
Li BH, Liu Y, Zhang AM et al. A survey on blocking technology of entity resolution. JOURNAL OF COMPUTER

SCIENCE AND TECHNOLOGY 35(4): 769–793 July 2020. DOI 10.1007/s11390-020-0350-4

A Survey on Blocking Technology of Entity Resolution

Bo-Han Li1,2,3, Member, CCF, ACM, Yi Liu1, Student Member, CCF, An-Man Zhang1, Student Member, CCF
Wen-Huan Wang1, Student Member, CCF, and Shuo Wan1, Student Member, CCF

1College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
2Key Laboratory of Safety-Critical Software, Ministry of Industry and Information Technology, Nanjing 211106, China
3Collaborative Innovation Center of Novel Software Technology and Industrialization, Nanjing 210000, China

E-mail: {bhli, yiliusx1916008, zhanganman, wangwenhuan, shuowan}@nuaa.edu.cn

Received January 30, 2020; revised June 8, 2020.

Abstract Entity resolution (ER) is a significant task in data integration, which aims to detect all entity profiles that

correspond to the same real-world entity. Due to its inherently quadratic complexity, blocking was proposed to ameliorate

ER, and it offers an approximate solution which clusters similar entity profiles into blocks so that it suffices to perform pair-

wise comparisons inside each block in order to reduce the computational cost of ER. This paper presents a comprehensive

survey on existing blocking technologies. We summarize and analyze all classic blocking methods with emphasis on different

blocking construction and optimization techniques. We find that traditional blocking ER methods which depend on the fixed

schema may not work in the context of highly heterogeneous information spaces. How to use schema information flexibly is

of great significance to efficiently process data with the new features of this era. Machine learning is an important tool for

ER, but end-to-end and efficient machine learning methods still need to be explored. We also sum up and provide the most

promising trend for future work from the directions of real-time blocking ER, incremental blocking ER, deep learning with

ER, etc.

Keywords blocking construction, blocking optimization, data linkage, entity resolution

1 Introduction

Many enterprises, governments and research

projects can collect data, which describes various en-

tities from different fields. People get hundreds of mil-

lions of entities from different data sources [1]. How-

ever, the same object may have multiple entities and

the information from multiple sources needs to be in-

tegrated and combined. Thus, an efficient and accu-

rate process is needed to determine whether entities

from the same source or different sources represent the

same object in the real world. The process can im-

prove data quality [2, 3] or enrich data to promote accu-

rate data analysis [4] and guarantee the quality of linked

data more efficiently and effectively.

Entity resolution (ER) is the process which can

identify different entities that refer to the same ob-

ject in the real world. It is a long-standing problem in

machine learning, statistics, information retrieval, nat-

ural language processing, and database management.

Different subdisciplines refer to it by a variety of

names, such as record linkage [5, 6], record matching [7, 8],

deduplication [9, 10], co-reference resolution, reference

reconciliation, object consolidation, identity uncer-

tainty and database hardening [11]. Accurate and fast

ER has huge practical implications in a wide variety

of commercial, scientific and security domains. Data

records that need to be matched can correspond to en-

tities that refer to people, such as customers, trave-

lers, patients, employees, and students. As an exam-

ple, the dramatic actor Baoqiang Wang can be referred

to as “bao bao”, “bao qiang” and “wang baoqiang” on

different social networks while they all represent the

same person. Other types of entities that sometimes

Survey

Special Section on Entity Resolution

This work was partially supported by the National Natural Science Foundation of China under Grant No. 61772268 and the
Fundamental Research Funds for the Central Universities of China under Grant Nos. NS2018057 and NJ2018014.

©Institute of Computing Technology, Chinese Academy of Sciences 2020

http://dx.doi.org/10.1007/s11390-020-0350-4

770 J. Comput. Sci. & Technol., July 2020, Vol.35, No.4

need to be matched include records about businesses,

consumer products, publications, web pages, genome

sequences [12], etc.

Generally, ER suffers from a quadratic complexity

because each entity must be compared with all the other

entities, and string similarity measures are usually ap-

plied to pairwise comparison which always controls the

overall cost of ER [13, 14]. Many techniques were pro-

posed for solving the ER problem, which are divided

into two main frameworks: blocking and filtering [15].

These two frameworks are mainly based on different

environments and assumptions, and have independent

research routes. The former attempts to identify which

entity pairs may match in order to limit the comparison

between them with the assumption that the generic en-

tity profile is represented as attribute-value pairs and

the matching function is unknown (i.e., the decision-

making step). It usually allocates all entities to a group

of small sized blocks, and attempts to quickly discard

the absolutely mismatched pairs (i.e., entities that are

not in the same block) to improve the efficiency of ER.

Different from blocking, the latter represents entities

as strings or sets and compares the similarity between

different entities; thus it can quickly discard the pairs

that are not matched indeed. Filtering is also an impor-

tant technology to improve the computational efficiency

of ER algorithms. However, due to the high efficiency

and popularity of blocking, filtering is not our focus.

ER is an important task of data fusion and other ap-

plications, and has been widely studied for more than

70 years [16]. The blocking method is an important tool

to improve the efficiency of ER and ensure the accuracy

of the result. Since the Standard Blocking method was

proposed by [13] in 1969, a large number of different

blocking entity resolution algorithms have been pro-

posed for different data structures. These algorithms

have different construction methods for different appli-

cation scenarios, and different optimization strategies

were put forward for different construction methods.

This paper focuses on blocking technology, which is the

first to show and analyze the blocking algorithm, in an

easy-to-understand way, from the perspective of data

processing structure, blocking construction, and block-

ing optimization.

The rest of this paper is organized as follows. Sec-

tion 2 provides the background knowledge and related

definitions of ER and blocking technology, and Sec-

tion 3 summarizes the blocking techniques under diffe-

rent construction methods and gives the analysis from

the perspective of data processing structure. In Sec-

tion 4, we analyze and summarize the techniques of

blocking optimization. Section 5 discusses the future

promising work and Section 6 summarizes the survey.

2 Preliminary and Overview

2.1 Definition

2.1.1 Entity Resolution

Records in different datasets may relate to the same

entities in reality. The entity records in the dataset are

generally represented by the entity profile, and an en-

tity collection is a set of entity profile. Assuming infi-

nite sets of attribute names N , attribute values V , and

identifiers I, an entity profile can be defined as a tuple

(i, Ai), with i ∈ I being a unique identifier and Ai be-

ing a set of attribute-value pairs (n, v), where n ∈ N

and v ∈ (V ∪ I) [15, 17, 18]. For the two entity records pi
and pj, if pi and pj refer to the same real-world entity,

they match successfully, and we denote this as pi ≡ pj .

The main task of entity resolution is to identify records

associated with the same real-world entities within one

entity collection or across more entity collections.

Assuming an entity collection denoted as ε and

pi ∈ ε, if there is no duplicate record in ε, it is said

to be duplicate-free; otherwise it is said to be dirty.

Given two input entity collections, ε1 and ε2, we can

classify entity resolution methods into three categories:

Clean-Clean ER, Dirty-Clean ER, and Dirty-Dirty ER.

In Clean-Clean ER, both ε1 and ε2 are duplicate-free

entity collections. In Dirty-Clean ER, ε1 is a duplicate-

free entity collection, and ε2 is a dirty one. In Dirty-

Dirty ER, both ε1 and ε2 are dirty.

2.1.2 Blocking

Since each entity needs to be compared with other

entities, entity resolution is essentially a quadratic

problem, which makes it difficult to handle large-scale

data. To solve this problem, the blocking method puts

similar entities in the dataset into the same block, and

only compares entities in the same block, thereby im-

proving the efficiency of entity resolution.

The blocking method consists of block building

stage and block processing stage [15]. In the block build-

ing phase, the blocking method extracts from each en-

tity profile the blocking key values (BKVs) that can in-

clude its distinguishing information to form a blocking

scheme, hereby assigning one or more entities to a block

set B. Each block corresponds to a specific instance of

BKVs, and contains all entity records related to the in-

stance value [19]. The goal of the block processing stage

Bo-Han Li et al.: A Survey on Blocking Technology of Entity Resolution 771

is to improve the block set B obtained in the first stage.

At this stage, either some blocks are discarded through

block-refinement, or some comparisons are discarded in

specific blocks through comparison-refinement.

2.2 Taxonomy

To understand a block construction algorithm from

different perspectives, this subsection gives the follow-

ing detailed classification perspectives [15, 20]. We show

the taxonomy of the technique for blocking construction

in Table 1 and Table 2. To be noticed, in Table 1 and

Table 2, we use “aware” to denote that the algorithm

is aware of the property, and “agnostic” means the al-

gorithm does not have the property. In particular, we

use the symbol “-” to indicate that the algorithm does

not belong to this category.

Schema-Awareness. There are two ways to define

blocking key values [20]. The schema-aware method

needs to use a-priori schema information, and selects

some specific attribute values or a combination of these

attribute values as blocking key values. These se-

lected attributes are considered suitable for matching

because they are discriminative or contain less noisy

data. Schema-agnostic methods are often used to

process data without considering schema information.

They extract blocking key values from all attribute val-

ues, which is beneficial to dealing with unstructured

heterogeneous data.

Table 1. Taxonomy of Rule-Based Algorithms

Data Type Algorithm Schema- Redundancy- Constraint- Matching- Key Type

Awareness Awareness Awareness Awareness

Structured data Standard Blocking [21] Aware Free Lazy Static Hash-based

Suffix Arrays Blocking [22] Aware Positive Proactive Static Hash-based

Improved Suffix Arrays Blocking [23] Aware Positive Proactive Static Hash-based

Incremental Suffix Arrays Blocking [24] Aware Positive Proactive Static Hash-based

Q-gram-Based Blocking [25] Aware Positive Lazy Static Hash-based

Extended Q-Gram-Based Blocking [12, 26] Aware Positive Lazy Static Hash-based

MFIBlocking [27] Aware Positive Proactive Static Hash-based

Canopy Clustering Blocking [28] Aware Positive Lazy Dynamic Sort-based

Extended Canopy Clustering Blocking [12] Aware Positive Proactive Dynamic Sort-based

Sorted Neighborhood [29] Aware Neutral Proactive Static Sort-based

Adaptive Sorted Neighborhood [30, 31] Aware Neutral Lazy Static Sort-based

Duplicate Count Strategy (DCS) and DCS++ [32] Aware Neutral Proactive Dynamic Sort-based

Sorted Blocks [33] Aware Neutral Lazy Static Hybrid

Non-structured Token Blocking (TB) [34] Agnostic Positive Lazy Static Hash-based

data Attribute Clustering Blocking [18] Agnostic Positive Lazy Static Hash-based

Prefix-Infix (-Suffix) Blocking [35] Agnostic Positive Lazy Static Hash-based

RDFkeyLearning [36] Agnostic Positive Lazy Static Hash-based

Semantic Graph Blocking [37] Agnostic Neutral Proactive Static -

Table 2. Taxonomy of Machine Learning (ML) Based Algorithms

ML and Data Type Algorithm Schema- Redundancy- Constraint- Matching- Key Type

Awareness Awareness Awareness Awareness

Supervised learning with ApproxRBSetCover [38] Aware Positive Lazy Static Hash-based

structured data ApproxDNF [38] Aware Positive Lazy Static Hash-based

Blocking Scheme Learner (BSL) [39] Aware Positive Lazy Static Hash-based

Blocking Based on Genetic Aware Positive Lazy Static Hash-based

Programming (BGP) [40]

CBlock [41] Aware Positive Proactive Static Hash-based

DNF Learner [42] Aware Positive Lazy Dynamic Hash-based

Conjunction Learner [43] Aware Positive Lazy Static Hash-based

Unsupervised learning with FisherDisjunctive [44] Aware Positive Lazy Static Hash-based

structured data Non-Standard Key-Based Blocking [45] Aware Neutral Lazy Static Sort-based

Unsupervised learning with TYPiMatch [46] Agnostic Positive Lazy Static Hash-based

non-structured data Hetero [47] Agnostic Positive Lazy Static Hash-based

Extended DNF BSL [48] Agnostic Positive Lazy Static Hash-based

772 J. Comput. Sci. & Technol., July 2020, Vol.35, No.4

Redundancy-Awareness. Considering the rela-

tionship between the blocks, various blocking algo-

rithms can be divided into three categories [49, 50].

Redundancy-free methods assign each entity into a sin-

gle disjoint block. With this kind of blocking methods,

the larger the number of identical blocks to which two

entities belong, the higher the similarity. Redundancy-

positive methods place every entity into multiple blocks

to yield overlapping blocks. The methods are generally

used to improve the accuracy of the algorithm. In the

middle of these two extremes lie redundancy-neutral

methods, where most pairs of entities share the same

number of blocks and the redundancy does not impart

on the result too much.

Constraint-Awareness. According to the restric-

tions on blocks, the blocking algorithm can be di-

vided into the lazy method and the proactive method.

The lazy method has no restrictions on blocks, while

the proactive method sets one or more restrictions on

blocks, such as setting the maximum size of the blocks,

or adding a restriction to reduce the number of com-

parisons in the block.

Matching-Awareness. The matching results of some

blocking methods do not depend on the process of

blocking. They are independent of the matching pro-

cess and are called static methods. Other methods rely

on the information obtained during the process to dy-

namically adjust the block, which are called dynamic

methods. In the dynamic methods, the processes of

blocking and matching are intertwined with each other.

Key Type. According to different measurement

methods of key values, the blocking methods can be

divided into hash- or equality-based methods and sort-

or similarity-based methods. Hash- or equality-based

methods put entity records into the same block when

different entity records have the same blocking key

value. The entities are placed in the same block in sort-

or similarity-based methods when entities have similar

key values.

2.3 Evaluation Measures

There are several ways to evaluate the entity reso-

lution blocking algorithm [12, 15, 20]. Suppose the input

entity set is recorded as ε. The block set is denoted

as B, and bi ∈ B is a block. Then ‖B‖ =
∑

bi∈B ‖bi‖,

where ‖bi‖ means all comparison times in the block. Dε

means all duplicate record pairs in the input. DB rep-

resents duplicate record pairs detected by the blocking

algorithm.

