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Abstract Bug isolation is a popular approach for multi-fault localization (MFL), where all failed test cases are clustered

into several groups, and then the failed test cases in each group combined with all passed test cases are used to localize only

a single fault. However, existing clustering algorithms cannot always obtain completely correct clustering results, which

is a potential threat for bug isolation based MFL approaches. To address this issue, we first analyze the influence of the

accuracy of the clustering on the performance of MFL, and the results of a controlled study indicate that using the clustering

algorithm with the highest accuracy can achieve the best performance of MFL. Moreover, previous studies on clustering

algorithms also show that the elements in a higher density cluster have a higher similarity. Based on the above motivation,

we propose a novel approach FATOC (One-Fault-at-a-Time via OPTICS Clustering). In particular, FATOC first leverages

the OPTICS (Ordering Points to Identify the Clustering Structure) clustering algorithm to group failed test cases, and then

identifies a cluster with the highest density. OPTICS clustering is a density-based clustering algorithm, which can reduce

the misgrouping and calculate a density value for each cluster. Such a density value of each cluster is helpful for finding a

cluster with the highest clustering effectiveness. FATOC then combines the failed test cases in this cluster with all passed

test cases to localize a single-fault through the traditional spectrum-based fault localization (SBFL) formula. After this fault

is localized and fixed, FATOC will use the same method to localize the next single-fault, until all the test cases are passed.

Our evaluation results show that FATOC can significantly outperform the traditional SBFL technique and a state-of-the-art

MFL approach MSeer on 804 multi-faulty versions from nine real-world programs. Specifically, FATOC’s performance is

10.32% higher than that of traditional SBFL when using Ochiai formula in terms of metric A-EXAM . Besides, the results

also indicate that, when checking 1%, 3% and 5% statements of all subject programs, FATOC can locate 36.91%, 48.50%

and 66.93% of all faults respectively, which is also better than the traditional SBFL and the MFL approach MSeer.

Keywords bug isolation, multiple-fault localization, ordering points to identify the clustering structure (OPTICS) clus-

tering, empirical study

1 Introduction

Fault localization aims to find the faulty code in

software. It is a critical but time-consuming task during

software debugging activities [1]. To reduce the human

and time cost of finding faults, many semi-automated

fault localization approaches have been proposed in re-

cent years [2].

Spectrum-based fault localization (SBFL) is one

of the most studied fault localization techniques. It

records the execution results and coverage spectrum of

test cases and then uses this information to calculate
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the suspiciousness value for each code element (such

as statement, branch). The main assumption of SBFL

is that the code elements covered by more failed test

cases but fewer passed test cases are more likely to be

faulty [2]. Due to its lightweight and effectiveness, ex-

tensive studies have been conducted on SBFL in past

years [3–5].

Most of SBFL studies mainly assume that the pro-

gram under test only contains a single fault. Traditional

SBFL approaches have shown their fault localization

accuracy on single-fault programs. However, such an

assumption may not hold in reality, and the interference

between different faults may reduce the accuracy of

traditional SBFL approaches [6, 7]. Therefore, the fault

localization accuracy on multi-fault programs needs to

be further improved.

It is not hard to find that multi-fault localization

(MFL) is a more challenging problem. Recently sev-

eral approaches have been proposed to solve this

problem [8–11], where bug isolation is a popular MFL

method [8, 11]. It aims to group the failed test cases that

execute the same bug into one cluster, and then diffe-

rent bugs can be localized by failed test cases in diffe-

rent clusters. The critical progress of bug isolation is

to cluster failed test cases. Clustering algorithms have

been widely [12, 13] utilized based on test case behav-

ioral characteristics, since previous studies [14–16] have

shown that test cases covering the same bug may have

similar behavioral characteristics (i.e., similar coverage

spectrum information and execution results).

Using bug isolation can improve the performance of

MFL since it can alleviate the issue of localizing a spe-

cific fault by some failed test cases that do not cover

this fault. However, during the clustering process, it

is common to cluster some failed test cases wrongly.

For example, the failed test cases in one group may not

cover the same fault, or there may exist some failed

test cases which can cover the same fault but are not

clustered into the corresponding group.

There are various performance metrics (such as pre-

cision, FPR (false positive rate), recall) to evaluate the

clustering effect. We first analyze the relationship be-

tween bug isolation based MFL and the clustering ac-

curacy to guide the potential optimization of clustering

algorithms. In this paper, we conduct a controlled em-

pirical study on 12786 multi-fault program versions.

The results indicate that the higher the accuracy of

the clustering algorithm, the better the performance of

MFL. In particular, among three performance metrics

(precision, recall, and FPR), the correlation between

the precision metric and the performance of MFL is

the highest.

The controlled study results show that we need to

select the cluster with the best quality for MFL. Previ-

ous studies [17, 18] show that the density of clusters can

be used to evaluate the clusters, and the higher the

density, the better the cluster quality. Therefore, in

the clustering process, using the cluster with the high-

est density for fault localization can achieve the best

performance of MFL.

Current MFL approaches [8, 19] mainly use classical

clustering algorithms (such as k-means and k-medoids).

These approaches can calculate the density of clusters.

However, they require the number of faults in the pro-

gram under test before clustering, which is unknown

during practical software testing. There are also hierar-

chical clustering-based methods [11], but these methods

cannot obtain the density of various clusters during the

clustering process. Therefore, to keep the advantages

of these approaches while avoiding the disadvantages,

we propose the FATOC (One-Fault-at-a-Time via OP-

TICS (ordering objects to identify the clustering struc-

ture) Clustering) approach for MFL, because this clus-

ter algorithm can obtain the density of various clusters

during clustering [20], and it does not need to know the

number of faults in advance.

We evaluate the effectiveness of FATOC on 804

multi-fault versions from nine real-world programs,

where each program contains 2–10 faults. Previous

studies have proposed many bug isolation approaches

to solve the MFL problem. For example, Gao and

Wong [8] proposed MSeer by using the k-medoids al-

gorithm. Jones et al. [11] proposed a hierarchical clus-

tering based approach. Among them, MSeer can per-

form significantly better than the method proposed by

Jones et al. [11] Therefore, we choose MSeer as the base-

line in our study. The difference between FATOC and

MSeer is that FATOC selects the cluster with the high-

est density for fault localization in each iteration, while

MSeer localizes multiple faults in parallel through mul-

tiple clusters.

We also use the traditional SBFL technique as the

baseline to show the effectiveness of MFL approaches.

The results show that FATOC performs better than ex-

isting baseline methods. More specifically, in terms of

metric A-EXAM , FATOC can improve the accuracy

of MFL by 8.8% and 1.33% when compared with tra-

ditional SBFL and MSeer respectively.

To the best of our knowledge, the contributions of

our study can be summarized as follows.
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1) We are the first to conduct a controlled empirical

study to analyze the relationship between the perfor-

mance of MFL and the accuracy of the clustering. Our

study utilize 12 786 multi-fault program versions. After

simulating misgrouping scenarios with different cluster-

ing accuracy, we find that the clustering algorithm’s

precision metric has a higher correlation with the fault

localization accuracy of MFL.

2) We propose the FATOC approach by using OP-

TICS clustering. This approach selects the failed test

cases in a cluster with the highest density for each it-

eration to localize a single fault. When all faults are

located and fixed, which means all the test cases are

passed, we terminate the FATOC approach.

3) To evaluate the effectiveness of FATOC, we con-

duct an empirical study on 804 multi-fault program ver-

sions. Then we choose the traditional SBFL approach

and the state-of-the-art MFL approach MSeer [8] as our

baselines. The results show that FATOC can achieve

better fault localization accuracy than the two base-

lines.

