
Han DS, Yang QL, Xing JC et al. EasyModel: A refinement-based modeling and verification approach for self-adaptive soft-

ware. JOURNALOF COMPUTER SCIENCE ANDTECHNOLOGY 35(5): 1016–1046 Sept. 2020. DOI 10.1007/s11390-02

0-0499-x

EasyModel: A Refinement-Based Modeling and Verification Approach

for Self-Adaptive Software

De-Shuai Han1, Qi-Liang Yang2,∗, Jian-Chun Xing2, and Guang-Lian Ma1,3

1College of Combat Support, Rocket Force University of Engineering, Xi’an 710025, China
2College of Defense Engineering, Army Engineering University of PLA, Nanjing 210007, China
3Teaching and Research Support Center, Rocket Force University of Engineering, Xi’an 710025, China

E-mail: handeshuai@126.com; {yql, xjc}@893.com.cn; maguanglian@126.com

Received April 6, 2020; revised July 25, 2020.

Abstract Self-adaptive software (SAS) is gaining popularity as it can reconfigure itself in response to the dynamic changes

in the operational context or itself. However, early modeling and formal analysis of SAS systems becomes increasingly

difficult, as the system scale and complexity is rapidly increasing. To tackle the modeling difficulty of SAS systems, we

present a refinement-based modeling and verification approach called EasyModel. EasyModel integrates the intuitive Unified

Modeling Language (UML) model with the stepwise refinement Event-B model. Concretely, EasyModel: 1) creates a UML

profile called AdaptML that provides an explicit description of SAS characteristics, 2) proposes a refinement modeling

mechanism for SAS systems that can deal with system modeling complexity, 3) offers a model transformation approach

and bridges the gap between the design model and the formal model of SAS systems, and 4) provides an efficient way to

verify and guarantee the correct behaviour of SAS systems. To validate EasyModel, we present an example application

and a subject-based experiment. The results demonstrate that EasyModel can effectively reduce the modeling and formal

verification difficulty of SAS systems, and can incorporate the intuitive merit of UML and the correct-by-construction merit

of Event-B.

Keywords self-adaptive software, formal modeling, Event-B, refinement, correct-by-construction

1 Introduction

Modern software systems, such as large-scale web

service systems and cyber-physical systems, are fac-

ing problems of increasing size, incremental comple-

xity and unpredictable environment changes. While ad-

dressing the above challenges, it becomes necessary to

develop so-called self-adaptive software (SAS) systems.

In fact, software self-adaptation has become a hot re-

search issue [1–3] in the software engineering community.

Software self-adaptation endows a software system with

the capability to to reconfigure itself in response to the

dynamic changes in the running context.

The early design, modeling and formal analysis of

SAS systems is essential to improve development ef-

ficiency and to ensure system reliability. As a stan-

dardized object oriented modeling language, Unified

Modeling Language (UML) has been widely used to

depict SAS systems. The self-adaptive software com-

munity has proposed ACML (Adapt Case Modeling

Language) [4] to specify SAS requirements, the FAME

approach [5] to depict self-adaptation attributes, and

the design patterns [6] to model real-time characteris-

tics. The above UML-based approaches provide an ex-

plicit description of structure characteristics of SAS sys-

tems, but they lack formal semantics to support the be-

haviour analysis of SAS systems. To tackle the formal

verification problem of SAS systems, the research com-

munity has proposed automata-based approaches [7, 8],

Petri Net based approaches [9, 10], Bayesian network

based approaches [11] and so on. These approaches pro-

Regular Paper

Special Section on Software Systems 2020

The work was supported by the National Key Research and Development Program of China under Grant No. 2017YFC0704100.
∗Corresponding Author

©Institute of Computing Technology, Chinese Academy of Sciences 2020

http://dx.doi.org/10.1007/s11390-020-0499-x
http://dx.doi.org/10.1007/s11390-020-0499-x

De-Shuai Han et al.: EasyModel: Self-Adaptive Software Modeling Approach 1017

vide effective modeling solutions to small-scale SAS sys-

tems. However, they are limited in dealing with system

complexity. Practices [12, 13] show that the above ap-

proaches suffer from problems like state-space explo-

sion, when the system scale and complexity increase.

Another limitation of existing approaches is the gap be-

tween the design model (e.g., UML) and formal model

(e.g., Petri Net) of SAS systems, because of a lack of

automatic model transformation mechanism. And this

gap increases the modeling difficulty of SAS systems.

As SAS is gaining growing attention in complex in-

formation systems, such as large-scale web service sys-

tems, we need a novel approach to design SAS sys-

tems, which can: 1) provide an explicit description

of self-adaptation characteristics, 2) decompose system

complexity and alleviate modeling difficulty, and 3) of-

fer an efficient formal analysis way and provide guar-

antees for the correct behaviour.

To address the formulated problems, we present a

refinement-based modeling and verification approach

called EasyModel (Ease Modeling Difficulty). Easy-

Model integrates the intuitive UML model with the

stepwise refinement Event-B model [14], as UML and

Event-B can complement with each other in depict-

ing complex systems. UML is intuitive and easy to

use, and is suitable for describing self-adaptation re-

quirements and SAS structures; while Event-B per-

forms well in specifying and verifying complex software

behaviours, with its stepwise refinement and correct-

by-construction advantages. Besides, both UML and

Event-B provide notions to model both static and dy-

namic software characteristics. The above complemen-

tarities and similarity all contribute to integrating the

UML model with the Event-B model.

To the best of our knowledge, the EasyModel ap-

proach is the first attempt to integrate the intuitive

UML model with the stepwise refinement Event-B

model in modeling and verifying SAS systems. Con-

cretely, EasyModel makes the following contributions.

1) It preserves the intuitive merit of our initial

work [5, 15], and presents an explicit description of

SAS characteristics by creating a UML profile called

AdaptML.

2) It proposes a stepwise refinement modeling mech-

anism for SAS systems that deals with system modeling

complexity by gradually enriching system details from

the abstract model to the concrete model.

3) It offers a model transformation approach from

the extended UML model to the Event-B model, which

bridges the gap between the design model and the for-

mal model of SAS systems, and alleviates modeling dif-

ficulty of SAS systems.

4) It presents an efficient formal verification method

by integrating Proof Obligation [14] discharging with

model checking, which provides guarantees for the cor-

rect behaviour of SAS systems.

We have evaluated the EasyModel approach with

an example application and a subject-based experi-

ment, and the results reveal that EasyModel can re-

duce modeling and formal verification difficulty of SAS

systems, and can incorporate the intuitive merit of the

UML model and the correct-by-construction merit of

the Event-B model.

The rest structure of this paper is as follows. Sec-

tion 2 introduces corresponding concepts and an adap-

tation scenario. Section 3 provides requirements for

modeling SAS systems and the conceptual framework

of the proposed approach. In Section 4, details of the

approach are illustrated. Section 5 presents an exam-

ple application of the EasyModel approach. We eva-

luate the approach in Section 6 with a subject-based

experiment. Section 7 presents related work. Finally,

Section 8 concludes the paper with a discussion on fu-

ture work.

2 Background

In this section, we first present a brief introduction

to UML extending mechanism and the Event-B model,

and then provide an overview on the adaptation sce-

nario of ZNN.com 1○.

2.1 UML and Its Extending Mechanism

UML is a standard object-oriented modeling lan-

guage offered by the Object Management Group [16].

It provides various diagram views for designing and

modeling various aspects of software systems, e.g., the

class diagram for structure modeling and the activity

diagram for behaviour description. In addition, UML

provides composite structures (e.g., composite class) to

support large-scare system modeling. With the advan-

tages of being intuitive and easy to use, UML has been

widely used for software modeling and designing.

However, UML lacks direct semantic and syntac-

tic support for SAS systems. On the one hand, UML

provides no concept of SAS systems (e.g., Monitor),

and developers cannot capture semantic information

1○http://znn.com/, July 2020.

1018 J. Comput. Sci. & Technol., Sept. 2020, Vol.35, No.5

from the elements’ names. In order to support domain-

specific modeling, UML is designed to be open and ex-

tensible, and it provides the extending mechanism of

UML profile, including stereotypes, tagged values, and

constraints. UML profile [16] provides a straightforward

mechanism to adapt an existing meta-model with con-

structs that are specific to a particular domain. As

a consequence, standard UML modeling tools, such as

Papyrus [17], are able to work with profile-based models.

On the other hand, UML is a semi-formal modeling lan-

guage, and cannot be analyzed and verified. To make

up for this problem, UML models can be formalized by

formal models, such as the timed automata model and

the Event-B model.

2.2 Event-B Model

Event-B is a system-level modeling and analysis

model proposed by Abrial [14]. Main components and

features of Event-B are as follows.

Context and Machine. Event-B employs set theory

as modeling notations and is composed of two basic

constructs, context and machine. A context depicts

the static structure of a system using carrier sets, con-

stants, axioms and theorems, and a machine describes

the dynamic structure of a system using variables, in-

variants, theorems, variants and events, as shown in

Fig.1. A machine may see one or more contexts, and

this will allow it to use all the elements defined in the

contexts. Events are generally expressed as:

any variable where guard then action.

Context
See

Machine

Constant

Set

Axiom

Theorem Action

Variable

Invariant

Variant

Event

Theorem

Guard

Fig.1. Meta-model of Event-B.

Refinement. This mechanism consists in adding de-

tails gradually while preserving the original properties

of the system. Refinement allows Event-B to model

any large and complex systems. The consistency be-

tween different refinement levels is guaranteed with a

particular invariant called gluing invariant.

Correct-by-Construction. In Event-B, each model

will be analyzed and proved, guaranteeing that it is cor-

rect relative to a set of proof obligations (POs). There-

fore, when the last model is finished, we are able to say

that this model is correct-by-construction.

Event-B is supported by several tools, currently

in the form of a platform called Rodin [18]. Rodin

supports lots of plug-ins, such as ProB for anima-

tion/model checking [19] and Atelier B provers for POs

discharging [20]. Currently, Event-B has been actively

used within several European Union projects [21, 22]

and cyber-physical systems [23]. However, SAS owns

its domain-specific characteristics, and new refinement

patterns are needed to model and depict the self-

adaptation logic.

2.3 Adaptation Scenario: ZNN.com

The self-adaptation scenario of ZNN.com system

is selected from Cheng’s doctoral dissertation [24].

ZNN.com is a complex web-based client-server system,

and it serves new contents to customers through a clus-

ter of application servers. Its architecture is shown in

Fig.2.

Client 1 Server 1

Client 2 Server 2

Client M Server N

Load Balancer
Proxy

Server Pool

⊲⊲⊲

⊲⊲⊲

Fig.2. Architecture of ZNN.com [24].

The system of ZNN.com utilizes a balancer to bal-

ance requests across the pool of replicated servers. Tra-

ditionally, the size of the server pool can be manually

adjusted according to the amount of client processes.

And the servers can serve contents in either the text

mode or the multimedia mode to the clients. However,

the amount of client requests changes dynamically dur-

ing system operation, and ZNN.com demands the abi-

lity of self-adaptation to deal with dynamic changes.

However, new problems arose when researchers used

the SAS paradigm to reconstruct the ZNN.com sys-

tem. Firstly, it is important to explicitly specify the

self-adaptation logic early at the design phase. But

De-Shuai Han et al.: EasyModel: Self-Adaptive Software Modeling Approach 1019

traditional modeling languages, such as UML, lack di-

rect semantic and syntactic support for self-adaptive

systems, and the self-adaptation entities (e.g., Load-

Monitor) cannot be explicitly depicted. Secondly, an

early formal verification is necessary to provide guar-

antees for software behaviours. However, it is difficult

for software engineers to establish the formal model of

ZNN.com system just from the above nature language

based requirements, and there is a gap between the

design model and the formal model of SAS systems.

Therefore, we choose ZNN.com as an adaptation exam-

ple to verify the effectiveness of EasyModel in modeling

and formally verifying SAS systems.

3 Overview of the EasyModel Approach

In this section, we firstly analyze the key require-

ments for modeling self-adaptive systems, and then

present the conceptual framework of the EasyModel ap-

proach.

3.1 Requirements for Modeling SAS Systems

Owning to the high system complexity and domain-

specific characteristics, the SAS systems are difficult

to design, model and analyze. A systematic modeling

approach for SAS systems is needed, and key require-

ments for modeling SAS are analyzed and summarized

as follows.

Firstly, the SAS systems are composed of the self-

adaptation logic and the application logic, and the

self-adaptation logic is composed of interactive self-

adaptation entities (e.g., sensor). As a sequence, self-

adaptation entities, interactive relationships (e.g., trig-

ger), and self-adaptation attributes (e.g., monitored-

Variable) play crucial roles in SAS systems, and need

to be explicitly depicted (R1). Secondly, as the self-

adaptation loops intertwine the self-adaptation logic

with the application logic, they should be treated as

first-class elements in SAS systems. Thus, the self-

adaptation loops should also be explicitly depicted early

in the design phase (R2). Thirdly, according to the au-

tonomic computing architecture [25], the SAS systems

are realized based on the Monitor-Analyze-Plan- Ex-

ecute activities. Therefore, the self-adaptation acti-

vities need to be explicitly depicted (R3). Fourthly,

as SAS systems are large, complex and heterogeneous,

the modeling approach should provide mechanism to

tackle system complexity (R4), and alleviate model-

ing difficulty. Finally, as system scale increases, the

self-adaptation logic is error-prone, and the modeling

approach should provide mechanism to guarantee the

correctness of the self-adaptation logic (R5).

In a word, the modeling approach for SAS systems

should take into account self-adaptation characteristics

as well as system complexity.

3.2 Conceptual Framework of EasyModel

According to the modeling requirements of R1, R2

and R3 in Subsection 3.1, there is an urgent need to

provide an explicit description of SAS characteristics.

Therefore, UML is chosen and extended to model SAS

systems, as it provides multiple visual diagram views,

and is easy to use for most software engineers. Mean-

while, in order to make up for the semi-formal deficiency

of UML and to fulfill the requirements of R4 and R5, the

extended UML needs to be integrated with the stepwise

refinement Event-B model. The conceptual framework

of the EasyModel approach is shown in Fig.3. Con-

cretely, it is composed of the following steps.