Definition 1 (Pair Completeness (PC)). PC is de-

fined as PCB = DB/Dε, and it corresponds to recall.

The PC value is between 0 and 1, which is directly pro-

portional to the effectiveness of the algorithm [20].

Definition 2 (Pairs Quality (PQ)). PQ is defined

as PQB = DB/‖B‖, and it corresponds to precision.

The PQ value is between 0 and 1. The higher the value,

the less the comparison between the unmatched entities,

and the higher the efficiency of the algorithm [20].

Definition 3 (Reduction Ratio (RR)). RR is de-

fined as RRB = 1− ‖B‖/‖ε‖. It estimates the portion

of comparisons that are saved by a blocking method with

respect to the naive, brute-force approach. The value is

between 0 and 1. The higher the value, the higher the

efficiency of the algorithm [20].

Definition 4 (Overhead Time (OT)). OT repre-

sents the total time required by a blocking algorithm

from obtaining the original input data ε to obtaining

the block set B [20].

Definition 5 (Resolution Time (RT)). RT is the

time required for performing all pair-wise record com-

parisons with a specific entity matching technique [20].

3 Techniques for Blocking Construction

Blocking technology can effectively reduce the time

complexity of the entity resolution. Its core is to

produce efficient and accurate blocking standards, or

blocking construction methods. In this paper, we di-

vide construction methods into two categories, namely

rule-based and machine learning based. While describ-

ing the features, advantages and disadvantages of the

algorithms, we also analyze each algorithm from the

perspective of data structure.

Typical blocking methods have been described in

[15] and Fig.1 gives a rough description of their rela-

tionship. For each edge, if A points to B, it means that

method B improves method A by modifying the defi-

nition of blocking key values or changing the way they

are used to create blocks.

3.1 Rule-Based Techniques

A rule-based approach typically utilizes a rule from

expert knowledge or data structure that is artificially

specified by the application for blocking. We also

generally classify algorithms that use heuristic meth-

ods into this category. After [21] creatively propos-

ing the Standard Blocking (SB) algorithm, many algo-

rithms based on SB use hash-based or sort-based meth-

ods to select blocking predicates to process structured

Bo-Han Li et al.: A Survey on Blocking Technology of Entity Resolution 773

1969

1995

2000

2001

2005

2007

2009

2012

2013

2011

Standard Blocking (SB)[21]

Sorted

Neighborhood

(SN)[29]

Canopy Clustering
Blocking[28]

Q-gram Based
Blocking[25]

Suffix Arrays
Blocking[22]

Improved Suffix
Arrays

Blocking[23]

Extended Q-gram

Based Blocking[12,26]

MFIBlocking[27]

Extended Canopy
Clustering Blocking[12]

Duplicate Count Strategy
(DCS) and DCS++[32]

Adaptive Sorted
Neighborhood

(Adaptive SN)[30,31]

Sorted Blocking[33] Token
Blocking (TB)[34]

RDFKeyLearning[36]

Prefix-Infix (-Suffix)
Blocking[35]

TYPiMatch[46]

Attribute Clustering
Blocking[18]

Fig.1. Genealogy trees of block building techniques in chronological order.

data. When Token Blocking (TB) was proposed based

on the value of dataset instead of the scheme of data,

many TB-based algorithms or algorithms just referring

to some ideas of TB were proposed to deal with the

non-structured data.

3.1.1 Structured Data

Standard Blocking. Standard Blocking [21] is the ba-

sis of the entity resolution blocking algorithm. The al-

gorithm represents each entity with one or more key

values. Each block corresponds to a specific key value

and contains all entities represented by that key value.

Records in the same block are compared, which can

reduce the number of record comparisons in the ori-

ginal entity resolution. The definition of blocking key

values by traditional blocking methods often affects

the quality and the number of candidate record pairs

for comparison [12]. Errors in records used to generate

blocking key values result in blocks containing incorrect

records. Meanwhile, the block size depends on the fre-

quency distribution of the blocking key values. There-

fore, it is difficult to predict how many pairs of records

will be compared. Motivated by this, many blocking

algorithms are improved and optimized based on Stan-

dard Blocking.

Suffix Arrays Blocking. [22] proposes a fast and ef-

ficient blocking scheme for the data linking problem

of large-scale structured multiple data sources. The

scheme uses a suffix array structure. The basic idea is

to insert the blocking key value and its suffix into an

inverted index based on the suffix array. Then the al-

gorithm sorts this index in alphabetical order to form a

new blocking scheme. For example, assume that the

Surname attribute such as “Kristen” is used as the

blocking key value, and lm = 4. Then the suffixes that

this key value can convert are “Kristen”, “risten”, “is-

ten” and “sten”. According to this method, the suffixes

formed by records of the example in Table 3 are shown

in Table 4.

As shown in Table 5, the records with the corre-

sponding suffixes are inserted into their sorted suffix

array. It should be noted that the method often intro-

duces another parameter bm to limit the block size. If

the number of records in the block is greater than bm,

the block will be deleted. In the experiment of [22], four

structured bibliographic databases are used, with more

774 J. Comput. Sci. & Technol., July 2020, Vol.35, No.4

than 10 million records. The attribute values were nor-

malized and segmented into tokens depending on the

attribute types during pre-processing. [22] selects the

attributes such as the name of the first author, the title

of the article and the title of the journal. The algo-

rithm achieves good results but it is obviously suitable

for structure data.

Table 3. Example Set of Homogeneous Entity Profiles

Identifier Given Name Surname Suburb Postcode

P1 Bill Christen Sydney 2020

P2 Peter Smith Canberra 2020

P3 Petes Christen Sydeny 2020

P4 Pete Smith Canberra Sth 2060

P5 Ciri Kristen Syd 2027

Table 4. Suffix-Array Based Blocking with Surnames Used as
BKVs

Identifier Blocking Key Suffix

Value

P1 christen christen, hristen, risten, isten, sten

P2 smith smith, mith

P3 christen christen, hristen, risten, isten, sten

P4 smith smith, mith

P5 kristen kristen, risten, isten, sten

Table 5. Sorted Suffix Array Created by Suffix-Array Based
Blocking

Suffix Identifier

christen P1, P3

hristen P1, P3

isten P1, P3, P5

kristen P5

mith P2, P4

risten P1, P3, P5

smith P2, P4

sten P1, P3, P5

The main time consumption of Suffix Arrays Block-

ing is the sort operation which is used to generate the

suffix array structure. Thus, it has low time comple-

xity, O(n), for text with n tokens. In addition, due to

the small but relevant set of candidate matches and the

high levels of redundancy, the algorithm is efficient and

effective. However, the disadvantage of the algorithm is

that it cannot deal with the noise at the end of BKVs.

In order to handle this and improve the robustness of

the algorithm, some modifications are made to the suf-

fix generation step. For example, all substrings with a

length greater than lm are taken by sliding window to

replace the suffixes generated by the previous method.

Improved Suffix Arrays Blocking. Because of some

errors, there are slight differences in the same entities

and the similarity is extremely high. The standard

Suffix Arrays Blocking algorithm is difficult to process

such data. [23] improves the technology based on the

standard suffix index. The basic idea is to merge simi-

lar suffixes and their corresponding records. The al-

gorithm can handle the noise at the end of BKVs by

measures of similarity and the merging between diffe-

rent suffixes. At the same time, it has the same or

higher PC and lower PQ, RR than the standard Suffix

Arrays Blocking. The experimental data denotes that

Improved Suffix Arrays Blocking improves accuracy by

20% with less than 5% efficiency loss, compared with

the standard Suffix Arrays Blocking method.

Experiments are conducted using real datasets from

insurance companies and synthetic datasets generated

by Febrl tools [23]. In the experiment, the “identity”

dataset from the real data consists of personally identi-

fying information such as names and addresses, and the

synthetic dataset was generated with the standard set-

tings. Therefore, similar to the standard Suffix Arrays

Blocking, the algorithm is also suitable for structured

data without introducing any other technologies.

Incremental Suffix Arrays Blocking. In order to sa-

tisfy the requirement of incremental solutions in many

modern applications such as warehouse applications,

[24] adopts the idea of Suffix Arrays to propose the al-

gorithm. [24] proposes a faster method to construct the

suffix array by using two sliding windows of increas-

ing size called the working windows w and the saved

window ws. The algorithm proposed saves the num-

ber of subsequent starting common words in an array

called LCP. It sets curLCP = LCP [i + 1]. As long as

minLCP 6 curLCP , |w| 6 maxAPP and LCP [w−] <

curLCP , the algorithm extends w while the constraints

of minLCP and maxAPP are not violated. Finally, the

output saves the set that contains all records corre-

sponding to ws and the algorithm repeats the above

step until i > |LCP |. In order to support efficient in-

cremental operators, [24] adopts a StrB-Tree [51] which

can provide the efficient searching and incremental up-

dates. The sliding window w is expanded to both di-

rections using the bidirectional list of the StrB-tree SB

connecting the leaf nodes.

The major advantage of the algorithm is that it is

faster than the standard suffix arrays based blocking

because it uses a dynamic sliding window which is very

Bo-Han Li et al.: A Survey on Blocking Technology of Entity Resolution 775

cache-efficient and avoids iterating over all the prefixes

of a certain suffix. At the same time, the algorithm

also satisfies the requirement of the incremental solu-

tion. However, it still needs to be improved when deal-

ing with noisy or heterogeneous data. From the per-

spective of structure of data, like the analysis of the

standard suffix arrays blocking, the algorithm needs to

select the value of the attribute to construct the suffix

arrays such as the value of Name or Address. Thus, it

is also suitable for structured data.

Q-gram Based Blocking. Originally, in order to

manage the string data and deal with the problems of

efficient string matching from various databases, [25]

uses positional q-grams (i.e., sub-sequences of q cha-

racters with a position in the characters) for blocking

based on Standard Blocking. Assuming q = 2 and

attribute value is “Pet-Can”, the positional q-grams

formed by the algorithm are “(1, *P)”, “(2, Pe)”, “(3,

et)”, “(4, t-)”, “(5, -C)”, “(6, Ca)’, “(7, an)”. The algo-

rithm is based on the assumption that the more likely

the two entities match, the smaller the edit distance

that they should have, that is, these matching enti-

ties share a large number of q-grams in common. To

enable the blocking processing through the use of posi-

tional q-grams, [25] augments the database by creating

auxiliary table (Ai, Position,Q grams) with three at-

tributes. The main idea of the algorithm is as follows:

if the two entities are in the same block, the number of

q-grams they share should be higher than threshold t.

As shown above, Q-gram-Based Blocking uses posi-

tional q-grams for blocking by constructing auxiliary ta-

bles, thus it is more suitable for structured data. Com-

pared with Standard Blocking, the algorithm has higher

resilience for noise data, having higher PC, but results

in more and larger blocks and has lower PQ and RR.

Extended Q-gram Based Blocking. In order to im-

prove the performance of the algorithm without reduc-

ing the accuracy of the algorithm, [12, 26] improve the

Q-gram Based Blocking algorithm. Their efforts are

to put those records that have similar rather than the

same blocking key values in one block. The algorithm

uses k to denote the size of this set and converts at-

tribute values into a set S of q-grams. A parameter

t (t 6 1) is set artificially, and the L elements in the

set S are combined to form a new blocking key value.

Here L = max(1, ⌊k × t⌋). We give an illustrative exa-

mple. When BKV = “Peter”, q = 2, and t = 0.8,

the set S = {“Pe”, “et”, “te”, “er”}. Thus, k = 4,

L = max(1, ⌊4 × 0.8⌋) = 3, and the set of bigrams

is {[Pe, et, te, er], [et, te, er], [Pe, te, er], [Pe, et, er], [Pe,

et, te]}. The final key values are “Peetteer”, “etteer”,

“Peteer”, “Peeter”, “Peette”.

Table 6 shows the execution results of P3 and P4

records. After that, according to the newly formed key

values, the algorithm places the records in the corre-

sponding blocks, as shown in Table 7. Different from

the traditional blocking algorithm using inverted index,

when parameter t is not equal to 1, the algorithm will

put each record into a different block. But when t = 1,

there is only one key value which is generated by the

algorithm; thus each record will only be inserted into

their corresponding block. The algorithm combines the

element of the q-gram based set to increase the distinct-

ness of blocking keys and decrease the number of blocks

generated, thus raising PQ and RR at the limited cost

of PC.

MFIBlocking. The MFIBlocking algorithm pro-

posed in [27] is a more advanced q-gram based

algorithm [15]. Different from the other algorithms,

MFIBlocking gives up manually designing a blocking

key to relieve the designer from the difficult task of

constructing a blocking key. The algorithm uses a dy-

namic, automatic selection of a blocking key, and diffe-

rent blocks can be created based on different keys. [27]

defines a block Bi as
〈

P i, Ai, Ei, Si
〉

, where P i is a

subset of the dataset consisting of tuples, Ai is the sub-

set of the attribute set, Ei is a set of values which

are created by values of attributes in Ai, and Si is a

score which is assigned with Bi based on the simila-

rity of the Ai values for the tuple in P i. The algo-

rithm adopts two principles of compact set (CS) and

sparse neighborhood (SN). In order to satisfy the prin-

ciples, for every two tuples t1, t2, σ
i(t1, t2) > σi(t1, t3)

where σi is the score function and t3 /∈ P i. Then
∣

∣P i
∣

∣ = 1 or maxt∈P i |N(t)| 6 p × minsup where N(t)

is the neighborhood of a tuple t, p > 1 is a predefined

Table 6. Q-gram Based Blocking with Given Names Used as BKVs

Identifier BKV Bigram Set New Key Value

P2 Peter {[Pe, et, te, er], [et, te, er], [Pe, te, er], [Pe, et, er], [Pe, et, te]} Peetteer, etteer, Peteer, Peeter, Peette

P3 Petes {[Pe, et, te, es], [et, te, es], [Pe, te, es], [Pe, et, es], [Pe, et, te]} Peettees, ettees, Petees, Peetes, Peette

P4 Pete {[Pe, et, te], [et, te], [Pe, te], [Pe, et]} Peette, ette, Pete, Peet

776 J. Comput. Sci. & Technol., July 2020, Vol.35, No.4

constant which can yield good results in the range of

[1.5, 4] , and minsup is a parameter. At a high level,

MFIBlocking operates a series of iterations, and in each

iteration, the algorithm creates a new set of blocks. Af-

ter each iteration, the blocks are scored and the final

set of blocks consists of the largest possible set of high-

scoring blocks such that the sparse neighborhood crite-

rion is met.