In this paper, we extend our previous study [21] in

the following aspects. 1) We propose a novel MFL ap-

proach FATOC. FATOC leverages the results of the

controlled study on the relationship between MFL per-

formance and clustering accuracy. 2) We conduct a

large-scale experimental study to verify the effective-

ness of our proposed MFL approach FATOC. In our

empirical study, we utilize 804 multi-fault program ver-

sions, consider two kinds of metrics (precision, recall,

and FPR for clustering, and A-EXAM and TOP-N%

for fault localization), and choose two baselines (tra-

ditional SBFL approach and MFL approach MSeer).

We design three research questions and discuss the re-

sults for these research questions. To facilitate other

researchers to replicate our study, we share all source

code and dataset used in our study in the GitHub

repository 1○.

The rest of this paper is structured as follows. Sec-

tion 2 presents the background and related work of this

paper. Section 3 lists the controlled empirical study

about the correlation between MFL and clustering ac-

curacy. Section 4 presents our proposed approach FA-

TOC in details. Section 5 discusses the experimental

design. Section 6 analyzes the experimental results and

discusses threats to validity. Section 7 concludes this

paper and presents the future work.

2 Background and Related Work

In this section, we present the background and re-

lated work of our study. In particular, we first introduce

the background of spectrum-based fault localization,

and discuss the challenge and related work of multi-

fault localization.

2.1 Spectrum-Based Fault Localization

Spectrum-based fault localization (SBFL) is a popu-

lar fault localization technology [8, 11, 22]. As shown in

Fig.1, SBFL first collects test cases’ coverage infor-

mation and execution results, and then uses a suspi-

ciousness formula to calculate the probability of each

program entity containing faults. Finally, it sorts all

the program entities in descending order according to

their suspiciousness values to generate a sorted list that

can be used to guide developers in locating real faults.

To calculate the suspiciousness value of each program

Failed Test Cases (F)

Passed Test Cases (P)

Suspiciousness Ranking List R 

Generating Suspiciousness 
Ranking Using All

Test Cases 

Finish
Fixing All Bugs

Guided by R 

Executing Program
Collecting DataProgram 

Under Test

Test Suite

Fig.1. Framework of traditional SBFL.

1○https://github.com/appmlk/FATOC.git, Sept. 2020.
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entity, several suspiciousness formulas were proposed

in many papers [2]. The main idea of these formulas is

based on the assumption that the program entities cov-

ered by more failed test cases are more likely to con-

tain faults than the entities covered by more passed test

cases [23].

In addition to the researches about suspiciousness

formulas [24, 25], many studies also try to improve SBFL

from concerning the coverage information constructed

from different program entities, such as statements [2],

call sequences [26], du-pairs [27], statement frequency [28]

and so on. Statement is the most-studied program

entity in the previous studies of SBFL, and we also

use test cases’ statement coverage information to im-

plement our technique. Besides, among the diffe-

rent formulas, this paper considers six best-studied

ones of them, which include Jaccard [29], Tarantula [30],

Ochiai [31], OP2 [25], CrossTab [32], and Dstar∗ [33]. Ta-

ble 1 shows the detailed information of these six formu-

las. For these formulas, fail(s) is the number of failed

Table 1. Suspiciousness Formulas

Name Formula

Jaccard [29] Sus(s) = fail(s)
totalfail+pass(s)

Tarantula [30] Sus(s) =
fail(s)

totalfail

fail(s)
totalfail

+
pass(s)

totalpass

Ochiai [31] Sus(s) = fail(s)√
totalfail×(fail(s)+pass(s))

OP2 [25] Sus(s) = fail(s) − pass(s)
totalpass+1

Crosstab [32] Sus(s) =











χ(s)2, if ϕ(s) > 1,

0, if ϕ(s) = 1,

−χ(s)2, if ϕ(s) < 1

ϕ(s) =
fail(s)

totalfail

pass(s)
totalpass

χ(s)2 =
(fail(s)−Ecf (s))2

Ecf (s)
+

(pass(s)−Ecs(s))
2

Ecs(s)
+

(totalfail−fail(s)−Euf(s))
2

Euf (s)
+

(totalpass−pass(s)−Eus(s))
2

Eus(s)

Ecf (s) =
(fail(s)+pass(s))×totalfail

totalcase

Ecs(s) =
(fail(s)+pass(s))×totalpass

totalcase

Euf (s)=
(totalcase−fail(s)−pass(s))×totalfail

totalcase

Eus(s) =
(totalcase−fail(s)−pass(s))×totalpass

totalcase

Dstar∗ [33] Sus(s) = fail(s)∗

pass(s)+(totalfail−fail(s))

test cases which cover the statement s, pass(s) means

the number of passed test cases which cover s. totalfail

and totalpass denote the total number of failed test

cases and passed test cases respectively, and totalcase

indicates the total number of test cases. Finally, Sus(s)

is the possibility of statement s being faulty.

Previous studies have achieved satisfactory fault

localization accuracy on single-fault program versions.

Jones and Harrold [24] improved SBFL with Taran-

tula, which can achieve promising results in single-fault

localization. Their empirical studies show that for 87%

versions of Siemens benchmark, the developers only

need to examine less than 10% statements to localize

faults. Feyzi and Parsa [34] found that combining SBFL

with static analysis could improve fault localization

accuracy no matter whether the programs are imple-

mented by C or Java. Liu et al. [5] proposed three ma-

nipulation strategies to reduce the negative impact of

coincidental correct (CC) test cases in fault localization.

Zakari et al. [35] proposed a fault localization technique

based on complex network theory named FLCN-S to

improve localization effectiveness on single-fault sub-

ject programs.

2.2 Multi-Fault Localization

Unlike fault localization on single-fault programs,

fault localization on multi-fault programs (i.e., multi-

fault localization) is more challenging. Most previous

SBFL studies assume that there is only one fault in the

program [2, 9]. The key assumption of traditional SBFL

approaches is that if a statement is executed by more

failed test cases and less passed test cases, it has more

chance to be a faulty statement [23]. On the other hand,

if a statement is executed by more passed test cases

and less failed test cases, it has less suspiciousness to

be faulty.

However, the basic principles of traditional SBFL

are not applicable in multi-fault programs, because in

multi-fault programs, the correct statement may be

covered by multiple failed test cases caused by diffe-

rent faults, resulting in the correct statement being cov-

ered by more failed test cases than other faulty state-

ments. Thus this correct statement will have a high

suspiciousness to be faulty, which causes the problem

that the fault localization performance of using tradi-

tional SBFL on multi-fault programs is poor [36].

To improve the MFL performance, many researchers

propose different methods from various aspects. In-

spired by the practical software debugging process, the

developers are usually aware of faults in the program
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but cannot estimate the exact number of faults. Jones

et al. [11] proposed a sequential debugging technique

that uses all failed test cases to locate and fix one fault

at a time. From another different aspect, researchers

employ a genetic algorithm and neural network model

to improve the MFL accuracy. Such methods encode

each program statement as a chromosome to indicate

whether it contains faults [9, 37]. Moreover, there are

studies which try to use clustering algorithms and di-

vide the failed test cases into multiple groups, and each

group is used to locate one-single fault [8, 10, 19]. Such

methods are called as bug isolation based MFL tech-

nique, and empirical results showed that these meth-

ods could achieve better performance than other ap-

proaches. For example, Zakari and Lee [38] proposed to

use a network community clustering algorithm to iso-

late faults to individual communities, with each com-

munity targeting one fault. These fault-focused com-

munities are provided for developers to debug faults

in parallel. Their experimental results show that the

network community grouping algorithm can effectively

isolate faults and improve the efficiency of multi-fault

localization.