1) Visual Modeling of SAS by Extending UML. In

this step, a UML profile called AdaptML is created by

extending UML. According to the modeling require-

ment of R1, a structure view called adapt class dia-

gram is created, and it can present an explicit descrip-

tion of self-adaptation entities, relationships and self-

adaptation attributes. Similarly, to meet the model-

ing requirement of R2 and R3, a behaviour view called

adapt activity diagram is established, and it can pro-

vide an explicit description of self-adaptation activities

and self-adaptation loops. Besides, a supporting tool

for AdaptML is developed to improve the modeling ef-

ficiency.

2) Model Transformation from AdaptML to Event-

B. By analyzing corresponding relationships between

AdaptML and Event-B model, a set of mapping rules

and a supporting tool are created, supporting auto-

matic transformation from the adapt class diagram to

context of Event-B and from the adapt activity dia-

gram to the machine of Event-B, respectively. This

model transformation can bridge the gap between the

design model and the formal model of SAS systems,

and alleviate modeling difficulty.

3) Formal Modeling of SAS Systems by Defining

New Event-B Refinement Patterns. In order to de-

pict complex self-adaptation activities, e.g., sequential

node, branch node, and self-adaptation loop, a set of

new Event-B refinement patterns have been proposed

and proved. The stepwise refinement patterns can build

SAS systems by gradually enriching implementation de-

tails, decomposing system complexity of SAS systems.

1020 J. Comput. Sci. & Technol., Sept. 2020, Vol.35, No.5

Visual Modeling
by Extending UML

UML Meta-Model
(Class, Activity, etc.↽

AdaptML Meta-Model
(AdaptClass,

AdaptActivity, etc.↽

AdaptML Model
(AdaptClass Diagram,

AdaptActivity
Diagram, etc.)

Extend

Aggregate

Model Transformation
Rules Based on ATL

Model Transformation
Algorithm

(AdaptML2EVENTB.atl)

Model Transformation
Tool Based on Eclipse

Conform

Input
Input

Input

Abstract Model
(Event-B Level 0)

Output

Model Transformation
from AdaptML to Event-B

Formal Modeling by Defining
Event-B Refinement Patterns

Provide an Explicit Description
of SAS Characteristics

Bridge the Gap Between Design
Model and Formal Model

of SAS Systems

Decompose System Complexity
and Reduce Modeling Difficulty

Refined Model 1
(Event-B Level 1)

Refined Model N
(Event-B Level N)

Event-B
Meta-Model

Input
...

Refine

Refine

Event-B
Refinement
Patterns

Model Correctness

Formal Verification
of SAS Systems

Provide Guarantees for the Correct
Behavior of SAS Systems

Safety Property of
Self-Adaptation Logic

Effectiveness of Self-
Adaptation Strategies

PO Discharging

+

Model Checking

Event-B
Refinement
Patterns

Input

Input

Fig.3. Conceptual framework of the EasyModel approach.

4) Formal Analysis and Verification of SAS Sys-

tems Based on Event-B Model. Model correctness and

self-adaptation properties (e.g., effectiveness of self-

adaptation strategies) can be verified by integrating the

Proof Obligation discharging technique (supported by

the Atelier B Provers [20] plug-in of Rodin) with the

model checking technique (supported by the ProB [19]

plug-in of Rodin). And this integrated verification

method can improve verification efficiency.

4 Implementation of the EasyModel Approach

In this section, the implementation details of

the EasyModel approach are presented, by defining

meta-models, creating refinement patterns, establishing

model transformation rules, and constructing support-

ing tools.

4.1 Visual Modeling of SAS by Extending

UML

In order to support an explicit description of self-

adaptation logic, we create the structure view of adapt

class diagram and the behaviour view of adapt activity

diagram by extending UML class diagram and activity

diagram, respectively.

4.1.1 Structure View: Adapt Class Diagram

The adapt class diagram is created to explicitly

specify structure characteristics of SAS systems, e.g.,

the self-adaptation entities, interactive relationships,

and self-attributes. And it is created by extending class

diagram and by incorporating the self-adaptation con-

cepts. Fig.4 depicts the meta-model of the adapt class

diagram. The formal definition of the adapt class dia-

gram is as follows.

Definition 1 (Adapt Class Diagram). An adapt

class diagram can be defined as a tuple:

ACD = (CA, RA, AA,MA, S).

• CA is a set of adapt classes. For each adapt class

c ∈ CA, c is created based on the class of UML, and

is symbolically represented by <<stereotype>>. CA

= {Monitor, Analyzer, Planner, Executor, Knowledge,

Application-Logic}. They are all composite classes

(symbolized by ∞), and can be decomposed into a group

of sub-classes. For example, Monitor can be decom-

posed into sensors while Executor can be decomposed

into effectors.

• RA is a set of adapt-relationships. RA is derived

by extending the relationship of UML. RA ⊆ CA × CA

is a binary relation, and relates all the adapt classes.

RA = {probe, trigger, invoke, adjust}, and Table 1 lists

detailed description of all the adapt-relationships.

• AA is a set of adapt-attributes, belonging to the

adapt classes. AA is created by extending the attribute

of UML. AA = A ∪ AT, in which A and AT represent

two different kinds of attributes. A is a set of general

attributes, while AT is a set of tagged values. Tagged

values are represented as [Tag] = [Value], which depicts

self-adaptation attributes of each adapt class. For ex-

ample, Kind = Environment implies that the monitored

object is the software running environment.

• MA is a set of adapt-methods, which is mainly

used to depict adaptation algorithms. MA is created by

extending the method of UML model.

De-Shuai Han et al.: EasyModel: Self-Adaptive Software Modeling Approach 1021

Extend

Model ElementUML Meta-Model

MethodClass Relationship Attribute Constraint

Adapt-Attribute

<<stereotype>>

Attribute

<<stereotype>>

Tagged Value

<<stereotype>>

Time Constraint

<<stereotype>>

Event Constraint

Adapt-
Relationship

<< stereotype>>

Probe

<< stereotype>>

Trigger

<< stereotype>>

Invoke

<< stereotype>>

Adjust

<< stereotype>>

Sensor

<< stereotype>>

Effector

<< stereotype>>

Monitor

<< stereotype>>

Analyzer

<< stereotype>>

Planner

<< stereotype>>

Executor

<<stereotype>>

Knowledge

<< stereotype>>

Application Logic

Adapt-Class

ExtendExtend

Fig.4. Meta-model of adapt class diagram.

Table 1. Detailed Description of the Adapt-Relationships

Type Notation Description

Probe A → MB B periodically transmits real-time data to A; A ∈ Monitor, B ∈ Application Logic.

Trigger A[c];B If condition c in A is true, operation in B triggers; A,B ∈ {Monitor, Analyzer, Planner, Executor}.

Invoke A → IB B stores all data to be invoked by A; A ∈ {Monitor, Analyzer, Planner, Executor}; B ∈ Knowledge.

Adjust A → AB A is an Executor unit that employs all decisions to adjust the attributes, behaviours, or structures of B.

• S is a set of constraints, which are used to refine

model elements or attributes by imposing conditions or

restrictions on specific elements or variables.

As can be seen from the above definitions, deve-

lopers can capture semantic information from the el-

ements’ names (e.g., Monitor) in the adapt class dia-

gram, and the self-adaptation structures are depicted

explicitly (R1). Besides, the composite structure of

adapt classes (e.g., Monitor) provides a step-by-step

way to model SAS systems, which reduces model-

ing difficulty of large-scale systems (R4). The def-

inition of adapt class diagram has referred to ideas

from the fuzzy class diagram in our previous work [5].

The former is created for general SAS systems, while

the latter is customized just for fuzzy self-adaptive

software systems. The fuzzy class diagram is com-

posed of a set of fuzzy control based modeling el-

ements, e.g., <<FuAdapter>>, <<Fuzzification>>,

<<Defuzzification>>, but it lacks modeling elements

to depict general SAS systems. Besides, the fuzzy class

cannot be decomposed again, and lacks mechanism to

specify SAS systems at different abstract levels.

4.1.2 Behaviour View: Adapt Activity Diagram

The adapt activity diagram is defined to explic-

itly depict behaviours of SAS systems, e.g., the self-

adaptation activities. It is created by extending UML

activity diagram and by incorporating characteristics

of SAS systems, and its definition is as follows.

Definition 2 (Adapt Activity Diagram). An adapt

activity diagram is defined as a tuple:

AAD = (AA, TA, Ctrl, PA, OA).

1022 J. Comput. Sci. & Technol., Sept. 2020, Vol.35, No.5

• AA = Aaction ∪ Aactivity ∪ aI ∪ aF. Concretely,

Aaction is a set of adapt-actions, which is created by

extending the UML action. Aaction is the basic activ-

ity unit and cannot be decomposed. Aactivity is a set of

adapt-activities, which is created by extending UML ac-

tivity. Aactivity = {Monitor, Analyze, Plan, Execute},

which can be decomposed into Adapt-Actions or sub-

activities; aI is the initial activity while aF is the final

activity.

• TA is a finite set of transitions from one activity

to another, and TA = {t1, t2, . . . , tn}; each transition

is attached with one condition G(t).

• Ctrl is a finite set of control nodes, Ctrl ⊆ (AA ×

TA)∪ (TA×AA). Ctrl = {Sequential, Branch, Coopera-

tion, Self-adaptation loop}. Sequential represents the

sequentially executed activities, such as Monitor and

Analyze in Fig.5(a); Branch inherits from the Deci-

sion node and represents the conditional activities, such

as act 1 and act 2 in Fig.5(b); Cooperation inherits

from the Fork/Join node and represents the coordinat-

ing activities, such as sense 1 and sense 2 in Fig.5(c);

Self-adaptation loop represents the circular relations,

such as activities in Fig.5(d).

• PA is a set containing all the partitions, which

identify a collection of actions belonging to the same

objects.

• OA is a set of adapt-objects, which are instances

of adapt classes CA.

Monitor

Analyze

Act 1 Act 2 Sense1 Sense2

Monitor

Analyze

Plan

Execute

c1 c2

c3

(b)(a) (c) (d)

Fig.5. Example of sequential node refinement. (a) Sequential.
(b) Branch. (c) Cooperation. (d) Self-adaptation loop.

According to the above definition, it can be seen

that the adapt activities provide an explicit description

of self-adaptation behaviours and the self-adaptation

loops (R2, R3). Besides, the adapt activities can be

decomposed into sub-activities or adapt-actions, and

provides a step-by-step mechanism to gradually depict

SAS behaviours, reducing modeling difficult (R4).

4.1.3 Supporting Tool: AdaptML Profile

For the convenience of application, we have cre-

ated a plug-in called AdaptML profile for the above

two diagrams. AdaptML profile is created as a plug-

in of Papyrus [17]. Fig.6 illustrates the graphical user

interface (GUI) of an adapt class diagram. The mod-

eling infrastructures, such as adapt classes and adapt

attributes, are predefined in this tool. And software

engineers who are familiar with UML can quickly cre-

ate an adapt class diagram by applying the predefined

stereotypes. This supporting tool of AdaptML profile

can reduce modeling difficulty of SAS systems, and im-

prove modeling efficiency. Besides, it owns the following

distinctive characteristics.

1) It contributes to efficient use and management,

as modeling elements have all been predefined in the

toolbar of Papyrus.

2) It owns good compatibility with the standard

UML model, facilitating understanding and using for

general software engineers.

4.2 Model Transformation Rules from

AdaptML to Event-B

The AdaptML model provides an intuitive descrip-

tion of SAS systems, but it cannot be formally analyzed

and verified. In addition, it is difficult to establish the

formal model of SAS systems for general software en-

gineers. In order to bridge the gap between the de-

sign model and the formal model of SAS systems, we

study the correspondences between the meta-model of

AdaptML and the meta-model of Event-B, and propose

a set of mapping rules from AdaptML to Event-B, as

shown in Fig.7.

According to the mapping rules in Fig.7, the adapt

class diagram can be transformed into the context of

Event-B; while the adapt activity diagram can be trans-

formed into the machine of Event-B. The composite

structures (e.g., composite classes and composite acti-

vities) can be transformed to extending mechanism of

context; while the partition of adapt activity diagram

can be transformed to the refinement mechanism of

Event-B. Detailed implementation follows below.

4.2.1 Transforming Adapt Class Diagram into Event-

B Model

The adapt class diagram is created to describe static

characteristics of SAS systems. Thus, it can be for-

malized using the context of Event-B, and the adapt-

attributes and adapt-methods can be formalized using

variables and events of Event-B, respectively. Besides,

the composite structures of adapt class can be mapped

into the extending mechanism of the context, as shown

in Fig.7.

De-Shuai Han et al.: EasyModel: Self-Adaptive Software Modeling Approach 1023

Fig.6. GUI of AdaptML profile (adapt class diagram).

Transforming the General Adapt Class into Event-

B. Taking part of the adapt class diagram for an exam-

ple, we illustrate the transformation process from the

general adapt class to Event-B.

As shown in Fig.8, the sub-class <<TimeSensor>>

and <<Monitor>> of adapt class can be mapped to

constant and set of Event-B, respectively. Meanwhile,

the generalization relationship between sub-class and

super-class can be mapped as the “belong to” (i.e.,

∈) relationship between constant and set, represented

as partition (Set, {constant}). Besides, the adapt-

relationship, such as trigger, can be defined in constant,

and formalized using the relation (represented as ↔) of

axioms. The source and the target of the relationship

can be formalized as dom(source) and ran(target), re-

spectively.

Besides, the adapt-attribute, such as RespTime, can

be mapped as variable of a machine, and depicted us-

ing invariant of a machine. The adapt-method, such as

ProbTime, can be mapped as event of a machine, as

shown in Fig.8.

Transforming Composite Adapt Class into Event-

B. In order to support complex system modeling, the

adapt class diagram has defined the composite adapt

class, which can be further decomposed into concrete

adapt classes. Similarly, the Event-B model provides

the extend mechanism to refine context. Thus, we have

mapped the composite adapt class into the Extending

mechanism of Event-B, as shown in Fig.9. The ab-

stract adapt class of Executor can be decomposed into

two sub-classes of effector 1 and effector 2. Correspond-

ingly, the abstract context which defines Executor can

be extended to the concrete context which defines ef-

fector 1 and effector 2.