Table 7. Inverted Index List Created by Q-gram Based Blocking

Key Value Identifier

...
...

etteer P2

Peette P2, P3, P4

Peet P4

...
...

From the description above, although the algorithm

avoids manually designing blocking keys based on at-

tribute values, it still needs to process various key at-

tributes in all records to generate the blocks. In this

preparatory phase of the experiment, each attribute

value is separated into q-grams, and the q-grams, origi-

nating from the same attribute, receive the same ID.

Thus, MFIBlocking is suitable to process structured

data. In general, this algorithm reduces the number

of blocks and record pairs used for comparison. How-

ever, it is likely to miss some records that should have

been compared, which creates difficulty in processing

noisy data.

Canopy Clustering Blocking. In [28], an entity reso-

lution blocking algorithm based on clustering is pro-

posed. It is meant to use a less computationally ex-

pensive clustering algorithm to form high-dimensional

overlapping clusters, and generates blocks that contain

pairs of records to be compared from these clusters.

The algorithm puts all records into a candidate record

pool, and uses two similarity thresholds tl, tt (tt > tl)

to create overlapping clusters. The algorithm randomly

selects record rx from the candidate pool, and compares

the similarity of this record with the other record ry by

using a similarity measure at low cost. If the similarity

is greater than tl, then ry and rx are put together to

form a cluster. While if the similarity between them is

greater than tt, then ry is deleted from the candidate

pool.

In most cases, the user should leverage domain-

specific features and design a cheap distance metric in

order to make use of the canopies technique. In the

experiment, [28] uses the bibliographic citations data

to cluster these citations into the sets that each refers

to the same article. They choose the string edit dis-

tance for references to build the canopies and design

several transformation cost parameters specific to this

domain. Therefore, we can see that the algorithm is

suitable for the structured data. Compared with tradi-

tional clustering algorithms, this algorithm can reduce

the calculation time by more than an order of magni-

tude, while also slightly improving the accuracy.

Extended Canopy Clustering Blocking. The Canopy

Clustering Blocking (CCB) algorithm is sensitive to the

value of weights. If tl is high, then many entities have

no blocks to put in. To overcome this shortcoming, the

Extended Canopy Clustering Blocking (ECCB) algo-

rithm is proposed in [12]. The algorithm replaces the

original similarity thresholds tl, tt with two cardina-

lity thresholds, i.e., n1, n2 (n1 > n2 > 1) respectively.

Experiments show that ECCB has a higher accuracy

and robustness than CCB. However, the drawback of

this approach is that if there are BKVs that are fre-

quent, the generated canopies might not be big enough

to include all the records with these BKVs and the true

matches might be missed.

Sorted Neighborhood. In 1995, [29] proposed this

algorithm when solving the problem of merging large

datasets. The main idea is to sort the records in alpha-

betical order according to BKVs, and use a fixed-size

sliding window to compare a certain number of records.

That is, the candidate comparison pair only appears in

the same sliding window.

As shown in Table 8, the BKVs of the two datasets

are inserted into an array and sorted alphabetically.

Assuming that the window size is 4, the window slides

on the sorted array. Four records are taken out each

time, and the two pairs are compared for comparison.

The candidate comparison pairs generated in Table 8

are shown in Table 9.

The major advantage of the algorithm is the low

time complexity: the key creating phase is O(N), the

sorting phase is O(N logN), and the merging phase

is O(wN), where N is the number of records in the

database and w is the size of windows. However, when

the size of the window is too small and too much data

has the same BKVs, many record pairs that should be

compared are missed. This problem can be alleviated

by changing the construction of BKVs to reduce the

number of records for the same BKV. Another disad-

vantage of this method is that, it is sensitive to the

BKVs because it is sorted alphabetically by BKVs. For

Bo-Han Li et al.: A Survey on Blocking Technology of Entity Resolution 777

example, if BKVs are generated using the surname in

Table 3, BKVs of P1 and P5 are “‘Christen” and “Kris-

ten”, respectively. These two similar records will be

placed far away because of sorting. They cannot be

put into a block. To some extent, this problem can be

solved by using different attribute domains to construct

different blocks. A structured tunable dataset genera-

tor was used to generate experimental data in [29], con-

firming that the algorithm works well in practice, but

has a huge overhead. It is worth noting that [12, 52]

mention the use of inverted index instead of sorted ar-

ray. In the comparison phase, each different record pair

is compared only once, thereby improving the perfor-

mance of the algorithm.

Table 8. Sorted Array Created by Sorted Neighborhood Block-
ing

Array Position BKV Indentifier

1 Bill P1

2 Ciri P5

3 John P6

4 Pete P4

5 Peter P2

6 Petes P3

Table 9. Record Pairs in Each Window Based on SN Blocking

Window Candidate Record Pair

Range

1–4 (P1, P5), (P1, P6), (P1, P4), (P5, P6), (P5, P4)

(P6, P4)

2–5 (P5, P6), (P5, P4), (P5, P3), (P6, P4), (P6, P3)

(P4, P2)

3–6 (P6, P4), (P6, P2), (P6, P3), (P4, P2), (P4, P3)

(P2, P3)

Sorted Neighborhood brings matching records close

together by sorting the records over the most impor-

tant discriminating key attribute of the data, and com-

pares the records which are restricted to a neighborhood

within the sorted list. In the experiment, all databases

used were generated automatically by a database gene-

rator, and each record consists of the following fields:

social security number, first name, initial, last name,

address, apartment, city, state, and zip code. As we

can see from the above description, the algorithm is

suitable for structured data.

Adaptive Sorted Neighborhood. The sorted neigh-

borhood method uses a fixed-size window to generate

the blocks and get the record pairs to be compared,

which often misses many true matches. [30, 31] try to

solve this problem by adaptively changing parameters

such as the window size. In [30], “window” is just a

temporary tool used to generate the final blocks. All

the blocks will have different (thus adaptive) sizes even-

tually.

[30] proposes two methods according to the entity

similarity measurement method, namely Incrementally

Adaptive SN and Accumulative Adaptive SN respec-

tively. The basic idea of the former is to increase the

size of the window until a boundary pair is obtained,

as long as the similarity between the first record and

the last record in the window is less than a predeter-

mined threshold. Boundary pairs are actually pairs of

records that are adjacent and have a similarity greater

than the threshold in the array. Different from Incre-

mentally Adaptive SN, in order to obtain the boundary

pairs, the latter keeps increasing the window size by

moving the window forward to form multiple windows

of increasing size with a single overlapping record. Fi-

nally, these windows are merged to obtain blocks. [30]

conducts experiments on both real datasets and syn-

thetic datasets. The blocking key is chosen as a schema

over the key attribute values, for example the first four

characters of one field concatenated with the first four

characters of the other. Thus, the data should be struc-

tured if there is not any other pre-processing of data

in the algorithm. The results show that the adaptive

scheme is robust to the size change of individual block,

and has good resistance to the errors in the blocking

fields.

Duplicate Count Strategy (DCS) and DCS++. If

more duplicates or similar items are found in a win-

dow, then we can get more duplicates or similar items

by increasing the window size. Therefore, the size of

the window should be fluctuated based on the number

of duplicates or similar items. Based on this assump-

tion, [32] proposes Duplicate Count Strategy (DCS).

The algorithm introduces a parameter assumption d/c,

where d is the number of newly detected repetitions,

and c is the number of comparisons performed. If d/c

is greater than or equal to a preset threshold ϕ, then

the window size increases. Here ϕ expresses the average

number of duplicates per comparison.

[32] proposes DCS++ by adding for each detected

duplicate the next w − 1 adjacent records of that du-

plicate to the window instead of increasing the win-

dow one by one, even if the new ratio becomes lower

than ϕ. The algorithm also saves some comparisons

by calculating the transitive closure. For example, if

pairs (ti, tk) , (ti, tl) are duplicate, (tk, tl) is also a du-

plicate pair, and window W (k, k + w − 1) will not be

checked. [32] proves that with the right selection of the

778 J. Comput. Sci. & Technol., July 2020, Vol.35, No.4

threshold there will not be any missed matches. [32]

shows that DCS++ with a threshold ϕ 6 1
w−1 is at

least as efficient as Sorted Neighborhood and can save

w− 2 comparisons per duplicate compared with Sorted

Neighborhood in the best case. The major advantage of

DCS and DCS++ is that the algorithms can efficiently

respond to different cluster sizes within a dataset and

the algorithm is good alternative to Sorted Neighbor-

hood. From the perspective of data structure, the al-

gorithms are based on the Sorted Neighborhood and

need to sort by the key which means the need to select

the important attribute value as the key. In the experi-

ment, [32] selects three datasets and uses the attribute

new reference as sorting keys such as the concatenation

of the first author’s last name and the year of publica-

tion. Thus, the algorithms are suitable for structured

data as Sorted Neighborhood.

Sorted Blocks. After combining the traditional

blocking and Sorted Neighborhood technologies, [33]

proposes a new entity resolution blocking technology,

Sorted Blocks. The technology sorts all the blocking

key values according to the lexicographic order. Then it

divides the ordered entities into different blocks accord-

ing to the prefix of the blocking key value, and compares

the records in the block. In addition, the algorithm

uses window technology to avoid missing any matches.

Records from different blocks in the window must also

participate in the comparison calculation. The Sorted

Blocks algorithm does not limit the block size, which

can lead to large blocks taking up much processing time.

To solve this problem, [33] proposes two proactive vari-

ants that limit the maximum block size, namely Sorted

Blocks New Partition and Sorted Blocks Sliding Win-

dow. Sorted Blocks New Partition creates a new par-

tition if the maximum partition size is reached. Sorted

Blocks Sliding Window chooses to avoid performing all

comparisons in blocks whose sizes are greater than the

upper limit by sliding a window equal to the maximum

block over the entity of the current block.

The major advantage of Sorted Blocks is that the

variable partition size allows more comparisons if sev-

eral records have similar values, but requires fewer com-

parisons if only a few records are similar. This makes

the algorithm more efficient. However the algorithm

also has more parameters and becomes more complex

because of it. Sorted Blocks sorts the records based on a

sorting key firstly as Sorted Neighborhood. The sorting

keys should be unique enough to obtain an unambigu-

ous sorting order (e.g., zip
−
code and name); therefore

more attributes can be included for sorting than for

actually partitioning the data. [33] uses three datasets

to evaluate the algorithms such as the CDs including

artists, titles, and songs. The sorted keys are selected

by a manual schema such as the first three letters of

each artist concatenating with the CD title and the

name of the first track. The algorithm is suitable for

the structured data.

3.1.2 Non-Structured data

With the development of the network, a large

amount of non-structured data which is highly dy-

namic, heterogeneous and loose schema-bound becomes

accessible. For example, Google Base alone encom-

passes 100 000 distinct schemata that correspond to

10 000 entity types [53]. Existing blocking approaches

rely on schema information such as the concatenating of

attribute names or knowledge about the domains of the

respective attributes in order to define effective block-

ing criteria. However these approaches did not work

in the context of so high levels of heterogeneity. Many

algorithms focus on the attribute-agnostic mechanism

and give up the methods based on schema binding.

Token Blocking (TB). In order to develop an ER

technique that can be efficiently applied in the cases

where large volume of noisy and heterogeneous data are

prevalent, [34] introduces the attribute-agnostic mecha-

nism and proposes a new attribute-agnostic blocking

method instead of relying on the schema binding. The

main idea is based on the assumption that duplicate en-

tities, which should be put into a block for subsequent

comparison, have at least one common value (denoted

as token) and the value is independent of the corre-

sponding attribute name. [34] gives the relevant defi-

nitions and proposes a unifying data model with sim-

ple entity profiles that correspond to real-world enti-

ties. Given the attribute set AN , the corresponding

value set V and infinite set of identifiers ID and lo-

cal id ∈ ID (id is an identifier of an entity profile in

the considered dataset), ni ∈ AN is an attribute name

and vi ∈ V
⋃

ID is an attribute name. The profile p

of an entity can be defined as a tuple (id, Ap) where

Ap is a set of the attribute ai. ai ∈ Ap is represented

by the tuple (ni, vi). The blocking standard consists

of two functions, namely a transformation function ft
and a transitive, symmetric constraint function f i

cond.

Among them, ft derives the appropriate representation

for blocking from the complete entity profile (or parts

of it). For example, ft can be the representation of each

entity with its value for the attribute “zip code”. While

f i
cond encapsulates the condition for two entities to be

Bo-Han Li et al.: A Survey on Blocking Technology of Entity Resolution 779

placed in a block. The formulas for ft and f i
cond are as

follows:

ft(p) = {ti : ∃ni, vi : (ni, vi) ∈ Ap ∧ ti ∈ tokenize(vi)},

f i
cond(p, q) = ((ti ∈ ft(p)) ∧ (ti ∈ ft(q))),

where tokenize(vi) is a function that returns the set of

tokens comprising value vi. The next task is how to

find the blocking criterion which can be robust enough

to produce a set of blocks of high quality. The attribute-

agnostic approach employs a transformation function ft
to transform all values of entity profiles into sets of to-

kens firstly, and then constraint functions f i
cond are de-

fined individually on these value tokens. If the datasets

are all duplicate-free individually, f i
cond suffices to con-

sider only the intersection of the token sets of these

datasets. Finally, each block created by the combina-

tion of ft with all f i
cond consists of all the entities con-

taining this token in their profile values. In order to

keep the likelihood of missed matches low and reduce

the number of unrequired pair-wise comparisons, [34]

optimizes the algorithm by using the Block Scheduling

and Block Processing processes methods.