Among a number of MFL approaches, the state-of-

the-art approach is called as MSeer [8], which uses a k-

medoids based clustering algorithm to perform bug iso-

lation, where failed test cases will be grouped into diffe-

rent clusters. After that, MSeer adopts SBFL formu-

las to perform fault localization. MSeer aims to covert

the MFL problem into multiple single-fault localization

problems, and uses a parallel debugging method to lo-

cate and fix all faults at one time. Fig.2 shows the

framework of bug isolation and parallel debugging pro-

cess.

The goal of bug isolation is to analyze the correspon-

dence relationship between failed test cases and faults.

It attempts to generate fault-focused clusters by isolat-

ing failed test cases caused by the same fault into the

same cluster [8]. In other words, the failed test cases in

one cluster are related to the same fault, whereas failed

test cases in different clusters are related to different

faults.

After clustering, several fault-focused suspiciousness

rankings are generated by using failed test cases of a

given cluster and passed test cases. Examining code

according to those ranking lists can help the developers

to localize the corresponding causative fault linked to

each ranking list. Finally, all faults will be located and

fixed in one iteration.

Zakari and Lee [39] conducted an investigative study

on the usefulness of the problematic parallel debug-

ging approach, which uses k-means clustering algorithm

with the Euclidean distance metric on three similarity

coefficient based fault localization techniques. They

compared the effectiveness of their approach with that

of OBA and MSeer. Their results suggest that clus-

tering failed test cases based on their execution pro-

file similarity may reduce the effectiveness in localizing

multiple faults.

The key step of the bug isolation based MFL ap-

proach is clustering, whose performance will affect the

final MFL accuracy, but how much of such influence re-

mains unknown. In this paper, we first experimentally

analyze the correlation between bug isolation perfor-

Finish

Executing Program

Collecting Data

Fixing Bugs

Guided by Each

Ranking List

Failed Test

Cases (F)

Passed Test Cases (P)

Fault-Focused ClustersClustering

Suspiciousness Ranking Lists 

Bug 1

Bug 2

Bug 3

Bug n

Program

Under Test

Test Suite Ci ↼i/֒ ֒ ֒ ⊲⊲⊲֒ n↽

R R R Rn

⊲⊲⊲

⊲⊲⊲

⊲⊲⊲

⊲⊲⊲

⊲⊲⊲

Fig.2. Framework of bug isolation and parallel debugging process.
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mance and the MFL accuracy, and then use the em-

pirical findings to guide us to propose a novel MFL

approach with a better fault localization accuracy.

3 Correlation Analysis Between Performance

of Bug Isolation Based MFL and Clustering

Accuracy

In this section, we conduct a controlled empirical

study on the correlation between the performance of

bug isolation based fault localization and clustering ac-

curacy. We first introduce the preliminary for bug iso-

lation. Then we describe three simulated misgroup sce-

narios. Finally, we introduce the experimental design

and discuss the empirical findings.

3.1 Preliminary of Bug Isolation

As discussed in Subsection 2.2, the popular ap-

proach of MFL is to cluster the failed test cases be-

fore applying SBFL techniques [8, 10, 19], which is named

bug isolation. The motivation of this approach is that

the failed test cases should be grouped into different

clusters, and the failed test cases in each cluster and

all passed test cases are combined to localize only one

fault. Ideally, test cases failed by the same fault should

be grouped into the same cluster, and then the MFL

problem can be transformed into the single-fault locali-

zation problem.

Table 2 [21] shows an illustrative example of a pro-

gram segment. This program contains two faults, where

S4 and S6 are two faults. Black dots in Table 2 indicate

that the corresponding test case Tj covers the statement

Si. The test suite has 10 test cases, of which the cov-

erage information and execution results are shown in

Table 2. T1 and T2 are two passed test cases, T3–T10

are eight failed test cases, in which T3–T6 and T7–T10

execute the faults S4 and S6, respectively.

In terms of fault localization accuracy, Table 3 [21]

shows four suspiciousness formulas except for Taran-

tula achieve a low fault localization accuracy since the

Table 2. Statement Coverage and Test Case Execution Results of an Example Program with Two Faults

Program Under Test Test Suite

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

(−10, −10) (−1, −1) (0, −1) (1, −1) (2, −1) (3, −1) (−1, 11) (−1, 12) (−1, 13) (−1, 14)
S1 Read (a,b); • • • • • • • • • •
S2 int i=0, j=0; • • • • • • • • • •
S3 if (a>0) • • • • • • • • • •
S4 i=i+1; //Correct:i=i+a/10 • • • •
S5 if (b>0) • • • • • • • • • •
S6 j=j+b/10; //Correct:j=j+b/20 • • • •
S7 if (i>0 || j>0) • • • • • • • • • •
S8 printf (“Positive”); • • • • • • • •
S9 else printf (“Negative”);} • •
Execution Results(0=Passed/1=Failed) 0 0 1 1 1 1 1 1 1 1

Note: (x, y) below test suite Ti means that in Ti, the values of parameter a and parameter b are x and y respectively.

Table 3. Suspiciousness Value and Rank of Statements Using All the Test Cases for the Simple Example in Table 2 When Considering
Different Suspiciousness Formulas

Statement fail(s) totalfail pass(s) totalpass Ochiai [31] Tarantula [30] OP2 [25] Dstar∗ [33]

Sus(s) Rank Sus(s) Rank Sus(s) Rank Sus(s) Rank

S1 8 8 2 2 0.89 2 0.5 3 7.33 2 256.0 2

S2 8 8 2 2 0.89 2 0.5 3 7.33 2 256.0 2

S3 8 8 2 2 0.89 2 0.5 3 7.33 2 256.0 2

S4(fault) 4 8 1 2 0.63 8 0.5 3 3.66 8 12.8 8

S5 8 8 2 2 0.89 2 0.5 3 7.33 2 256.0 2

S6(fault) 4 8 0 2 0.71 7 1.0 1 4.00 7 16.0 7

S7 8 8 2 2 0.89 2 0.5 3 7.33 2 256.0 2

S8 8 8 0 2 1.00 1 1.0 1 8.00 1 ∞ 1

S9 0 8 2 2 0.00 9 0.0 9 −0.66 9 0.0 9
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faults (S4 and S6) rank the eighth and the seventh re-

spectively. Though this simple example program only

contains nine statements, the fault localization accu-

racy is not satisfactory when considering most of the

popular suspiciousness formulas.

Since test cases T3–T6 and T7–T10 execute the faults

S4 and S6 respectively, after bug isolation, T3–T6 and

T7–T10 can be divided into two clusters ideally. Then

the failed test cases in two clusters with the passed test

cases are used to locate the faults S4 and S6 respec-

tively. Taking fault S6 as an example, compared with

traditional SBFL, using bug isolation can change the

rank of S6 from (7, 1, 7, 7) to (1, 1, 1, 1) in the ranking

list with Ochiai, Tarantula, OP2 and Dstar∗ formulas

respectively. Such an example denotes that the fault

localization accuracy can be improved after using bug

isolation.

The above illustrative example shows that bug iso-

lation is an effective method for MFL, and clustering-

based algorithms have been widely used for bug iso-

lation in recent studies. For example, Huang et al. [19]

analyzed the influence of k-means and hierarchical clus-

tering algorithms on bug isolation. Liu et al. [10] em-

ployed decision-tree based algorithms to cluster failed

test cases. Gao and Wong [8] introduced a k-medoids

based clustering algorithm to do bug isolation. How-

ever, to the best of our knowledge, there is no research

about analyzing the relationship between fault locali-

zation accuracy and bug isolation accuracy.

3.2 Three Misgroup Scenarios

Given a fault f and the corresponding cluster

cluster, we use failnum(f) to denote the number of

the failed test cases that cover the fault f , cluster(f)

to denote the number of the failed test cases that cover

the fault f in the cluster, and cluster(other) to denote

the number of the failed test cases that cover other

faults in the cluster. In ideal condition, cluster(f) =

failnum(f) and cluster(other) = 0.