1024 J. Comput. Sci. & Technol., Sept. 2020, Vol.35, No.5

Self-Adaptation Loop

A
d
a
p
t

A
c
ti
v
it
y
 D

ia
g
ra

m
Adapt Class (Super-Class)

Adapt Class (Sup-Class)

Adapt-Relationship

Adapt-Relationship (Generalization)

Adapt-Attribute

Adapt-Method

Adapt-Object/Partition

Adapt Activity

Sequential (Control-Flow)

Cooperation (Fork/Join)

Branch (Decision)

Partition

A
d
a
p
t

C
la

ss
 D

ia
g
ra

m

Extended UML

C
o
n
tr

o
l
N

o
d
e

Adapt-Action

Composite Structure

Guard, Variant (Loop Pattern)

M
a
ch

in
e

Set

Constant

Axiom (Relation)

Axiom (Partition)

Variable , Invariant

Event

Set

Event

Guard, Variant (Sequential Pattern)

Guard, Variant (Parallel Pattern)

Guard, Variant (Branch Pattern)

Refinement Mechanism (Machine)

C
o
n
te

x
t

Event-B

Event (Refinement Limited)

Extending Mechanism (Context)

Mapping

 Rules

Fig.7. Mapping rules from extended UML to Event-B.

4.2.2 Transforming Adapt Activity Diagram into

Event-B Model

The adapt activity diagram and machine of Event-B

are both in nature state-transition models. Considering

this similarity, we have proposed mapping rules from

adapt activity diagram to machine of Event-B model.

Transforming a Basic Adapt Activity into Event-B.

As shown in Fig.7, each activity or action of the adapt

activity diagram can be formalized by one event (repre-

sented as WHEN guard THEN action END) of Event-

B. The event transformed from activity can be further

refined. However, the event transformed from action

cannot be refined anymore, as it is the basic atomic

unit. Fig.10 presents an example of transforming a ba-

sic adapt activity into one event of Event-B model.

Transforming Partition into Event-B. In the adapt

activity diagram, the partition divides an abstract

adapt activity diagram into several sub-activities, as

shown in Fig.11(a). Similarly, one abstract event of

Event-B can be refined into several concrete events, as

shown in Fig.11(b). Therefore, we transform partition

of adapt activity diagram into the refinement mech-

anism of Event-B. As shown in Fig.11, the abstract

adapt-activities of Monitor and Analyze are mapped

to abstract events of Monitor and Analyze. Similarly,

the concrete activities of act 1, act 2, act 3, and act

4 are mapped to corresponding concrete events of the

Event-B model.

The composite structures and partition of AdaptML

model, and the extending and refinement mechanism

of Event-B model both contribute to dealing with the

system complexity of self-adaptive logic and reducing

modeling difficulty of SAS systems (R4).

4.3 Model Transformation Tool:

AdaptML2EventB

In order to support the automatic transforma-

tion from the AdaptML model to the Event-B

model, we create a model transformation tool called

AdaptML2EventB 2○.

2○https://pan.baidu.com/s/1OjjqTDVGz9mSyCEdNIyUbg, July 2020.

De-Shuai Han et al.: EasyModel: Self-Adaptive Software Modeling Approach 1025

<<Sensor>>

TimeSensor

 ResTime : int

+ ProbTime()

<<Analyzer>>

TimeAnalyzerTrigger

Generalization

<<Monitor>> <<Analyzer>>

Generalization

Adapt-Relationship: Trigger

Adapt-Attribute

Adapt-Class

(Super-Class)

Adapt-Class
(Sub-Class)

CONTEXT

 ZNN_Context0

SETS

 Monitor

 Analyzer

CONSTANTS

 TimeSensor

 Time Analyzer

 Trigger

Axioms

axm1

axm2

axm3

axm4

axm5

 : partition(Monitor, {TimeSensor})

: partition(Analyzer, {TimeAnalyzer})

:

: dom(trigger)={TimeSenor}

: ran(trigger)={TimeAnalyzer}

END

MACHINE

 ZNN_Machine0

SEES

 ZNN_Context0

VARIABLES

 RespTime

INVARIANTS

 inv1 : RespTime �

EVENTS

 ProbTime

BEGIN

 act1 : RespTime: �

END

END

Adapt-Method

trigger Monitor Analyzer

N

 �N

(a)

(b)

Fig.8. Example: transforming the general adapt class diagram into Event-B model. (a) Fragments of adapt class diagram. (b)
Corresponding fragments of Event-B model.

 Effector 2

 Effector 1

<<Executor>>

Extends
CONTEXT
ZNN_Context0

SETS
 Executor

END

CONTEXT
 ZNN_Context1

EXTENDS
 ZNN_Context 0
SETS
 Effector 1
 Effector 2
END

(b)(a)

Fig.9. Example: transforming composite adapt class into ex-
tending mechanism of Event-B model. (a) Composite class. (b)
Extending mechanism of context.

Monitor

EVENTS

 monitor = �

WHEN

 grd1: Period >10

THEN

 act1: CurrentRespTime=� RespTime

END

END

^

(b)(a)

Fig.10. Example: transforming a basic adapt activity unit into
an event of Event-B model. (a) Basic activity unit. (b) Event.

AdaptML2EventB is created based on the ATL

(ATLAS Transformation Language) architecture [26],

as shown in Fig.12. The ATL architecture is com-

posed of three layers: the meta-meta-model layer, the

meta-model layer and the model layer. In the cre-

ated AdaptML2EventB, the meta-meta-model layer

is defined according to the ecore meta-model. The

meta-model layer consists of the source meta-model

(i.e., the UML meta-model) and the target meta-model

(i.e., the Event-B meta-model), which both conform

to the ecore meta-model. Specifically, the UML meta-

model consists of the adapt-class meta-model (i.e., the

meta-model defined in Fig.4) and the adapt-activity

meta-model (defined in Definition 2). The Event-B

meta-model is composed of the context meta-model

and the machine meta-model (defined in Fig.1). The

ATL model transformation rules from AdaptML to

Event-B are created based on the above meta-models

and the mapping rules in Fig.7. Notably, the AdaptML

model to be transformed from Papyrus needs prepro-

cessing, and the generated Event-B model needs further

1026 J. Comput. Sci. & Technol., Sept. 2020, Vol.35, No.5

A
n
a
ly

z
e

M

o
n
it
o
r

Act 1

Act 2

Act 3

Act 4

EVENTS

 Monitor �

WHEN

THEN

END

 Analyze �

WHEN

THEN

END

END

EVENTS

 act1 �

REFINES Monitor

WHEN ...THEN ...END

 act2 �

REFINES Monitor

WHEN ...THEN ...END

 act3 �

REFINES Analyze

WHEN ...THEN ...END

 act4 �

REFINES Analyze

WHEN ...THEN ...END

END
Refine

=̂

=̂

=̂

=̂

=̂

=̂

(b)

(a)

Fig.11. Example: transforming partition into refinement mech-
anism. (a) Partition. (b) Refinement mechanism.

post-processing before loading into Rodin. The ar-

chitecture and the implementation principle of the

AdaptML2EventB tool are shown in Fig.12.

The core component of the transformation tool is

the ATL transformation rules, which are created based

on the mapping rules defined in Fig.7. Fig.13 provides

the fragment of the ATL model transformation rules

from the adapt class to the context model. The trans-

formation rules from the adapt activity to the machine

model are similar.

The debug configuration interface of this tool is

shown in Fig.14. First of all, users need to configure the

model transformation program by selecting the ATL

module (e.g., the ATL model transformation rules in

Fig.13), the meta-models (e.g., AdaptClass.ecore and

Context.ecore), the input path of the source models

(e.g., sampleUMLClass.xmi), and the output path of

the target modes (e.g., sampleContext.xmi). Then,

model transformation can be implemented with just one

click on the Debug button. Model correctness of the

transformed Event-B model is guaranteed by checking

proof obligations, which will be illustrated in Subsec-

tion 4.5.

Taking a simple adapt class diagram for example,

we illustrate the application of the AdaptML2EventB

tool, as shown in Fig.15.

Ecore

Meta-Model

UML Meta-Model

(AdaptClass.ecore,

AdaptActivity.ecore)

Event-B Meta-Model

(Context.ecore,

Machine.ecore)

AdaptML Model

(AdaptClass.xmi,

AdaptActivity.xmi)

Event-B Model

(Context.xmi,

Machine.xmi)

Conforms

ATL

ATL Transformation Rules

(UMLClass2Context.atl,

UMLActivity2Machine.atl)

Transforming

AdaptML in Papyrus

(AdaptClass.uml,

AdaptActivity.uml)

Event-B in Rodin

(Context.buc,

Machine.bum)

Preprocessing Postprocessing

Meta-Meta-Model

Meta-
Model

Model

Conforms

Conforms

ConformsConforms

Conforms

ConformsConforms

Fig.12. Architecture of the AdaptML2EventB tool.

De-Shuai Han et al.: EasyModel: Self-Adaptive Software Modeling Approach 1027

Fig.13. Fragment of the ATL transformation rules.

Fig.14. GUI of the model transformation tool.

<<Monitor>>

<<trigger>>

<<Analyzer>>

TimeSensor TimeAnalyzer

(b)

(a)

Fig.15. Transforming adapt class diagram into context. (a) Part
of an adapt class diagram. (b) Generated context model.

The diagram to be transformed is shown in

Fig.15(a), and it is composed of two abstract

classes (i.e., Monitor and Analyzer), two sub-classes

(i.e., TimeSensor and TimeAnalyzer), and adapt-

relationships (i.e., Trigger and Generalization). Apply-

ing the model transformation tool, this simple adapt

class diagram is firstly preprocessed and saved as .xmi

file. Then, a context file with the .xmi format can be

generated by debugging and running the transforma-

tion tool. Finally, the context file can be loaded into the

Event-B tool of Rodin after post-processing operation,

and the context model in Fig.15(b) is generated.

Currently, the above model transformation tool of

AdaptML2EventB cannot be fully automatic, and still

needs human interaction with pre- and post-processing

operations.

4.4 Event-B Refinement Patterns for SAS

Systems

As shown in Subsection 4.3, the Event-B model pro-

vides a formal description of SAS systems. However, it

lacks mechanism to depict complex self-adaptation acti-

vities, such as cooperation, branch, or self-adaptation

loops. For this end, we have defined a set of Event-B

refinement patterns for SAS systems. These refinement

1028 J. Comput. Sci. & Technol., Sept. 2020, Vol.35, No.5

patterns can be reused, and alleviate modeling diffi-

culty.

4.4.1 Sequential Refinement Pattern

In order to explicitly depict sequential activities in

SAS systems, we have defined the sequential refinement

patterns. As shown in Fig.16(a), the abstract activ-

ity of abs can be decomposed into two sub-activities

of con1 and con2, which execute sequentially. Accord-

ing to the mapping rules defined in Fig.7, this decom-

position process can be formalized with corresponding

events in Event-B, as shown in Fig.16(b). The events of

con1 and con2 have refined the event abs sequentially,

and this process is represented as (con1 → con2) refines

abs.

con1

con2

abs

Decompose

Refines

MACHINE Machine 0

EVENTS abs �

 WHEN Guard

 THEN PostCondition

END

MACHINE Machine 1

REFINES Machine 0

EVENTS con1 �

 WHEN Guard 1

 THEN PostCondition 1

EVENTS con2 �

 WHEN Guard 2

 THEN PostCondition 2

END

(con1à con2) Refines abs

(b)

(a)

(c)

^=
^=

^=

PostCondition 1 => Guard 2 (PO1)

Guard 1 => Guard (PO2)

PostCondition 2 => PostCondition (PO3)

init(Guard 2)=FALSE (C1)

Fig.16. Refinement pattern for sequential activities. (a) De-
composed into sequential activities. (b) Event-B representation
of sequential activities. (c) POs for refinement of sequential acti-
vities.

The refinement process should satisfy the POs and

constraint in Fig.16(c), and the detailed derivation and

proof processes are attached in Appendix A.1. Among

them, PO1 indicates that actions of event con1 are suffi-

cient to satisfy guards of event con2, that is, the former

event can trigger the latter one; PO2 ensures that the

concrete guard is stronger than the abstract one; PO3

ensures that the concrete events transform the concrete

variables in a way which does not contradict the ab-

stract event; C1 indicates that guard 2 should be set to

be FALSE in the initialization event, as event con2 can

only be triggered by event con1.

Taking the self-adaptation activity of Analyze for

example, Analyze can be decomposed into two sub-

processes, Receive and Compare, which are executed

sequentially, as shown in Fig.17. The refinement from

Analyze to Receive and Compare should always satisfy

PO1, PO2, and PO3. Besides, the initial state of guard

triggerC = 1 is FALSE, that is triggerC = 0.

Decompose

Analyze

Receive

Compare

Refines

MACHINE Machine0

INITIALIZATION

 TriggerC=0

EVENTS Analyze �

 WHEN Seq=3

 THEN Seq:=2

END

MACHINE Machine 1

REFINES Machine 0

EVENTS Receive �

 WHEN Seq=3

 THEN triggerC./

 receiveAction

EVENTS Compare �

 WHEN triggerC/

 THEN Seq./

 compareAction

END

(ReceiveàCompare)

Refines Analyze

 �^=
^=

^=

(b)

(a)

Fig.17. Example of sequential refinement. (a) Decomposing An-
alyze into Receive and Compare. (b) Event-B representation of
Analyze, Receive and Compare.

4.4.2 Branch Refinement Pattern

The branch relationship is also quite common in

SAS systems. For example, the plan process may con-

sist of several alternative self-adaptation strategies, and

only one is triggered at a time according to the guard

constraints. In general, the branch refinement pattern

is shown in Fig.18. The event abs of abstract machine

can be refined into two events of concrete machine, con1

and con2, which are triggered alternatively, according

to the guard of condition. For this end, POs of PO1–

PO5 are derived and proved (refer to Appendix A.2).

De-Shuai Han et al.: EasyModel: Self-Adaptive Software Modeling Approach 1029

 con2 con1

Condition Else

abs

Decompose

Refines

MACHINE Machine0

EVENTS abs

 WHEN Guard

 THEN PostCondition

END

MACHINE Machine 1

REFINES Machine 0

EVENTS con1

 WHEN Guard Condition

 THEN PostCondition 1

EVENTS con2

 WHEN Guard (¬Condition)

 THEN PostCondition 2

END

(con1 XOR con2)

Refines abs

Guard 1

Guard 2

PostCondition1 => PostCondition

PostCondition2 => PostCondition

PostCondition1 => ¬Guard

PostCondition2 => ¬Guard

PostCondition=> Guard

(PO1)

(PO2)

(PO3)

(PO4)

(PO5)

 � �^=
 � �^=

^=
^

^

(b)

(a)

(c)

Fig. 18. Refinement pattern for branch activities. (a) De-
composed into branch activities. (b) Event-B representation of
branch activities. (c) POs for refinement of branch activities.

