function of time in the westbound near-

side lane.

4.2 Scenarios

To demonstrate the benefits of our method, we used

it to reconstruct some typical traffic scenarios (Fig.7

and Fig.8), including an intersection in which a traffic

sign was missing, unexpected damaged lanes, on-and-

off ramp, and roundabout. Next, we mainly describe

the following two scenarios. Other scenarios are high-

lighted in our supplementary video 3○.

1) An Intersection in Which a Traffic Sign Is Miss-

ing. In this intersection, vehicles could turn right and

go ahead in the nearside lane. However, there were

no apparent hanging signs in easy-to-see places. We

modeled the traffic behavior of drivers who were fa-

miliar or unfamiliar with the environmental conditions

(changed the value of cij in (5)). Fig.9 shows some

snapshots of the situation in which drivers were fami-

liar with the environmental conditions. Figs.9(a)–9(d)

were four time-ordered snapshots. Fig.10 shows some

snapshots of the situation in which drivers were unfa-

miliar with environmental conditions, and Figs.10(a)–

10(d) are also four time-ordered snapshots. It could be

observed that there was high usage of the nearside lane

when all drivers were familiar with the environmental

conditions. When drivers were not familiar with them,

they tried to change the lane to a neighboring lane.

There were few vehicles in the nearside lane although

there was a heavy traffic jam in the neighboring lanes.

The reason for this was that drivers that were unfami-

liar with environmental conditions did not know that

they could drive ahead in the nearside lane. The out-

come is highlighted in the supplementary video.

2) Unexpectedly Damaged Lanes. In this traffic

scenario, there was a damaged point in the westbound

(a) (b)

(d)(c)

West West

WestWest

Fig.5. Snapshots of traffic simulation using SMOG-FVDM in intersection with improper traffic-light positioning. (a)-(d) are four
time-ordered snapshots. (a) The 86th frame. (b) The 98th frame. (c) The 113th frame. (d) The 128th frame.

3○https://youtu.be/kxvsmZxTPWE, July 2020.
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nearside lane and the lane was temporarily closed. We

modeled the traffic behaviors of drivers who had much

or little experience (changed the value of ω1 in (2)–(4)).

0

2

4

6

8

0 30 60 90 120 150

S
p
e
e
d
 (

m
/
s)

Time (s)

SMOG-FVDM 
Our Method 

Fig.6. Average speed of traffic-flow changes in westbound near-
side lane.

Fig.7. Traffic-intersection simulations.

Fig.8. Traffic country-road simulations.

Fig.11 shows snapshots of the situation in which

drivers had much experience. In this figure, four snap-

shots were time-ordered. Vehicles that were in a lane-

changing process are circled by red rectangles in the

westbound nearside lane. In Fig.11(a), the leading ve-

hicle in the lane began to change lanes when it was far

away from the damaged point (yellow-line segment in

the snapshot shows the distance between vehicles that

began to change lanes and damaged point). The ve-

hicle continued its lane-changing process (Fig.11(b)),

and then the driver of the following vehicle saw the

lane-changing behavior and also began to change lanes

(Fig.11(c)). The reason was that the experienced driver

could perceive all of the following three types of envi-

ronmental information after visual filtering by (4): traf-

fic was free; it was far away from on-and-off ramps; its

(a)

(d)(c)

(b)

Fig.9. Snapshots of situation in which drivers were familiar with environmental conditions. (a)–(d) are four time-ordered snapshots.
(a) The 94th frame. (b) The 135th frame. (c) The 180th frame. (d) The 200th frame.
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(a)

(d)(c)

(b)

Fig.10. Snapshots of situation in which drivers were unfamiliar with environmental conditions. (a)–(d) are four time-ordered snapshots.
(a) The 64th frame. (b) The 73rd frame. (c) The 82nd frame. (d) The 96th frame. Vehicles that were in a lane-changing process are
circled by red frames.

(a)

(c)

(b)

(d)

West

West West

West

Fig.11. Snapshots of situation in which drivers were experienced. (a)–(d) are four time-ordered snapshots. (a) The 80th frame. (b)
The 89th frame. (c) The 93rd frame. (d) The 96th frame. Vehicles that were in a lane-changing process are circled by red rectangles in
the westbound nearside lane. Yellow-line segments show the distance between vehicles that began to change lanes and damaged point.

leading vehicles were in the middle of a lane-changing

process, which would lead to a lane-changing process.

Therefore, the vehicle changed lanes much farther away

from the damaged point compared with its leading ve-

hicle.

Fig.12 shows snapshots of the situation in which

drivers had little experience. Four snapshots were time-

ordered in this figure. Vehicles that were in the middle

of a lane-changing process are circled by red rectangles

in the westbound nearside lane. In Fig.12(a), the lead-
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(a)

(c)

(b)

(d)

West

West

West

West

Fig.12. Snapshots of situation in which drivers were inexperienced. (a)–(d) are four time-ordered snapshots. (a) The 80th frame. (b)
The 86th frame. (c) The 90th frame. (d) The 93rd frame. Vehicles that were in a lane-changing process are circled by red rectangles in
the westbound nearside lane. Yellow-line segment shows the distance between vehicles that began to change lanes and damaged point.

ing vehicle in the lane did not change lanes when it was

near the damaged point. It began to change lanes when

it was close to the point (in Fig.12(b), yellow-line seg-

ment in the snapshot shows the distance between vehi-

cles that began to change lanes and the damaged point).