In our study, we identify three kinds of misgroup

scenarios. Fig.3 [21] shows the clustering results of the

ideal situation and three misgroup scenarios. In Fig.3,

the hollow circle means the cluster related to fault f ,

the red bullet indicates the failed test case that does

not cover f and the green bullet denotes the failed test

case that covers f . More detailed analysis of these three

misgroup scenarios is given as follows.

Misgroup Scenario 1. All failed test cases which

cover f are clustered correctly into one group, but

some other failed test cases which do not cover f are

also clustered into the same group. In this scenario,

cluster(f) = failnum(f), but cluster(other) > 0.

(a)

A Failed Test Case That
Does Not Cover f

A Failed Test Case That
Covers f

One Custer 

(b) (c) (d)

Fig.3. Diagrams of ideal situation and three possible misgroup
scenarios [21]. (a) Ideal clustering result. (b) Misgroup scenario
1. (c) Misgroup scenario 2. (d) Misgroup scenario 3.

Misgroup Scenario 2. All failed test cases which

are clustered into the corresponding group do cover f ,

and there exist some failed test cases which cover f

but are not clustered into this group. In this scenario,

cluster(f) < failnum(f), cluster(other) = 0.

Misgroup Scenario 3. Some failed test cases cover f

but are not clustered into the corresponding group. In

addition, some failed test cases are clustered into the

corresponding group but do not cover f . In this sce-

nario, cluster(f) < failnum(f), cluster(other) > 0.

In this paper, we will conduct a controlled study to

simulate the above three misgroup scenarios.

3.3 Evaluation Metrics for Misgroup Issue

The target of bug isolation strategy is to cluster

failed test cases that cover a single faulty statement

f into the same group. Then, considering one single

faulty statement f , the bug isolation problem can be

modeled as a binary classification problem, where each

failed test case in the cluster can be classified into two

types: cover f or not cover f . The commonly used met-

rics to evaluate the performance of binary classification

algorithms include precision, recall and FPR [5, 40].

These metrics are calculated based on the confusion

matrix, and a higher precision and recall value, and a

lower FPR value indicates a better corresponding tech-

nique. The confusion matrix is shown in Fig.4.
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Then the definitions of evaluation metrics precision,

recall and FPR are defined as follows:

precision =
TP

TP + FP
,

recall =
TP

TP + FN
,

FPR =
FP

FP + TN
.

For the bug isolation problem, given the cluster re-

lated to the fault f , true positive (TP ) means the num-

ber of failed test cases within this cluster, which cover

f ; false positive (FP ) means the number of failed test

cases within this cluster, which do not cover f ; false

negative (FN) means the number of failed test cases

outside this cluster, which cover f ; and true negative

(TN) means the number of failed test cases outside this

cluster, which do not cover f .

Based on the definition of misgroup scenario and

confusion matrix, we can give the value range of diffe-

rent evaluation metrics for different scenarios.

Ideal Scenario. FPR = 0, precision = 1, recall =

1.

Misgroup Scenario 1. FPR ∈ (0, 1), precision ∈

(0, 1), recall = 1.

Misgroup Scenario 2. FPR = 0, precision = 1,

recall ∈ (0, 1).

Misgroup Scenario 3. FPR ∈ (0, 1), precision ∈

(0, 1), recall ∈ (0, 1).

3.4 Experimental Setup

In this subsection, we use 11 widely-studied real-

world subject programs from SIR [11] (i.e., Print tokens,

Print tokens2, Tot info, Schedule, Schedule2, Tcas, Re-

place, Gzip, Grep, Sed and Space). We apply 12 786

faulty versions with 77 970 faults in our controlled em-

pirical study, where the number of faults in each faulty

version varies from 1 to 10. It should be noted that

the multi-fault program versions are generated from

multiple single-fault programs. We use the single-fault

programs provided in SIR and we also manually inject

artificial faults into these programs to obtain a large

number of program versions.

Since clustering algorithms are the main methods

for bug isolation, the clustering accuracy reflects the

bug isolation accuracy. To simulate different levels of

clustering accuracy, in this paper, we mainly design

a controlled experiment to generate a variety of clus-

ters with 10 misgrouping levels, where 5%–50% failed

test cases are clustered incorrectly in the correspond-

ing group. The fewer the failed test cases that are clus-

tered incorrectly, the higher the accuracy of the cluster-

ing. For instance, 100% bug isolation accuracy refers

to the ideal clustering situation, that is, FPR = 0,

precision = 1 and recall = 1. In the misgroup sce-

nario 2, 95% bug isolation accuracy refers to FPR = 0,

precision = 1 and recall = 95%.

3.5 Findings

To analyze the correlation between bug isolation

accuracy and fault localization accuracy, we use an

EXAM metric to evaluate the fault localization per-

formance of different situations. EXAM is a widely

used fault localization metric, and the detailed intro-

duction of EXAM can be found in Subsection 5.3.

Fig.5 shows the EXAM value of the Ochiai formula in

three misgroup scenarios, where Fig.5(a)–Fig.5(c) re-

fer to the misgroup scenario 1, the misgroup scenario 2

and the misgroup scenario 3 respectively, where origin

refers to not using bug isolation strategy. In Fig.5, x-

axis represents 77 970 faults of 12 786 programs under

test, and y-axis represents the EXAM value of locating

the corresponding fault [21]. Note that for convenience

of comparison, we arrange EXAM in ascending order,

and a lower EXAM value means better effectiveness of

fault localization.

Table 4 [21] shows the average EXAM of finding the

first faulty statement in 12 786 multi-fault versions un-

der different bug isolation accuracies, and the bolded re-

sult indicates the corresponding suspiciousness formula

can achieve the best performance under given isolation

accuracy. For example, in the ideal case (i.e., 100%

bug isolation accuracy), the average EXAM required

to find the first faulty statement in all programs when

using the OP2 formula is 1.59%. In this table, we can

find the EXAM of Ochiai can achieve the lowest in 5
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Fig.5. Cost of three misgroup scenarios [21]. (a) Misgroup scenario 1. (b) Misgroup scenario 2. (c) Misgroup scenario 3.

Table 4. When Localizing the First Fault in the Faulty Program Versions

Formula Bug Isolation Accuracy

100% 95% 90% 85% 80% 75% 70% 65% 60% 55% 50%

Jaccard 1.88 1.98 2.08 2.17 2.25 2.37 2.52 2.78 3.10 3.35 3.66

Tarantula 2.40 2.59 2.63 2.66 2.70 2.75 2.79 2.83 2.87 2.92 3.00

Ochiai 1.81 1.91 2.02 2.11 2.20 2.33 2.51 2.83 3.09 3.31 3.59

OP2 1.59 6.32 6.66 6.85 7.04 7.21 7.33 7.53 8.02 8.53 8.91

CrossTab 2.36 2.52 2.74 2.89 3.02 3.13 3.24 3.55 3.72 4.06 4.33

Dstar∗ 1.75 1.88 2.02 2.14 2.35 2.71 3.03 3.29 3.63 4.35 5.05

cases, followed by Tarantula (3 cases) and Dstar∗ (2

cases).

As shown in Fig.5, in either scenario, the fault locali-

zation accuracy will decrease when bug isolation accu-

racy decreases. However, the correlation between fault

localization accuracy and bug isolation accuracy in the

misgroup scenario 2 is lower than that of the other two

misgroup scenarios. This finding indicates that the qua-

lity of the clustering results is highly correlated with

the accuracy of MFL. Specifically, the better the qua-

lity of the clusters, the better the efficiency of MFL.

In particular, among the three indicators of precision,

recall, and FPR, the correlation between the precision

indicator and the localization accuracy is the strongest.

Based on the controlled study, we find that we need

to select the cluster with the highest quality for MFL.