PO1 and PO2 indicate that any one of the concrete

actions is sufficient to satisfy guards of the abstract

event. In addition, the two events can be triggered ex-

clusively, and only once, according to PO3 and PO4

in Fig.18(c). Similarly, the abstract event abs can be

triggered only once, according to PO5.

Taking the self-adaptation activity of plan for exam-

ple, it can be refined into plan1 and plan2 according to

different constraints, as shown in Fig.19. When the con-

dition of Utili > M satisfies, event plan1 would be trig-

gered; otherwise, event plan2 would be triggered. The

refinement processes always satisfy POs in Fig.18(c).

4.4.3 Cooperation Refinement Pattern

The cooperation relationship is another important

relationship in SAS systems. For example, in the mon-

itor process, it needs several kinds of sensors to col-

laboratively collect information from the running envi-

ronment and the user requirements. And the satisfac-

tion of the abstract monitor process needs the conjunc-

tion of both the sub-processes monitor 1 and monitor

2, but the execution order of the sub-processes is not

restricted. To meet these requirements, the Event-B

refinement pattern for cooperation activities is estab-

lished, and represented as (con1 || con2) refines abs, as

shown in Fig.20. The refined concrete events can be ex-

ecuted following the order of (con1; con2) or the order

of (con1; con2), but their manipulated variables must

be different.

 Plan 2 Plan 1

Condition1

Plan

Decomposes

Condition2

Refines

MACHINE Machine 0

EVENTS plan �

 WHEN Seq =2

 THEN Seq :=1

END

MACHINE Machine 1

REFINES Machine 0

EVENTS plan1 �

 WHEN Seq=2 Utili >M

 THEN Seq :=1

 planAction

EVENTS plan2 �

 WHEN Seq=2 Utili<=M

 THEN Seq :=1

planAction

END

(plan1 XOR plan2)

Refines plan

^

^

^=
 �^=

^=

(b)

(a)

Fig.19. Example of branch refinement. (a) Decomposing plan
into plan 1 and plan 2. (b) Event-B representation of plan, plan
1 and plan 2.

PO1, PO2 and PO3 are derived, as shown in

Fig.20(b), and the derivation processes are illustrated in

Appendix A.3. PO1 and PO2 ensure that the concrete

guards can satisfy the abstract one; and PO3 ensures

that the conjunction execution of concrete events can

satisfy the abstract event.

Taking the self-adaptation activity of monitor for

example, as shown in Fig.21, the monitor activity is

composed of the response-time monitor activity (i.e.,

monitorT) and the CPU utilization monitor activity

(i.e., monitorU), which run collaboratively, as shown in

Fig.21(a). This collaborative self-adaptation activity

can be formalized with Event-B refinement pattern,

as shown in Fig.21(b). Analysis indicates that the

guards and actions of monitorT and monitorU all obey

POs in Fig.20(c), and the refinement process is correct.

Notably, the two concrete events manipulate different

variables, i.e., CurUtil and CurTime. However, if they

manipulate the same variable, the system would gene-

rate different results. For example, for x = 2, event

monitorT runs x := x + 1, and event monitorU runs

1030 J. Comput. Sci. & Technol., Sept. 2020, Vol.35, No.5

 con2 con1abs

Decompose

Refines

MACHINE Machine 0

EVENTS abs �

 WHEN Guard

 THEN PostCondition

END

MACHINE Machine 1

REFINES Machine 0

EVENTS con1 �

 WHEN Guard1

 THEN PostCondition1

EVENTS con2 �

 WHEN Guard2

 THEN PostCondition2

END

(con1 || con2)

Refines abs

^=
^=

^=

Guard 1 �Guard (PO1)

Guard 2 �Guard (PO2)

PostCondition1 PostCondition 2

� PostCondition

(PO3)

=>

=>

=>

^

(b)

(a)

(c)

Fig.20. Refinement pattern for cooperation activities. (a) De-
composed into cooperation activities. (b) Event-B representation
of cooperation activities. (c) POs for refinement of cooperation
activities.

 monitorU monitorTMonitor

Decompose

Refines

MACHINE Machine 0

EVENTS monitor �

 WHEN T=Period

 THEN CurUtili:=Utili

 CurTime:=ResTime

END

MACHINE Machine 1

REFINES Machine 0

EVENTS monitor 1 �

 WHEN T=Period

 Utili� Utili_

_

Max

 THEN CurUtili:=Utili

EVENTS monitor 2 �

 WHEN T=Period

 Time� Time Max

 THEN CurTime :=ResTime

END

(Monitor 1 || Monitor 2)

Refines Monitor

^=
^=

^=

_>

_>

(b)

(a)

Fig.21. Example of cooperation refinement. (a) Decomposing
monitor into monitorT and monitorU. (b) Event-B description of
monitor, monitorT and monitorU.

x := x × 2, if the execution order is (monitorT; moni-

torU), the result is x = 6; and if the execution order is

(monitorU; monitorT), the result is x = 5. Therefore,

the cooperation events can only manipulate the disjoint

set of variables.

4.4.4 Refinement Pattern for Self-Adaptation Loop

The self-adaptation loop is treated as a first-class

element in SAS systems. It can be decomposed into

four processes, i.e., Monitor, Analyze, Plan and Exe-

cute, as shown in Fig.22(a). In order to formally de-

scribe the self-adaptation loop, we provide its Event-B

Monitor

Analyze

Plan

Execute

MAPE-K

Decompose

Refines

MACHINE Machine 0

EVENTS MAPE-K

 WHEN Guard

 THEN PostCondition

END

MACHINE Machine 1

REFINES Machine 0

EVENTS Monitor �

 WHEN Guard1 IterationCondition

 THEN PostCondition1

EVENTS Analyze �

 WHEN Guard2

 THEN PostCondition2

EVENTS Plan �

 WHEN Guard3

 THEN PostCondition3

EVENTS Execute �

 WHEN Guard4

 THEN PostCondition4

 IterationCondition:=ModifiedValue

END

Loop (Monitor à Analyze

 àPlanàExecute)

Refines MAPE-K

^=

 �^=

 �

^=

^=

^=

PostCondition 1 �Guard 2

PostCondition 2 �Guard 3

PostCondition 3 �Guard 4

init (Guard 2)=FALSE

init (Guard 3)=FALSE

init (Guard 4)=FALSE

(PO1)

(PO2)

(PO3)

(C1)

(C2)

(C3)

=>

=>

=>

(b)

(a)

(c)

^

Fig.22. Refinement pattern for self-adaptation loop. (a) Decom-
posed into a self-adaptation loop. (b) Event-B representation of
self-adaptation loop. (c) POs for refinement of self-adaptation
loop.

De-Shuai Han et al.: EasyModel: Self-Adaptive Software Modeling Approach 1031

model (cf. Fig.22(b)) and its corresponding refinement

pattern (cf. Fig.22(c)). The loop is controlled by the It-

erationCondition of the guard. According to Fig.22(b),

PO1, PO2 and PO3 all describe the sequential char-

acteristics among the concrete events; and C1, C2 and

C3 are the constraints restricted on the initial values,

which guarantee that the events of analyze, plan, and

execute can only be triggered by their corresponding

preceding events.

As can be seen in Subsection 4.1 and Subsection 4.2,

the AdaptML model provides an explicit description of

SAS characteristics; while Event-B provides a correct-

by-construction formalization for SAS systems. The

model transformation can combine advantages of both

models.

4.5 Formal Verification of SAS Systems

Based on Event-B

In Subsection 4.4, we have established the Event-

B model for SAS systems. In order to further analyze

and verify the established model, we extract a set of

properties in this subsection. The Event-B supporting

tool of Rodin [18] provides two means for formal ana-

lysis: PO discharging and model checking. These two

methods can complement with each other in practice.

The extracted properties are as follows.

4.5.1 Model Correctness

As shown in Table 2, model correctness of the SAS

systems can be analyzed based on the Event-B model

from three dimensions, i.e., variable definition, event

transition, and model refinement.

Table 2. Model Correctness Analysis of SAS Systems

Dimension Description Analysis

Method

Variable
definition

To analyze whether the defined
variables are correct and practical

Invariant
establish-
ment

Event
transition

To analyze whether the invariants
are preserved during event transi-
tions

PO
discharging

Model
refinement

To analyze whether the refined
models are consistent with the ab-
stract models

PO
discharging

As for variable definition, we verify if the defined

variables conform to the syntax definition of Event-B,

and verify if they conform to their physical meanings.

Taking the adaptation scenario of ZNN.com for exam-

ple, we would define the variable of CPU utilization as

an integer of Utili in [0, 100]. In order to guarantee

these two requirements, two invariants are established,

inv1: Utili ∈ N inv2: Utili 6 100

As for event transition, we verify if the invariants

are preserved during the transition processes, which is

checked by verifying POs of invariants preservation [14].

For example, the variable of Utili would increase, i.e.,

Utili := Utili+ effect, as user requests arise. In order

to guarantee that the invariant of inv2 is still preserved,

the following PO (called invariants preservation) needs

to be checked,

A(s, c), I(s, c, v), G(s, c, x, v), Q (s, c, x, v, v′)

|− I (s, c, v′) ,

where A represents axiom, I represents invariants, G

represents guards of events, and Q represents the pre-

and post-predicates. This PO requires that the invari-

ants I can still be satisfied after event transitions. In

the above example, it requires that inv1 and inv2 can

still be satisfied.

As for model refinement, we verify if the refined

models are consistent with the abstract ones, which

would be checked by verifying guard strengthening

POs, simulation POs, gluing invariants [14], and the

POs defined in Subsection 4.4. We would illustrate this

point in the following example application part.

4.5.2 Safety Property of Self-Adaptation Logic

Safety property means that nothing bad should hap-

pen during the program operation. As for SAS systems,

the bad thing is that the system gets stuck in the dead-

lock state, and cannot respond to dynamic changes. In

order to avoid this situation, an early analysis of dead-

lock freeness in the design phase is of vital importance

for SAS systems.

On the one hand, the deadlock freeness property

can be verified with model checking technique, which

is supported by the ProB plug-in [19] of Rodin. The

model checking method is carried out by pressing a sin-

gle key and is easy to use. However, the model checking

method suffers from the problem of state-space explo-

sion, when system scale increases.

On the other hand, deadlock freeness can be veri-

fied by discharging proof obligations, i.e., proving that

at least one event is enabled,

P (v) ⇒ V
i
(∃x×Gi(x, v)),

where P (v) represents all events, and Gi(x, v) repre-

sents guards of each event.

1032 J. Comput. Sci. & Technol., Sept. 2020, Vol.35, No.5

4.5.3 Effectiveness of Self-Adaptation Strategies

The effectiveness of self-adaptation strategies indi-

cates that when the dynamic changes are out of range,

corresponding self-adaptation strategies can be trig-

gered and executed. This property can be checked

with the LTL model checking technique of the Event-B

model, as shown below,

G{Changes > |error|}

=> F {Self Adaptation Strategy = 1} ,

which means that when the context Changes are

beyond the scope of |error|, the strategy of

Self Adaptation Strategy would be set to 1 and ac-

tivated.

Taking the adaptation scenario of ZNN.com for ex-

ample, when the CPU utilization is beyond the up-

per limit (Utili > HighLevel), the corresponding self-

adaptation strategy of putting more servers into ope-

ration (triggerAction = 1) would be activated. This

property is formalized as,

G {Utili > HighLevel} => F {triggerAction = 1} ,

which can be checked with the LTL model checking

technique in Rodin.

5 Example Application

As discussed in Section 2, the ZNN.com example is

a typical adaptation scenario, and its self-adaptation

logic is complex and difficult to depict. This example

can basically meet requirements for demonstrating and

evaluating the effectiveness of the EasyModel approach.

Therefore, we chose this example to qualitatively eva-

luate the effectiveness of the EasyModel approach.

This example application was carried out follow-

ing three steps. Firstly, we established the structure

model and the behaviour model of ZNN.com based on

AdaptML and its supporting tool. Then, we trans-

formed the AdaptML model of ZNN.com into the

Event-B model based on the model transformation

tool of AdaptML2EventB, and described complex be-

haviours of SAS systems based on the proposed Event-

B refinement patterns. Finally, we formally analyzed

corresponding properties of the ZNN.com based on the

Event-B model.

5.1 Visual Modeling of ZNN.com

In order to provide an explicit description of the self-

adaptation characteristics, we established the structure

model and the behaviour model for ZNN.com with the

adapt class diagram and the adapt activity diagram.

As shown in Fig.23, we established the adapt class

diagram of ZNN.com from the abstract level to the

concrete level, realizing an explicit description of the

structure features and self-adaptation attributes of

ZNN.com. First of all, we created the abstract model of

Adapt Class Diagram Level 0, consisting of the compo-

<<Monitor>>

Probe

tags

Kind = Environment

<<Monitor>>
:: Time Sensor

- Resp Time :

<<Monitor>>

:: Load Sensor

- Load :

<<Analyzer>>

Trigger
<<Analyzer >>

:: TimeAnalyzer

- Time_

_
Low:

- Time Up :

_

_
Low:

Up :

<<Analyzer >>

:: Load Analyzer

- Load

- Load

<<Planner>>

Trigger
<< Planner>>

:: LoadPlanner

tags

Algorithm =ECA

<<Planner>>

:: EfficacyPlanner

tags

Algorithm = ECA

Trigger Adjust

<<ApplicationLogic>>

:: TimeProbe

- AverageTime

 <<ApplicationLogic>> {Mode {0,1}}

<<ApplicationLogic>>

:: LoadProbe

- AverageLoad

<<ApplicationLogic>>

:: PoolManager

- serverNum

<<ApplicationLogic >>

:: ModeManager

- Mode

<<Executor>>

tags

Type = Structural

<< Executer>>
:: PoolAdjuster

- ServerChange

<< Executer>>

:: ModeAdjuster

-ModeChange

{T=Period }

Fig.23. ZNN.com: Adapt Class Diagram Level 2.

