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Abstract Mining from simulation data of the golden model in hardware design verification is an effective solution to

assertion generation. While the simulation data is inherently incomplete, it is necessary to evaluate the truth values of

the mined assertions. This paper presents an approach to evaluating and constraining hardware assertions with absent

scenarios. A Belief -failRate metric is proposed to predict the truth/falseness of generated assertions. By considering both

the occurrences of free variable assignments and the conflicts of absent scenarios, we use the metric to sort true assertions

in higher ranking and false assertions in lower ranking. Our Belief-failRate guided assertion constraining method leverages

the quality of generated assertions. The experimental results show that the Belief-failRate framework performs better than

the existing methods. In addition, the assertion evaluating and constraining procedure can find more assertions that cover

new design functionality in comparison with the previous methods.
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1 Introduction

In the domain of verifying integrated circuit, func-

tional correctness is the essential requirement. Tra-

ditionally, simulation and formal verification are the

main ways of functional verification. Simulation is a

relatively mature and widely-used method in industry

applications, but cannot perform complete verification.

Formal verification, which can perform complete veri-

fication, requires a complete assertion set to cover the

design’s functionality. If the assertion set is incomplete,

more assertions should be generated. Consider the de-

sign that counts the occurrence of logic 1 within four

continuous inputs of a primary input. The output is 1

if there are at least two logic 1s; otherwise, the output

is zero, i.e., O = (a ∨Xa) ∧ (X2a ∨X3a) ∨ (a ∧Xa) ∨

(X2a ∧X3a), where a is the one-bit input and O is the

output. An assertion set







A1 : (a = 0) ∧X (a = 0) ∧X2 (a = 0) →
X3 (O = 0) ,

A2 : (a = 1) ∧X2 (a = 1) → X3 (O = 1) ,







asserts that 1) starting from any instant, the output O

is definitely logic 0 in the fourth cycle if there are three

continuous 0s of input variable a, and 2) logic 1 in the

first cycle and the third cycle will lead to an output of

logic 1 in the fourth cycle. It is obvious that the asser-

tion set misses many possible input sequences. That is,

it is an incomplete set and more assertions are essential.
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Assertion generation can be achieved by man-

ual written or automatic generation. Writing a

complete assertion set manually requires a large

amount of time and extensive expert knowledge. Re-

cently, researchers have explored to generate assertions

automatically [1–12]. Automatic generation of assertions

can be divided into two categories: static analysis and

dynamic generation from simulation traces. The first

category performs static analysis on design codes, and

then the results of the static analysis are transformed

into assertions. Static analysis needs much design in-

formation, and the format of assertions which can be

generated is limited. The second category adopts the

mining algorithms to generate assertions from simula-

tion traces of the golden model of the hardware design

under verification (DUV). The assertion generation pro-

cess can be totally automatic and can provide a great

number of assertions with a wide diversity.

However, as it is hard to get complete simulation

data, the generated assertions may be false for the de-

sign. For example, a simulation trace of the above ex-

ample can be expanded by four cycles (equal to the

depth of the design, which is the largest number of cy-

cles needed to traverse each reachable state) and the

resulted simulation trace is shown in Table 1 (a, [1]a,

[2]a and [3]a represent the variable at cycle delay 0, 1,

2 and 3 respectively).

Table 1. Example Simulation Trace

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11

a 1 1 1 1 0 1 1 0 0 0 0

[1]a 1 1 1 0 1 1 0 0 0 0 1

[2]a 1 1 0 1 1 0 0 0 0 1 0

[3]a 1 0 1 1 0 0 0 0 1 0 0

O 1 1 1 1 1 1 0 0 0 0 0

From the incomplete simulation trace, an assertion

set can be generated for the design, as shown in Ta-

ble 2. Although all assertions are assured to have no

conflict with the simulation trace, assertions A2, A3,

A4, A5 andA7 are true assertions and A1 andA6 are

false assertions. Thus, the generated assertions should

be further verified to assure truthfulness. Accordingly,

the true/false judgment or quality evaluation of auto-

matically generated assertions is essential for dynamic

assertion generation.

Table 2. Generated Assertions from the Example Trace

ID Assertion

A1 (a = 0) ∧ ([3]a = 1) → (O = 0)

A2 (a = 0) ∧ ([3]a = 0) ∧ ([1]a = 0) → (O = 0)

A3 (a = 0) ∧ ([3]a = 0) ∧ ([1]a = 1) ∧ ([2]a = 0) → (O = 0)

A4 (a = 0) ∧ ([3]a = 0) ∧ ([1]a = 1) ∧ ([2]a = 1) → (O = 1)

A5 (a = 1) ∧ ([2]a = 1) → (O = 1)

A6 (a = 1) ∧ ([2]a = 0) ∧ ([1]a = 0) → (O = 0)

A7 (a = 1) ∧ ([2]a = 0) ∧ ([1]a = 1) → (O = 1)

Formal verification has been the main approach to

verifying the truth/falseness of assertions for a long

time. There are many mature formal verification

tools, including Verification Interacting with Synthe-

sis (VIS) 1○, ABC 2○, Cadence Incisive Formal Verifier

(IFV) 3○, etc. These tools traverse the finite state ma-

chine (FSM) of the design to check the true/false of the

assertion on all reachable states of FSM. If the asser-

tion is true in all reachable states, it is a true assertion

for the design. Otherwise, it is false. While formal

verification can give exact results, the traverse of FSM

may lead to state exploration problem and need a large

amount of time, which limits the design size it can be

applied to. As for the verification of the automatically

generated assertion set, which contains a great num-

ber of assertions, the time consumption and the de-

sign size limitation of formal verification are even obvi-

ous. Recently, some coarse methods which aim at the

evaluation of automatically generated assertions have

been presented [5, 16, 17]. Most of these metrics count

the frequency of assertions in simulation data, and eva-

luate assertions by some mathematical formulas of the

counted frequency. Compared with the formal verifi-

cation, this kind of methods can give faster evaluation

results, but with a lower accuracy.

From the further observation of the example above,

it can be learned that the false assertion A1 covers the

simulation instant t9 and is generated because of the

absent scenarios {01, 10, 11} of free variables [1]a and

[2]a. For instance, if there is an instant t12, with varia-

ble combination {a = 0, [1]a = 1, [2]a = 1, [3]a = 1},

assertion A1 will not be generated. However, generat-

ing such simulation instants for all assertions is equal

to the generation of a complete simulation trace, which

is impossible. A replacement strategy is to find many

approximate instants from the existing simulation data

1○https://ptolemy.berkeley.edu/projects/embedded/research/vis/index.html, Sept. 2020.
2○https://people.eecs.berkeley.edu/∼alanmi/abc/, Sept. 2020.
3○https://www.cadence.com/content/cadence-www/global/en US/home/tools/system-design-and-verification/formal-and-static-

verification/incisive-formal-verification-platform.html, Sept. 2020.
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to approximate such missing simulation instants. That

is, we collect absent scenarios {01, 10, 11} of free vari-

ables [1]a and [2]a in the whole trace to approximate

the missing combinations {a = 0, [1]a = 0, [2]a = 1,

[3]a = 1}, {a = 0, [1]a = 1, [2]a = 0, [3]a = 1}, and

{a = 0, [1]a = 1, [2]a = 1, [3]a = 1}. Instants t1 − t6,

t10 and t11 are collected and six eighths of them have a

conflict output with assertion A1. Thus, we refer that

the assertion A1 has a high possibility to be falsified

by absent scenarios and it needs to be constrained to

develop a new true assertion.

Driven by the intuition above, we extend our pre-

vious work [15] in this paper and propose an improved

hardware assertion evaluation and constraining frame-

work, which is guided by finding the absent scenarios

in the whole simulation trace. There are two main im-

provements. First, we optimize the workflow by adding

a threshold TB of Belief value, which enables the new

flow to combine the advantage of the Belief metric and

the failRate metric to make better evaluation. Sec-

ond, we expand the application of the proposed Belief -

failRate metric from coarse-grain assertion evaluation

(true or false) to assertions ranking.

The improved Belief-failRate framework uses the

frequency of conflict absent scenarios, i.e., absent free

variable assignment combinations of free variables, to

perform the true/false evaluation of mined assertions.