The drivers in the following vehicles could have been

able to see the lane-changing behavior, but they did not

begin to change lanes (Fig.12(c)). The reason is that an

inexperienced driver considered that the lane-changing

process of their leading vehicles was not an important

type of environmental information, which no longer exi-

sted after filtering by (4). Drivers could not make a de-

cision to change lanes in a situation in which traffic was

free and far away from on-and-off ramps. Then, drivers

with little experience always changed lanes after seeing

the damaged point.

4.3 User Study

We used the simulation results of these three traf-

fic scenarios described in Subsection 4.1 and Subsec-

tion 4.2 (intersection with improper traffic-light posi-

tioning, intersection in which a traffic sign is missing,

and unexpectedly damaged lanes) for a user study on

intuition. We surveyed a number of volunteers who had

driving licenses to obtain their total driving mileage,

and then divided them into three groups according to

their total driving mileage: more than 10 000 kilome-

ters, less than 100 kilometers, and all the others. In this

paper, we did not model gender, age, etc. Therefore,

we do not take them into account here. We randomly

chose 25 volunteers from the first group and let them be

drivers with much experience. We then randomly chose

25 volunteers from the second group and let them be

drivers with little experience. In one scenario, a vol-

unteer entered the virtual scenarios through virtual de-

vices and had a first-person view of a virtual driver.

They watched the vehicle’s behavior and then graded

it according to their intuitions. There were three pos-

sible grades: good, medium, and bad. If most of the

vehicle’s behavior was consistent with the volunteer’s

intuitions, then the grade was good; if almost all of the

vehicle’s behaviors were different from the volunteer’s

intuitions, then the grade was bad; otherwise, the grade

was medium. Fig.13 shows the results. Our simulation

results agreed to some degree with what happens in real

life.

4.4 Performance-Scaling Comparison

The performance of this method was quantitatively

analyzed and its performance was evaluated. The

method includes visual-filtering, perceptual-process,

and drivers’ heuristic decision-making modeling, and

traffic simulation based on drivers’ scene cognition.

Theoretically, compared with existing traffic-simulation
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methods, the method in this paper also includes the

process of drivers’ scene cognition. There is matrix

computing in this process; according to (1) in Section 3,

most of the matrices in the proposed method are sparse.

To achieve high runtime efficiency, a six-tuple was used

to compress the matrices. Matrix multiplications were

transformed into the multiplication operation of some

elements which is defined in Subsection 3.1 in the six-

tuple. Let the number of those elements be N ′. N ′ may

be far less than N in many specific scenarios, thereby

computing drivers’ scene-cognitive modeling is inexpen-

sive.

0% 20% 40% 60% 80% 100% 

1 

2 

3 

Grading Results

Good  Medium Bad 

Fig.13. Results of our user study. (1–3) Scenarios of intersec-
tion with improper traffic-light positioning, unexpectedly dam-
aged lanes, and intersection in which a traffic sign is missing,
respectively.

The efficiency of the proposed model was demon-

strated through two experiments to better evaluate the

performance of our method. Results were collected on a

work station with an Intelr Core 8 Xeonr CPU E31240

with a 3.4 GHz processor and 4.0 GB of RAM.

4.4.1 Impact of Driver Scene Cognition Modeling

Traffic behaviors were modeled by adding drivers’

cognitive simulations to a traditional traffic method us-

ing the IDM model [24] for car-following simulations,

and the all-in-one (AIO) model [17] for lane-changing

simulations (called the IDM + AIO method). We com-

pared the computational time of our method with that

of the IDM + AIO method. Here, the amount of envi-

ronmental information was [0, N/3] for each simulation.

Results are shown in Fig.14. As shown, our method

had nearly the same efficiency as that of the IDM +

AIO method.

4.4.2 Effect of Environmental-Information Amount

According to analysis in the first paragraph of Sub-

section 4.3, amount of environmental information N ′

increases the complexity of our method. In this subsec-

tion, we discuss how N ′ affects compute time. There

were nearly 50 000 vehicles in our simulation. Fig.15

shows the increase in computation time with an increas-

ing N ′, As shown, computing time negligibly increased

as N ′ increased. Specifically, there were only a few mil-

liseconds of additional overhead despite N ′ = 10. In

fact, it was practically impossible for so many environ-

mental messages to exist in a traffic scenario.
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Fig.14. Total computing time as a function of number of vehicles.
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Fig.15. Total computing time as a function of N ′.

5 Conclusions

In this paper, a cognition-driven traffic-simulation

method inspired by the theory of cognitive psycho-

logy was introduced. Through the creative transfor-

mations of drivers’ cognitive processes in a traffic-

simulation framework, this method created a compu-

tational relationship of environment-driver-vehicle in

the traffic-simulation framework. The experimental re-

sults showed that it could successfully reconstruct vari-

ous kinds of heterogeneous traffic flows in unstructured

road networks that existing methods cannot do. In the

future, we aim to combine our method with SMOG-

FVDM [25] to simulate smoggy and rainy scenarios. We
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also aim to create traffic datasets including each driver’s

driving-experience and environment-familiarity infor-

mation.
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