Existing research on clustering algorithms shows that

the density of the elements in a cluster is an important

indicator for measuring the quality of clusters, and high

density indicates a high-quality cluster [17, 18].
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The current MFL approaches include classical clus-

tering algorithms such as k-means and k-medoids [8, 19].

These methods can compute the density of clusters, but

they require the number of faults in the program before

clustering, which is unknowable during actual software

testing. There are also methods based on hierarchi-

cal clustering [11], but they cannot obtain the density of

various clusters during the clustering process.

To overcome the shortcomings of the previous bug

isolation based MFL studies, we propose an approach

based on OPTICS clustering, because OPTICS can ob-

tain the density of various clusters during clustering,

and it does not need to input the number of faults.

4 Proposed Multi-Fault Localization

Approach FATOC

In this section, we first show the framework of our

proposed approach FATOC. Then we show the details

of the important steps in our framework.

4.1 Framework of FATOC

Fig.6 shows the framework of our proposed FATOC

approach. The details of each step in the framework

are introduced as follows.

Step 1. Program Execution and Data Collection. In

this step, we execute all test cases on the program un-

der test, and collect the coverage information. If all the

test cases are passed, which means that there is no fault

in the program or all the faults have been fixed, the FA-

TOC process can be terminated. Otherwise, all the test

cases will be divided into two groups. We use P to de-

note passed test cases and use F to denote failed test

cases. Then we collect the test cases’ coverage infor-

mation and utilize this coverage information as feature

vectors for the next clustering step.

Step 2. Clustering Failed Test Cases. In this step,

we adopt the OPTICS algorithm to cluster failed test

cases. All the failed test cases will be grouped into

several clusters according to the distance among them.

Specifically, the test cases with smaller distance values

have more opportunities to be grouped into the same

cluster.

Step 3. Choosing a Cluster with the Highest Qua-

lity. In this step, we choose a cluster with the lowest

average reachability distance as the target cluster, be-

cause reachability is calculated from the similarity of

test cases, which can represent the density between test

cases. Besides, previous studies [17, 18] have shown that

clusters with a higher density value will have higher

quality. Therefore, the target cluster we choose is the

cluster with the highest quality. The detailed process

of this step is described in Subsection 4.4.

Step 4. Single-Fault Localization. After obtaining

the cluster with the highest quality, the probability of

the failed test cases in this cluster covering the same

single fault is very high. Then in this step, we com-

bine the failed test cases in this cluster with all the

passed test cases to get a new test set Cx for localizing

only one fault. Then we use a suspiciousness formula in

Suspiciousness

Ranking List R

Program 

Under Test

Executing Program

Collecting Data

Failed Test

Cases (F)

Passed Test Cases
(P)

Fixing the First Bug

Guided by R

Fault-Focused Clusters
Ci ↼i/֒ ֒ ֒ ⊲⊲⊲֒ n↽

Cx ↼x i↽
Which Cluster Has the

Highest Similarity 

No

Choosing the Cluster
with the Highest Similarity  

OPTICS
Clustering

All Bugs

Fixed?

Yes

Finish

Test Suite

P Cx ↼x i↽
Using Failed Test Cases Within Cx  Along with All Passed

Test Cases to Calculate Statement Suspiciousness 

Fig.6. Framework of FATOC.
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Table 1 to calculate the suspiciousness value of all the

statements. Finally, we can generate a ranking list and

the developers can use this list to fix the corresponding

fault.

Step 5. Fault Fixing. In step 4, we can get a ranking

list R. A developer can use the list R to exam state-

ments according to suspiciousness from high to low un-

til the first real faulty statement is localized. After the

developer fixes the fault, we go to step 1 and use the

fixed program to perform fault localization.

4.2 Representation of Failed Test Cases

To implement the clustering algorithm, we need to

use feature vectors to represent failed test cases. The

widely-used test case feature representation methods

can be summarized as follows.

• Vectors of each test case are represented by its

coverage information, and the n-th position value indi-

cates the execution information of the n-th statement,

where 1 indicates that the test case executed the corre-

sponding statement; otherwise the value is 0.

• Vectors of each test case are represented by their

weighted coverage information, and the n-th position

value is determined by the suspiciousness value of the

n-th statement, not simply 0 or 1.

• Based on a given fault localization technique, vec-

tors of each failed test case are represented by a sus-

piciousness ranking value calculated by this failed test

case and all the other passed test cases.

In our study, we choose the first representation

method, since the last two methods will assign different

values to statements according to their probabilities of

being faulty, and these methods will cause misleading

effects in multi-fault localization [10, 11].

4.3 OPTICS Clustering Algorithm

4.3.1 Preliminaries of Density Clustering Algorithms

In data mining, density clustering algorithms divide

objects into clusters such that members of the same

cluster are as similar as possible [42]. Density-based spa-

tial clustering of applications with noise (DBSCAN) is

a data clustering algorithm proposed by Ester et al. [43]

The core idea of DBSCAN is that for each cluster, at

least MinPts other objects are required within the ra-

dius Eps of the Core objects. Some definitions used to

introduce the DBSCAN algorithm are listed as follows.

Definition 1 (Neighborhood [43]). Neighborhood

refers to the distance between two objects, which is de-

termined by a distance formula.

Definition 2 (Eps-Neighborhood [43]). The Eps-

neighborhood of an object p is defined by the following:

{q| dist(p, q) 6 Eps, q ∈ D}.

Definition 3 (Core Object [43]). If the radius Eps

of the object p contains at least MinPts other objects,

then the object p is a core object.

The DBSCAN algorithm starts with an arbitrary

object p that has not been visited in the database D

and retrieves Eps-neighborhood of the object p. If the

size of Eps-neighborhood is larger than MinPts, a new

cluster will be created. The object p and its neighbors

are assigned to this new cluster. This process is re-

peated until all objects have been visited.

To evaluate the similarity between every two objects

in the sample space, we need a distance measure for-

mula dist(p, q) that tells how far the objects p and q

are. In our study, we use the classical Euclidean dis-

tance formula, which is defined as follows.

dist(p, q) =
√

Σn
i=1(xpi − xqi)2.

Here p = (xp1, xp2, · · · , xpn) and q =

(xq1, xq2, · · · , xqn) are two n-dimensional data objects.

4.3.2 Sorting Cluster Density

In the DBSCAN algorithm, there are two hyper-

parameters (Eps-neighborhood and MinP ts) and the

cluster results of the clustering are susceptible to the

values of these two hyper-parameters.

To overcome this shortcoming of the DBSCAN al-

gorithm, the OPTICS (ordering objects to identify the

clustering structure) clustering algorithm [20] was pro-

posed.

The OPTICS clustering algorithm does not display

the resulting class clusters but ranks the samples ac-

cording to the similarity between the samples. Finally,

it will output a graph with the reachable distance as

the vertical axis and the sample object output order as

the horizontal axis, which presents the density struc-

ture. In other words, the OPTICS clustering algorithm

only generates the density structure of sample objects.

Since the OPTICS algorithm is an improvement of

the DBSCAN algorithm, many definitions are the same,

such as neighborhood, Eps-neighborhood and core ob-

ject. On this basis, two more definitions are needed

to describe the OPTICS clustering algorithm. Here we

still consider the database D.

Definition 4 (Core-Distance [20]). For an object x

(x ∈ D), the core distance of x is the smallest Eps that

makes object x as the core object.
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Definition 5 (Reachability-Distance [20]). Let p

and o be objects from a database D, the reachability

distance of p and o represents the minimum Eps that

allows o to be the core object and p is directly density

reachable from o.

The value of reachability-distance is related to the

density of the space where the object is located. The

higher the density, the smaller the distance that it can

reach directly from the adjacent nodes.