Firstly, we compute the Belief value [14] for each asser-

tion, which quantifies the occurrence of free variable as-

signments under the assertion. Secondly, for the absent

scenarios of an assertion, we count their occurrences

in other simulation instants which are conflicted with

the assertion. The ratio of conflict occurrence count to

their total occurrence count in other simulation instants

is computed as failRate [15]. A high failRate means that

absent scenarios may falsify the assertion while a low

failRate indicates that the absence of some assignments

has no influence on the assertion. Under this Belief-

failRate framework, all assertions can be evaluated. For

the cases where most assertions are true, the ranking

results of assertions by their Belief -failRate values are

similar to those by existing ranking methods, which in-

dicates that the Belief -failRate metric can work as

a ranking method as well. Moreover, a Belief-failRate

guided method for constraining assertions is given to

improve the quality of assertion generation. Experi-

mental results show that the proposed Belief-failRate

framework can predict the truth/falseness of assertions

more reasonably, and the Belief-failRate guided asser-

tion constraining procedure generates assertions that

have a high possibility to be true.

Return to the example in Table 1. Although no in-

consistency exists between the assertions and the simu-

lation trace, potential inconsistency can be found for

assertions A1–A7 by computing its Belief -failRate

value. As a result, assertions A1 and A7 are given lower

rankings and evaluated as false. To cover the missed

subspace indicated by the false assertions A1 and A7,

constraining is performed by adding the proposition of

free variables [1]a, [2]a and [3]a, respectively. Finally,

a new complete assertion set can be generated.

The rest of the paper is organized as follows. Sec-

tion 2 presents related work of assertions generation and

evaluation. Section 3 gives the workflow of the proposed

Belief-failRate framework and the guided assertion con-

straining procedure. Section 4 shows the experimental

results and conclusions are given in Section 5.

2 Related Work

The generation and the quality evaluation of asser-

tions are an important part of the functional verifica-

tion of integrated circuits. In this section, some asser-

tion generation and evaluation methods are introduced.

2.1 Automatic Assertion Generation

Vasudevan et al. [1, 2] proposed GoldMine, an asser-

tion generation methodology using a binary decision

tree based supervised learning algorithm. GoldMine

contains four steps: simulation data generation, static

analysis, assertion generation, and assertion verification

and evaluation. Simulation data can be achieved by

the directed or random simulation of the golden de-

sign. Static analysis is responsible for finding the cone

influence of each target variable, to reduce the search

space of assertion generation. Assertion generation can

be achieved by searching engines using different cate-

gory algorithms in machine learning. The generation

methodology using the binary decision tree algorithm

was implemented as the tree engine of GoldMine. Gene-

rated assertions will be verified on the golden design by

the formal tool IFV and the true part should be further

evaluated to estimate the effectiveness of the assertion

generation algorithm.

Following this work, the group proposed a coverage

guided assertion generation method [3], implemented as

the coverage engine of GoldMine. This method gene-

rates assertions that can cover 50% input space firstly

and they are verified to retain true assertions only.

Then, assertions that can cover 25% input space, 12.5%
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input space, . . . , will be generated in each loop, un-

til the covered input space of assertions generated in

current loop is lower than the input space threshold

gthreshold. The method prefers to generating short as-

sertions first and increasing the length of assertions step

by step, until the specified threshold is achieved. As the

formal verification tool IFV is integrated to check as-

sertions generated in each step, verification overhead is

unavoidably time-consuming. To generate assertions in

word level rather than in bit level, the group proposed

another improved method [4] which considers only pri-

mary inputs and primary outputs. From the design

code at the register transfer level (RTL), the dynamic

weakest preconditions of the target can be computed.

Then, concreate simulation paths can be generated and

assertions can be achieved by the reverse replacement

of variables in these paths. As the generated assertions

may be over-constrained or invalid, further checks for

conflict propositions need to be performed to remove

redundant propositions.

Chang and Wang [5] proposed a time window and

support-confidence based assertion mining algorithm.

The support of an assertion is defined as the frequency

of the assertion in the simulation trace, and the confi-

dence of an assertion is the percentage of the support of

the assertion to the support of its antecedent. By set-

ting the thresholds of support and confidence, the sim-

ulation trace can be split into slices of time windows.

Frequent patterns in each slice can be found and used to

generate implication relations, and relations that satisfy

the thresholds of support and confidence are the final

assertion set.

Bertasi et al. [6] proposed an assertion extraction

method that extends the format of assertions to arith-

metic expression or logical expression. An assertion is

the implication formula of its antecedent and conse-

quent. The antecedent is one of the frequent proposi-

tions learned by the tool Daikon [16], while the conse-

quent is generated from the corresponding ST trace (a

slice of simulation trace which can contain discontinu-

ous simulation instant). This extraction is independent

of the design model, and it works on designs at gate

level, RTL, system level or even for embedded software.

Danese et al. [7] proposed to generate temporal as-

sertions of specified formats, i.e., Next, N-next, Un-

til, Alternating, Next or, N-next or andUntil or. First,

cone of influence (COI) information from the static ana-

lysis is used to split simulation trace into time windows.

Then, atomic propositions in all time windows are col-

lected and combined to generate possible propositions.

Finally, propositions can be further combined to con-

struct temporal assertions. Hereafter, the authors ext-

ended the concept of the time window to input time

window and output time window [8], and assertions can

be generated as the implication relation between propo-

sitions in the input time window and the output time

window. The method has been applied to the gene-

ration of power state machine (PSM) [9]. By mapping

assertions switching to transitions of the PSM and as-

sertions to states of the PSM, the PSM can be estab-

lished along with the generation of assertions.

For gate-level arithmetic circuits, Ciesielski et al. [10]

proposed a method to extract the polynomial function

of the design. The method divides all internal vari-

ables into different layers according to their distances

to input (output), expressed as l1, l2, . . ., ln respectively.

As a result, each variable in layer li can be expressed

as a polynomial function of variables in li−1. Firstly,

primary outputs (POs) are expressed by the function

of variables in ln. Then, all variables in ln can be re-

placed by their polynomial expressions of variables in

ln−1. The replacement continues until the primary out-

puts are expressed by polynomial functions of variables

in l1. Finally, all variables in l1 can be replaced by their

polynomial functions of primary inputs (PIs). At last,

POs are expressed as polynomial functions of PIs, i.e.,

the polynomial function of the circuit is achieved.

Hanafy et al. [11, 12] proposed a Breadth-First Deci-

sion Tree (BF-DT) based algorithm for assertion gene-

ration. Instead of splitting each node by one variable,

as used in the tree engine of GoldMine, this method

tries all possible variables to split the search space until

an assertion is generated along a current branch or the

corresponding space has been searched. This method

prefers to short assertions and all possible assertions

will be generated. As an exhausting searching method,

the runtime is long even for small designs.

For all the above assertion generation methods, the

true/false of the assertions are influenced by the com-

pleteness of the simulation data. When the simulation

is far from complete, many false assertions may be gene-

rated. Therefore, the generated assertions should be

further verified on the golden design and evaluated to

filter out the false part.

2.2 Assertion Evaluation

There has been much work on the evaluation of true

assertions. Hoskote et al. [17] defined an evaluation met-

ric based on covered states. Given FSM M , a true as-

sertion P , and a set of reachable states of FSM, S, the
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covered states of P are the subset of S that is essential

for the true/false of P . That is, the values of observed

variables on all states in the subset must be checked

to decide the true/false of P . In other words, chang-

ing the value of each observe variable on any states in

the subset will falsify P while changing values of the

observed variables on any states outside the subset has

no influence on P . Following this definition, Jayakumar

et al. [18] and Chao et al. [19] presented two algorithms

to compute the covered set.

Haedicke et al. [20] evaluated the coverage of passed

assertions by dividing assertions into the safe part and

the unsafe part according to whether the assertions

have a dependence on internal signals. DUV is de-

scribed by a diagram and assertions using Computa-

tion Tree Logic (CTL). Given the assertion set and the

observed variable, uncovered scenarios are expressed by

traces of the diagram, and then transformed to traces

of signals. The coverage of the assertion set will be

the weighted sum of the coverage of safe assertions and

unsafe assertions.

For most generation methods, assertions are in the

form of A → C, where A is the antecedent and C is the

consequent. The meaning of such assertions is that in

any case, once A holds, C is true. The evaluation of

the generated assertions involves true/false judgment

and quality estimation.

Vasudevan et al. [1] proposed to use the value of

support-confidence to rank assertions, the same way as

Chang and Wang [5] did. The difference between them

is that the former uses the support-confidence metric

to rank assertions after assertion generation, while the

latter uses it to guide the generation process.

Ghasempouri and Pravadeli [13] proposed to eva-

luate the quality of generated assertions by establishing

a table based on the frequency of A, C, !A and !C. The

correlation coefficient of A and C can be computed ac-

cording to the table and used to rank assertions. Asser-

tions with higher correlation coefficients are in higher

rankings.

Mitra et al. [14] proposed a Belief value to evaluation

assertions. The Belief value of A → C is defined as the

percentage of free variable combinations covered by the

simulation trace that supports assertion A → C. Sim-

ilarly, assertions with a higher Belief value are consi-

dered as having a higher possibility to be true.