The algorithm has two major advantages. First,

it can be efficiently implemented using the well-

established IR techniques. Second, it is very robust to

noise and heterogeneity. However, the datasets should

be duplicate-free individually during the phrase of block

building, and it relies on redundancy to achieve high ef-

fectiveness, resulting in the cost of lower efficiency, since

it produces overlapping blocks with a high number of

unnecessary comparisons.

In order to deal with the voluminous, highly hete-

rogeneous, and loosely structured data, the algorithm

focuses on the similar or same values of data and waives

the use of manual schema information. [34] uses two

kinds of datasets in the experiment. Dmoive is a col-

lection of movies shared among IMDB and DBPedia.

The number of attribute names and the average profile

size from the two sources are both different. We can

see that TB is an algorithm which was originally de-

signed to handle the heterogeneous and non-structured

data even though it can also be used to process the

traditional structured data theoretically.

Attribute Clustering Blocking. In order to process

the data in the context of highly heterogeneous in-

formation spaces (HHIS), [18] optimizes the TB algo-

rithm, and proposes the Attribute Clustering Blocking

algorithm. The idea of the algorithm is to divide at-

tribute names into nonoverlapping clusters according

to the similarity of attribute names. If the cluster set

obtained by attribute value division is denoted as K,

then given k ∈ K, for each token ti in k, a block created

with its values contains all entities having ti assigned

to an attribute name belonging to k. Compared with

the TB algorithm, the block collection created by the

algorithm is larger in size, but of lower aggregate car-

dinality. Therefore, attribute clustering is expected to

achieve a PC-RR balance of a higher efficiency.

The major advantage of the algorithm is that it

can achieve equally high effectiveness with the TB al-

gorithm, but at a significantly lower redundancy and

higher efficiency. However the algorithm only considers

the clean-clean ER. The Attribute Clustering Block-

ing algorithm was originally designed in the context of

HHIS and based on the TB algorithm. It derives at-

tribute clusters that produce blocks with a comparison

distribution instead of trying to partition the input

into clusters by the semantically equivalent attributes.

Thus, the algorithm is suitable for the non-structured

data in HHIS.

Prefix-Infix (-Suffix) Blocking. Large-scale hete-

rogeneous datasets have the characteristics of loose

schema binding. Many identifiers contain semantic in-

formation, and there is relationship information be-

tween different entities. Based on the entity iden-

tifier and the relationship between entities, [35] in-

troduces a novel blocking approach Prefix-Infix (-

Suffix) Blocking [15]. It is also called URI Semantics

Blocking [54].

[35] states that according to the research in [55],

about 66% of the 182 million URIs of the BTC09

dataset follow a common pattern. To be specific, the

prefix part contains the source of the URI. The Infix

part has some local identifiers. The suffix part con-

tains some detailed information [56]. [35] divides the al-

gorithm by using the blocking method and the num-

ber of the three different parts. The blocking method

that uses only one of the above parts is Atomic Block-

ing Schemes, and the one that uses multiple parts

is Composite Blocking Schemes. For Atomic Block-

ing Schemes, [35] gives three blocking methods: In-

fix Blocking, Infix Profile Blocking and Literal Pro-

file Blocking. Infix Blocking conveys a transformation

function that extracts the infix from the ID of each en-

tity profile, and every block is associated with an infix

and consists of the entity with the same infixes. Infix

Profile Blocking represents each entity profile by infix

profile and divides the entities according to the rela-

tionships. Literal Profile Blocking uses the set of all

780 J. Comput. Sci. & Technol., July 2020, Vol.35, No.4

tokens of the literal values to denote the entity profile,

and blocks are based on the equality of tokens. For

Composite Blocking Schemes, [35] gives four blocking

methods: Complete Infix Blocking, Infix-Literal Pro-

file Blocking, Infix Profile-Literal Profile Blocking and

Total Description Blocking.

The major advantage of the algorithm is that, diffe-

rent from the previous algorithm, Prefix-Infix (-Suffix)

Blocking makes use of the semantics and the relation-

ships of the entities. The composite of Atomic Block-

ing Schemes can both achieve high efficiency and ro-

bustness. [35] also uses the Block Purging method to

improve the efficiency of the algorithm. From the per-

spective of data structure, the algorithm completely ig-

nores the schema information and exclusively relies on

the values of entity profiles because of the heterogene-

ity of the data, and this gives it the ability to process

non-structured data.

RDFkeyLearning. [36] uses the TB algorithm on the

values of some selected attributes independently, and

proposes the RDFKeyLearning algorithm. The aim of

the algorithm is to obtain a set of data type attributes

as the candidate blocking key that both discriminates

and covers the instances well in a domain-independent

manner. The algorithm introduces the “discriminabi-

lity score” to measure the value of a certain attribute.

Discriminability score of an attribute is used to denote

the diversity of its object values and having low scores

means that many instances have the same object values

on this attribute; therefore, when utilizing such object

values to look up similar entities, we cannot get a suit-

able reduction ratio. For those attributes whose dis-

criminability score is higher than the threshold, the al-

gorithm will evaluate their coverage, that is, how many

entities have this attribute. Next, the algorithm cal-

culates discriminability and the mean of the coverage.

It selects the attribute which is the largest and higher

than another preset threshold to provide the blocking

key value. If no attribute satisfies the condition, the al-

gorithm will combine the attribute which get the high-

est discriminability score with other attributes for the

next iteration.

The advantage of RDFkeyLearning is that we can

get the optimal set of attributes for candidate selection.

However, the process is exponential in the number of

candidate attributes because of its two loop, and the al-

gorithm targets datasets that are primarily composed

of strings. RDFkeyLearning is originally designed to

process the RDF data even though it can also com-

monly achieve the best or comparably good results on

the structured data.

Sematic Graph Blocking. [37] proposes the Seman-

tic Graph Blocking method based on the relationship

between entities, as opposed to the use of the syntac-

tic information of attributes, as in the classic methods.

The assumption the algorithm depends on is that two

occurrences are more likely to refer to a single indi-

vidual if they are closely related. The basic idea of

this method is to use the relationship between entities

to build a collaborative graph without considering the

value of the attribute. Nodes represent entities, and

edges represent the relationship between entities.

The major advantage of the algorithm is that, diffe-

rent from the classic blocking approaches, it can avoid

the problems caused by spelling errors and still works

in the condition where the datasets do not have com-

mon categorical or regular attributes by only allowing

comparisons between records that have a relationship

among them. However, the effectiveness of the algo-

rithm will reduce if the connectivity of the dataset is

high. A large part of the blocking graph with a limited

size will consist of all those entities directly connected

to the explored entity, and this will reduce the probabi-

lities of the method finding real matches.

As we can see the algorithm relies on the relation-

ships between the entities instead of the attributes of

datasets. Thus the field of the algorithm will not be

constrained in structured data from the perspective of

data structure. If we have a relational database as the

data source, the context information can be obtained

from the foreign keys of the database. However, if we

have a plain text file or other unstructured files as a

data source, we can also connect the entities based on

the relationships of all the records that contain values

with the same contextual meaning in one or more tex-

tual attributes.

3.2 Machine Learning (ML) Based Techniques

Rule-based blocking algorithms mostly need to con-

struct index-based similar functions manually, or se-

lect some blocking predicates with parameters. While

the problem that machine learning based blocking al-

gorithms need to solve is how to automatically learn ef-

ficient and accurate blocking functions. Such methods

can be divided into supervised and unsupervised learn-

ing. The former relies on labeled datasets, which con-

tain the data from matching entities and non-matching

entity record pairs, called positive and negative exam-

ples, respectively. The latter does not rely on the la-

beled data or generate the needed data automatically

Bo-Han Li et al.: A Survey on Blocking Technology of Entity Resolution 781

and it is suitable for the case where the labeled data is

lacking. We will mainly introduce the algorithms com-

monly used in these two categories.

3.2.1 Supervised Learning with Structured Data

ApproxRBSetCover. The ApproxRBSetCover

algorithm [38] is one of the earliest proposed entity res-

olution blocking algorithms based on machine learn-

ing. The relevant definitions are given in [38], in-

cluding the formal definition of the problem. The pa-

per assumes that the training data Dtrain = (X,Y),

where X = {xi}
n
i=1 represents a set of records, and

Y = {yi}
n
i=1 represents the real object (or entity) cor-

responding to the record X . A set of general blocking

predicate set P is expressed as {pi}
s
i=1. When the gene-

ral block predicate is applied to different fields of the

dataset, different special predicates will be generated.

For example, suppose there are three predicates that

can be applied to any text field, “Exact Match”, “Same

1st Three Chars”, and “Contains Same or Off-By-One

Integer”, which are applied to four different text fields,

such as “Author”, “title”, “year” and “venue”. Then

3× 4 = 12 special block predicates are produced.

The algorithm uses the elements in the predicate set

P to form an overall blocking function fp. The multiple

blocking predicate is composed of the blocking func-

tion fp. The problem definition is given in [38] that

given a potential blocking predicate set P = {pi}
t
i=1,

learning an optimal blocking function f∗

p requires se-

lecting a predicate subset P∗, so that all or almost all

coreferent pairs are covered by at least one predicate in

P∗, and the minimum number of non-coreferent pairs

is covered. The following formula [38] is used for formal

description [29]:

ω∗ = argmin
ω

∑

(xixj)∈R

[

ω
T
p (xi, xj) > 0

]

,

s.t. |B| −
∑

(xixj)∈B

[

ω
T
p (xi, xj) > 0

]

< ε,

where B = {(xi, xj) : yi = yj} represents a set of coref-

erent pairs, and R = {(xi, xj) : yi 6= yj} represents a

set of non-coreferent pairs. ε is an adjustable parame-

ter, describing the number of coreferent pairs that have

not been found. ω is a binary vector of length t and it

encodes which potential blocking criteria are selected.

p(xi, xj) is a vector of binary values returned by the

t predicates for pair (xi, xj). The problem is finally

classified as a “Red-Blue Set Cover” problem to solve.

Learning the optimal blocking function is equivalent to

finding a subset of predicate vertices with their incident

edges so that at least β − ε blue vertices have at least

one incident edge, while the cover cost, equal to the

number of red vertices, is minimized.

ApproxDNF. In some areas, a disjunctive combi-

nation of blocking predicates cannot express the best

blocking strategy in detail. Research [57] shows that

in the United States of Census data, the use of con-

junctions such as “Same Zip AND Same 1st Char

in Surname” is effective. [38] proposes the Approx-

DNF method based on the ApproxRBSetCover algo-

rithm. Unlike the ApproxRBSetCover algorithm, the

new method takes conjunctions of predicates into con-

sideration. In each iteration, it selects k conjunctions

that can maximize the ratio of coreferent pairs and non-

coreferent pairs, thereby forming a candidate set of con-

junctions P (c). Then P (c) is added to a single set of

predicates P . ApproxDNF also classifies the problem

as a “Red-Blue Set Cover” problem by adding a ver-

tex to the middle row corresponding to the conjunction

of blocking predicates, along with edges connecting it

to the red and blue vertices from the intersection of

covered vertex sets for the individual predicates in the

conjunction.

The authors of ApproxRBSetCover and Approx-

DNF both presented experiments on two datasets: Cora

and Addresses. The Cora dataset contains different

field citations to computer science papers, and Ad-

dresses is a dataset containing names and addresses

of 10 000 individuals. The results show that the two

algorithms significantly improve the efficiency of en-

tity resolution and provide an attractive methodology

for data mining tasks that rely on similarity computa-

tions between different records. However the algorithms

still have some shortcomings. ApproxRBSetCover lacks

considering the combination of the different blocking

predicates, and that is compensated by ApproxDNF.

But for ApproxDNF, the number of all possible con-

junctions is exponential; therefore only conjunctions up

to predetermined length k are considered. However, it

is difficult to pre-set the parameter k, and that also

limits the possibility of finding the better blocking key

to some extent.

The aims of ApproxRBSetCover and ApproxDNF

are both to learn an optimal blocking function which

can find a combination of blocking predicates that cap-

tures all or nearly all true matches and a minimal num-

ber of non-coreferent pairs. In order to get the key val-

ues, the algorithms apply general blocking predicates

on the different parts of the records. Thus it is diffi-

782 J. Comput. Sci. & Technol., July 2020, Vol.35, No.4

cult to get a good key if the data is heterogeneous or

unstructured and the algorithms are suitable for the

structured data.

Blocking Scheme Learner (BSL). Similar to [38],

[39] proposes a blocking learning algorithm Blocking

Scheme Learner (BSL) based on machine learning for

constructing an efficient blocking scheme automatically.

[39] indicates that an efficient blocking scheme should

have the characteristics of increasing the number of

correct comparison pairs while minimizing the number

of candidate comparisons. [39] proposes that the con-

junction is an intersection between {method, attribute}

pairs and a blocking scheme is a disjunction of con-

junctions. [39] uses the Sequential Covering Algorithm

(SCA) to solve the construction problem of blocking

schemes. The algorithm first learns the rules that can

cover the positive examples which are the matches in

the training data. The rule here refers to the conjunc-

tion of attributes. Then it deletes these covered posi-

tive examples and continues to learn new rules until it

can no longer discover a rule with performance above

a threshold. There are some differences from the tradi-

tional SCA, since each of the conjunctions is disjointed

together, and any records covered by a more restrictive

conjunction will be replaced by a less restrictive con-

junction and if the rule contains any previously learned

rules, the algorithm will remove these contained rules.

[39] defines the conjunction as the intersection

between {method, attribute} pairs. An instance of

the {method, attribute} pairs is like ({first-letter, first

name}. In order to construct the pairs, the dataset

had better be structured. The experimental data is the

restaurant dataset, and the attributes for this data are

{name, address, cuisine, city}. The major advantage of

the algorithm is that, since the algorithm only considers

the true pairs of the training data, it requires a small

training set and its training speed is faster than those

of ApproxRBSetCover and ApproxDNF. The disadvan-

tage of the algorithm is to cover true matches and the

ability is always limited by the number of true matches

in the training data.

Blocking Based on Genetic Programming (BGP).

Different from previous entity resolution blocking algo-

rithms based on machine learning, [40] proposes a BGP

algorithm based on the genetic programming method.