Algorithm 1 provides the pseudo-code of OPTICS

clustering. We first initialize two queues: order queue

OQueue and result queue RQueue (lines 1 and 2).

Then, we append a core object A from D that is not

in the result queue into the result queue (lines 3–7),

and we append all directly density reachable objects

of object A into the ordered queue (line 8). Next,

all the objects in the order queue are arranged in

ascending order according to their reachability dis-

tance from object A (line 11). Note that objects that

already have a smaller reachability distance are not

updated. Later, we pull the ranked first object B

from the ordered queue and append object B into

the result queue if object B is a core project, or pull

the next object in the order queue as object B (lines

12–14). Finally, object B will be used as the new

object A, repeatedly iterating until all objects are vis-

ited (lines 15–24). At the end of the algorithm, we

Algorithm 1 . OPTICS Clustering Algorithm

Input:
set of objects D, MinPts, Eps

Output:
Result queue RQueue

1: OQueue ← ∅
2: RQueue ← ∅
3: i ← 1
4: objecti ← D.get(i)
5: repeat
6: if objecti /∈ RQueue and objecti.isCoreObject() then
7: RQueue.Append(objecti)
8: OQueue.Expand(objecti,D,MinP ts,Eps)
9: end if
10: if OQueue.size>0 then
11: OQueue.sort()
12: for objectj in OQueue do
13: if objectj .isCoreObject() then
14: RQueue.Append(objectj)
15: objecti ← objectj
16: OQueue.Expand(objecti,D,MinP ts,Eps)
17: Break
18: end if
19: end for
20: else
21: i ← i+ 1
22: objecti ← D.get(i)
23: end if
24: until i > D.size()
25: return RQueue

can get the output result sequence, which represents a

list of reachability distance that can be used to reflect

the cluster structure.

4.4 Choosing Cluster

The cluster-ordering of a dataset can be represented

and understood graphically. In principle, one can un-

derstand the cluster structure in the form of a line

chart of the result queue. Fig.7 depicts a simple 2-

dimensional dataset and a list of reachability distance

values in a result queue generated by the OPTICS al-

gorithm.

0

1 2 3

Reachability 

Distance

Count of Object

Fig.7. Example of a result queue.

As shown in Fig.7, each depression in the line graph

represents a cluster structure.

To filter out the clusters with the highest simila-

rity, we calculate the average reachability distance cor-

responding to each cluster and select a cluster with the

smallest average value as the target cluster. Because

the reachability distance can reflect the differences be-

tween test cases, then test cases within the cluster with

the smallest average reachability value have the highest

similarity. Finally, we use failed test cases in the target

cluster and all the passed test cases to localize a single

fault.

Taking the buggy program shown in Table 2 as an

example, there are eight failed test cases in this pro-

gram. After OPTICS clustering, two clusters can be

obtained: {T3, T4, T5, T6} and {T7, T8, T9, T10}.

In particular, because the objects in the two clusters

have the same feature vector (coverage information),

the average reachability distance of the two clusters is

the same. At this time, we randomly select a cluster as
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the target cluster for fault localization. It is worth not-

ing that failed test cases of each class cluster are caused

by the same single faulty. Therefore we can achieve the

ideal clustering result in this example.

5 Experimental Setup

In this section, we present the research questions,

subject programs’ information, and evaluation metrics

of our study.

5.1 Research Questions

We conduct our empirical study to address the fol-

lowing three research questions.

RQ1. How does FATOC perform in terms of clus-

tering accuracy?

The conclusions of the controlled study in Subsec-

tion 3.5 show that MFL accuracy and precision value

have a strong correlation in terms of EXAM metric.

Therefore, to answer this question, we apply traditional

SBFL, MSeer and FATOC approach to the 804 multi-

fault programs from SIR, which is shown in Table 5,

and we use three evaluation metrics FPR, precision

and recall, which are introduced in Subsection 3.3, to

evaluate the clustering accuracy of these approaches.

Table 5. Characteristics of Subject Programs

Program Name #LOC #Tests #Multi-Fault Versions

Print tokens 563 4 130 110

Print tokens2 508 4 115 92

Schedule 410 2 650 69

Schedule2 309 2 710 89

Replace 563 5 542 86

Tcas 173 1 608 77

Tot info 406 1 052 129

Sed 8 059 360 117

Grep 13 342 808 35

Note: #LOC means the lines of code, #Tests means the number
of test cases, and #Multi-Fault Versions means the number of
the multiple fault versions of the program under test.

RQ2. Compared with traditional SBFL techniques

with different suspiciousness formulas, how does FA-

TOC perform with the same formula in terms of fault

localization accuracy?

To answer this RQ, we analyze the fault localization

accuracy in terms of two metrics A-EXAM and TOP-

N%, and then we further use the Wilcoxon signed-rank

test to perform statistical analysis for comparing diffe-

rent techniques. For this RQ, we select traditional

SBFL technique as the baseline, since it is the most

widely investigated technique in previous fault locali-

zation studies [8, 33].

RQ3. Can FATOC achieve better fault localization

accuracy than the state-of-the-art MFL approach?

Besides traditional SBFL techniques, we also com-

pare FATOC with the state-of-the-art MFL approach

MSeer [8]. The reasons for choosing MSeer as the base-

line can be summarized as follows. First, MSeer is a

recently proposed MFL technique. Second, MSeer can

achieve better performance than other bug isolation-

based MFL methods [8], which uses one-fault-at-a-time

strategy.

To answer these three RQs, we perform all the

experiments on the CentOS operation system with 18-

core CPU. Moreover, we employ a commonly used

Gcov [44] tool to collect the execution coverage infor-

mation of test cases.

5.2 Subject Programs

Table 5 shows the statistical information of nine

subject programs used in our study and their corre-

sponding test suites. All of them can be downloaded

from the widely used SIR (Software-artifact Infrastruc-

ture Repository) [41]. In particular, seven programs are

from Siemens suite, including Print tokens, Print to-

kens2, Schedule, Schedule2, Replace, Tcas and Tot info,

while the other two programs are from Unix utilities.

Here Sed is a stream editor and Grep is a command-

line utility for searching plain-text datasets for lines

that match a regular expression.

For each program, the number of bugs is in the range

of 2–10. Column 4 presents the number of multi-fault

program versions for each subject program.

SIR provides the correct version and some faulty

versions of each subject program with seeded faults.

However, there are fewer faulty versions provided in

SIR (generally no more than 10 versions per program),

thus to make our experimental results more compre-

hensive, we need to generate a large number of multiple

faulty versions ourselves. We first manually inject arti-

ficial faults into the correct programs to obtain more

single-fault program versions in our empirical study.

Then, we randomly combine these single-fault program

versions to get a sufficient number of multi-fault pro-

gram versions, and such a faulty program version gene-

ration approach has been widely used in previous MFL

studies [8, 45, 46].

In total, we generate 804 multi-fault versions from

nine programs and use these versions as our experimen-
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tal subjects. In these multi-fault versions, the number

of faults for each version ranges from 2 to 10, and there

are 4 400 faults in all versions.

5.3 Evaluation Metrics

In our empirical study, we use the performance met-

rics shown in Section 4 to evaluate the cluster accu-

racy of different approaches. To evaluate the fault

localization accuracy of different approaches, we use A-

EXAM and TOP-N metrics. In this subsection, we

will show the details of these two metrics.

5.3.1 A-EXAM Score

For single-fault localization, EXAM is com-

monly used to evaluate the accuracy of fault

localization [2, 32, 47]. A lower EXAM means that fewer

statements need to be checked to find the real faulty

statement, and then the corresponding approach has a

better fault localization accuracy. The EXAM metric

can be calculated as follows.

EXAM =
rank of the faulty statement

number of the executable statements
,

where the numerator is the rank of faults in the suspi-

ciousness ranking list, and the denominator is the to-

tal number of executable statements that need to be

checked.