For all the evaluation methods of generated asser-

tions above, most of them can give a coarse result

quickly. However, it is still a challenge to improve the

accuracy of assertion evaluation. In this paper, we pro-

pose a framework named Belief-failRate to assess the

true/false of assertions. Addition to the Belief evalua-

tion, this metric takes the influence of absent scenar-

ios into consideration as well. First, the Belief value

as defined in [14] is computed. For assertions with a

high Belief value, it is considered as true. Otherwise,

a failRate value is computed to make further decision.

The failRate value of assertion A → C is defined as

the percentage of free variable combinations that occur

with !C. High failRate assertions are considered as false

while others as true. Moreover, a Belief-failRate guided

method for constraining assertions is given to improve

the quality of assertion generation.

3 Proposed Method

The workflow of the proposed Belief-failRate based

assertion evaluation and constraining framework is

shown in Fig.1. First, assertions are generated from

simulation traces of correct design using GoldMine [1].

Second, the Belief-failRate based evaluation is applied

to predict the truth/falseness of generated assertions.

Third, false assertions are further constrained to gene-

rate more true assertions.

3.1 Assertion Generation

The basic steps of assertion generation contain the

generation of simulation traces, feature collection using

category algorithms, and assertion generation. Traces

can be achieved by random or directed simulation of

the golden design. Category algorithms are used to col-

lect different features of different values of the output.

After the application of the category algorithm, asser-

tions can be learned from the information provided by

the category algorithm.

The proposed method is devoted to the evaluation

and constraining of temporal assertions mined from

simulation traces, while temporal assertions are mined

by expanding the simulation traces by the certain num-

ber of cycles. In this paper, we use GoldMine [1]

as a miner to generate temporal assertions. Gold-

Mine has four modes to generate assertions under diffe-

rent searching engines: tree [1, 2], forest, prism and

coverage [3]. The antecedent A is represented as A =

a0 ∧ Xa1 ∧ XXa2 ∧ · · · ∧ Xmam and the consequent

C as C = Xncn, where ai and cn (i = 0, 1, ...,m 6 n)

are propositions, and Xj represents a delay by j cycles.

Usually, n determines how many cycles the simulation

data should be expanded and is set by the user. The

value of m is determined in the process of assertion
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Fig.1. Workflow of the proposed framework.

generation by the cycles the propositions are used and

may be different from assertion to assertion. In our im-

plementation, we set n as the depth of the design to

allow the generation algorithms to generate more as-

sertions with inputs and the concerned variables. In

other cases when the depth of the design is too large, a

medium value of n is set and more assertions involving

middle variables may be generated, depending on the

generating strategy of GoldMine.

Although the assertions are in a simple formA → C,

they cover the minimum connection phrase {¬,∧},

which has the same expression ability as the most com-

plex semantics. With such assertions, verifiers are res-

cued from writing assertions from scratch and are al-

lowed to pay more attention on the vulnerable part of

the design.

Take the engine tree [1, 2] of GoldMine as an exam-

ple. The simulation trace is represented by a decision

tree, in which each node is a subset of the simulation

trace. In each loop, a splitting variable is used to split

one node into two child nodes until all outputs are the

same in the node. To select a suitable splitting varia-

ble, the mean value and the error value are computed

as the mean value of the output of the node and the

absolute deviation of each output from the mean of the

node. The gain of a splitting variable at a particular

node is the reduction in error between that node and

the child nodes produced when this feature variable is

used to split the data space. In each split, the varia-

ble that has the highest gain value is selected as the

splitting variable.

We use the example in Table 1 to explain the process

of assertion generation with the engine tree of Gold-

Mine. Using the tree engine of GoldMine, the process

of assertion generation is shown in Fig.2. Initially, the

total simulation data t1–t11 are represented as a root.

As the output has six logic 1s and five logic 0s, themean

value is (6 × 1 + 5 × 0)/11 = 6/11. The error value is

(|1− 6/11| × 6 + |0− 6/11| × 5)/11 = 0.496. To choose

a best splitting variable, all free variables are tried to

make a split. When a is tried, the simulation data is

split into subspace {a = 0: t5, t8–t11}, and subspace

{a = 1: t1–t4, t6, t7}. The output of the former sub-

space has one logic 1 and four logic 0s; thus the mean

value is (1 × 1 + 4 × 0)/5 = 1/5 and the error value is

(|1 − 1/5| × 1 + |0 − 1/5| × 4)/5 = 0.32. The output

of the latter subspace has five logic 1s and one logic 0;

thus the mean value is (5× 1 + 1× 0)/6 = 5/6 and the

error value is (|1− 5/6| × 5 + |0− 5/6| × 1)/6 = 0.278.

The gain of variable a at the root node is the error

reduction 0.496 − (0.32 + 0.278) = −0.102. If split

by variable [1]a, the mean and the error of subspace

{[1]a = 0: t4, t7–t10} are 1/5 and 0.32 respectively,

the mean and the error of subspace {[1]a = 1: t1–t3,

t5–t6, t11} are 5/6 and 0.278 respectively, thus the gain

is 0.496− (0.32+ 0.278) = −0.102. Similarly, the gains

of variable [2]a and [3]a at the root node are −0.264

and −0.369, respectively. As variables a and [1]a have

the highest gain value, either of them can be chosen as

the splitting variable of the root node. Here, we choose

variable a. After the splitting of the root node, the sub-

space which has an error value higher than zero is fur-
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ther split using other free variables, until all leaf nodes

have an error value equal to zero. Finally, the splitting

variables along each branch from the root node to a leaf

node can be combined to construct the antecedent of an

assertion, and the mean value of the corresponding leaf

node is the consequent of the assertion. The generated

assertion set is as shown in Table 2.

mean/⊳
error/⊲

mean/⊳
error/⊲

mean/⊳
error/⊲

mean/⊳
error/⊲

mean/⊳
error/⊲

mean/
error/

mean/
error/

mean/
error/

mean/
error/

mean/
error/

mean/
error/

mean/
error/

mean/⊳
error/⊲

a/

♭♯a/♭♯a/

♭♯a/♭♯a/

a/

♭♯a/♭♯a/

♭♯a/♭♯a/

♭♯a/♭♯a/

Fig.2. Process of assertion generation.

As the simulation trace is incomplete, the generated

assertions are not assured to be true. Thus, evaluation

is needed to get the true set of assertions.

3.2 Belief-failRate Framework

To reduce the time of formal verification for mined

assertions on the golden design, we introduce the Belief-

failRate method to evaluate the true/false of asser-

tions and constrain assertions that are evaluated as

false. Fig.3 shows the Belief-failRate evaluation and

constraining procedure. In the procedure, Pc is initial-

ized to the set of mined assertions to be measured. In

the evaluation phase, thresholds TB and TF are set

for the Belief value and the failRate value respectively.

For each assertion in Pc, if the Belief value is higher

than TB, we declare the assertion as true and add it to

the final set Pf . Otherwise, we compute failRate to

make a further TF estimation. A maximum failRate

threshold TF is set to help decide whether to constrain

an assertion or not. We consider only assertions with

failRate equal to or higher than TF as false and turn

to the constraining procedure.

Note the Belief value gives visible evidence of an

assertion to be true, while the failRate value indicates

possible evidence of an assertion to be false. The set-

ting of thresholds TB and TF enables the flexibility on

the weight of the two values in evaluating assertions. A

high TB indicates a strict visible evidence requirement,

under which assertions covering more free variable com-

binations are considered as true. A high TF indicates a

high tolerance of possible evidences of conflicts, i.e., an

 Belief-failRate EvaluationBelief-failRate Constraining 

Belief > TB⋆ 

failRate< TF ⋆

Output Pf YNProp pmax

A⇀ωPmax//null ⋆ 
N

TB ֒ TF Assertions Pc

Fetch A ®C

Free Variables

Combinations & Frequency 

N

Y

N

N

Y

N

Pc//null ⋆ 

Pc⊲push↼A⇀pmax® C）

Pc⊲push↼A⇀ωpmax® C）

Pc⊲push↼A⇀pmax® C）

Pf⊲push↼A® C）

Pf⊲push↼A⇀ωpmax® C）

Fig.3. Belief-failRate based evaluation and constraining procedure.
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assertion may be considered as true even though there

are many conflict absent scenarios.

The evaluation phase contains three steps. First,

the free variables of an assertion, on which Belief and

failRate are both based, are figured out. Then, the fre-

quencies of all possible free variable combinations in the

simulation trace, from which the assertions are mined,

are counted. Finally, the Belief and failRate values of

the assertion are computed according to their defini-

tions. Followings are the details of the computation of

the Belief and failRate values and their application to

predict the truth/falseness of assertions.