De-Shuai Han et al.: EasyModel: Self-Adaptive Software Modeling Approach 1033

site adapt classes of <<Monitor>>, <<Analyzer>>,

<<Planner>>, <<Executor>>, and <<Application-

Logic>>. The detailed business logic of ZNN.com was

treated as a black box hidden in the <<Application-

Logic>>. This abstract model provides an overview of

the fundamental elements and interactions of the self-

adaptive ZNN.com system. Then, we decomposed the

above composite adapt class diagram and created the

model of Adapt Class Diagram Level 1. This model

specifies structures of ZNN.com in more detail. For ex-

ample, the abstract adapt class of <<Monitor>> was

refined into two sub-classes of TimeSensor and Load-

Sensor. Finally, we further refined the above model

by adding self-adaptation attributes (e.g., RespTime),

tagged values (e.g., Type = Structural) and constraints,

creating a more concrete model of Adapt Class Dia-

gram Level 2, as shown in Fig.23. The tagged values

depicted corresponding self-adaptation features. For

example, the tagged value of Type = Structural means

that the self-adaptive process was implemented by ad-

justing system structures. The constraints are attached

with self-adaptation attributes. For example, Mode

∈ {0, 1} limits the range of variable Mode. From

the above modeling processes, we can conclude that

the adapt class diagram provides an explicit descrip-

tion of self-adaptation structures and self-adaptation

attributes, and can fulfill the modeling requirements of

R1.

Similarly, we established the behaviour model for

ZNN.com on basis of the adapt activity diagram, as

shown in Fig.24. Firstly, we established an abstract

model called Adapt Activity Diagram Level 0, provid-

<<
M

o
n
it

o
r>

>

ActivityFinal

Monitor

TimeMonitor

LoadMonitorActivityInitial

ActivityFinal

Analyze

JudgeRespTime

JudgeLoad

CompareTime

CompareLoad

RespTime

>

>

>

Time Low && RespTime

<< <

Time __

_

_

Up

_Up

_

_ _

Up

Load Load Low && Load Load

Plan

LightenLoad

ImproveEfficiency

RespTime Time Up || Load Load

RespTime Time Low || Load Load Low

AddServer

DegraMode

RemoveServer

UpgraMode

ActivityFinal

ActivityFinal

Execute

AdjustServerPool

AdjustServiceMode

<<
A

n
a
ly

ze
>>

<<
P

la
n

>>
<<

E
x
e
cu

te
>>

ActivityInitial

ActivityInitial

ActivityInitial

Mode=0

Mode 0

Mode=2

Mode 2

ActivityInitial

ActivityFinal

<-

<-

<-

<-

Fig.24. ZNN.com: Adapt Activity Diagram Level 2.

1034 J. Comput. Sci. & Technol., Sept. 2020, Vol.35, No.5

ing an explicit description of self-adaptation processes

and the self-adaptation loop of Monitor-Analyze-Plan-

Execute. Secondly, we decomposed each abstract self-

adaptation activity into sub-activities, and created a

more concrete behaviour model called Adapt Activity

Diagram Level 1. Taking the abstract activity of Mon-

itor for example, it was further decomposed into two

concrete activities called TimeMonitor and LoadMon-

itor, realizing the response-time monitoring of servers

and the load-level monitoring of servers respectively.

Finally, more implementation details, such as trigger-

ing conditions, were enriched to the above adapt ac-

tivity model, and created the concrete model of Adapt

Activity Diagram Level 2, i.e., Fig.24. From the above

modeling processes, it can be seen that the adapt ac-

tivity diagram provides an explicit description of self-

adaptation behaviours and the self-adaptation loops.

Therefore, the adapt activity diagram can fulfill the

modeling requirements of R2 and R3. In conclusion,

the above example application indicates that the adapt

class diagram and the adapt activity diagram can ful-

fill the modeling requirements of R1, R2 and R3, and

can basically satisfy the visual modeling requirements

of SAS systems. Besides, the adapt class diagram and

the adapt activity diagram were established following a

step-by-step process, and they were created by gradu-

ally enriching implementation details of ZNN.com. The

above step-by-step modeling mechanism is in line with

the gradual process of human thinking and understand-

ing, and can effectively handle system complexity (R4)

of SAS systems and alleviate modeling difficulty.

5.2 Formal Modeling of ZNN.com

The formal Event-B model of ZNN.com was trans-

formed from the adapt class diagram and the adapt

activity diagram in Subsection 5.1.

As shown in Fig.25, the Event-B model of

ZNN Context1 was transformed from the model of

Adapt Class Diagram Level 1. It formally describes

the main components of SAS systems. The model

of ZNN Context 2 was transformed from the model

of Adapt Class Diagram Level 2, and it extends the

ZNN Context1 model by enriching self-adaptation at-

tributes, such as Time Up (the upper bound of variable

RespTime). In addition, a constant called Random-

Time was added to the ZNN Context2 model, and this

constant was used to define simulation values of varia-

ble RespTime.

The model of ZNN Machine1 was transformed from

Adapt Activity Diagram Level 1. It describes the main

self-adaptation activities, such as, Monitor and Ana-

lyze. In ZNN Machine1, we defined the variable of

Seq, which was used to control the triggering order of

events, such as the sequential order. ZNN Machine2

was transformed from Adapt Activity Diagram Level

2, and it refines ZNN Machine1 by enriching vari-

ables and self-adaptation activities, such as TimeMo-

nitor and AddServer. The expression of RespT ime :=

RandomT ime was used to simulate the monitoring

response-time of services. Besides, we introduced the

auxiliary variables such as triggerP lanL to control the

triggering sequence of self-adaptation activities. In the

ZNN Machine2 model, refinement patterns were used

to specify complex self-adaptation activities. For exam-

ple, the events of TimeMonitor and LoadMonitor both

refine the abstract event of Monitor, and they executed

collaboratively. Thus, the refinement from Monitor to

TimeMonitor and LoadMonitor was carried out accord-

ing to the cooperation refinement pattern. Similarly,

the sequential refinement pattern, the branch refine-

ment pattern and the self-adaptation loop refinement

pattern were used to formally describe self-adaptation

activities.

From the model of ZNN Machine2, it can be seen

that the self-adaptive logic of ZNN.com is complex and

difficult to depict. Taking the load balancing part

for example, it involves in the processes of LoadMon-

itor, CompareLoad, JudgeLoad, LightenLoad and so

on, and several processes even need to be refined into

sub-processes, which cannot be easily depicted. How-

ever, with the proposed Event-B refinement patterns,

the complex self-adaptive ZNN.com system can be de-

scribed following a stepwise refinement modeling pro-

cess, and this stepwise refinement modeling mechanism

can effectively deal with system complexity (R4).

5.3 Formal Verification of ZNN.com

In this subsection, we would analyze properties of

the self-adaptive ZNN.com system from three aspects,

by combining model checking technique with PO dis-

charging technique.

Model Correctness. Model correctness is guaran-

teed by checking POs established in the modeling pro-

cesses. As shown in Table 3, the total modeling pro-

cess of the self-adaptive ZNN.com system resulted in

41 POs, of which 39 (95.1%) were proved automati-

cally with the Rodin tool, and the remaining 2 (4.9%)

POs passed validation after replenishing the established

De-Shuai Han et al.: EasyModel: Self-Adaptive Software Modeling Approach 1035

CONTEXT
ZNN_Context1
SETS
Monitor
Analyzer
Planner
Executor
ApplicationLogic
CONSTANTS
TimeSensor
LoadSensor
TimeAnalyzer
LoadAnalyzer
TimePlanner
LoadPlanner
TimeAdjuster
LoadAdjuster
TimeProbe
LoadProbe
PoolManager
ModeManager
probe
triggerMA
triggerAP
triggerPE
AXIOMS
Generalization1:
partition(Monitor, {TimeSensor}, {LoadSensor})

Generalization2:
partition (Analyzer ,{TimeAnalyzer},{LoadAnalyzer})

Generalization3:
partition(Planner , {TimePlanner}, {LoadPlanner})

Generalization4:
Partition (Executor , {TimeAdjuster}, {LoadAdjuster})

Generalization5:
Partition (ApplicationLogic , {TimeProbe}, {LoadProbe},

{PoolManager}, {ModeManager})

Relationship_probe:
probe Monitor ApplicationLogic

Relationship_triggerMA:

triggerMA Monitor Analyzer
Relationship_triggerAP:

triggerAP Analyzer Planner
Relationship_triggerPE:

triggerPE Planner Executor
Relationship_adjust:

adjust Executor ApplicationLogic

END

MACHINE

ZNN_Machine1

REFINES ZNN_Machine0

SEES

ZNN_Context1

VARIABLES

Seq

INVARIANTS

inv1: Seq {1,2,3,4}

EVENTS

INITIALISATION

 act1: Seq � 4

Monitor �

REFINES MAPE

 grd1: Seq=4

THEN

 act1: Seq� 3

END

Analyze �
REFINES MAPE

 grd1: Seq=3

THEN

 act1: Seq� 2

END

AnalyzeEnd �

REFINES MAPE

 grd1: Seq=3

THEN

 act1: Seq� 1

END

Plan �

REFINES MAPE

 grd1: Seq=2

THEN

 act1: Seq� 1

END

Execute �

REFINES MAPE

 grd1: Seq=1

THEN

 act1: Seq� 4

END

END
CONTEXT
ZNN_Context2
EXTENDS
ZNN_Context1
CONSTANTS
Time_Up
Time_Low

RandomTime

AXIOMS
axm1: Time_Up = 90
axm2: Time_Low = 5

axm6: RandomTime {3, 32, 62, 82, 89, 99}

END

MACHINE ZNN_Machine2
REFINES ZNN_Machine1
SEES ZNN_Context2
VARIABLES RespTime, Load Load_DU, Time_DL,
 SeqAnalyzeT, SeqAnalyzeL, ServerChange
INVARIANTS inv 18 Mode 1...

... ...,
...

...

inv 23 SerNum 100
EVENTS
TimeMonitor �
REFINES Monitor
WHEN grd1: Seq=4
THEN act1: Seq� 3 act2 : RespTime� RandomTime
END
LoadMonitor �
REFINES Monitor
WHEN grd1: Seq=4
THEN act1: Seq� 3 act2 : Load� RandomLoad
END
CompareTime �
REFINES Analyze
WHEN grd1: Seq=

:=

:=

:= :=
:=

:=

:=

:=

:=

:=

:=

:=

:=

:=

:= :=

:=

:=

:=

:=

:=

:=

:=

:= :=

:=

:= :=
:= :=

3
 grd2: (RespTime>Time_Up) (RespTime<Time_Low)
THEN act1: SeqAnalyzeT 1
END
JudgeRespTime �
REFINES Analyze
WHEN grd1: SeqAnalyzeT=1
THEN act1: triggerPlan� 1 act2: Time_DU� RespTime-Time_Up
 act3: Time_DL� RespTime Time_Low act4: Seq� 2
END
CompareLoad �
REFINES Analyze
WHEN grd1: Seq=3
 grd2: (Load>Load_Up) (Load<Load_Low)
THEN act1: SeqAnalyzeL� 1
END
JudgeLoad �
REFINES Analyze
WHEN grd1: SeqAnalyzeL=1
THEN act1: triggerPlan� 1 act2: Load_DU� Loadí Load_Up
 act3: Load_DL� Load Load_Low act4: Seq� 2
END
CompareTimeEnd �
REFINES AnalyzeEnd
WHEN grd1: Seq=3
 grd2: (RespTime Time_Low) (RespTime Time_Up)
THEN act1: Seq� 1
END
CompareLoadEnd �
REFINES AnalyzeEnd
WHEN grd1: Seq=3
 grd2: (Load Load_Low) (Load Load_Up)
THEN act1: Seq� 1
END
LightenLoad �
REFINES Plan
WHEN grd1: Seq=2
 grd2: triggerPlan=1 grd3: (Time_DU>0) (Load_DU>0)
THEN act1: triggerPlanL� 1
END
ImproveEfficency �
REFINES Plan
WHEN grd1: Seq=2
 grd2: triggerPlan=1 grd3: (Time_DL<0) (Load_DL<0)
THEN act1: triggerPlanI� 1
END
AddServer �
REFINES Plan
WHEN grd1: Mode 0 grd2: triggerPlanL=1
THEN act1: Seq� 1 act2: SerChange� 1
END
DegraMode �
REFINES Plan
WHEN grd1: Mode>0 grd2: triggerPlanL=1
THEN act1: Seq� 1 act2: ModeChange� -1
END
RemoveServer �
REFINES Plan
WHEN grd1: Mode 2 grd2: triggerPlanI=1
THEN act1: Seq� 1 act2: SerChange� -1
END
UpgraMode �
REFINES Plan
WHEN grd1: Mode<2 grd2: triggerPlanI=1
THEN act1: Seq� 1 act2: ModeChange� 1
END
AdjustServiceMode �
REFINES Execute
WHEN grd1: Seq=1 grd2: Mode+ModeChange� 1
THEN act1: Seq� 4 act2: Mode� Mode+ModeChange
END
AdjustServerPool �
REFINES Execute
WHEN grd1: Seq=1 grd2: SerNum+SerChange� 100
THEN act1: Seq� 4 act2: SerNum� SerNum+SerChange
END
END

S
eq

u
en

ti
al

 N
o
d
e

P
ar

al
le

l
N

o
d
e

B
ra

n
ch

 N
o
d
e

S
el

f-
A

d
ap

ta
ti

o
n
 L

o
o
p

See
Refine

CompareTime

CompareTimeEnd

Extend

Mode+ModeChange 1

SerNum+SerChange 100

Guards Neglected in

 ZNN_Machine2

Replenishing Model Correctness by

Checking POs (Subsection 5.3)

...
...

...
...

...
=̂

=̂

=̂

=̂

=̂

=̂

=̂

=̂

=̂

=̂

=̂

=̂

=̂

=̂

=̂

=̂

=̂

=̂

=̂

=̂

<-

<-

<- <-

...