For multi-fault localization, the fault localization ac-

curacy evaluation is similar to EXAM . For example,

MSeer uses the sum value of EXAM of all faults that

need to be located to evaluate the effectiveness of MFL

approaches [8]. However, the number of faults in diffe-

rent multi-fault program versions is not the same. We

use the average EXAM score (denoted as A-EXAM)

to evaluate the accuracy of MFL approaches.

A-EXAM can be computed as follows.

A-EXAM =
ΣN

n=1Σ
G(n)
g=1 EXAM(n, g)

ΣN
n=1G(n)

,

where EXAM(n, g) is the EXAM score of the g-th

ranking at the n-th iteration. N indicates the total

number of iterations and G(n) refers to the number of

faults located in the n-th iteration. Especially for FA-

TOC,G(n) always equals 1 because we can only localize

one faulty statement at every iteration in this approach.

A smaller A-EXAM value means a more efficient MFL

approach.

5.3.2 TOP-N%

This metric reports the number of faulty statements

that can be discovered within examining less than N%

statements [23, 48]. The higher the TOP-N% value, the

fewer the statements the developers need to check when

localizing faults, which means that the corresponding

fault localization approach is more effective.

The TOP-N% metric is a commonly-used measure-

ment in the fault localization field [49]. In our study, we

use the TOP-N% metric to evaluate the effectiveness

of MSeer and FATOC approaches in locating bugs in

various rank lists.

6 Results Analysis

In this section, we comprehensively analyze the ef-

fectiveness of our proposed FATOC approach and dis-

cuss potential threats to validity.

6.1 RQ1: Clustering Effectiveness Comparison

To answer RQ1, we collect the clustering accuracy

results of traditional SBFL, MSeer and FATOC ap-

proach on all the multi-fault program versions. Fig.8

uses a violin plot to show the clustering performance of

three approaches in terms of three evaluation metrics

(precision, recall, and FPR). Each block in the figure

can visually represent the distribution of the evaluation

result values, and the width of the block represents the

data density of the corresponding value of the y-axis. It

should be noted that we use the Ochiai formula to im-

plement the traditional SBFL approach since our pro-

posed FATOC method also uses the Ochiai formula.

Table 6 shows the detailed average results of Fig.8,

where different columns represent MFL approaches

with different evaluation metrics, and the bolded re-

sult indicates the corresponding approach can achieve

the best performance when the corresponding subject

program and evaluation metric are given. Based on

Fig.8 and Table 6, we can find that FATOC performs

the best in terms of metric precision, MSeer performs

the best in terms of metric FPR in most cases, and

traditional SBFL performs the best in terms of metric

recall in some cases.

As discussed in Subsection 3.3, a higher precision

value, a higher recall value, and a lower FPR value in-

dicate a better clustering method. Based on the empir-

ical findings of our controlled study in Subsection 3.5,

the precision metric has a stronger correlation with

the performance of MFL than other metrics. There-

fore, FATOC has more chances to be a better MFL
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Fig.8. Clustering effectiveness comparison of different approaches in terms of three evaluation metrics. (a) precision. (b) recall. (c)
FPR.

Table 6. Clustering Effectiveness Comparison of Different Approaches with Different Subject Programs

Program FATOC MSeer Traditional SBFL

precision (%) recall (%) FPR (%) precision (%) recall (%) FPR (%) precision (%) recall (%) FPR (%)

Print tokens 90.93 80.06 33.39 71.81 37.25 8.61 49.09 77.06 70.58

Print tokens2 92.20 75.58 27.55 72.44 38.21 8.71 52.78 82.01 66.36

Schedule 97.99 91.81 26.26 87.77 34.66 11.63 61.76 75.52 71.08

Schedule2 98.77 95.32 18.44 91.39 36.36 10.81 59.99 74.22 66.17

Replace 93.15 86.13 35.67 56.22 22.26 9.97 43.00 70.60 84.20

Tcas 100.00 59.24 0.00 90.92 53.68 8.05 74.32 84.46 37.51

Tot info 98.86 77.87 6.95 69.42 30.12 10.81 43.28 58.12 76.86

Sed 94.46 65.49 20.16 58.92 19.09 3.80 37.43 69.49 87.06

Grep 94.14 65.96 12.63 56.38 13.41 7.05 45.30 91.86 85.14

Average 95.61 77.49 20.12 72.81 31.67 8.83 51.88 75.93 71.66

approach than two baselines, which will be discussed

when answering the remaining two RQs.

Summary for RQ1. In the above controlled study

presented in Section 3, we find a higher accuracy of clus-

tering measured by metric precision has a strong cor-

relation with the accuracy of MFL. In this RQ, we find

that our proposed FATOC approach can achieve the

best performance in terms of precision, which means

this approach can achieve better clustering results.

6.2 RQ2: Comparison Between FATOC and

Traditional SBFL

To answer RQ2, we present the experimental results

of traditional SBFL and FATOC. Fig.9 shows the over-

all results in terms of metric A-EXAM , where diffe-

rent sub-figures show the evaluation results of diffe-

rent suspiciousness formulas. In Fig.9, x-axis represents

different program versions, and y-axis indicates the A-

EXAM value of different approaches when used in the

corresponding program. Since a lower A-EXAM value

means a better fault localization technique, the closer

the poly-line is to the x-axis, the better fault locali-

zation accuracy the MFL technique can achieve. In

Fig.9, we can find that compared with the traditional

SBFL, the FATOC approach can achieve better perfor-

mance when using six suspiciousness formulas.

Moreover, Table 7 lists the detailed results, where

different rows represent different suspiciousness formu-

las. It can be found in Table 7 that the FATOC ap-

proach can achieve better performance than traditional

SBFL approach and the improvement ratio varies from

6.98% to 10.32%. On average, using the FATOC ap-

proach can improve 8.8% fault localization accuracy in

terms of metric A-EXAM . Finally, the FATOC ap-

proach can achieve the best fault localization accuracy

when using the Ochiai formula, which is bolded in Ta-

ble 7.
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Fig.9. MFL comparison between FATOC and traditional SBFL in terms of metric A-EXAM with different formulas. (a) Jaccard.
(b) Tuarantula. (c) Ochiai. (d) OP2. (e) Crosstab. (f) Dstar∗.

Table 7. MFL Performance Comparison Results Between Tra-
ditional SBFL and FATOC When Using Different Suspiciousness
Formulas in Terms of Metric A-EXAM (%)

Formula FATOC Traditional SBFL Improve

Jaccard 5.11 15.27 10.16

Turantula 7.63 14.62 6.98

Ochiai 4.91 15.23 10.32

OP2 6.70 16.06 9.36

Crosstab 9.51 16.59 7.08

Dstar∗ 7.22 16.09 8.87

Average 6.85 15.64 8.80

Summary for RQ2. Our proposed FATOC approach

can achieve better MFL performance than the tradi-

tional SBFL approach when considering six different

formulas in terms of metric A-EXAM . Moreover, FA-

TOC with Ochiai formula can achieve the best perfor-

mance in our study.

6.3 RQ3: Comparison Between FATOC and

MSeer

In this subsection, we conduct a comprehensive

comparison between FATOC and a state-of-the-art

MFL approach MSeer [8]. We first compare these two

approaches in terms of two metrics (A-EXAM and

TOP-N%). Then, we use Wilcoxon signed-rank test

to analyze whether there are statistical performance

differences among these two approaches. The MSeer

approach uses Crosstab as the formula, since the previ-

ous study [8] showed MSeer could achieve the best per-

formance when using this formula. Moreover, based

on the empirical results on RQ2, we find FATOC with

the Ochiai formula can achieve the best performance.