3.2.1 Computation of Belief

To quantify the confidence of mined assertions, Mi-

tra et al. [14] proposed the metric of Belief. The as-

sertions under evaluation are in the form of A → C.

Assume that FA→C = {v1, v2, . . ., vn} is the set of free

variables of A → C (that is, variables that are not oc-

curred in A → C), the set of possible assignments for vi
is expressed as values (vi). We define Assign (FA→C)

as the set of all possible assignment combinations of

free variables in A → C.

Assign (FA→C)
∆
= values (v1) × values (v2) × · · · ×

values (vn).

Let T represent the simulation trace, TA→C repre-

sent the set of different episodes (while an episode repre-

sents the trace data in one cycle) that A → C holds, and

TA→C represents the set of sub-episodes (sub-episode

is a subset of the trace data in one cycle) obtained

by retaining only assignments on free variables of each

episode in TA→C . We define posAssign (FA→C) as the

set of assignment combinations of free variables covered

in TA→C .

posAssign (FA→C) = {si|si ∈ Tv ∩ Assign (FA→C)} .

Belief is defined as the percentage of covered free

variable assignments.

Belief (A → C) =
|posAssign (FA→C)|

|Assign (FA→C)|
.

Belief reflects the possibility of an assertion to be

true and it is closely related to the completeness of the

simulation trace. When Belief of an assertion equals

1, i.e., all free variable assignment combinations are

occurred, the assertion is definitely true. However, if

Belief is lower than 1, absent scenarios may falsify the

assertion even when the Belief value is relatively high.

3.2.2 Computation of Belief-FailRate

In practical applications, the complete simulation

trace is almost impossible to achieve. Or even, in most

cases, the simulation trace is far from complete. Under

such a case, the effectiveness of evaluating assertions

using Belief is low. We tackle this problem using a

metric called Belief-failRate. By taking the occurrence

of absent scenarios in episodes outside the assertions

into consideration, more information of the trace can

be used to make a decision.

Still, the Belief value of an assertion is computed.

If Belief equals 1, the assertion is definitely true. Oth-

erwise, for the case that Belief is lower than 1, failRate

is computed to measure the influence of missing assign-

ments on the truth of the assertion.

We define negAssign (FA→C) as the set of assign-

ments combinations of free variables not covered in

TA→C .

negAssign (FA→C)

= Assign (FA→C)− posAssign (FA→C) .

Based on the definition of negAssign (FA→C),

failRate (A → C) can be defined as the fraction of

negAssign (FA→C) that has an output conflict with C.

failRate (A → C)

=

∑

si∈negAssign(FA→C) support (si) |T!C
∑

si∈negAssign(FA→C) support (si) |T
.

Actually, failRate quantifies the influence of miss-

ing free variable assignments on the output. High

failRate means that the missing assignments have a

high possibility of occurrence along with a conflict out-

put, which will falsify the assertion. Low failRate in-

dicates that the missing assignments will not change

the output and the truth of the assertion will not be

influenced by missing assignments.

Based on the definition of the Belief -failRatemet-

ric, the evaluation phase computes the Belief value of

the assertion to be verified first. If Belief is higher than

threshold TB, the assertion is predicted as true. Oth-

erwise, the failRate value of the assertion is computed.

If the failRate value is lower than threshold TF, the as-

sertion is predicted as true. Otherwise, the assertion is

predicted as false. This evaluation method also gives

rankings to assertions as follows: the assertions whose

Belief values are higher than TB stay at the top of the

ranking list and are ranked using their Belief values,

while those that have Belief values lower than TB stay
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at the bottom of the ranking list and are further ranked

using their failRate values.

Going back to the example in Table 1. Assume that

the threshold of Belief and failRate are both 1/2. For

assertion A1, the free variable set is {[1]a, [2]a} and the

number of all possible assignment combinations of free

variables [1]a and [2]a is 2×2 = 4. The only simulation

episode covered by A1 is t9 and only one free variable

assignment combination is covered by these episodes.

Thus, Belief(A1) = 1/4. For assertion A2, the free

variable set is {[2]a} and the number of all possible

combinations of free variables [2]a is 21 = 2. The cov-

ered episodes of A2 are t8 and t10 and two free varia-

ble assignment combinations are occurred. Thus, Be-

lief (A2) = 2/2 = 1. For assertions A3 and A4, the free

variable set is { } and the number of all possible combi-

nations of free variables is 20 = 1. The covered episode

of A3 and A4 is t11 and t5, respectively, and one free

variable assignment combination is occurred. Thus, Be-

lief (A3) = 1/1 = 1, Belief (A4) = 1/1 = 1. For asser-

tion A5, the free variable set is {[1]a, [3]a} and the num-

ber of all possible combinations of free variables [1]a and

[3]a is 22 = 4. The covered episodes of A5 include t1–t2

and t4, i.e., three free variable assignment combinations

are occurred. Thus, Belief (A5) = 3/4. The free varia-

ble set of assertion A6 is {[3]a} and the covered episode

is t7. As one free variable assignment combination is

occurred, Belief (A6) = 1/2. Similarly, the free variable

set of assertion A7 is {[3]a} and the covered episodes

are t3 and t6. As two free variable assignment combi-

nations are occurred, Belief (A7) = 2/2 = 1.

As the Belief values of A2, A3, A4, A5 and A7 are

bigger than the threshold, they are predicted as true.

For other assertions which have Belief values lower than

the threshold, the failRate values are computed for fur-

ther decision. For assertion A1, the absent scenarios

are {[1]a ∧ [2]a} = {01, 10, 11} and they are covered

by t1–t6 and t10–t11. Among eight output of t1–t6 and

t10–t11, six of them are in conflict with the output of

A1. Thus, failRate (A1) = 6/8. For assertion A6, the

absent scenario is {[3]a} = {1} and it is covered by t1,

t3–t4 and t9. Among four output of t1, t3–t4 and t9,

three of them are in conflict with the output of A6.

Thus, failRate (A6) = 3/4. As the threshold of the fail-

Rate value is 1/2, assertions A1 and A6 are predicted

as false.

In practical applications, the free variable set consi-

dered in assertion evaluation can include only a subset

of all free variables to save computation overhead. Vari-

ables can be divided into control variables and data

variables, which can be tackled in different ways. As

control variables play essential roles in driving the state

transitions of the design, all of them are added to the

free variable set immediately. On the other hand, as

data variables are tender to have weak influence on

transition, we retain only data variables that occur in

some antecedents to the free variable set. This strat-

egy of selecting free variables allows a more convincing

computation result of Belief and failRate.

3.2.3 Constraining Assertions

After the evaluation of assertions, a constraining

procedure is proposed for high failRate assertions, in

order to increase the possibility of their subsets to pass

the design. Algorithm 1 shows the workflow of the

Belief-failRate evaluation and constraining procedure.

In the algorithm, Pc refers to the mined assertions to

be measured, T refers to the simulation trace, and V

refers to the variables of the design.

Algorithm 1. Evaluation and Constraining

procedure AssEvaAndConst (V , T , Pc, TB, TF )

1: Pf ← ∅

2: while Pc! = ∅:

3: A→ C = Pc.pop()

4: belief = Belief(A→ C)

5: if belief > TB :

6: Pf .push(A→ C)

7: continue

8: failrate← failRate(A→ C)

9: if failrate > TF :

10: pmax = {p|max{Tp
⋂

TA→C}, p ∈
atomic props of V }

11: Tmax = Tpmax∗A

12: Pc.push(A ∗ pmax → C)

13: if Tmax < TA→C :

14: Pc.push(A∗!pmax → C)

15: else:

16: Pf .push(A∗!pmax →!C)

17: else:

18: Pf .push(A→ C)

19: return Pf

The constraining procedure involves two steps.

First, an atomic proposition pmax is identified, which

has the maximum intersection with the assertion A →

C in the simulation trace, i.e., {p|max {Tp ∩ TA→C}}.

Adding constraint pmax to A → C will lead to a new

assertion A ∗ pmax → C. As A is split by pmax and

!pmax, the consequent of A∗!pmax is to be determined.

If !pmax has no intersection with A → C, a new as-

sertion which predicts the absent scenario A∗!pmax will
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lead to a proposition when a negative C is generated.

Otherwise, assertion A∗!pmax → C is added to Pc for

further evaluation.