<-

<-

<-

<-

<-

<-

<-

<-

^

^

^

^

^

^

®

®

�

®

®

�

®

®

�

®

®

�

®

®

�

:=

:=

:=

:=

:=

:=

-

-

Fig.25. Fragment of the Event-B model for ZNN.com.

model, as shown in Fig.25. This was because when

events AdjustServerMode and AdjustServerPool exe-

cuted the actions of Mode := Mode + ModeChange

and SerNum := SerNum+SerChange, the invariants

of Mode 6 1 and SerNum 6 100 would be violated,

respectively. The POs discharging technique helped re-

veal the above deficiency. To remedy these errors, we

added two additional guards ofMode+ModeChange 6

1 and SerNum + SerChange 6 100. Afterwards, all

POs were proved correctly. Therefore, the correct-by-

construction mechanism of the Event-B model can help

guarantee the model correctness of SAS systems (R5).

1036 J. Comput. Sci. & Technol., Sept. 2020, Vol.35, No.5

Table 3. Model Correctness Verifying by Discharging POs

Model Number Automatic Interactive

of POs POs POs

Abstract model 13 13 (100%) 0 (0.0%)

1st refinement 22 20 (90.9%) 2 (9.1%)

2nd refinement 6 6 (100.0%) 0 (0.0%)

Total 41 39(95.1%) 2 (4.9%)

Safety Property of Self-Adaptation Logic. The

ZNN.com is responsible to provide continuous service

for the public, and we do not expect that it gets stuck

in the deadlock state. For this end, we employed the

model checking and PO discharging technique to guar-

antee this property.

Model checking is carried out with the ProB [19]

plug-in of Rodin. We checked the machine of

ZNN Machine1 and ZNN Machine2, and the results

are shown in Figs.26(a) and 25(b), respectively. Ac-

cording to Fig.25, ZNN Machine1 is an abstract and

simple model, and it has numerable states. Thus, it is

easy to check the deadlock freeness property. However,

the ZNN Machine1 machine cannot be easily checked

using ProB. This is because this model has high system

(b)

(a)

Fig. 26. Deadlock freeness verification with model checking.
(a) Model checking of ZNN.com Level 1. (b) Model checking
of ZNN.com Level 2.

complexity, and the problem of state-space explosion

arises, as shown in Fig.26(b).

In order to make up the inefficiency of mode check-

ing, we have employed POs discharging technique to

verify the deadlock freeness property. According to

Subsection 4.5.2, if the guards of at least one event are

enabled, the deadlock freeness property can be guar-

anteed. Therefore, this property can be verified by di-

rectly discharging POs, as shown in Fig.27.

DLF : Seq=4 Seq=3 Seq=2 Seq=1

SeqAnalyzeT=1 SeqAnalyzeL=1 trigger

Plan=1 triggerPlanL=1 triggerPlanI=1

^^

^

^^

^ ^

^

DLF: Seq=4 Seq=3 Seq=2 Seq=1

^ ^ ^

(b)

(a)

Fig.27. Deadlock freeness verification with PO discharging. (a)
POs discharging of ZNN.com Level 1. (b) POs discharging of
ZNN.com Level 2.

Effectiveness of Self-Adaptation Strategies. As

for self-adaptive ZNN.com, the effectiveness of self-

adaptation strategies means that when the service re-

sponse time or the load level of servers is out of the

specified operating range, the self-adaptation actions

can be triggered. We have expressed the above prop-

erties with the LTL formula, and verified them using

ProB, as shown in Fig.28.

F1. Level_

_

_

_

_

1: {Seq=4}=>F{Seq=1} holds

F2. Level 2: {RespTime>Time_Up}=>F{triggerPlanL=1} holds

F3. Level 2: {Load >Load_Up}=> F{triggerPlanL=1} holds

F4. Level 2: {RespTime<Time_DL}=>F{triggerPlanI=1} holds

F5. Level 2: {Load <Load _DL}=> F{triggerPlanI=1} holds

(b)

(a)

Fig.28. Verifying effectiveness of self-adaptation strategies. (a)
Model checking with ProB. (b) Model checking results.

As shown in Fig.28(b), F1 was property of

ZNN Machine1, and F2–F5 were properties of

De-Shuai Han et al.: EasyModel: Self-Adaptive Software Modeling Approach 1037

ZNN Machine2. Among them, F1 meant that when

Monitor was triggered, the Execute event would be

eventually triggered. F2–F5 meant that when the ser-

vice response time or the load level of servers was out

of range, the corresponding self-adaptation strategies

would be triggered. The above self-adaptation proper-

ties were directly checked using ProB, and all properties

held.

5.4 Discussion

The above example application has qualitatively

demonstrated the effectiveness of the EasyModel ap-

proach in modeling and formal verification of SAS sys-

tems. However, compared with the related approaches,

there is still a lack of quantitative metrics to evaluate

the advantages of the EasyModel approach.

6 Experimental Evaluation

The objective of this experiment was to quanti-

tatively evaluate the effectiveness of the EasyModel

approach. And the effectiveness would be examined

from concrete evaluation metrics (e.g., explicit model-

ing, complexity handling, and correctness assurance).

6.1 Experiment Planning and Design

This subsection presents the detailed planning

and design of this experiment, including participants,

evaluation metrics, case selection, and the experiment

design.

6.1.1 Experiment Participants

This experiment was conducted at Army Engineer-

ing University of PLA 3○, Nanjing, China. The partic-

ipants were 30 graduate students, who were randomly

selected from a graduate course called “Advanced Soft-

ware Engineering”. They were told beforehand that

they had free choice to participate or not in the experi-

ment. The participants had similar technical back-

grounds, and went through a specific training for this

experiment. In this experiment, the above participants

would be divided into six groups at random, and each

group would be demanded to model and verify SAS

systems with one of the six kinds of formal methods

(i.e., the EasyModel approach proposed in this paper,

the ACML approach [4], the Event-B approach [27], the

MV4SAS approach [15] which integrates the extended

UML model with the network of timed automata, the

EUREMA approach [28, 29], and the approach of MAPE-

K Formal Templates [7]).

Besides, two domain experts, who were not involved

in the EasyModel project, were asked to score the above

30 participants according to a set of concrete criteria.

The scoring processes followed a double-blind proce-

dure.

6.1.2 Evaluation Metrics Selection

Based on the modeling requirements (R) proposed

in Subsection 3.1, we established a set of evaluation

metrics for SAS modeling approaches, as shown in

Fig.29.

Effectiveness of
SAS Modeling
Approaches

Explicit Modeling

Complexity
Handling

Correctness
Assurance

Explicit
Structures

Explicit Loops

Explicit
Behaviours

R1-R3

R4

R1

R2

R3

R5

Fig.29. Evaluation metrics for SAS modeling approaches.

The evaluation metrics would evaluate the effective-

ness of SAS modeling approaches from three indexes,

explicit modeling, complexity handling and correctness

assurance. Among them, the index of explicit model-

ing consists of three sub-indexes, namely explicit struc-

tures, explicit behaviours, and explicit self-adaptation

loops. These indexes correspond to the modeling re-

quirements proposed in Subsection 3.1.

6.1.3 Evaluation Case Selection

In this experimental evaluation, we selected the

ZNN.com example as the application case. After the

example application in Section 5, we checked the vali-

dation of the ZNN.com example in evaluating the SAS

modeling and verification approaches, by answering the

following two questions.

1) Is the ZNN.com example representative enough

to evaluate the SAS modeling approaches?

2) Can the ZNN.com example cover all aspects of

the modeling requirements (R) proposed in Subsec-

tion 3.1?

3○http://www.81.cn/jwzl/2017-06/05/content 7748283.htm, July 2020.

1038 J. Comput. Sci. & Technol., Sept. 2020, Vol.35, No.5

As for question 1, the ZNN.com example is a

classical scenario of SAS systems, and has been

widely accepted to evaluate SAS systems in the

community [4, 15, 24, 29, 30]. Therefore, it is representative

enough to evaluate the SAS modeling approaches.

As for question 2, the ZNN.com application in Sec-

tion 5 demonstrated explicit structure modeling (i.e.,

Subsection 5.1, Fig.23), explicit behaviour modeling

(i.e., Subsection 5.1, Fig.24), explicit self-adaptation

loop modeling (i.e., Subsection 5.1, Fig.23 and Fig.24),

complexity handling (i.e., the decomposition processes

in Fig.23 and Fig.24, and the stepwise refinement pro-

cesses in Fig.25), and correctness assurance (i.e., the

formal verification processes in Subsection 5.3). Thus,

it can basically cover all aspects of the modeling re-

quirements proposed in Subsection 3.1.

Based on the above analysis, we selected the

ZNN.com example as the application case in the fol-

lowing experimental evaluation.

6.1.4 Experimental Design

According to the experimental design in Table 4, the

experiment was carried out following three steps. In the

first step, all the six groups of participants were equally

trained to understand the six kinds of SAS modeling ap-

proaches. In the second phase, each of the participants

was asked to finish designing, modeling and formal veri-

fication of the self-adaptive ZNN.com example with one

specific formal approach, and to submit a project inde-

pendently. Finally, their projects would be scored by

two domain experts in a double-blind way.

6.2 Experiment Operation

According to the experimental design in Subsec-

tion 6.1.4, the experiment was carried out following

three steps: training and grouping, actual conducting,

and scoring.

As for training, the participants received a 30-hour.

training course from the corresponding author of this

paper, including the following topics: 1) detailed expla-

nation on SAS systems and the modeling requirements;

2) detailed explanation and practice on formal methods

like UML model, Event-B method, and timed automata

model; 3) deep literature study on SAS system model-

ing and formal analysis; 4) other topics on advanced

software engineering.

After training, the participants were divided into

six groups at random. They were asked to finish mod-

eling and verifying the ZNN.com example with different

modeling approaches (the grouping and corresponding

modeling approach were shown in Table 4) indepen-

dently. Afterwards, each one was asked to submit a

project.

As for scoring, two domain experts were asked to

score the submitted projects according to the metrics

in Fig.29, following a double-blind procedure. Each

project was scored by two experts, respectively, and the

final scores took the average value. The final evaluation

results are shown in Table 5.

Table 4. Design of the Experiment

Step Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

1st step:
training

The same
training

The same
training

The same
training

The same
training

The same
training

The same
training

2nd step:
actual conduct-
ing

EasyModel ACML [4] Event-B [27] MV4SAS [15] EUREMA [28, 29] MAPE-K formal
templates [7]

3rd step:
scoring

A double-blind
review

A double-blind
review

A double-blind
review

A double-blind
review

A double-blind
review

A double-blind
review

Table 5. Experiment Evaluation Results

Index EasyModel ACML [4] Event-B [27] MV4SAS [15] EUREMA [28, 29] MAPE-K Formal

Templates [7]

Explicit Structures (R1) 5.0 4.5 0.0 4.5 1.0 0.0

Explicit Behaviors (R3) 4.5 5.0 2.0 4.5 5.0 5.0

Explicit Loops (R2) 4.0 0.5 0.0 4.0 4.5 3.0

Complexity Handling (R4) 4.5 1.0 3.5 0.0 3.0 0.5

Correctness Assurance (R5) 5.0 3.0 5.0 3.0 0.0 4.0

Total Scores (average) 23.0 14.0 10.5 16.0 13.5 12.5

Notes: For scoring: 5 represents strong support; 3 represents support; 1 represents weak support; 0 represents no support.

De-Shuai Han et al.: EasyModel: Self-Adaptive Software Modeling Approach 1039

6.3 Experimental Results

According to the evaluation results in Table 5, we

compared the EasyModel approach with the other five

kinds of related approaches from each concrete index,

and the results were shown in Fig.30.

0

1

2

3

4

5

6

Explicit Structures (R1)

Explicit Behaviors (R3)

Explicit Loops (R2)

Complexity Handling (R4)

Correctness Assurance(R5)

Easy
Mod

el

ACML
[4]

Even
t-B

[27
]

MV4S
AS

[15
]

EUREMA
[28

,29
]

MAPE-K
 Fo

rm
al

Tem
pla

tes
[7]

Fig.30. Analyzing related modeling approaches in detail.

6.3.1 Evaluation of Each Index

1) Aspect of Explicit Structures (R1). The result

was that the EasyModel approach, the ACML ap-

proach, and the MV4SAS approach all achieved sat-

isfactory results. They can provide an explicit descrip-

tion of the structure characteristics of SAS systems.

By contrast, the Event-B approach, the EUREMA ap-

proach, and the MAPE-K formal templates provided

weak or no support on depicting structures of SAS sys-

tems. Thus, from the perspective of explicit structures

(R1), the EasyModel approach is an effective SAS mod-

eling approach.

2) Aspect of Explicit Behaviours (R3). As can be

seen in Fig.30, all the approaches, except standard

Event-B, gained excellent results in describing self-

adaptation behaviours. This was because the stan-

dard Event-B model lacks refinement patterns to de-

pict complex self-adaptation behaviours explicitly. But

the EasyModel approach makes up this weak point by

defining a set of new refinement patterns. Therefore,

from the perspective of explicit behaviours, EasyModel

is an effective SAS modeling approach.

3) Aspect of Explicit Self-Adaptation Loops (R2).

The ACML approach and the Event-B approach are

largely unable to describe self-adaptation loops. In

comparison, the EasyModel approach, the MV4SAS

approach, the EUREMA approach, and the MAPE-

K formal templates all can explicitly describe the self-

adaptation loops.

4) Aspect of Complexity Handling (R4). As shown

in Fig.30, the EasyModel approach, the standard

Event-B approach, and the EUREMA approach all can

effectively handle the modeling complexity of SAS sys-

tems, and the EasyModel approach achieved the best

results. It was because that the EasyModel approach

tackles the modeling complexity from two aspects: the

hierarchy structures of AdaptML and the refinement

mechanism of the Event-B model. In comparison, the

standard Event-B handles modeling complexity only

with refinement mechanism.

5) Aspect of Correctness Assurance (R5). All ap-

proaches except EUREMA are formal methods. As

a sequence, they can provide correctness assurance to

some extent. The difference is that the EasyModel ap-

proach systematically defines and verifies three kinds

of properties for SAS systems: model correctness, the

safety property of self-adaptation logic, and the effec-

tiveness of self-adaptation strategies. As a sequence,

the EasyModel approach achieved better results than

the other four kinds of approaches.

From the first three points, it can be seen that

the AdaptML profile (i.e., the extended UML of Easy-

Model) is indispensable in designing SAS systems, as

for its merit of being intuitive and easy to use; from

the last two points, it can be seen that the correct-by-

construction and stepwise refinement of the Event-B

model also play an essential role in formal modeling

and verification of SAS systems.