Therefore, in this RQ, the FATOC approach uses Ochiai

as the formula. Finally, the traditional SBFL approach

as a control approach uses the same Ochiai formula as

the FATOC approach.

Detailed results are shown in Table 8, where the

bolded results indicate that the corresponding tech-

nique performs the best in the corresponding subject

program. We can find that for the nine programs, both

FATOC and MSeer can perform better than traditional

SBFL, and FATOC can obtain smaller A-EXAM val-

ues in eight of nine programs, which means FATOC has

a better MFL performance than MSeer in most cases.

To make the experimental conclusions more con-

vincing, we also use Wilcoxon signed-rank test [50] to

perform statistical analysis. The Wilcoxon signed-rank

test provides a reliable statistical basis for comparing
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the effectiveness of different techniques and has been

commonly used in previous studies [8, 33, 51]. The null

hypothesis is set as follows.

Table 8. MFL Performance Comparison of Different Ap-
proaches in Terms of A-EXAM and Wilcoxon Signed-Rank Test

Program A-EXAM (%) Confidence

Name FATOC MSeer Traditional (%)

SBFL

Print tokens 3.79 6.12 17.64 99.99

Print tokens2 4.57 4.99 17.69 45.04

Schedule 6.12 7.10 17.48 98.76

Schedule2 10.38 9.27 20.44 2.52

Replace 3.03 6.58 18.65 99.99

Tcas 10.72 11.18 15.56 57.27

Tot info 4.24 6.74 13.60 99.99

Sed 0.96 1.89 7.73 99.99

Grep 0.68 1.46 5.40 97.67

All 4.91 6.24 15.23 99.99

H0. Given the subject programs under test, FA-

TOC can perform significantly better than the MSeer

approach in terms of A-EXAM .

The acceptance level of H0 implies the confidence

level of the claim that FATOC performs better than

MSeer in terms of the MFL accuracy. The correspond-

ing results are shown in the fifth column of Table 8,

which presents the confidence level of H0 towards each

subject program. As Table 8 shows, the confidence

level of all programs is 99.99%. Therefore we can

conclude that FATOC can perform significantly bet-

ter than MSeer in most cases. More specifically, the

confidence level is over 97.00% in six out of nine pro-

grams. The confidence level is around 50% in another

two programs, which means FATOC and MSeer can

achieve similar performance in two programs (Print to-

kens2 and Tcas). The worst situation for FATOC is

locating bugs in program Schedule2, where MSeer can

perform significantly better than FATOC. Based on the

clustering effectiveness comparison shown in Table 6,

MSeer shows the best clustering accuracy in the pro-

gram Sechedule2 in terms of metric precision. There-

fore, such results are in accordance with the empirical

findings discussed in Section 3 (i.e., the precision met-

ric in clustering has a stronger correlation with MFL

accuracy).

Besides metric A-EXAM , we also conduct a more

detailed analysis of MFL performance of the three ap-

proaches by using metric TOP-N%. The results are

shown in Table 9, where each row refers to a different

N value, which means checking the corresponding per-

centage of statements. Taking the results shown in the

first row for an example, it is found that when checking

1% statements in the ranking list generated by the three

MFL approaches, 7.59%, 15.98% and 36.91% of all bugs

could be localized by using the traditional SBFL, MSeer

and FATOC respectively. Table 9 shows that using

FATOC can find 36.91% bugs when checking the top

1% statements, more than using Traditional SBFL and

MSeer, 14.86% and 32.39% respectively when check-

ing the top 3% statements. Therefore, FATOC can

find more bugs when checking fewer statements, which

means FATOC performs better than the two baselines

in terms of TOP-N%.

Table 9. MFL Performance Comparison of Three Methods in
Terms of Metric TOP-N%

N Percentage of Located Bugs

FATOC MSeer Traditional SBFL

1 36.91 15.98 7.59

2 48.50 24.23 11.39

3 57.30 32.39 14.86

4 62.43 38.09 18.18

5 66.93 43.73 21.93

10 85.45 62.61 37.36

15 92.07 72.36 49.00

20 95.41 83.16 60.27

25 98.57 90.95 75.32

30 99.05 94.84 85.18

40 99.93 99.43 98.20

50 100.00 100.00 100.00

Based on Table 9, we can find that in all situations,

FATOC can perform better than MSeer, which means

that when checking the same number of statements,

the developers can localize more faults by using our

proposed FATOC approach.

Summary for RQ3. FATOC can perform better

than MSeer and traditional SBFL in terms of both met-

rics A-EXAM and TOP-N%.

6.4 Threats to Validity

Internal Threats to Validity. Our study’s main in-

ternal threat is the potential implementation fault of

our proposed FATOC approach and the baseline ap-

proaches. To alleviate this threat, we first implemented

the OPTICS clustering algorithm based on the pyclus-
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tering framework 2○, and then we used two-dimensional

data to verify the effectiveness of the OPTICS cluster-

ing algorithm. Moreover, we implemented the MSeer

approach proposed by Gao and Wong [8] as a baseline

for comparison. To mitigate possible faults in imple-

menting MSeer, we used the examples in their paper [8]

to test our code.

External Threats to Validity. The first external

threat is related to the scale of this experiment. We

only conducted 804 faulty versions from the SIR repos-

itory and a total of 4 400 faults for MFL. However, the

SIR repository has been widely used in previous fault

localization studies [8, 52]. Therefore the quality of those

programs from this repository can be guaranteed. The

second external threat is related to the two baselines

we chose. To alleviate this threat, we first compared

FATOC with the traditional SBFL in RQ2, since the

traditional SBFL is the basic technique, which can re-

flect the performance of unimproved fault localization

for MFL. We second compared FATOC with a state-of-

the-art MFL approach MSeer in RQ3, since empirical

results showed that MSeer had achieved better perfor-

mance than other MFL approaches [8].

Construct Threats to Validity. Threats to construct

validity include how well we measure our experimen-

tal results. To alleviate this threat, we used A-EXAM

and TOP-N% to evaluate the performance of our ap-

proach and used the confusion matrix based metrics to

evaluate the accuracy of clustering algorithms. These

metrics have been widely used in evaluating the perfor-

mance of multi-fault localization [2, 8, 32] and bug isola-

tion effect [5, 53].

Conclusion Threats to Validity. To more com-

prehensively compare our proposed FATOC approach

with the baseline MSeer, we used the Wilcoxon signed-

rank test to verify the confidence of our conclusions.

Firstly, the Wilcoxon signed-rank test is suitable for

samples that cannot be assumed to be normally dis-

tributed. Secondly, this statistical test method has

also been widely applied in previous studies on fault

localization [8, 33, 51].

7 Conclusions

In this paper, we conducted a large-scale controlled

study with 10 levels of three misgrouping cases on

12 786 multi-fault version programs. The empirical re-

search results showed that there is a strong correlation

between bug isolation accuracy and fault localization

accuracy, and better quality clusters can result in a

higher MFL accuracy.

Based on the findings of the controlled study, we

presented a novel MFL approach, FATOC, which uses

the OPTICS clustering algorithm that can get the

cluster with the highest quality. We evaluated FA-

TOC on the benchmark SIR, and the results showed

that FATOC outperforms traditional SBFL signifi-

cantly. Specifically, we improved efficiency from 6.98%

to 10.32% in terms of metric A-EXAM . Besides tra-

ditional SBFL, our evaluation results also showed that

our proposed approach can outperform the state-of-the-

art MFL approach MSeer. Concerning the TOP-N%

metric, FATOC can locate and rank the faults at TOP-

1% for 20.93% more faults when compared with MSeer.

In the future, we will investigate the influence of

more negative factors (such as the coincidental correct

test cases) on the accuracy of MFL. Besides, we are go-

ing to use more large-scale real-world faulty programs

to verify the generalization of our empirical results.
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