Return to the example in Table 1 again. For as-

sertion A1, proposition {pmax: [3]a = 0} is found, two

new assertions A8: (a = 0) → ([3]a = 1) ∧ ([1]a = 0)

→ (O = 0) and A9: (a = 0) ∧ ([3]a = 1) ∧ ([1]a = 1) →

(O = 0) are generated. For assertion A8, the free varia-

ble set is {[2]a} and the covered episode is t9, thus Be-

lief (A8) = 1/2. As the absent scenario is {[2]a} = {1}

and it is covered by t1, t2, t4, t5 and t10, among the five

outputs t1, t2, t4, t5 and t10, four of them are in con-

flict with the output of A8. Thus, failRate (A8) = 4/5.

As the threshold of failRate is 1/2, assertion A8 is pre-

dicted as false and the constraining procedure continues

for assertion A8. Further, proposition {pmax :[2]a = 0}

is found, two new assertions A10: (a = 0) ∧ ([3]a = 1)

∧ ([1]a = 0) ∧ ([2]a = 0) → (O = 0) and A11: (a = 0)

∧ ([3]a = 1) ∧ ([1]a = 0) ∧ ([2]a = 1) → (O = 1)

are generated. As no free variables exist, Belief (A10)

= Belief (A11) = 1. For assertion A9, there is no free

variable combination; therefore constraining stops.

For assertion A6, proposition {pmax: [3]a = 0} is

found, two new assertions A12: (a = 1) ∧ ([2]a = 0) ∧

([1]a = 0) ∧ ([3]a = 0) → (O = 0) and A13: (a = 1)

∧ ([2]a = 0) ∧ ([1]a = 0) ∧ ([3]a = 1) → (O = 1)

are generated. Since the Belief value of A12 and A13

equals 1, the loop terminates.

At the end of the procedure, we get the final asser-

tion set: {A2, A3, A4, A5, A7, A10, A11, A12, A13}.

Note all the assertions in this set are true, it shows

the prediction by the Belief-failRate framework is likely

to be accurate. The new generated true assertions in

the constraining procedure are A10, A11, A12 and A13,

and they cover all the four free variable assignments of

(a =1) ∧ ([1]a = 0) ∧ ([3]a = 1) and (a =1) ∧ ([1]a = 0)

∧ ([2]a = 0). As the design has four Boolean variables

which lead to a total input space as 2×2×2×2 = 16, the

percentage of input space newly covered by assertions

A10, A11, A12 and A13 is 4/16 ×100% = 25%.

4 Experimental Results

In this section, we discuss the experimental results

of the proposed Belief-failRate based assertion evalua-

tion and constraining framework. The benchmarks are

taken from verification interacting with synthesis (VIS).

All experiments were performed on a Linux Server

with eight 2.13 GHz Intel Xeon CPUs and 1 T mem-

ory. VIS is used as the formal verification tool, and

GoldMine [1–3] as the assertion miner.

For format compatibility to the formal verifier, all

benchmarks are from the VIS benchmark set. The fea-

tures of designs are shown in Table 3, which includes

the number of primary inputs (PI), the number of pri-

mary outputs (PO), the number of flip-flops (#FF), the

FSM depth (Depth), and the number of injected errors

(#Errors). The assertion mining process of GoldMine

was executed in all four modes (i.e., tree [1, 2], forest,

prism, and coverage [3]), and using 100 cycles, 10 000

(10k) cycles and 1 000 000 (1M) cycles of simulation

data respectively. Each design was expanded with sev-

eral sequential depths and the one on which GoldMine

generates most assertions was selected, and considered

as the best depth for further evaluation and constrain-

ing. The best depth is 5 for b02 and b06, and 2 for b10

and b13.

Table 3. Features of Benchmarks

Benchmark PI PO #FF Depth #Errors

b02 1 1 4 5 33

b06 2 6 9 4 105

b10 11 6 20 20 125

b13 10 10 53 2 151 160

4.1 Number of Assertions

Table 4 shows the number of assertions generated

by GoldMine (GM) and the number of true assertions

(GM-T) among the generated ones. The success rate

(T-rate) of assertion generation is the ratio of GM-T

to GM. Cells labeled with “–” means that time-out oc-

curred in the assertion generation phase, and we will

escape these cases in our further analysis. Assume that

there are l variables considered, and the length of the

simulation trace is k, the complexity of generating as-

sertions under four engines differs from each other. The

fast one is the tree engine, whose worst complexity

is O (l × k × log2 k). The slowest engine is coverage,

whose worst complexity is O
(

3l
)

[3]. The implementa-

tion of the four engines tries to reduce the generation

time by constraining the number of propositions in the

antecedent of an assertion. In our experiments, we set a

time-out of one hour, and the generation phase of each

engine for most designs can be done in a reasonable

time.

Information can be learned from Table 4. For design

b02 whose size is small, the simulation data is relatively

complete even under 100 cycles simulation. Thus, all

engines can generate assertions with a high success rate.

For middle-sized b06 and b10, the completeness of the
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Table 4. Number of Assertions Generated

Design Engine 100 Cycles 10k Cycles 1M Cycles

GM GM-T T-Rate GM GM-T T-Rate GM GM-T T-Rate

b02 tree 7 7 1.00 5 5 1.00 5 5 1.00

forest 7 7 1.00 6 6 1.00 6 6 1.00

prism 7 7 1.00 7 7 1.00 7 7 1.00

coverage 8 7 0.88 8 8 1.00 8 8 1.00

b06 tree 122 68 0.56 221 207 0.94 223 208 0.93

forest 150 79 0.53 221 205 0.93 227 189 0.83

prism 131 43 0.33 205 165 0.80 212 187 0.88

coverage 109 30 0.28 189 145 0.77 190 145 0.76

b10 tree 94 21 0.22 53 42 0.79 52 42 0.81

forest 96 21 0.22 53 42 0.79 52 42 0.81

prism 122 18 0.15 58 39 0.67 44 36 0.82

coverage 94 15 0.16 66 50 0.76 – – –

b13 tree 50 47 0.94 59 55 0.93 59 55 0.93

forest 65 52 0.80 69 64 0.93 65 60 0.92

prism 56 50 0.89 65 60 0.92 65 60 0.92

coverage 76 56 0.74 – – – – – –

simulation data is closely related to the number of sim-

ulations cycles. Thus, the success rate increases with

the number of simulation cycles. For larger-sized b13,

as the increase of simulation cycles has little influence

on the completeness of simulation data, the generation

under all cycles can get assertion sets with a similar

success rate but a small number.

4.2 Assertion Evaluation

The mission of the Belief-failRate evaluation phase

is to distinguish false assertions from the assertions set.

In our experiment, to make comparison with both

ranking methods and true/false evaluation methods, all

assertions are ranked using the Belief values first and

then the assertions whose Belief is lower than TB are

ranked using their failRate values. Under this rank-

ing circumstance, the threshold TB should be set care-

fully and TF can be set to an arbitrary value. On the

one hand, Belief and failRate should play equal impor-

tance in ranking assertions. On the other hand, the

simulation trace is far from complete in practical de-

signs, while absent scenarios in the whole trace are eas-

ier to find. Thus, we set threshold TB to a rather lower

value 0.3, a value that is lower than 0.5 but not much,

and TF is set to 1. The Belief-failRate evaluation met-

ric is compared with support-confidence [1], correlation

coefficients based assertion ranking [13], and Belief [14].

Ranked assertions by each method are equally divided

into four groups, recorded as Q4, Q3, Q2 and Q1. Q4

is the highest quarter of the ranked assertion set, while

Q1 is the lowest quarter of the ranked assertion set.

Ideally, good metrics can rank true assertions in higher

positions while false assertions in lower positions. That

is, more true assertions in Q4 and Q3 or more false as-

sertions in Q2 and Q1 are preferable, while more false

assertions in Q4 and Q3 or more true assertions in Q1

and Q2 indicate a worse evaluation.

4.2.1 Comparison with Correlation Coefficient

Table 5 gives the number of true/false assertions

after the ranking of Belief-failRate (BF column) in

comparison with that by correlation coefficient [13]

(Corrs column). The numbers of false assertions and

true assertions in each group are shown in the #F

columns and the #P columns, respectively. Bold items

label cases that one method outperforms another.

On the whole, there are 24 cases in which the

Belief -failRate metric performs better than correla-

tion coefficient, and in eight cases the correlation coef-

ficient ranking is better. For the remaining 13 cases, the

two methods get the same results. It can be concluded

that, as the correlation coefficient metric is proposed to

rank true assertions, it does not perform so well as the

Belief -failRate metric, which aims at the evaluation

of truth/falseness of mined assertions.