The algorithm can use flexible rules to define block-

ing functions. It relies on tree structure to represent

blocking scheme. Each leaf node represents a blocking

predicate, and the other nodes are defined as Boolean

operation “or” or “and”. Each edge represents the rela-

tionship between different predicates and Boolean ope-

rators. [40] notices that blocking schemas with larger

numbers of conjunctions of affinity rules can cover

larger numbers of true matches, and proposes a new cri-

terion on f∗

Fit = fFit +
[

C
100

]

, where fFit =
2

1/PC+1/PF

and C represents the number of conjunctions found in

the blocking schema. The algorithm is processed as

the following sequence of steps: randomly generating

an initial set of individual blocking schemas firstly and

evaluating the schemas. Then the algorithm creates a

new set of schemas by using genetic operators and sam-

ples which present true and false matches. Finally the

best schema is generated after a predetermined number

of generations.

BGP depends on genetic programming which allows

for the use of more flexible rules and chooses the best

values of parameters that can be used in each rule. By

using genetic programming, BGP can achieve satisfac-

tory results without analyzing a very large number of

blocking combinations of predicates. However, the al-

gorithm has too many parameters such as the number

of generations and the number of individuals in each

generation. That will also make the operation of tun-

ing more difficult. When the amount of records is huge,

many similar blocks will be generated and hence many

pairs of duplicate records are repeated, and that will

increase the computation time.

BGP was implemented in two versions: BGP-SR,

which is based on standard rules, and BGP-PR, which

was defined as rules based on parameters. The basic

standard rules used in BGP-SR have no parameters

such as perfect match and first three characters in com-

mon. The basic rules in BGP-PR are the rules with

parameters such as N-grams in common or length of

substrings in common. Like the other algorithms based

on the structured data, BGP also depends on the at-

tributes of the dataset. Thus the dataset should be

structured in order to use these rules.

CBlock. The CBlock algorithm proposed in [41]

also uses a tree structure to represent the blocking pro-

cess. Different from previous studies that introduced

the blocking algorithm, CBlock is executed in a map-

reduce framework like Hadoop and uses “canopy” to

represent the block. The canopies represented by the

leaf nodes in the tree are the final blocking result. The

blocking functions are constructed by hash functions

which are based on the attributes of the records. The

algorithm assigns a hash function to each node except

the leaf node during execution. When the number of

entities in a node (i.e., canopy) is greater than a pre-

Bo-Han Li et al.: A Survey on Blocking Technology of Entity Resolution 783

defined maximum value, the algorithm greedily selects

the best hash function by counting for all hash func-

tions the number of duplicates that get eliminated when

choosing the hash function. Then the hash function

that minimizes the number of eliminated duplicates is

chosen. In order to increase the overall recall, the algo-

rithm combines multiple small canopies to maintain the

size requirement. [41] also introduces the “drill-down”

problem for a single attribute to generate hash func-

tion automatically. The aim is to optimally divide

a single-attribute’s domain into disjoint sets so as to

cover as many duplicate pairs as possible and ensure

that the cost is below a threshold. [41] designs an op-

timal polynomial-time algorithm to address the drill-

down problem based on dynamic programming.

CBlock is a proactive method and can follow the

guide of different applications by the blocking process

based on architectural constraints, such as imposing

disjointness of blocks in a grid environment or speci-

fying a maximum size of each block based on memory

requirements. It is noteworthy that the algorithm is

the only ML-based method suitable for the MapReduce

framework. CBlock was originally designed to process

the noisy data whose attribute values may be polluted,

for example, some attribute values have null values in

some records. The hash functions (also called block-

ing predicates) used in the algorithm are still based on

the restrictions of attributes. The datasets used in the

experiment are movie data and restaurant data. The

scheme of movie data from DBPedia and IMDb con-

sisted of the attributes such as title, director, release

year and runtime. The restaurant data have the at-

tributes such as street, city, state, and zip. The hash

functions are created using these attributes.

DNF Learner. To solve the problem of lack of la-

beled data for training, [42] proposes the DNF Learner

algorithm. In addition to the blocking scheme, DNF

Learner is used in the context of a matcher which it is

going to be used with. The article proposes an algo-

rithm that can automatically generate labels for learn-

ing the blocking scheme. It classifies the learning block-

ing scheme problem as a DNF learning [58] problem,

and uses the Probably Approximately Correct (PAC)

learning theory to guide the algorithm to learn the best

blocking scheme. To make the algorithm feasible, the

article gives two practical simplifications. The first is to

optimize the rejection rate of blocking schemes whose

recall value is higher than the preset acceptable thres-

hold. The second is to limit the search for acceptable

blocking schemes.

Conjunction Learner. The previous machine learn-

ing based entity resolution blocking technology uses la-

beled datasets. However, labeled data is not enough

to characterize unlabeled data, which results in a poor

blocking scheme. [43] proposes a semi-supervised algo-

rithm Conjunction Learner that combines labeled data

and unlabeled data to learn a blocking scheme. [43] uses

the tunable parameter α to control the weight of unla-

beled data in the algorithm. If α = 0, the algorithm

only considers the labeled data and degenerates to BSL.

If α = 1, the algorithm treats labeled data and unla-

beled data equally.

[43] also uses SCA as the basic idea of the proposed

algorithm. It is appropriately modified to adapt to new

application scenarios. [43] assumes that the amount of

unlabeled data is much larger than the amount of la-

beled data. Cost functions are defined according to the

characteristics of labeled data and unlabeled data. [43]

uses sampling to obtain several subsets containing un-

labeled data, and the aggregation function to calculate

the cost of them. The aggregation function uses the

average or the maximum and the minimum values ac-

cording to actual need.

3.2.2 Unsupervised Learning with Structured data

FisherDisjunctive. Methods based on supervised

learning rely on labeled data. It is not easy to get

even a small number of high-quality label datasets. [44]

proposes an algorithm to generate a weakly labeled

training set. The algorithm firstly comprises a simple

Disjunctive Blocking scheme, then the scheme makes

multi-pass over the datasets and tokenizes the corre-

sponding field value of each tuple. The tuple is then

placed in blocks. The algorithm presets several para-

meters such as the upper threshold ut, lower threshold

lt and a window size c. After all the blocks have been

generated, a sliding window passes over c tuples at a

time and all tuple pairs within the window are gene-

rated. Each pair computes the similarity using TFIDF

measure, and if the result falls between ut and lt, the

pair is considered ambiguous and ignored. If the result

is larger than ut, the tuple will be added to the list

which contains the duplicate records. Otherwise, the

tuple will be denoted as non-duplicate.

After getting the weakly labeled training datasets,

FisherDisjunctive uses feature vectors to store the

boolean results of each predicate, and the Fisher dis-

crimination criterion is used to determine the best fea-

tures. Whether the feature is eligible depends on the

number of negative examples it covers. If the eligible

784 J. Comput. Sci. & Technol., July 2020, Vol.35, No.4

feature also covers positive examples that the current

disjunction does not cover, it is added to the current

disjunction.

[44] defines the blocking scheme as a function con-

structed in disjunctive normal form using a given set of

special blocking predicates which are formed by com-

bining general blocking predicates and the attributes

of the datasets, such as (Contains Common Token, ad-

dress) and (Exact Match, city). In order to learn the

blocking scheme, the algorithm applies all the given

specific blocking predicates on every duplicate or non-

duplicate record and stores the results in a feature vec-

tor. The algorithm still depends on the scheme of the

datasets to generate the BKVs, and gives priority to

the structured data.

FisherDisjunctive adapts an unsupervised frame-

work for learning good blocking schemes and achieves

good results compared with a supervised algorithm. Al-

though the algorithm is efficient, it has many parame-

ters and the amount of parameters results in the prob-

lem of parameter tuning.

Non-Standard Key-Based Blocking. [45] proposes a

new blocking algorithm that does not need any labelled

data or manual fine-tuning of parameters. The algo-

rithm has three phrases: blocking predicate reduction,

blocking predicate weighting and record blocking us-

ing selected predicates. In order to waive the obvi-

ously weak blocking predicates without labeled data

and manual fine-tuning of parameter values, the al-

gorithm uses Coverage to indicates the proportion of

records for which at least one blocking key is generated

by a blocking predicate. The algorithm omits the use-

less blocking predicates with coverage less than the ave-

rage value to reduce computation. In the second phrase,

the algorithm uses a modified version of the automatic

labelling algorithm to generate a set of labelled posi-

tive records. It is noteworthy that the algorithm uses

the automatic labelling algorithm to obtain labelled

records, but it only chose 5% of the record pairs which

not only can keep computation low, but also are mostly

matching record pairs, with a high chance. Then, the

weights computed by the reduction ratio are assigned

to each blocking predicate. Finally, the first record of

a dataset is selected as the representative record of an

initial block and each record is compared with the rep-

resentative records by three best blocking predicates

which are selected in the second phrase. The similar

records will be put in the same block; otherwise, they

will be used to create a new block.

The algorithm was among the fastest and most pro-

ficient in most of cases and was suitable in the situation

where the domain expert and the labelled data are dif-

ficult to obtain. However, the small number of labelled

data which is used to select the best blocking predi-

cates and blocking predicates which is used to compare

different records may also affected the robustness of the

algorithm while bringing about speed improvement.

In every phrase of the algorithm, blocking predicates

are applied on the records, and each indexing function

for blocking predicates is combined with each attribute

of a dataset. Nine datasets are used in the experiment

and each of them has the fixed number of attributes

which follow the unified scheme. Thus, the unsuper-

vised algorithm is suitable for the structured data.

3.2.3 Unsupervised Learning with Non-Structured
Data

TYPiMatch. [46] finds that the quality of the

scheme-agnostic approach can be greatly impro-

ved [36, 55, 59] when using a special subtype from the data

instance instead of the blocking key learned from the

usual type. Based on this, [46] proposes an unsuper-

vised algorithm TYPiMatch. TYPiMatch is an algo-

rithm which also refers to the idea of TB. The algorithm

relies entirely on the value of data for learning both

the subtypes and the key values specific to these sub-

types. First of all, [46] proposes that a subtype is a set

of instances that share the same set of pseudo-schema

features. The pseudo-schema features are the features

in values which commonly co-occur in instance descrip-

tions such as Title and Price in instances of type Pro-

duct. Their solution is based on the observation that

instances belonging to the same type share the same

attributes in the schema. However these attributes,

called schema features, are too few in heterogeneous

data, and it is difficult to use them to distinguish diffe-

rent subtypes. Yet, instances of the same type also have

some features in their values in common besides schema

features, which means the identical parts of the entity

description can be used to infer features. The exam-

ple given by [46] is shown in Table 10. Instances of

type “Camera” have a description of “Cyber-Shot” or

a camera brand (such as “Sony”). These common de-

scriptions are recorded as pseudo-schema features, and

subtypes are deduced from them. To form the final

blocking schema, the algorithm iterates through all fea-

tures that appear in the key values and retrieve all the

candidates for a given feature. Finally, blocking key

values are obtained from these representative subtypes.

Bo-Han Li et al.: A Survey on Blocking Technology of Entity Resolution 785

Table 10. Example Blocks for Different Subtypes [46]

Block ID Title Subtype

Block 1 P1 Sony Cyber-Shot DSC-W650 Camera

P2 Sony DSC-W620 Cyber-Shot Camera

P3 Sony Cyber-Shot DSC-W650 Camera

Block 2 P4 Sony Reader PRS-600SC eReader

P5 Sony Reader PRS-600SC eReader

P6 Sony PRS-T1 6” eBook Reader eReader

[46] uses “DBLP-Scholar” data and “Abt-Buy” pro-

duct data for experiments. The algorithm yields up to

32.62% improvement in terms of reduction ratio over

existing solutions for blocking. However, the detection

of entity types is time-consuming and too sensitive to

its parameter configuration [60].

[46] considers general Web data including different

types such as relational, XML and RDF data. The algo-

rithm learns the subtype-specific blocking keys from the

heterogeneous data instead of depending on the manual

schema features. Thus, we can see that the algorithm

is designed to process the non-structured data.

Hetero. In the current work, the dataset pairs be-

tween the to-be-linked entities are provided. In other

words, each collection is a set of datasets, such as the

government data which consists of batches of files, and

datasets in one collection first need to be mapped to

datasets in the second collection, after which a block-

ing scheme is learned on each mapped dataset pair. In

order to address the problems, a link-discovery blocking

scheme learner is proposed in [47], which includes the

following steps. It first uses property tables to solve the

problem of mixing RDF and tabular data in the input

data. Then it relies on the similarity of the documents

and represents each dataset in each collection as a term

frequency vector. After obtaining the vector, the al-

gorithm generates the matrices using the dot product

of vectors of two datasets and maps pairs between col-

lections according to a confidence function of the Max

Hungarian algorithm [61]. The records selected from the

dataset that complete the mapping are involved in the

learning process of the blocking scheme. Hetero also

adopts the feature selection technique like FisherDis-

junctive to learn the best Blocking scheme. The num-

ber of training pairs is a given constant value and does

not grow with the dataset. In order to handle a small

number of fixed-size training sets, the algorithm also

uses bagging [62] technique. In each bagging iteration,

a small part of the overall training sample is chosen to

apply the feature selection.

The algorithm uses mapping and technique of bag-

ging to make up the loss quality of a learning algo-

rithm. In this way, Hetero can work with small train-

ing sets. However, like FisherDisjunctive, the algorithm

has many parameters and after adopting bagging tech-

nique, it is more difficult to tune the good parameters.

The algorithm was originally designed in the context

of heterogeneous data. [47] mainly considers RDF and

tabular data, and uses property tables to combine the

different type data. In the phrase of mapping, data is

represented as a vector and the value is the frequency

of the token in the datasets. Finally, the data of diffe-

rent structures can be unified into the same form for

processing and this gives the algorithm the ability to

process heterogeneous data.