6.3.2 Comprehensive Evaluation

The comprehensive evaluation results were shown

in Fig.31. Overall, the EasyModel approach scored 23

(the total score was 25), and it behaved better than the

other five approaches.

Especially, the EasyModel approach gained much

better results than the ACML approach and the Event-

B approach. This illustrates that only the extended

UML or the Event-B model is insufficient to fulfill the

modeling requirements of SAS systems, for two rea-

sons. Firstly, both UML and the extended UML are

semi-formal models, and cannot be analyzed or veri-

fied. Secondly, the Event-B model is strong enough to

support the refinement modeling and the formal ana-

lysis of SAS systems, but it is created based on the set

1040 J. Comput. Sci. & Technol., Sept. 2020, Vol.35, No.5

theory and lacks visual modeling elements, which make

it difficult to master by software engineers.

23

14

10.5

16

13.5
12.5

0

5

10

15

20

25

T
o
ta

l
S
c
o
re

s
(A

v
e
ra

g
e
)

Easy
Mod

el

ACML
[4]

Even
t-B

[27
]

MV4S
AS

[15
]

EUREMA
[28

,29
]

MAPE-K
 Fo

rm
al

Tem
pla

tes
[7]

Fig.31. Comprehensive evaluation results.

As a conclusion, only the EasyModel approach,

which integrates the extended UML model and the

Event-B model, can fulfill the modeling requirements

(R) proposed in Subsection 3.1.

6.4 Discussion

Strengths. The above example application and the

experimental evaluation have demonstrated that the

EasyModel approach has incorporated the intuitive

merit of UML and the correct-by-construction merit

of Event-B, providing an explicit description on self-

adaptation structures, behaviours and attributes. Fur-

thermore, it provides a stepwise refinement modeling

way to handle system complexity and reduce modeling

difficulty.

Weakness. The above experimental evaluation also

reveals some deficiency of the EasyModel approach.

Firstly, as shown in Fig.30, the EasyModel approach

can still be improved in describing the self-adaptation

loops. This is because EasyModel currently focuses

on single loop description of SAS systems, and still

lacks modeling infrastructures to depict interactions be-

tween multi-loops. Secondly, the EasyModel approach

focuses on modeling and formal verification of the self-

adaptation logic and treats the application logic as a

black box. This approach can only guarantee that the

self-adaptation logic is workable, but it cannot be used

to optimize the self-adaptation strategies. To make up

this deficiency, we made a preliminary attempt by inte-

grating model checking with model simulation in opti-

mizing self-adaptation strategies [31]. However, the real-

world SAS scenario is far more complex, and further

work needs to be done.

7 Related Work

Recent researches provide various approaches that

support the modeling and designing of SAS systems. In

lieu of enumerating all the related studies, we refer the

readers to [3, 32] for a comprehensive understanding of

this field. This study focuses on modeling and formal

verification approaches for SAS systems, and we review

studies relevant to the EasyModel approach.

7.1 Visual Modeling Approaches for SAS

UML-Based Modeling Approaches. With its advan-

tages of being intuitive, easy to use and fine compat-

ible, UML has been widely used to model SAS sys-

tems. In order to support the explicit modeling of self-

adaptation control loops, Abuseta and Swesi [33] pro-

posed a set of UML-based design patterns. This work

treated feedback loops as first-class element, and ex-

plicitly described the feedback loops and the interplay

between multiple feedback loops (R2). Said et al. [6]

presented five design patterns for self-adaptive real-

time embedded systems. The design patterns allow

dealing with concurrency and real-time features with

generic and reusable design patterns, lightening mod-

eling complexity (R4), and reducing development cost.

Becker et al. [34, 35] extended the UML model hierar-

chically, and proposed a mechatronic UML model for

self-adaptive electromechanical system. This method

can handle system complexity by specifying SAS sys-

tems from the abstract models into the concrete models

(R4). In addition, we proposed the FAME framework [5]

by extending UML with fuzzy control concepts. The

FAME approach focuses on specifying self-adaptive en-

tities and attributes of the fuzzy self-adaptive software

systems (R1). Furthermore, da Silva et al. [36] provided

a systematic review on existing UML modeling meth-

ods for SAS systems. To summarize, the above UML-

based approaches exhibit superiority in explicitly de-

scribing self-adaptation characteristics. However, they

are limited in specifying and verifying self-adaptation

activities (R3) and properties (R5). Different from

existing work, the proposed EasyModel approach has

integrated the extended UML model with the Event-

B model, making the self-adaptation attributes (R1),

feedback loops (R2), and self-adaptation activities (R3)

explicit, lightening modeling complexity (R4), and pro-

viding guarantees for system behaviours (R5).

De-Shuai Han et al.: EasyModel: Self-Adaptive Software Modeling Approach 1041

Domain-Specific Modeling Approaches. Apart from

the UML-based modeling approaches, there are sev-

eral domain-specific modeling approaches for SAS sys-

tems. Vogel and Giese [28, 29] proposed a runtime and

executable modeling approach called EUREMA. It fo-

cuses on specifying interactions between runtime mod-

els, self-adaptation loops (R2), and self-adaptation acti-

vities (R3). In [37] and [38], feature models are used to

specify self-adaptation behaviours. Besides, the agent-

oriented models, such as [39] and [40], have also been

employed to design and optimize SAS systems. These

novel approaches are valuable and instructive, but they

are created based on domain specific models that are

less popular with the general software engineers. By

comparison, the EasyModel approach is created based

on UML, which is more understandable and acceptable.

7.2 Formal Approaches for SAS

Approaches Based on Automaton Model. Focus-

ing on formal analysis of SAS systems, the automa-

ton model has been widely used, because of its features

of being intuitive and easy to use. On basis of the

timed automata model, the AdaptWise research group

of Linnaeus University 4○ proposed the MAPE-K for-

mal templates [7], the ActivFORMS approach [41] and

the eARF approach [42, 43] for SAS systems. The limita-

tion is that model checking of the above formal models

encounters the problem of state-space explosion when

the system scale increases. By contrast, our EasyModel

approach integrates model checking with PO discharg-

ing, which can ease system complexity (R4), and avoid

the above problems.

Approaches Based on Probabilistic Models. The

probabilistic models, such as Bayesian Network [11]

and Markov Decision Process [44, 45], are gaining high

popularity in handling uncertainty within SAS systems.

However, the above probabilistic models lack scala-

bility, and cannot be used in complex software systems.

In comparison, the Event-B model in our EasyModel

approach owns the advantage of stepwise refinement,

and performs well in handling system complexity (R4).

Refinement-Based Approaches. Göthel et al. [46]

proposed a CSP-based formal approach for SAS sys-

tems, which can decompose system complexity using

the refinement mechanism of CSP. Hachicha et al. [27]

proposed to formalize SAS systems with the Event-

B model. This work makes a preliminary attempt,

and establishes the structure model of SAS systems

using the Event-B model. Different from the above

work, the EasyModel approach integrates the intuitive

UML model with the refinement Event-B model. It can

not only handle system complexity with the refinement

mechanism, but also realize an explicit description of

self-adaptation characteristics (R1, R2, and R3).

7.3 Model Transformation Approaches for

SAS

In order to incorporate merits of both UML and for-

mal methods, some researchers proposed to integrate

UML and formal methods for modeling SAS systems.

Luckey and Engels [4] presented the ACML (Adapt Case

Modeling Language) approach by integrating UML and

LTS model for SAS systems. In [15], we proposed to in-

tegrate UML model with timed automata model, focus-

ing on specifying self-adaptation behaviours and verify-

ing self-adaptation properties. The limitations are that

model checking of the LTS model and the timed au-

tomata model suffer from state-space explosion, and

that the model transformation processes are manual

or semi-automatic. In comparison, the EasyModel ap-

proach avoids the above problems by providing an in-

tegrated model verification method and an automatic

model transformation tool.

8 Conclusions

Modeling and formal verification of SAS systems be-

comes increasingly difficult, as the system scale and

complexity is rapidly increasing. To tackle this chal-

lenge, we presented EasyModel (Ease Modeling Diffi-

culty), a refinement-based modeling and verification ap-

proach. EasyModel contributes in integrating the intui-

tive UML model with the stepwise refinement Event-B

model. This integration can bridge the gap between

the design model and the formal model of SAS sys-

tems, and alleviate modeling difficulty. Software en-

gineers who are familiar with UML can quickly get

started with EasyModel, as it requires less mathemati-

cal background. At the same time, EasyModel specifies

complex self-adaptation activities from abstract models

to concrete models, and this stepwise refinement mech-

anism not only decomposes system complexity but also

conforms to the habit of human cognition, which paves

the way for software engineers to use the approach in

practice. Furthermore, EasyModel guides the formal

verification of SAS systems by integrating PO discharg-

ing with model checking, providing an efficient way to

4○https://lnu.se/en/research/searchresearch/adaptwise/, July 2020.

1042 J. Comput. Sci. & Technol., Sept. 2020, Vol.35, No.5

analyze and guarantee system behaviours. We eval-

uated EasyModel with an example application and a

subject-based experiment. The results demonstrated

that the EasyModel approach can satisfy requirements

for modeling SAS systems, and can effectively reduce

modeling and formal verification difficulty of SAS sys-

tems.

As for future work, we will continue the study on

formal analysis of self-adaptation properties, simplify-

ing the verification complexity and enriching the verifi-

able self-adaptation properties.

References

[1] Salehie M, Tahvildari L. Self-adaptive software: Land-

scape and research challenges. ACM Transactions on Au-

tonomous and Adaptive Systems, 2009, 4(2): Article No. 14.

[2] de Lemos R, Garlan D, Ghezzi C et al. Software engineering

for self-adaptive systems: Research challenges in the provi-

sion of assurances. In Proc. the International Seminar on

Software Engineering for Self-Adaptive Systems, December

2017, pp.3-30.

[3] Weyns D. Software engineering of self-adaptive systems. In

Handbook of Software Engineering, Cha S, Taylor R N,

Kang K (eds.), Springer, 2019, pp.399-443.

[4] Luckey M, Engels G. High-quality specification of self-

adaptive software systems. In Proc. the 8th International

Symposium on Software Engineering for Adaptive and Self-

Managing Systems, May 2013, pp.143-152.

[5] Han D S, Yang Q L, Xing J C et al. FAME: A UML-based

framework for modeling fuzzy self-adaptive software. Infor-

mation & Software Technology, 2016, 76: 118-134.

[6] Said M B, Kacem Y H, Kerboeuf M et al. Design patterns

for self-adaptive RTE systems specification. International

Journal of Reconfigurable Computing, 2014, 2014: Article

No. 536362.

[7] de la Iglesia D G, Weyns D. MAPE-K formal templates to

rigorously design behaviors for self-adaptive systems. ACM

Transactions on Autonomous & Adaptive Systems, 2015,

10(3): Article No. 15.

[8] Iftikhar M U, Weyns D. ActivFORMS: A runtime envi-

ronment for architecture-based adaptation with guarantees.

In Proc. the IEEE Int. Conf. Software Architecture, April

2017, pp.278-281.

[9] Camilli M, Gargantini A, Scandurra P. Zone-based formal

specification and timing analysis of real-time self-adaptive

systems. Science of Computer Programming, 2018, 159: 28-

57.

[10] Ding Z, Zhou Y, Zhou M. Modeling self-adaptive software

systems by fuzzy rules and Petri nets. IEEE Transactions

on Fuzzy Systems, 2018, 26(2): 967-984.

[11] Almeida A, Bencomo N, Batista T et al. Dynamic decision-

making based on NFR for managing software variability

and configuration selection. In Proc. the 30th Annual ACM

Symp. Applied Computing, April 2015, pp.1376-1382.

[12] Weyns D, Iftikhar M U. Model-based simulation at runtime

for self-adaptive systems. In Proc. the 2016 IEEE Int. Conf.

Autonomic Computing, July 2016, pp.364-373.

[13] Ahmad M, Belloir N, Bruel J M. Modeling and verifica-

tion of functional and non-functional requirements of ambi-

ent self-adaptive systems. Journal of Systems & Software,

2015, 107: 50-70.

[14] Abrial J R. Modeling in Event-B: System and Software En-

gineering. Cambridge University Press, 2013.

[15] Han D, Yang Q, Xing J. UML-Based modeling and formal

verification for software self-adaptation. Journal of Soft-

ware, 2015, 26(4): 730-746. (in Chinese)

[16] Object Management Group, The OMG unified modeling

language (OMG UML), superstructure, version 2.4.1, OMG

Document No. formal/2011-08-06, 2011.

[17] Gérard S, Dumoulin C, Tessier P, Selic B. Papyrus: A

UML2 tool for domain-specific language modeling. In Proc.

Int. Conf. Model-Based Engineering of Embedded Real-

Time Systems, November 2007, pp.361-368.

[18] Abrial J R, Butler M, Hallerstede S et al. Rodin an open

toolset for modelling and reasoning in Event-B. Interna-

tional Journal on Software Tools for Technology Transfer,

2010, 12(6): 447-466.

[19] Leuschel M, Butler M. ProB: A model checker for B. In

Proc. International Symposium of Formal Methods Europe,

September 2003, pp.855-874.

[20] Mentré D, Marché C, Filliâtre J C et al. Discharging

proof obligations from Atelier B using multiple automated

provers. In Proc. the 3rd Int. Conf. Abstract State Ma-

chines, Alloy, B, VDM, and Z, June 2012, pp.238-251.

[21] Boniol F, Wiels V, Ameur Y A, Schewe K D. The landing

gear case study: Challenges and experiments. International

Journal on Software Tools for Technology Transfer, 2017,

19(2): 133-140.

[22] SuW, Abrial J R. Aircraft landing gear system: Approaches

with Event-B to the modeling of an industrial system. Inter-

national Journal on Software Tools for Technology Trans-

fer, 2017, 19(2): 141-166.

[23] Laibinis L, Klionskiy D, Troubitsyna E et al. Modelling re-

silience of data processing capabilities of CPS. In Proc. the

6th International Workshop on Software Engineering for

Resilient Systems, October 2014, pp.55-70.

[24] Cheng S W. Rainbow: Cost-effective software architecture-

based self-adaptation [Ph.D. Thesis]. Carnegie Mellon Uni-

versity, 2008.