4.2.2 Comparison with Support-Confidence [1]

For assertion generation from simulation traces of

golden design, as done by GoldMine, the Confidence

values of generated assertions are definitely 1. That is,

there are no cases in which the antecedent of an asser-

tion is true but the consequent is false. Under this cir-
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Table 5. Comparison Between Correlation Coefficient and Belief-failRate

Design Number of Engine Q1 Q2 Q3 Q4

Cycles
Corrs BF Corrs BF Corrs BF Corrs BF

#F #P #F #P #F #P #F #P #F #P #F #P #F #P #F #P

b02 100 tree 0 1 0 1 0 2 0 2 0 2 0 2 0 2 0 2

forest 0 1 0 1 0 2 0 2 0 2 0 2 0 2 0 2

prism 0 1 0 1 0 2 0 2 0 2 0 2 0 2 0 2

coverage 0 2 1 1 0 2 0 2 0 2 0 2 1 1 0 2

10k tree 0 1 0 1 0 1 0 1 0 1 0 1 0 2 0 2

forest 0 1 0 1 0 2 0 2 0 1 0 1 0 2 0 2

prism 0 1 0 1 0 2 0 2 0 2 0 2 0 2 0 2

coverage 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2

1M tree 0 1 0 1 0 1 0 1 0 1 0 1 0 2 0 2

forest 0 1 0 1 0 2 0 2 0 1 0 1 0 2 0 2

prism 0 1 0 1 0 2 0 2 0 2 0 2 0 2 0 2

coverage 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2

b06 100 tree 7 23 23 7 14 17 18 13 18 12 8 22 15 16 5 26

forest 11 26 30 7 19 19 19 19 19 18 14 23 22 16 8 30

prism 21 11 29 3 21 12 26 7 25 8 15 18 21 12 18 15

coverage 22 5 26 1 18 9 22 5 22 5 16 11 17 11 15 13

10k tree 4 51 10 45 5 50 4 51 3 52 0 55 2 54 0 56

forest 5 50 11 44 5 50 5 50 4 51 0 55 2 54 0 56

prism 14 37 16 35 11 40 18 33 10 41 6 45 5 47 0 52

coverage 15 32 21 26 12 35 16 31 12 35 7 40 5 43 0 48

1M tree 3 52 11 44 4 52 4 52 5 51 0 56 3 53 0 56

forest 15 41 17 39 11 46 15 42 10 47 6 51 2 55 0 57

prism 8 45 17 36 6 47 8 45 7 46 0 53 4 49 0 53

coverage 15 32 23 24 13 35 14 34 12 35 8 39 5 43 0 48

b10 100 tree 23 0 16 7 19 5 17 7 16 7 20 3 15 9 20 4

forest 24 0 17 7 19 5 17 7 16 8 21 3 16 8 20 4

prism 30 0 23 7 30 1 25 6 26 4 30 0 18 13 26 5

coverage 23 0 17 6 22 2 21 3 21 2 22 1 13 11 19 5

10k tree 3 10 4 9 3 10 3 10 5 8 0 13 0 14 4 10

forest 3 10 4 9 3 10 3 10 5 8 0 13 0 14 4 10

prism 6 8 7 7 5 10 7 8 5 9 5 9 3 12 0 15

coverage 4 12 6 10 5 12 10 7 6 10 0 16 1 16 0 17

1M tree 1 12 6 7 3 10 4 9 2 11 0 13 4 9 0 13

forest 1 12 6 7 3 10 4 9 2 11 0 13 4 9 0 13

prism 2 9 5 6 3 8 3 8 1 10 0 11 2 9 0 11

b13 100 tree 1 11 1 11 2 11 0 13 0 12 0 12 0 13 2 11

forest 8 8 5 11 5 11 6 10 0 16 0 16 0 17 2 15

prism 6 8 0 14 0 14 0 14 0 14 1 13 0 14 5 9

coverage 10 9 0 19 9 10 2 17 1 18 5 14 0 19 13 6

10k tree 1 13 3 11 0 15 0 15 1 14 0 15 2 13 1 14

forest 2 15 3 14 0 17 0 17 1 16 0 17 2 16 2 16

prism 1 15 4 12 0 16 0 16 2 14 0 16 2 15 1 16

1M tree 1 13 3 11 0 15 0 15 1 14 0 15 2 13 1 14

forest 2 14 3 13 0 16 0 16 1 15 0 16 2 15 2 15

prism 2 14 3 13 0 16 0 16 1 15 0 16 2 15 2 15

cumstance, the ranking using the Support-Confidence

metric is equal to the ranking using Support only. Thus,

ranked assertions using their Support values are imple-

mented as the result of Support-Confidence metric in

our experiments.

Table 6 gives the number of true/false assertions

after the ranking of Belief-failRate (BF column) in

comparison with that by Support-Confidence (Support

column). Again bold items label cases that one method

outperforms another. As all the ranking results of both
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Table 6. Comparison Between Support-Confidence and Belief-failRate

Design Number of Engine Q1 Q2 Q3 Q4
Cycles

Support BF Support BF Support BF Support BF

#F #P #F #P #F #P #F #P #F #P #F #P #F #P #F #P
b06 100 tree 14 16 23 7 7 24 18 13 19 11 8 22 14 17 5 26

forest 18 19 30 7 16 22 19 19 22 15 14 23 15 23 8 30

prism 25 7 29 3 23 10 26 7 25 8 15 18 15 18 18 15
coverage 23 4 26 1 22 5 22 5 22 5 16 11 12 16 15 13

10k tree 7 48 10 45 1 54 4 51 5 50 0 55 1 55 0 56

forest 7 48 11 44 2 53 5 50 6 49 0 55 1 55 0 56

prism 12 39 16 35 14 37 18 33 11 40 6 45 3 49 0 52

coverage 17 30 21 26 15 32 16 31 9 38 7 40 3 45 0 48

1M tree 7 48 11 44 0 56 4 52 4 52 0 56 4 52 0 56

forest 15 41 17 39 13 44 15 42 7 50 6 51 3 54 0 57

prism 4 49 17 36 8 45 8 45 11 42 0 53 2 51 0 53

coverage 17 30 23 24 16 32 14 34 9 38 8 39 3 45 0 48

b10 100 tree 20 3 16 7 21 3 17 7 17 6 20 3 15 9 20 4
forest 21 3 17 7 21 3 17 7 18 6 21 3 15 9 20 4
prism 30 0 23 7 27 4 25 6 23 7 30 0 24 7 26 5
coverage 23 0 17 6 20 4 21 3 18 5 22 1 18 6 19 5

10k tree 4 9 4 9 4 9 3 10 3 10 0 13 0 14 4 10
forest 4 9 4 9 4 9 3 10 3 10 0 13 0 14 4 10
prism 7 7 7 7 5 10 7 8 3 11 5 9 4 11 0 15

coverage 5 11 6 10 6 11 10 7 4 12 0 16 1 16 0 17

1M tree 3 10 6 7 2 11 4 9 4 9 0 13 1 12 0 13

forest 3 10 6 7 2 11 4 9 4 9 0 13 1 12 0 13

prism 2 9 5 6 3 8 3 8 1 10 0 11 2 9 0 11

b13 100 tree 1 11 1 11 1 12 0 13 0 12 0 12 1 12 2 11
forest 9 7 5 11 2 14 6 10 1 15 0 16 1 16 2 15
prism 1 13 0 14 0 14 0 14 1 13 1 13 4 10 5 9
coverage 4 15 0 19 0 19 2 17 9 10 5 14 7 12 13 6

10k tree 4 10 3 11 0 15 0 15 0 15 0 15 0 15 1 14
forest 5 12 3 14 0 17 0 17 0 17 0 17 0 18 2 16
prism 5 11 4 12 0 16 0 16 0 16 0 16 0 17 1 16

1M tree 4 10 3 11 0 15 0 15 0 15 0 15 0 15 1 14
forest 5 11 3 13 0 16 0 16 0 16 0 16 0 17 2 15
prism 5 11 3 13 0 16 0 16 0 16 0 16 0 17 2 15

methods for design b02 are the same, we omit the data

of b02 in Table 6.

It can be concluded that, there are 15 cases when the

Belief-failRate method performs better than Support-

Confidence, and in 16 cases, the Support-Confidence

ranking is better. For the remaining 14 cases, the

two methods get the same results. Also, it can be

learned from the distribution of all these three kinds of

cases that, the Belief -failRate metric performs well

for ranking assertions of design b06, whose success rate

is low. On the other hands, the Support-Confidence

ranking is better for design b10 and b13, whose asser-

tions have a higher success rate. This result indicates

that the Support-Confidence metric is more suitable

for true assertions ranking while the proposed Belief -

failRate metric performs better in distinguishing false

assertions from an assertion set with a large number of

false assertions.