Extended DNF BSL. Previous DNF Blocking

scheme learners assume that the input of the algo-

rithm should be tabular and structured. As the re-

striction limits the application of these algorithms, [48]

proposes a general pipeline for learning DNF blocking

schemes. Combined with an existing instance-based

scheme matcher called Dumas [63], it gives an unsuper-

vised method of this pipeline. The general pipeline is

mainly divided into two modules, the Schema Matcher

module and the Extended DNF BSL module respec-

tively. The unsupervised method provided in this pa-

per replaces the Schema Matcher module with the ex-

isting scheme matcher Dumas. The assignment prob-

lem in the algorithm is finally solved by applying the

Hungarian Algorithm on this matrix [61]. After the Ex-

tended DNF BSL module getting the set of duplicate

tuple pairs and the set of mapping generated by the

Schema Matcher module, it gets the noisy duplicates

as the negative records by permuting the duplicates set

and outputs the DNF blocking scheme.

Although previous methods such as [43, 44] require

less supervision, they require more parameters. While

the method proposed in this paper only needs two para-

meters, in order to process the noisier datasets, a good

n:m scheme matcher is still needed to be evaluated in

the future work. Like Hetero, in order to process the

heterogeneous datasets, Extended DNF BSL considers

the RDF datasets and transforms the RDF data into a

property table. Different from the previous algorithms,

the pipeline also admits structurally heterogeneous tab-

ular inputs, and this allows it to be applied to tabular

datasets with different schemas. Thus, the algorithm is

still feasible when dealing with the RDF-tabular hete-

rogeneous data in the task of linking datasets between

Linked Open Data and the relational Deep Web [48].

786 J. Comput. Sci. & Technol., July 2020, Vol.35, No.4

4 Technique for Blocking Optimization

The purpose of blocking optimization is to reduce

the overall computational cost of the entity resolution

algorithm, while ensuring that the accuracy of the al-

gorithm is minimally affected. It improves the PQ and

RR values with the least impact on the PC value. We

divide the optimization method into block-refinement

and comparison-refinement according to the level of

operation.

4.1 Block Refinement

Among methods for improving the blocking techno-

logy, some rely on preset rules, which are called static

methods. Another type of methods relies on the feed-

back of the algorithm results to improve the blocking,

which is called dynamic method [15]. The followings are

introduced from these two aspects.

4.1.1 Static Methods

It was found in [35] that large blocks require many

records, resulting in high computational cost and lit-

tle improvement to the PC. The authors [35] proposed

the block-purging technology, which sets a maximum

block size and discards blocks that exceed this maxi-

mum. This technology brings improvements to PQ and

RR, and has a small impact on the PC. It was found

in [64] that the Meta-Blocking method retains a large

number of redundant comparisons, and has a high com-

putational cost when processing large-scale datasets. In

order to solve these problems, [64] proposes the Block-

Filtering method. It is equivalent to a preprocessing

operation, which can reduce the size of the block by

shrinking the blocking graphs generated in the Meta-

Blocking method.

Different applications have different block size re-

quirements. For example, Real-Time ER requires sub-

second response time, and the block size requires an

upper limit. The purpose of privacy-preserving record

linkage is to ensure anonymity. Each block contains at

least k records, and the block size must have both an

upper limit and a lower limit. [65] proposes a novel hier-

archical clustering approach, namely Size-Based Block

Clustering. This method divides the data into indepen-

dent blocks by using the initial blocking key value. If

some blocks are too small, they are merged according

to a similar function. If blocks are too large, it uses

other blocking key values for division. This method

can form blocks in a specific size range. In addition,

the paper proposes a cost function for achieving a bal-

ance between block quality and block size.

4.1.2 Dynamic Methods

Many previous algorithms deal with each block in-

dividually. However, the results of entity resolution in

one block can be used in processing other blocks. The

result of matching and merging two records in the same

block will match with the records in other blocks. The

processing of the record pair in one block can reduce

the processing time of other blocks. Based on the above

findings, [66] proposes the IteratIve Blocking method.

When records r and s match successfully, they will be

merged into a new record <r, s>. Next, the method

replaces these two records in all blocks containing r,

s with <r, s>, and <r, s> will continue to be com-

pared with other records. New record pairs are gene-

rated in the process. In this case, the PC value will

be greatly improved. Since the algorithm avoids redun-

dant comparison of the same pair of records in different

blocks, the PQ and RR values will also be improved.

The same record pair may appear in different blocks,

but these record pairs only need to be compared once.

If the algorithm can find these duplicate record pairs

early, it can reduce the number of duplicate com-

parisons. For this purpose, [34] proposes the Block

Scheduling method. This method aims to sort all the

block elements in the block set B, and finds a block

processing order that can reduce the total number of

comparisons. Each bi ∈ B is assigned a utility value.

In the block bi, the number of comparisons in other

blocks is processed by the propagation operation. The

proportion of all comparison times of bi block can be

expressed by the following formula [34]:

ui =
gaini

costi
.

Suppose the utility value is recorded as ui, gaini rep-

resents the benefit brought by processing bi blocks for

processing other blocks, and costi represents the cost of

processing bi blocks. [19] also gives the derivation of the

approximate calculation of the formula. The algorithm

sorts the processing order of all blocks according to the

calculated utility value.

After proposing the Block Scheduling method, [34]

finds that the block ranked at the end of the processing

order contains few duplicates and is more computation-

ally expensive. Duplicate propagation operation results

in few duplicates. [34] concludes that the later the block

in the processing order, the lower its processing value.

Bo-Han Li et al.: A Survey on Blocking Technology of Entity Resolution 787

Then the block pruning method was proposed. This

method sets a parameter duplicate overhead, which in-

dicates the computational cost to find true matches.

Once the parameter reaches a predetermined threshold,

the calculation stops.

4.2 Comparison Refinement

4.2.1 Comparison Propagation

The accuracy of many entity resolution blocking

algorithms is increased by adding redundant compa-

risons. To reduce the number of comparisons of the

algorithm and reduce the computational cost, [19] pro-

poses the comparison propagation method. Due to the

fact that the same record pair may be calculated mul-

tiple times in different blocks, this method propagates

the calculated record pair into the subsequent processed

blocks. It temporarily stores the processed records in

memory when processing datasets with a small amount

of data, but it cannot handle datasets with a large

amount of data. To solve this problem, [19] establishes

an inverted index for each entity and its own block.

Only when n is the smallest common block ID of the

entities ei and ej , will ei and ej be compared in block

bn. As shown in Fig.2, the smallest common block ID

of e2 and e4 is 2. This pair of entities will only be com-

pared in b2, not in b4 or b5. The method can improve

the PQ and RR values without affecting the PC value,

but it has a high spatial complexity.

b1
b1

b1

b2

b2

b2

b3

b3

b3

b4

b4

b4

b4

b5

b5

b5

b5

b5e1

e1

e2

e3

e3

e2 e4

e1 e3

e2 e4e3

e1 e3 e4e2

e4

Fig.2. Block collection and corresponding entity index [15].

The comparison propagation method can avoid re-

peated comparisons of the same pair of entities, but it

cannot avoid the comparison of two entities that are not

successfully matched. Later, many methods adopted

the comparison propagation technique proposed by [19],

hoping to further reduce unnecessary comparisons.

4.2.2 Comparison Pruning

For the redundancy-positive blocking techniques, if

the number of common blocks to which two entities be-

long is greater, the two entities are more likely to match

successfully [50]. Based on this principle, [49] proposes

the comparison pruning method. This method uses the

Jaccard similarity metric to determine whether the pair

of entities is likely to match before performing an exact

comparison of the two entities. When the similarity of

a pair of entities is lower than the threshold, no costly

comparison is performed. Unlike block pruning, the

comparison pruning method does not operate at the

block level, but operates at the individual comparisons

level.

4.2.3 Meta-Blocking

In terms of the redundancy-positive blocking tech-

niques, [50] proposes the Meta-Blocking method. The

core idea is to use the information extracted from the

block-to-entity relationship to find the most similar en-

tity pair. In essence, this method restructures a given

block set into a new block set, where the new set con-

tains as few comparisons as possible and its validity

is unchanged. The method converts a block set into

a graph structure representation. Nodes represent en-

tity profiles, and undirected edges represent metrics be-

tween two entities. There are different specific schemes

for measurement rules. In the process of creating the

graph, all redundant comparisons can be discarded. Su-

perfluous comparisons can be removed by the pruning

strategy in Fig.3. Fig.3(a) is the profile of four en-

tities, and Fig.3(b) is the block generated by the en-

tity according to different BKVs. Assume that the

edge weights are represented by the number of blocks

to which two adjacent entities belong together, and

Fig.3(c) is a graph based on the blocks.

On the basis of the blocking graph, [50] proposes

four pruning strategies. The Weight Edge Pruning

(WEP) strategy sets a global weight threshold. This

method discards edges with weights less than the

threshold, and finally outputs edges that meet the con-

ditions. The Cardinality Edge Pruning (CEP) strategy

sorts the edges by weight, and selects the K edges with

the largest weight as the output. Weight Node Pruning

(WNP) applies WEP to the neighborhood of each node

(such as the subgraph of each node), and replaces the

remaining edges with directed edges. Each neighbor-

hood uses a different local weight threshold. The Car-

dinality Node Pruning (CNP) strategy selects K neigh-

boring nodes with the highest weight for each node, and

also replaces the remaining edges with directed edges.

788 J. Comput. Sci. & Technol., July 2020, Vol.35, No.4

Pete

Christen

Smith

Sydney

2020

 1

3 3

3

2

2

Given name: Bill
Surname: Christen
Suburb: Sydeny
Postcodes: 2020

Fullname: Peters Christen
Suburb: Sydeny
Postcodes: 2020

Name: Peter
Smith
Suburb: Canberra
2020

Pete
Surname: Smith
Suburb: Sy
Postcodes: 2020

p2p1

p4

p2

p2

p3 p4

p1

p1

p3

p2 p4

p1 p3 p4

p1 p3

p3

p2 p4 p4

p3

(b)(a) (c)

Fig.3. (a) Set of heterogeneous entity profiles. (b) Block collection B. (c) Blocking graph GB
[15].

4.2.4 Canopy Clustering

The Canopy Clustering algorithm proposed by [28]

uses rough calculations at a single comparisons level to

reduce the overall comparison time, which can also be

seen as a pruning algorithm. First, the algorithm sets

the similarity threshold, and puts all entities into the

candidate pool. Then it randomly selects one entity to

compare it with other entities at a low computational

cost, thus eliminating superfluous comparisons. As the

Canopy Clustering algorithm is sensitive to the thres-

hold, [12] has extended it. Each iteration selects n1 en-

tities that are most similar to the specified entity, and

removes n2 (< n1) entities from the candidate pool.

4.2.5 Spectral Neighborhood (SPAN)

To reduce the number of costly comparisons when

processing large-scale datasets, [67] uses the cluster-

ing method and proposes the Spectral Neighborhood

(SPAN) algorithm. The algorithm represents the block

set as a matrix. The matrix is converted to a binary tree

by using the spectral clustering algorithm [68]. The root

node contains all entities, and the leaf nodes represent

a subset of entities that are not included in each other.

The algorithm introduces Newman-Girvan modularity

as a stopping criterion for blocking. This method does

not need to calculate a complex similarity matrix, but

obtains blocks in the search process based on the tree

structure.

5 Direction and Trend

There are many promising directions in blocking for

future work, and we have mainly selected the blocking

for real-time ER and incremental ER for introduction.

Finally, due to the importance and wide application

of entity resolution, we also give some other promising

directions in the overall ER for future work.

5.1 Blocking for Real-Time ER

Traditionally, entity resolution has been applied on

static databases; however more and more applications

with large databases have a stream of query records

that need to be matched in real time. Real-time en-

tity resolution is the process of matching query records

in (ideally) sub-second time with records in the availa-

ble entity collections that represent the same real-world

entity. To meet the requirements, [69] proposes an

algorithm based on inverted index and [70] develops

the technique and proposes the dynamic similarity-

aware inverted indexing technique. [71, 72] convert the

sorted list of blocking keys into a braided AVL tree [73]

and propose a blocking method based on sorted neigh-

bourhood indexing technique. [74] also uses the sorted

neighborhood-based real-time indexing technique [71]

and proposes an unsupervised learning technique that

automatically selects optimal blocking keys. [75] com-

bines MinHash LSH with Sorted Neighborhood and

proposes a noise-tolerant approximate blocking ap-

proach that can be used in real-time ER.

We find that in order for the algorithm to solve

the real-time ER, it is often necessary to incorporate

some index or hash structure on the basis of the ori-

ginal algorithm. The existing algorithms are all aimed

at structured data. However, we still need new algo-

rithms to deal with the real-time ER in the context of

HHIS such as linking datasets between Linked Open

Data and Deep Web in real time. In the future, we

can combine the techniques of hash or index with the

schema-agnostic algorithms to solve the real-time ER

problem of non-structure data.

Bo-Han Li et al.: A Survey on Blocking Technology of Entity Resolution 789

5.2 Blocking for Incremental ER

In the big data era, the velocity of data updates is

often high. Therefore, ER should not be a one-time

process, but should be continuously improved with the

update of linkage results. Specifically, to address in-

cremental record linkage, we only need to compare the

inserted record with the records of the dataset instead

of comparing all the records in datasets. That means

new algorithms that address the incremental ER should

be devised.

R-Swoosh and F-Swoosh proposed by [76] are two

of the first algorithms to address the incremental ER

problems but both algorithms have quadratic cost and

cannot scale to large datasets. Some existing incremen-

tal ER algorithms adopt distributed computational in-

frastructure to overcome the memory shortage caused

by the incremental storage of existing blocks, such as

PRIME proposed by [77] which is schema-agnostic and

can deal with streaming and incremental data. Some

use the index which supports efficient searching and in-

cremental updates at lower time complexity such as in-

cremental suffix arrays blocking proposed by [24] which

uses suffix-based blocking method and StrB-tree. In

the future, how to combine the above two technologies

so that the algorithms can solve the incremental ER of

large data volume efficiently is still worth exploring.

5.3 Work for the Overall ER

For the overall ER, there are many other promis-

ing research studies besides blocking. For example, in

recent years, deep learning has provided impressive re-

sults in natural language processing and other fields.