4.2.3 Comparison with Belief [14]

Before comparing the results of Belief and the

Belief -failRate metric, we take a look at the range

of Belief between all generated assertions for each de-

sign, which reflects the completeness of the correspond-

ing simulation trace. Table 7 gives the maximum and

the minimum Belief value of the assertion set generated

under each configuration. It is clear that the range of

Belief differs greatly for different assertion sets. The

bold items show the cases that the Belief values of gene-

rated assertions are widely distributed. In other cases,

the Belief values of all generated assertions are either

with similar low values or with similar high values. As

the threshold TB is set to 0.3, it can be expected that

the proposed Belief -failRate metric performs well in

the former cases, where both Belief and failRate play

a role. For the latter cases, where the result of Belief-

failRate is the effect of only Belief or only failRate, the

results may be not so good.
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Table 7. Range of Belief Values

100 Cycles 10k Cycles 1M Cycles

tree forest prism coverage tree forest prism coverage tree forest prism coverage

b06 Min 0.000 0 0.000 0 0.125 0 0.000 0 0.500 00 0.500 00 0.500 00 0.500 0.500 0 0.500 00 0.500 00 0.5

Max 1.000 0 1.000 0 0.750 0 0.500 0 1.000 00 1.000 00 1.000 00 1.000 1.000 0 1.000 00 1.000 00 1.0

b10 Min 0.015 0 0.015 0 0.015 0 0.007 0 0.031 25 0.031 25 0.007 00 0.007 0.007 0 0.007 00 0.007 00 −

Max 0.437 5 0.437 5 0.312 5 0.437 5 0.500 00 0.500 00 0.500 00 1.000 1.000 0 1.000 00 0.500 00 −

b13 Min 0.187 5 0.125 0 0.003 0 0.000 9 0.001 90 0.000 24 0.000 24 −− 0.001 9 0.000 24 0.000 24 −

Max 0.580 0 0.580 0 0.010 0 0.005 0 0.045 00 0.005 80 0.005 80 −− 0.045 0 0.005 80 0.005 80 −

Table 8. Comparison Between Belief and Belief -FailRate

Design Number of Engine Q1 Q2 Q3 Q4

Cycles Belief BF Belief BF Belief BF Belief BF

#F #P #F #P #F #P #F #P #F #P #F #P #F #P #F #P

b06 100 tree 21 9 23 7 20 11 18 13 8 22 8 22 5 26 5 26

forest 27 10 30 7 22 16 19 19 14 23 14 23 8 30 8 30

prism 25 7 29 3 30 3 26 7 15 18 15 18 18 15 18 15

coverage 24 3 26 1 24 3 22 5 16 11 16 11 15 13 15 13

10k tree 10 45 10 45 4 51 4 51 0 55 0 55 0 56 0 56

forest 11 44 11 44 5 50 5 50 0 55 0 55 0 56 0 56

prism 16 35 16 35 18 33 18 33 6 45 6 45 0 52 0 52

coverage 21 26 21 26 16 31 16 31 7 40 7 40 0 48 0 48

1M tree 11 44 11 44 4 52 4 52 0 56 0 56 0 56 0 56

forest 17 39 17 39 15 42 15 42 6 51 6 51 0 57 0 57

prism 17 36 17 36 8 45 8 45 0 53 0 53 0 53 0 53

coverage 23 24 23 24 14 34 14 34 8 39 8 39 0 48 0 48

b10 100 tree 20 3 16 7 20 4 17 7 21 2 20 3 12 12 20 4

forest 21 3 17 7 20 4 17 7 22 2 21 3 12 12 20 4

prism 27 3 23 7 28 3 25 6 27 3 30 0 22 9 26 5

coverage 19 4 17 6 24 0 21 3 20 3 22 1 16 8 19 5

10k tree 4 9 4 9 3 10 3 10 0 13 0 13 4 10 4 10

forest 4 9 4 9 3 10 3 10 0 13 0 13 4 10 4 10

prism 5 9 7 7 8 7 7 8 6 8 5 9 0 15 0 15

coverage 5 11 6 10 9 8 10 7 2 14 0 16 0 17 0 17

1M tree 3 10 6 7 6 7 4 9 1 12 0 13 0 13 0 13

forest 3 10 6 7 6 7 4 9 1 12 0 13 0 13 0 13

prism 3 8 5 6 4 7 3 8 1 10 0 11 0 11 0 11

b13 100 tree 0 12 1 11 1 12 0 13 0 12 0 12 2 11 2 11

forest 4 12 5 11 7 9 6 10 0 16 0 16 2 15 2 15

prism 4 10 0 14 1 13 0 14 0 14 1 13 1 13 5 9

coverage 11 8 0 19 1 18 2 17 1 18 5 14 7 12 13 6

10k tree 4 10 3 11 0 15 0 15 0 15 0 15 0 15 1 14

forest 4 13 3 14 0 17 0 17 0 17 0 17 1 17 2 16

prism 5 11 4 12 0 16 0 16 0 16 0 16 0 17 1 16

1M tree 4 10 3 11 0 15 0 15 0 15 0 15 0 15 1 14

forest 4 12 3 13 0 16 0 16 0 16 0 16 1 16 2 15

prism 4 12 3 13 0 16 0 16 0 16 0 16 1 16 2 15

Table 8 shows the number of true/false assertions af-

ter the ranking of Belief (Belief column) in comparison

with that by Belief-failRate (BF column). Similarly, all

the same results of design b02 are omitted in Table 8.

To sum up, there are 11 cases when the Belief -

failRate metric performs better than Belief, and in

12 cases, the ranking using Belief is better. For the

remaining 22 cases, the two methods get the same re-

sults. Further observation shows that, the result is in-

fluenced by the threshold TB which is uniformly set

without considering the distribution of the Belief val-

ues, and is consistent with our expectation. That is, for

the cases where the Belief values are widely distributed,

the Belief -failRate metric performs well. For other

cases, the proposed metric loses its advantage.

Some conclusions can be learned from the exper-
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imental data above. Firstly, Support-Confidence and

correlation coefficients are more suitable for ranking of

true assertions, while Belief-failRate and Belief perform

well in evaluation of truth/falseness of mined assertions.

Secondly, the Belief metric is effective when the Be-

lief values of mined assertions are narrowly distributed.

Otherwise, the Belief -failRate metric provides an ef-

fective supplement when the Belief metric is no longer

effective.

4.2.4 Runtime of Assertion Ranking

Here, we compare the runtime of each assertion

ranking method. It can be learned from the definition

of Support-Confidence and correlation coefficient that

their runtime is mainly consumed by the traverse of the

simulation trace. After such a traverse, the computa-

tion of Support-Confidence and correlation coefficient

consumes constant time. Similarly, the computation

complexity of Belief and that of Belief-failRate are the

same, which are mainly determined by the searching

time of free variable combinations. Thus, instead of

comparing the runtime of all four metrics, we compare

the two classes of methods, i.e., the traverse-based and

the free variable combinations based. Table 9 gives the

runtime of the traverse-based metrics (S&C) and the

free variable combinations based metrics (B&BF). Bold

items label cases where the runtime of one class of met-

ric is lower than another.

Results show that the runtime of Belief and Belief-

failRate class is lower than that of Support-Confidence

and correlation coefficient in most cases. For b13, who

has a large number of variables, the runtime of traverse-

based metrics is lower.

Table 9. Runtime of Assertion Ranking (s)

Design Engine 100 Cycles 10k Cycles 1M Cycles

B&BF S&CC B&BF S&CC B&BF S&CC

b02 tree 0.01 0.01 0.01 0.00 0.01 0.00

forest 0.01 0.01 0.00 0.01 0.00 0.01

prism 0.01 0.01 0.01 0.01 0.02 0.00

coverage 0.01 0.01 0.01 0.01 0.01 0.01

b06 tree 0.11 0.44 0.22 2.58 0.22 2.76

forest 0.13 0.60 0.22 2.65 0.29 2.51

prism 0.19 0.41 0.31 1.85 0.31 2.04

coverage 0.16 0.30 0.31 1.54 0.31 1.55

b10 tree 0.13 0.24 0.31 0.83 0.36 1.04

forest 0.13 0.25 0.32 0.86 0.35 1.06

prism 0.22 0.32 0.41 0.77 0.38 0.61

coverage 0.26 0.21 0.45 1.19 − −

b13 tree 0.12 0.10 3.83 0.59 3.82 0.58

forest 0.16 0.13 8.51 0.76 7.48 0.77

prism 0.92 0.10 19.57 0.61 7.30 0.75

coverage 4.43 0.26 − − − −

4.3 Assertion Constraining Results

In the constraining phase, the thresholds TB and

TF for the Belief value and the failRate value are set

as 1 and 0, respectively. That is, only assertions with a

Belief value equal to 1 or a failRate value equal to 0 are

predicted as true. Otherwise, constraining is performed

to generate more assertions.