The novel ER system DEEPER, proposed by [78] is

one of the attempts to combine deep learning with

ER. [77] proposes an ER approach using word embed-

ding technology and DNN models, and [79] analyzes

the benefits and limitations of deep learning methods

for solving ER problems. [80] proposes a methodology

to produce explainable interpretations of the output of

deep learning models for the ER task. Like the ma-

chine learning based ER, using deep learning to deal

with the task of ER also faces the difficulty of tuning.

At the same time, how to improve the interpretability

of the model is also an urgent problem to be solved in

the future. With the increase of the data, new pro-

gressive applications of ER have emerged and the goal

is to provide the best possible solution within a lim-

ited budget of computational or time resources. [81,82]

propose the scheme-aware methods based on the pro-

gressive sorted neighborhood. [83] proposes the a pro-

gressive solution for multi-source ER over different en-

tity types. [84] adopts the MapReduce parallelization

framework on the progressive ER method and the re-

sult achieves a higher efficiency.

In addition, all such as collective entity resolu-

tion [85–89], crowdsourced entity resolution [90–95], para-

meter configuration [96, 97] and blocking methods that

exploit entity evolution [98] are worthy of research in

the future.

6 Conclusions

Entity resolution has been extensively studied for

many years, and the blocking technology has always

been an important tool to improve the efficiency of ER

tasks. In this survey, we focused on blocking techno-

logy and used easy-to-understand methods to display

and analyze the existing block technologies from multi-

ple perspectives. We analyzed all typical blocking algo-

rithms from the perspective of data structure, and dis-

played their respective characteristics. We classified the

blocking construction techniques according to their es-

sential characteristics and summarized them from diffe-

rent perspectives. In order to enable the algorithm

to deal with more complex and larger datasets, many

methods that optimize the blocking technology have

been proposed, and we divided these methods into

block-refinement methods and comparison-refinement

methods. We found that in order to finish the task of

ER, the traditional blocking ER methods which are de-

signed to process the structured data, such as Standard

Blocking and Suffix Arrays Blocking, construct the spe-

cial structure arrays by sorting or creating auxiliary ta-

ble based on the attribute values with some pre-defined

schema to create the block. These methods may not

work in the context of HHIS nowadays. In fact, com-

bining and using the techniques flexibly such as the

sliding window and the index of tree will make the

methods still have the ability to meet the needs of new

applications today. Discarding the schema like Token

Blocking makes the algorithm not only able to handle

non-structured data, but also improves the robustness.

However, the algorithm also increases the unnecessary

comparisons. In fact, we found that we do not have

to completely discard the information in the attribute,

which can improve the performance of the algorithm,

such as the Attribute Clustering Blocking algorithm.

At the same time, extracting the relationship informa-

tion in data entities can make better use of new data

790 J. Comput. Sci. & Technol., July 2020, Vol.35, No.4

features in the context of HHIS with large amounts of

data. We can also use the methods such as incorpo-

rating the external knowledge to further improve the

algorithm. Machine learning based ER algorithms not

only improve the efficiency of the ER, but also provide

an attractive methodology for data mining tasks. Most

of them face difficulties in parameter turning. At the

same time, most of the unsupervised machine learn-

ing ER algorithms just use unsupervised methods to

generate label data before learning the blocking func-

tions. We still need the end-to-end unsupervised ma-

chine learning ER algorithm. Finally, we summarized

the existing techniques and gave some promising di-

rections for future work. For example, we still need

efficient solutions to deal with the non-structured data

in real-time ER. In the field of incremental ER, com-

bining the index and distributed computing can further

improve the efficiency of the algorithms. To use deep

learning, we need to reduce the difficulty of tuning and

improve the interpretability of the model.

References

[1] Bhattacharya I, Getoor L. A Latent Dirichlet model for un-

supervised entity resolution. In Proc. the 2006 SIAM Inter-

national Conference on Data Mining, Apr. 2006, pp.47-58.

[2] Liu X L, Wang H Z, Li J Z, Gao H. EntityManager: Man-

aging dirty data based on entity resolution. J. Comput. Sci.

Technol., 2017, 32(3): 644-662.

[3] Winkler W E. Methods for evaluating and creating data

quality. Inf. Syst., 2004, 29(7): 531-550.

[4] Winkler W E. Overview of record linkage and current resea-

rch directions. Technical Report, U.S. Bureau of the Census,

2006. http://citeseerx.ist.psu.edu/viewdoc/download;jsess-

ionid=7D191FC85CD0D418884ACD2CECC2C190?doi=1-

0.1.1.79.1519&rep=rep1&type=pdf, March 2020.

[5] Newcombe H B, Kennedy J M, Axford S J, James A P. Au-

tomatic linkage of vital records. Science, 1959, 130(3381):

954-959.

[6] Bhattacharya I, Getoor L. Iterative record linkage for clean-

ing and integration. In Proc. the 9th ACM SIGMOD Work-

shop on Research Issues in Data Mining and Knowledge

Discovery, Jun. 2004, pp.11-18.

[7] Pasula H, Marthi B, Milch B, Russell S J, Shpitser I. Iden-

tity uncertainty and citation matching. In Proc. the 2002

Annual Conference on Neural Information Processing Sys-

tems, Dec. 2002, pp.1401-1408.

[8] Fan W F, Jia X B, Li J Z, Ma S. Reasoning about record

matching rules. Proc. the VLDB Endowment, 2009, 2(1):

407-418.

[9] Bilenko M, Mooney R J. Adaptive duplicate detection using

learnable string similarity measures. In Proc. the 9th ACM

SIGKDD International Conference on Knowledge Discov-

ery and Data Mining, Aug. 2003, pp.39-48.

[10] Bhattacharya I, Getoor L. Deduplication and group detec-

tion using links. In Proc. the 2004 ACM SIGKDD Work-

shop on Link Analysis and Group Detection, August 2004.

[11] Getoor L, Machanavajjhala A. Entity resolution: Theory,

practice & open challenges. Proc. the VLDB Endowment,

2012, 5(12): 2018-2019.

[12] Christen P. A survey of indexing techniques for scalable

record linkage and deduplication. IEEE Transactions on

Knowledge and Data Engineering, 2011, 24(9): 1537-1555.

[13] Christen P. Data Matching: Concepts and Techniques for

Record Linkage, Entity Resolution, and Duplicate Detec-

tion. Springer, 2012.

[14] Dong X L, Srivastava D. Big data integration. In Proc. the

29th International Conference on Data Engineering, Apr.

2013, pp.1245-1248.

[15] Papadakis G, Skoutas D, Thanos E, Palpanas T. A survey

of blocking and filtering techniques for entity resolution.

arXiv:1905.06167, 2019. https://arxiv.org/abs/1905.06167,

March 2020.

[16] Dunn H L. Record linkage. American Journal of Public

Health and the Nation’s Health, 1946, 36(12): 1412-1416.

[17] Christophides V, Efthymiou V, Stefanidis K. Entity resolu-

tion in the web of data. Synthesis Lectures on the Semantic

Web, 2015, 5(3): 1-122.

[18] Papadakis G, Ioannou E, Palpanas T, Niederée C, Nejdl

W. A blocking framework for entity resolution in highly

heterogeneous information spaces. IEEE Transactions on

Knowledge and Data Engineering, 2012, 25(12): 2665-2682.

[19] Papadakis G, Ioannou E, Niederée C, Palpanas T, Nejdl W.

Eliminating the redundancy in blocking-based entity res-

olution methods. In Proc. the 11th Annual International

ACM/IEEE Joint Conference on Digital Libraries, Jun.

2011, pp.85-94.

[20] Papadakis G, Alexiou G, Papastefanatos G, Koutrika G.

Schema-agnostic vs schema-based configurations for block-

ing methods on homogeneous data. Proc. the VLDB En-

dowment, 2015, 9(4): 312-323.

[21] Fellegi I P, Sunter A B. A theory for record linkage. Jour-

nal of the American Statistical Association, 1969, 64(328):

1183-1210.

[22] Aizawa A, Oyama K. A fast linkage detection scheme for

multi-source information integration. In Proc. the 2005 In-

ternational Workshop on Challenges in Web Information

Retrieval and Integration, Apr. 2005, pp.30-39.

[23] de Vries T, Ke H, Chawla S, Christen P. Robust record

linkage blocking using suffix arrays. In Proc. the 18th ACM

Conference on Information and Knowledge Management,

Nov. 2009, pp.305-314.

[24] Allam A, Skiadopoulos S, Kalnis P. Improved suffix block-

ing for record linkage and entity resolution. Data & Know-

ledge Engineering, 2018, 117: 98-113.

[25] Gravano L, Ipeirotis P G, Jagadish H V, Koudas N,

Muthukrishnan S, Srivastava D. Approximate string joins

in a database (almost) for free. In Proc. the 27th Interna-

tional Conference on Very Large Data Bases, Sept. 2001,

pp.491-500.

[26] Baxter R, Christen P, Churches T. A comparison of fast

blocking methods for record linkage. In Proc. the ACM

SIGKDD 2003 Workshop on Data Cleaning, Record Link-

age and Object Consolidation, Aug. 2003.

Bo-Han Li et al.: A Survey on Blocking Technology of Entity Resolution 791

[27] Kenig B, Gal A. MFIBlocks: An effective blocking al-

gorithm for entity resolution. Information Systems, 2013,

38(6): 908-926.

[28] McCallum A, Nigam K, Ungar L H. Efficient clustering

of high-dimensional data sets with application to reference

matching. In Proc. the 6th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining,

Aug. 2000, pp.169-178.

[29] Hernández M A, Stolfo S J. The merge/purge problem for

large databases. ACM SIGMOD Record, 1995, 24(2): 127-

138.

[30] Yan S, Lee D, Kan M Y, Giles L C. Adaptive sorted

neighborhood methods for efficient record linkage. In Proc.

the 7th ACM/IEEE Joint Conference on Digital Libraries,

Jun. 2007, pp.185-194.

[31] Draisbach U, Naumann F. A comparison and generalization

of blocking and windowing algorithms for duplicate detec-

tion. In Proc. the International Workshop on Quality in

Databases, Aug. 2009, pp.51-56.

[32] Draisbach U, Naumann F, Szott S, Wonneberg O. Adaptive

windows for duplicate detection. In Proc. the 28th IEEE

International Conference on Data Engineering, Apr. 2012,

pp.1073-1083.

[33] Draisbach U, Naumann F. A generalization of blocking and

windowing algorithms for duplicate detection. In Proc. the

2011 International Conference on Data and Knowledge En-

gineering, Sept. 2011, pp.18-24.

[34] Papadakis G, Ioannou E, Niederée C, Fankhauser P. Effi-

cient entity resolution for large heterogeneous information

spaces. In Proc. the 4th International Conference on Web

Search and Web Data Mining, Feb. 2011, pp.535-544.

[35] Papadakis G, Ioannou E, Niederée C, Palpanas T, Nejdl

W. Beyond 100 million entities: Large-scale blocking-based

resolution for heterogeneous data. In Proc. the 5th Interna-

tional Conference on Web Search and Web Data Mining,

Feb. 2012, pp.53-62.

[36] Song D, Heflin J. Automatically generating data linkages

using a domain-independent candidate selection approach.

In Proc. the 10th International Semantic Web Conference,

Oct. 2011, pp.649-664.

[37] Nin J, Muntes-Mulero V, Mart́ınez-Bazan N, Larriba-Pey

J. On the use of semantic blocking techniques for data

cleansing and integration. In Proc. the 11th International

Database Engineering and Applications Symp., Sept. 2007,

pp.190-198.

[38] Bilenko M, Kamath B, Mooney R J. Adaptive block-

ing: Learning to scale up record linkage. In Proc. the 6th

IEEE International Conference on Data Mining, Dec. 2006,

pp.87-96.

[39] Michelson M, Knoblock C A. Learning blocking schemes for

record linkage. In Proc. the 21st National Conference on

Artificial Intelligence and the 18th Innovative Applications

of Artificial Intelligence Conference, Jul. 2006, pp.440-445.

[40] Evangelista L O, Cortez E, da Silva A S, Meira W. Adap-

tive and flexible blocking for record linkage tasks. Journal

of Information and Data Management, 2010, 1(2): 167-167.

[41] Sarma A D, Jain A, Machanavajjhala A, Bohannon P. An

automatic blocking mechanism for large-scale deduplication

tasks. In Proc. the 21st ACM International Conference

on Information and Knowledge Management, Oct. 2012,

pp.1055-1064.

[42] Giang P H. A machine learning approach to create block-

ing criteria for record linkage. Health Care Management

Science, 2015, 18(1): 93-105.

[43] Cao Y, Chen Z, Zhu J, Yue P, Lin C, Yu Y. Leveraging

unlabeled data to scale blocking for record linkage. In Proc.

the 22nd International Joint Conference on Artificial In-

telligence, Jul. 2011, pp.2211-2217.

[44] Mayank K, Daniel P M. An unsupervised algorithm for

learning blocking schemes. In Proc. the 13th International

Conference on Data Mining, Dec. 2019, pp.340-349.

[45] O’Hare K, Jurek-Loughrey A, de Campos C. An unsuper-

vised blocking technique for more efficient record linkage.

Data & Knowledge Engineering, 2019, 122: 181-195.

[46] Ma Y T, Tran T. TYPiMatch: Type-specific unsupervised

learning of keys and key values for heterogeneous web data

integration. In Proc. the 6th ACM International Conference

on Web Search and Data Mining, Feb. 2013, pp.325-334.

[47] Kejriwal M, Miranker D P. A two-step blocking scheme

learner for scalable link discovery. In Proc. the 9th Interna-

tional Workshop on Ontology Matching Collocated with the

13th International Semantic Web Conference, Oct. 2014,

pp.49-60.

[48] Kejriwal M, Miranker D P. A DNF blocking scheme

learner for heterogeneous datasets. arXiv:1501.01694.

https://arxiv.org/abs/1501.01694, Jan. 2020.

[49] Papadakis G, Ioannou E, Niederée C, Palpanas T, Nejdl

W. To compare or not to compare: Making entity resolu-

tion more efficient. In Proc. the International Workshop on

Semantic Web Information Management, Jun. 2011, Arti-

cle No. 3.