4.3.1 Number of Generated Assertions

Table 10 gives the number of assertions generated

after constraining (#Num) and the number of true as-

sertions (#Num-T) among the generated ones. The

success rate (T-rate) of assertion generation is the ra-

tio of #Num-T to #Num. Bold items label cases where

Table 10. Assertions After Constraining

Design Engine 100 Cycles 10k Cycles 1M Cycles

#Num #Num-T T-Rate #Num #Num-T T-Rate #Num #Num-T T-Rate

b02 tree 26 17 0.65 5 5 1.00 5 5 1.00

forest 26 17 0.65 6 6 1.00 6 6 1.00

prism 49 31 0.63 10 10 1.00 10 10 1.00

coverage 59 37 0.63 11 11 1.00 11 11 1.00

b06 tree 480 283 0.59 350 342 0.98 338 329 0.97

forest 610 357 0.59 352 344 0.98 433 411 0.95

prism 862 480 0.56 426 388 0.91 394 364 0.92

coverage 750 410 0.55 423 383 0.91 422 381 0.90

b10 tree 510 143 0.28 10 773 8 732 0.81 338 314 0.93

forest 523 143 0.27 3 384 3 257 0.96 338 314 0.93

prism 830 248 0.30 12 349 8 548 0.69 539 500 0.93

coverage 699 214 0.31 70 52 0.74 − − −

b13 tree 214 56 0.26 621 305 0.49 621 307 0.49

forest 283 67 0.24 680 354 0.52 680 359 0.53

prism 211 58 0.27 671 349 0.52 680 359 0.53

coverage 261 60 0.23 − − − − − −
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there exist increases of success rate.

From Table 4 and Table 10, we can conclude that the

number of true assertions after constraining increases

dramatically compared with that without constraining.

As for the success rate, the increase is obvious for cases

in which the original success rate is low, b06 and b10

for example. For other cases in which the original suc-

cess rates are relatively high, b02 and b13 for example,

the success rate after constraining becomes low. The

reason lies in the low threshold fthreshold we set, which

will lead to the constraining of many true assertions.

For these cases, changing the threshold fthreshold can

improve the results.

4.3.2 Covered Errors

Although the constraining is effective in the aspect

of the number of assertions being generated, it should

be further evaluated in the aspect of functionality cover-

age. The effective way of function coverage estimation

is by the evaluation of bit coverage, which can reflect

the functionality well [21]. As all variables and signals of

the design can be considered as a sequence of bits, the

bit coverage model can be defined as permanent single-

bit upset on all used variables of assignment statements

and all control signals of branch statements. The num-

ber of faults totally injected for each design is shown in

the last column of Table 3.

Table 11 compares the number of errors detected by

assertions generated in each mode of GoldMine (GM)

and that by the assertions after constraining (B-F).

Bold items label cases where differences exist.

Table 11. Covered Errors

Design Engine 100 Cycles 10k Cycles 1M Cycles

GM B-F GM B-F GM B-F

b02 tree 29 29 29 29 30 30

forest 30 30 30 30 30 30

prism 30 30 30 30 30 30

coverage 30 30 30 30 30 30

b06 tree 95 101 102 102 102 102

forest 98 101 102 102 102 102

prism 97 101 102 102 102 102

coverage 91 101 102 102 102 102

b10 tree 57 67 29 71 59 75

forest 57 67 13 74 59 75

prism 46 64 20 81 60 88

coverage 46 65 52 56 – –

b13 tree 30 42 37 65 37 65

forest 30 42 37 65 37 65

prism 31 57 34 65 37 65

coverage 31 54 – – – –

For b02 and b06, whose error coverage is relatively

high by assertions generated by GoldMine, there are

few improvements in error coverage for assertions after

constraining. For b10, the number of covered errors of

constrained assertions is 1.07 to 5.69 times of that of as-

sertions generated by GoldMine. For b13, the number

of covered errors by constrained assertions is 1.40–1.91

times of that of assertions generated by GoldMine. On

the whole, the constraining is effective in that it can

generate a large number of true assertions, which can

detect many new errors.

4.3.3 Runtime of Assertion Generation

In this subsection, we discuss the runtime of the

proposed Belief-failRate based constraining procedure.

Table 12 compares the number of generated assertions

(#Assertions) as well as the runtime (Time) of Gold-

Mine (GM) and the proposed constraining procedure

(B-F) under each configuration. Actually, the worst

complexity of the proposed algorithm is equal to that

of GoldMine, when the assertion constraining proce-

dure needs a search of the complete binary tree. In

practice, as shown in Table 12, the runtime is closely

correlated with the number of generated assertions, the

completeness of simulation trace, as well as the num-

ber of free variables. For b02 and b06, in which cases

the number of generated assertions by the constraining

phase is in the same level with that by GoldMine and

the simulation traces are rather complete for the small

number of free variables, the runtime of constraining

is shorter than that of GoldMine in most cases. For

b10 and b13, in which cases the number of generated

assertions differs greatly from those of the two meth-

ods, the completeness of simulation traces is not good,

the number of free variables is large, and the runtime

of the constraining phase increases greatly along with

the increase of the number of assertions generated. One

important reason lies in the fact that, the search depth

of the constraining procedure is deeper than that of

GoldMine. Taken the worst case for example, i.e., the

generation of the forest engine for b10 by 10k cycles, as

the search depth increases largely in the constraining

phase, the runtime of constraining is 900 times of that

by GoldMine. For other cases, for example, the gene-

ration of the forest engine for b10 by 1M cycles data

the runtime of constraining is about 20 times of that by

GoldMine. In some other cases, for example, the gene-

ration of the prism engine for b10 by 1M cycles data,

as the number of propositions in each generated asser-

tions is large§which indicates a very small number of
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Table 12. Assertion Count and Runtime of Assertion Generation

Design Engine 100 Cycles 10k Cycles 1M Cycles

#Assertions Time (s) #Assertions Time (s) #Assertions Time (s)

GM B-F GM B-F GM B-F GM B-F GM B-F GM B-F

b02 tree 7 26 1.13 0.08 5 5 1.17 0.03 5 5 8.30 0.04

forest 7 26 1.13 0.09 6 6 1.17 0.04 6 6 7.02 0.04

prism 7 49 1.10 0.18 7 10 1.20 0.04 7 10 7.14 0.04

coverage 8 59 1.12 0.19 8 11 1.18 0.05 8 11 7.24 0.05

b06 tree 122 480 1.17 1.25 221 350 1.67 2.42 223 338 9.86 2.38

forest 150 610 1.17 1.51 221 352 1.67 2.39 227 433 9.94 2.23

prism 131 862 1.20 2.14 205 426 3.78 1.86 212 394 14.77 1.98

coverage 109 750 1.26 1.84 189 423 9.31 1.73 190 422 25.13 1.73

b10 tree 94 510 1.19 4.11 53 10 773 22.32 8 347.00 52 338 116.71 2 347.00

forest 96 523 1.16 4.22 53 3 384 2.04 1 840.00 52 338 117.30 2 342.00

prism 122 830 1.21 6.40 58 12 349 3 091.00 4 437.00 44 539 6 075.00 1 850.00

coverage 94 699 1.42 5.30 66 70 43.96 26.34 – – – –

b13 tree 50 214 1.19 21.96 59 621 2.95 1 094.00 59 621 202.40 377.80

forest 65 283 1.20 27.55 69 680 2.90 1 011.00 65 680 205.60 398.50

prism 56 211 1.21 37.19 65 671 4.31 1 185.00 65 680 205.60 394.00

coverage 76 261 942.60 52.28 – – – – – – – –

free variables are available in the constraining phase,

the runtime of the constraining procedure is only 30%

of that by GoldMine.

5 Conclusions

A hardware assertion evaluation and constraining

framework was presented in this paper, which intro-

duces a new metric, Belief-failRate for evaluating and

constraining assertions mined from simulation traces.

The target of the method is the assertions generated

from incomplete simulation traces. Generally, simula-

tion traces used for assertion mining are incomplete,

and the mined assertions contain a large number of false

assertions, which will block the generation of other true

assertions. By using the Belief-failRate based evalua-

tion, which takes both the percentage of absent scenar-

ios and the occurrence of absent scenarios in the whole

trace into consideration, the assertion evaluation per-

forms well in classifying assertions reasonably. Also,

the assertion constraining procedure is given to gene-

rate more true assertions. Experimental results showed

that the proposed method can evaluate assertions with

high correctness and generate new assertions with a

high success rate for cases in which the success rate

of originally mined assertions is low. For other cases in

which the success rate of mined assertions is relatively

high, the constraining phase can still generate more as-

sertions to detect many new errors of the design.
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