[50] Papadakis G, Koutrika G, Palpanas T, Nejdl W. Meta-

blocking: Taking entity resolution to the next level. IEEE

Transactions on Knowledge and Data Engineering, 2013,

26(8): 1946-1960.

[51] Ferragina P, Grossi R. The string B-tree: A new data struc-

ture for string search in external memory and its applica-

tions. Journal of the ACM, 1999, 46(2): 236-280.

[52] Christen P. Towards parameter-free blocking for

scalable record linkage. Technical Report, Faculty

of Engineering and Information Technology, 2007.

http://users.cecs.anu.edu.au/˜Peter.Christen/publications

/tr-cs-07-03.pdf, March 2020.

[53] Madhavan J, Jeffery S R, Cohen S, Dong X L, Ko D, Yu C,

Halevy A. Web-scale data integration: You can only afford

to pay as you go. In Proc. the 3rd Biennial Conference on

Innovative Data Systems Research, Jan. 2007, pp.342-350.

[54] Papadakis G, Palpanas T. Blocking for large-scale entity

resolution: Challenges, algorithms, and practical examples.

In Proc. the 32nd International Conference on Data Engi-

neering, May 2016, pp.1436-1439.

[55] Chaudhuri S, Chen B, Ganti V, Kaushik R. Example-driven

design of efficient record matching queries. In Proc. the 33rd

International Conference on Very Large Data Bases, Sept.

2007, pp.327-338.

[56] Papadakis G, Demartini G, Fankhauser P, Kärger P. The

missing links: Discovering hidden same-as links among a

billion of triples. In Proc. the 12th International Confe-

rence on Information Integration and Web-Based Applica-

tions and Services, Nov. 2010, pp.453-460.

792 J. Comput. Sci. & Technol., July 2020, Vol.35, No.4

[57] Winkler W E. Approximate string comparator search

strategies for very large administrative lists. Technical

Report, U.S. Census Bureau, 2005. http://citeseerx.ist.ps-

u.edu/viewdoc/download?doi=10.1.1.79.402&rep=rep1&t-

ype=pdf, March 2020.

[58] Valiant L G. A theory of the learnable. Communications of

the ACM, 1984, 27(11): 1134-1142.

[59] Suchanek F M, Abiteboul S, Senellart P. PARIS: Proba-

bilistic alignment of relations, instances, and schema. Pro-

ceedings the VLDB Endowment, 2011, 5(3): 157-168.

[60] Papadakis G, Svirsky J, Gal A, Palpanas T. Comparative

analysis of approximate blocking techniques for entity reso-

lution. Proceedings the VLDB Endowment, 2016, 9(9): 684-

695.

[61] Jonker R, Volgenant T. Improving the Hungarian assign-

ment algorithm. Operations Research Letters, 1986, 5(4):

171-175.

[62] Verikas A, Gelzinis A, Bacauskiene M. Mining data with

random forests: A survey and results of new tests. Pattern

Recognition, 2011, 44(2): 330-349.

[63] Bilke A, Naumann F. Schema matching using duplicates.

In Proc. the 21st International Conference on Data Engi-

neering, Apr. 2005, pp.69-80.

[64] Papadakis G, Papastefanatos G, Palpanas T, Koubarakis

M. Scaling entity resolution to large, heterogeneous data

with enhanced meta-blocking. In Proc. the 19th Interna-

tional Conference on Extending Database Technology, Mar.

2016, pp.221-232.

[65] Fisher J, Christen P, Wang Q, Rahm E. A clustering-based

framework to control block sizes for entity resolution. In

Proc. the 21st International Conference on Knowledge Dis-

covery and Data Mining, Aug. 2015, pp.279-288.

[66] Whang S E, Menestrina D, Koutrika G, Theobald M,

Garcia-Molina H. Entity resolution with iterative blocking.

In Proc. the International Conference on Management of

Data, Jun. 2009, pp.219-232.

[67] Shu L, Chen A, Xiong M, Meng W. Efficient SPectrAl

Neighborhood blocking for entity resolution. In Proc. the

27th International Conference on Data Engineering, Apr.

2011, pp.1067-1078.

[68] Shi J, Malik J. Normalized cuts and image segmentation.

IEEE Transactions on Pattern Analysis and Machine In-

telligence, 2000, 22(8): 888-905.

[69] Christen P, Gayler R, Hawking D. Similarity-aware index-

ing for real-time entity resolution. In Proc. the 18th ACM

Conference on Information and Knowledge Management,

Nov. 2009, pp.1565-1568.

[70] Ramadan B, Christen P, Liang H, Gayler R W, Hawking

D. Dynamic similarity-aware inverted indexing for real-time

entity resolution. In Proc. the 2013 PAKDD Workshop on

Data Mining Applications in Industry and Government,

Apr. 2013, pp.47-58.

[71] Ramadan B, Christen P. Forest-based dynamic sorted

neighborhood indexing for real-time entity resolution. In

Proc. the 23rd International Conference on Information

and Knowledge Management, Nov. 2014, pp.1787-1790.

[72] Ramadan B, Christen P, Liang H, Gayler R W. Dynamic

sorted neighborhood indexing for real-time entity resolu-

tion. Journal of Data and Information Quality, 2015, 6(4):

Article No. 15.

[73] Rice S V. Braided AVL trees for efficient event sets and

ranked sets in the SIMSCRIPT III simulation programming

language. In Proc. the 2007 Western Multiconference on

Computer Simulation, Jan. 2007, pp.150-155.

[74] Ramadan B, Christen P. Unsupervised blocking key se-

lection for real-time entity resolution. In Proc. the 19th

Pacific-Asia Conference on Knowledge Discovery and Data

Mining, May 2015, pp.574-585.

[75] Liang H, Wang Y, Christen P, Gayler R. Noise-tolerant ap-

proximate blocking for dynamic real-time entity resolution.

In Proc. the 18th Pacific-Asia Conference on Knowledge

Discovery and Data Mining, May 2014, pp.449-460.

[76] Benjelloun O, Garcia-Molina H, Menestrina D, Su Q,

Whang S E, Widom J. Swoosh: A generic approach to en-

tity resolution. The VLDB Journal, 2009, 18(1): 255-276.

[77] Araújo B T, Stefanidis K, Pires C E S, Nummenmaa

J, da Nóbrega P T. Incremental blocking for entity

resolution over web streaming data. In Proc. the 2019

IEEE/WIC/ACM International Conference on Web Intel-

ligence, Oct. 2019, pp.332-336.

[78] Ebraheem M, Thirumuruganathan S, Joty S, Ouzzani M,

Tang N. Distributed representations of tuples for entity res-

olution. Proc. the VLDB Endowment, 2018, 11(11): 1454-

1467.

[79] Mudgal S, Li H, Rekatsinas T, Doan A, Park Y, Krishnan

G, Deep R, Arcaute E, Raghavendra V. Deep learning for

entity matching: A design space exploration. In Proc. the

2018 International Conference on Management of Data,

Jun. 2018, pp.19-34.

[80] di Cicco V, Firmani D, Koudas N, Merialdo P, Srivastava D.

Interpreting deep learning models for entity resolution: An

experience report using LIME. In Proc. the 2nd Interna-

tional Workshop on Exploiting Artificial Intelligence Tech-

niques for Data Management, Jul. 2019, Article No. 8.

[81] Papenbrock T, Heise A, Naumann F. Progressive duplicate

detection. IEEE Transactions on Knowledge and Data En-

gineering, 2014, 27(5): 1316-1329.

[82] Whang S E, Marmaros D, Garcia-Molina H. Pay-as-you-

go entity resolution. IEEE Transactions on Knowledge and

Data Engineering, 2012, 25(5): 1111-1124.

[83] Altowim Y, Kalashnikov D V, Mehrotra S. Progressive ap-

proach to relational entity resolution. Proc. the VLDB En-

dowment, 2014, 7(11): 999-1010.

[84] Altowim Y, Mehrotra S. Parallel progressive approach to

entity resolution using MapReduce. In Proc. the 33rd IEEE

International Conference on Data Engineering, Apr. 2017,

pp.909-920.

[85] Bhattacharya I, Getoor L. Collective entity resolution in re-

lational data. ACM Transactions on Knowledge Discovery

from Data, 2007, 1(1): Article No. 5.

[86] Globerson A, Lazic N, Chakrabarti S, Subramanya A,

Ringaard M, Pereira F. Collective entity resolution with

multi-focal attention. In Proc. the 54th Annual Meeting of

the Association for Computational Linguistics, Aug. 2016.

[87] Kouki P, Pujara J, Marcum C, Koehly L, Getoor L. Col-

lective entity resolution in familial networks. In Proc. the

2017 IEEE International Conference on Data Mining, Nov.

2017, pp.227-236.

Bo-Han Li et al.: A Survey on Blocking Technology of Entity Resolution 793

[88] de Assis Costa G, de Oliveira J M P. A relational learn-

ing approach for collective entity resolution in the web of

data. In Proc. the 5th International Workshop on Consum-

ing Linked Data Co-Located with the 13th International Se-

mantic Web Conference, Oct. 2014.

[89] Kouki P, Pujara J, Marcum C, Koehly L, Getoor L. Collec-

tive entity resolution in multi-relational familial networks.

Knowledge and Information Systems, 2019, 61(3): 1547-

1581.

[90] Wang J, Kraska T, Franklin M J, Feng J. CrowdER:

Crowdsourcing entity resolution. arXiv:1208.1927, 2012.

http://arxiv.org/abs/1208.1927, Aug. 2018.

[91] Vesdapunt N, Bellare K, Dalvi N. Crowdsourcing algo-

rithms for entity resolution. Proc. the VLDB Endowment,

2014, 7(12): 1071-1082.

[92] Gong S S, Hu W, Ge W Y, Qu Y Z. Modeling topic-based

human expertise for crowd entity resolution. Journal of

Computer Science and Technology, 2018, 33(6): 1204-1218.

[93] Zhang A Z, Li J Z, Gao H, Chen Y B, Ma H Z, Bah M

J. CrowdOLA: Online aggregation on duplicate data pow-

ered by crowdsourcing. Journal of Computer Science and

Technology, 2018, 33(2): 366-379.

[94] Mazumdar A, Saha B. A theoretical analysis of first heuris-

tics of crowdsourced entity resolution. In Proc. the 31st

AAAI Conference on Artificial Intelligence, Feb. 2017,

pp.970-976.

[95] Chai C, Li G, Li J, Deng D, Feng J. A partial-order-based

framework for cost-effective crowdsourced entity resolution.

The VLDB Journal, 2018, 27(6): 745-770.

[96] Maskat R, Paton N W, Embury S M. Pay-as-you-go con-

figuration of entity resolution. Transactions on Large-Scale

Data-and Knowledge-Centered Systems, 2016, 29: 40-65.

[97] Li H, Konda P, G.C. P S, Doan A, Snyder B, Park, Y,

Krishnan G, Deep R, Raghavendra V. MatchCatcher: A

debugger for blocking in entity matching. In Proc. the 21st

International Conference on Extending Database Techno-

logy, Mar. 2018, pp.193-204.

[98] Papadakis G, Giannakopoulos G, Niederée C, Palpanas T,

Nejdl W. Detecting and exploiting stability in evolving hete-

rogeneous information spaces. In Proc. the 11th Annual

International ACM/IEEE Joint Conference on Digital Li-

braries, Jun. 2011, pp.95-104.

Bo-Han Li received his Ph.D. degree

in computer application from Harbin

University of Science and Technology,

Harbin, in 2009. He is currently an

associate professor at the College of

Computer Science and Technology of

Nanjing University of Aeronautics and

Astronautics (NUAA), Nanjing. His

current research interests include spatiotemporal database,

recommendation system, sentiment analysis, etc. He is a

member of CCF and ACM.

Yi Liu received his B.E. degree in

computer science and technology from

Nanjing Normal University, Nanjing, in

2019. Now he is a Master student of

Nanjing University of Aeronautics and

Astronautics, Nanjing. His research is

about artificial intelligence, knowledge

graph and spatio-temporal data mining.

He is a student member of CCF.

An-Man Zhang received her B.E.

degree in information management

and information system from Jiangsu

University of Technology, Changzhou,

in 2017. Now she is a Master student of

Nanjing University of Aeronautics and

Astronautics, Nanjing. Her research is

about social network, text sentiment

analysis and crowdsourcing. She is a student member of

CCF.

Wen-Huan Wang received her B.E.

degree in information management

and information system from Jiangsu

University of Technology, Changzhou,

in 2018. Now she is a Master student of

Nanjing University of Aeronautics and

Astronautics, Nanjing. Her research is

about social network, text sentiment

analysis and knowledge graph. She is a student member of

CCF.

Shuo Wan received his B.E. degree

in computer science and technology from

East China Jiaotong University, Nan-

chang, in 2017. Now he is a Master

student of Nanjing University of Aero-

nautics and Astronautics, Nanjing. His

research interests are sentiment analysis

and spatio-temporal data mining. He is

a student member of CCF.

	1 Introduction
	2 Preliminary and Overview
	2.1 Definition
	2.1.1 Entity Resolution
	2.1.2 Blocking

	2.2 Taxonomy
	2.3 Evaluation Measures

	3 Techniques for Blocking Construction
	3.1 Rule-Based Techniques
	3.1.1 Structured Data
	3.1.2 Non-Structured data

	3.2 Machine Learning (ML) Based Techniques
	3.2.1 Supervised Learning with Structured Data
	3.2.2 Unsupervised Learning with Structured data
	3.2.3 Unsupervised Learning with Non-Structured Data

	4 Technique for Blocking Optimization
	4.1 Block Refinement
	4.1.1 Static Methods
	4.1.2 Dynamic Methods

	4.2 Comparison Refinement
	4.2.1 Comparison Propagation
	4.2.2 Comparison Pruning
	4.2.3 Meta-Blocking
	4.2.4 Canopy Clustering
	4.2.5 Spectral Neighborhood (SPAN)

	5 Direction and Trend
	5.1 Blocking for Real-Time ER
	5.2 Blocking for Incremental ER
	5.3 Work for the Overall ER

	6 Conclusions