[25] Kephart J O, Chess D M. The vision of autonomic comput-

ing. IEEE Computer, 2003, 36(1): 41-50.

[26] Vandome A F, Mcbrewster J, Miller F P. ATLAS Transfor-

mation Language. Alphascript Publishing, 2010.

[27] Hachicha M, Dammak E, Halima R B et al. A correct by

construction approach for modeling and formalizing self-

adaptive systems. In Proc. the 17th IEEE/ACIS Int. Conf.

Software Engineering, Artificial Intelligence, Networking

and Parallel/Distributed Computing, June 2016, pp.379-

384.

[28] Vogel T. Model-driven engineering of self-adaptive software

[Ph.D. Thesis]. University of Potsdam, 2018.

[29] Vogel T, Giese H. Model-driven engineering of self-adaptive

software with EUREMA. ACM Transactions on Au-

tonomous & Adaptive Systems, 2014, 8(4): Article No. 18.

[30] Cámara J, Lopes A, Garlan D et al. Adaptation impact and

environment models for architecture-based self-adaptive

systems. Science of Computer Programming, 2016, 127: 50-

75.

De-Shuai Han et al.: EasyModel: Self-Adaptive Software Modeling Approach 1043

[31] Han D, Xing J, Yang Q et al. Modeling and verification ap-

proach for temporal properties of self-adaptive software dy-

namic processes. Journal of Computer Applications, 2018,

38(3): 799-805. (in Chinese)

[32] Krupitzer C, Roth F M, VanSyckel S et al. A survey on

engineering approaches for self-adaptive systems. Pervasive

and Mobile Computing, 2015, 17: 184-206.

[33] Abuseta Y, Swesi K. Design patterns for self-adaptive sys-

tems engineering. International Journal of Software Engi-

neering & Applications, 2015, 6(4): 11-28.

[34] Becker S, Dziwok S, Gerking C et al. The MechatronicUML

method: Model-driven software engineering of self-adaptive

mechatronic systems. In Proc. the 36th Int. Conf. Software

Engineering, May 2014, pp.614-615.

[35] Heinzemann C, Becker S, Volk A. Transactional execution

of hierarchical reconfigurations in cyber-physical systems.

Software & Systems Modeling, 2019, 18(1): 157-189.

[36] da Silva J P S, Ecar M, Pimenta M S et al. A system-

atic literature review of UML-based domain specific mod-

eling languages for self-adaptive systems. In Proc. the 13th

IEEE/ACM Int. Symp. Software Engineering for Adaptive

and Self-Managing Systems, May 2018, pp.87-93.

[37] Moritani B I, Lee J. An approach for managing a distributed

feature model to evolve self-adaptive dynamic software pro-

duct lines. In Proc. the 21st International Systems and Soft-

ware Product Line Conference, September 2017, pp.107-

110.

[38] Chen T, Li K, Bahsoon R et al. FEMOSAA: Feature-

guided and knee-driven multi-objective optimization for

self-adaptive software. ACM Transactions on Software En-

gineering and Methodology, 2018, 27(2): Article No. 5.

[39] de la Iglesia D G, Calderón J F, Weyns D et al. A self-

adaptive multi-agent system approach for collaborative mo-

bile learning. IEEE Transactions on Learning Technologies,

2015, 8(2): 158-172.

[40] Wang L, Li Q. A multiagent-based framework for self-

adaptive software with search-based optimization. In Proc.

IEEE Int. Conf. Software Maintenance and Evolution, Oc-

tober 2016, pp.621-625.

[41] Iftikhar M U, Weyns D. ActivFORMS: A runtime environ-

ment for architecture-based adaptation with guarantees. In

Proc. Int. Conf. Software Architecture Workshops, April

2017, pp.278-281.

[42] Abbas N, Andersson J, Iftikhar U M et al. Rigorous ar-

chitectural reasoning for self-adaptive software systems. In

Proc. the 1st Workshop on Qualitative Reasoning about

Software Architectures, April 2016, pp.11-18.

[43] Abbas N, Andersson J. Architectural reasoning support for

product-lines of self-adaptive software systems — A case

study. In Proc. the 9th European Conference on Software

Architecture, September 2015, pp.20-36.

[44] Su G, Chen T, Feng Y et al. An iterative decision-making

scheme for Markov decision processes and its application

to self-adaptive systems. In Proc. the 19th Int. Conf. Fun-

damental Approaches to Software Engineering, April 2016,

pp.269-286.

[45] Filieri A, Tamburrelli G, Ghezzi C. Supporting self-

adaptation via quantitative verification and sensitivity ana-

lysis at run time. IEEE Transactions on Software Engineer-

ing, 2016, 42(1): 75-99.

[46] Göthel T, Jähnig N, Seif S. Refinement-based modelling

and verification of design patterns for self-adaptive systems.

In Proc. the 19th Int. Conf. Formal Engineering Methods,

November 2017. pp.157-173.

De-Shuai Han received his B.S.

degree in electrical engineering and

automation from Shandong University,

Jinan, in 2012, his M.S. degree in elec-

tric system and automation from PLA

University of Science and Technology,

Nanjing, in 2015, and his Ph.D. degree

in information system engineering from

Army Engineering University of PLA, Nanjing, in 2018.

He is currently a lecturer in Rocket Force University

of Engineering, Xi’an. His research interests include

self-adaptive software systems, mission-critical system and

software, pervasive computing, and cyber-physical systems.

Qi-Liang Yang received his Ph.D.

degree in computer science from

Nanjing University, Nanjing. He is

currently an associate professor in

Army Engineering University of PLA,

Nanjing. His research interests include

self-adaptive software systems, mission-

critical system and software, pervasive

computing, and cyber-physical systems.

Jian-Chun Xing received his B.Sc.

and M.Sc. degrees in electric system

and automation from Engineering In-

stitute of Engineering Corps, Nanjing,

in 1984 and 1987, respectively, and his

Ph.D. degree in information system

engineering from Army Engineering

University of PLA, Nanjing, in 2006.

He is currently a professor in Army Engineering University

of PLA. His research interests include intelligent control,

artificial intelligence and information processing.

Guang-Lian Ma received her

M.Sc. degree in detection technology

and automatic equipment from Hohai

University, Nanjing, in 2016. She is cur-

rently an assistant engineer in Rocket

Force University of Engineering, Xi’an.

Her research interests include software

testing, information processing, and

Internet of Things.

1044 J. Comput. Sci. & Technol., Sept. 2020, Vol.35, No.5

Appendix

A.1 Proof Obligations for Sequential Control

Node

In order to derive the proof obligations, we employ

the “forward simulation” refinement mechanism [14],

which defines a sufficient refinement condition. Accord-

ing to the “forward simulation”, the abstract event abs

and concrete events con1 and con2 can be represented

in Fig.A1. The concrete events must be a trace of the

abstract event,

r−1; (rem → ren) ⊆ aei; r
−1. (A1)

A A

C CC

aei

rem

abs

con1

(con1à con2) Refines abs
r

v′
v

w

r

w′ren con2

(b)

(a)

Fig. A1. Formal representation of the Event-B sequential node.
(a) Traces of sequential refinements. (b) Set theoretic represen-
tation of the Event-B models.

Among them, the sequential events can be expressed

as

rem → ren

= {w 7→ w′|∃v × (I(v) ∧ J(v, w) ∧

∃t× ∧Guard1(w) ∧ PostCondition1(w, t) ∧

Guard2(t) ∧ PostCondition2(t, w′)}.

According to the “forward formulation”, the traces

of the concrete event and the abstract event can be ex-

pressed as (A2) and (A3), respectively.

r−1; (rem → ren)

= {v 7→ w′|∃w × (I(v) ∧ J(v, w) ∧ ∃t× ∧Guard1(w) ∧

PostCondition1(w, t) ∧Guard2(t) ∧

PostCondition2(t, w′)}, (A2)

aei; r
−1

= {v 7→ w′|∃v′ × I(v) ∧Guard(v) ∧

PostCondition(v, v′) ∧ I(v′) ∧ J(v′, w′)}. (A3)

Derived from the “forward simulation” condition of

(A1), (A2) and (A3), we can achieve (A4),

I(v) ∧ J(v, w) ∧ ∃t× ∧Guard1(w) ∧

PostCondition1(w, t) ∧Guard2(t) ∧

PostCondition2(t, w′) ⊢ I(v) ∧Guard(v) ∧

∃v′ × PostCondition(v, v′) ∧

I(v′) ∧ J(v′, w′). (A4)

According to the definition of sequential control

node, let us make the following assumption:

PostCondition1 ⇒ Guard2. (PO1)

On basis of PO1, (A4) can be simplified as:

I(v)∧J(v, w)∧Guard1(w)∧PostCondition1(w, t)∧

PostCondition2(t, w′) ⊢ Guard(v) ∧

∃v′ × PostCondition(v, v′) ∧ I(v′) ∧ J(v′, w′). (A5)

By applying the inference rule AND-R [14], (A5) can

be simplified as (A6) and (A7),

(I(v)∧J(v, w)∧Guard1(w)∧PostCondition1(w, t)∧

PostCondition2(t, w′) ⊢ Guard(v). (A6)

By applying the inference rule of Monotonicity [14],

PO2 is achieved:

Guard1 ⇒ Guard. (PO2)

(I(v)∧J(v, w)∧Guard1(w)∧PostCondition1(w, t)∧

PostCondition2(t, w′) ⊢ ∃v′×PostCondition(v, v′) ∧

I(v′) ∧ J(v′, w′). (A7)

Similarly, by applying the inference rule of

Monotonicity [14], PO3 is achieved,

PostCondition2 ⇒ PostCondition. (PO3)

Besides, in order to guarantee that event con2 can

only be triggered by event con1, the following constraint

is necessary,

init(Guard2) = FALSE, (C1)

which means that Guard2 should be set to be FALSE

in the initialization event.

Therefore, PO1, PO2 and PO3 are proof obligations

of the sequential node, and C1 is the constraint.

De-Shuai Han et al.: EasyModel: Self-Adaptive Software Modeling Approach 1045

A.2 Proof Obligations for Branch Control Node

Here the branch node means that exactly one re-

fined concrete event can be triggered at a time; thus,

it is an XOR (exclusive or) relationship between the

refined concrete events, that is,

(con1 XOR con2) Refines abs.

To simplify the derivation and proving process, we

decompose this XOR relationship into OR and Exclu-

sive relationships.

(con1 OR con2) Refines abs, (A8)

(con1 Exclusive con2) Refines abs. (A9)

Initially, we only consider the OR refinement pat-

tern in (A8), which is similar to that of the sequential

patterns. Similarly, the traces and set theoretic repre-

sentation can be shown in Fig.A2.

A A

C C

aei abs

rem con

ren con

r
↼con OR con↽ Refines abs

r

OR

v v ¢

w w ¢

(b)

(a)

Fig.A2. Formal representation of the Event-B branch node. (a)
Traces of branch refinements. (b) Set theoretic representation of
the Event-B models.

According to the “forward simulation”, the abstract

event abs and concrete events con1 and con2 can be

represented as Fig. A2. The concrete events must be a

trace of the abstract event,

r−1; (rem OR ren) ⊆ aei; r
−1. (A10)

Among them, the concrete branch events can be ex-

pressed as,

rem OR ren = {w 7→ w′|∃v × (I(v) ∧ J(v, w) ∧

(Guard1(w) ∧Guard2(w)) ∧ ((Guard1(w)

⇒ PostCondition1(w,w′)) ∨ (Guard2(w)

⇒ PostCondition2(w,w′)))}.

According to the “forward formulation”, the traces

of the concrete event and the abstract event can be ex-

pressed as (A11) and (A12), respectively.

r−1; (rem OR ren) = {v 7→ w′|∃w × (I(v) ∧

J(v, w) ∧ (Guard1(w) ∧Guard2(w)) ∧ ((Guard1(w)

⇒ PostCondition1(w,w′)) ∨ (Guard2(w)

⇒ PostCondition2(w,w′)))}, (A11)

aei; r−1 = {v 7→ w′|∃v′ × I(v) ∧Guard(v) ∧

PostCondition(v, v′) ∧ I(v′) ∧ J(v′, w′)}. (A12)

Derived from the “forward simulation” condition of

(A10), (A11) and (A12), we can achieve (A13),

(I(v) ∧ J(v, w) ∧ (Guard1(w) ∧Guard2(w)) ∧

((Guard1(w) ⇒ PostCondition1(w,w′)) ∨

(Guard2(w) ⇒ PostCondition2(w,w′))) ⊢

I(v) ∧Guard(v) ∧ ∃v′ × PostCondition(v, v′) ∧

I(v′) ∧ J(v′, w′). (A13)

Applying the inference rules: OR-L [14], IMP-L [14]

and MON [14] we can simplify (A13), and get the fol-

lowing sequents:

(I(v) ∧ J(v, w) ∧Guard1(w) ∧

PostCondition1(w,w′) ⊢ I(v) ∧Guard(v) ∧

∃v′ × PostCondition(v, v′) ∧ I(v′) ∧ J(v′, w′), (A14)

(I(v) ∧ J(v, w) ∧Guard2(w) ∧

PostCondition2(w,w′) ⊢ I(v) ∧Guard(v) ∧

∃v′ × PostCondition(v, v′) ∧ I(v′) ∧ J(v′, w′). (A15)

Firstly, we need two sufficient POs to guarantee

(A14):

Guard1(w) ⇒ Guard(v), and

PostCondition1 ⇒ PostCondition.

In Fig.5(a), it is obvious that Guard1(w) =>

Guard(v) can be satisfied, and we only need the lat-

ter PO, that is,

PostCondition1 ⇒ PostCondition. (PO1)

Similarly, according to (A15), we can get PO2,

PostCondition2 ⇒ PostCondition. (PO2)

Then, back to (A8) and (A9), PO1 and PO2 can guar-

antee the OR relationship, and we need other POs to

guarantee the exclusive relationship, i.e.,

PostCondition1 ⇒ ¬Guard. (PO3)

1046 J. Comput. Sci. & Technol., Sept. 2020, Vol.35, No.5

PostCondition2 ⇒ ¬Guard. (PO4)

At last, in order to guarantee that the abstract event

can only be triggered once, we need another PO,

PostCondition ⇒ ¬Guard. (PO5)

A.3 Proof Obligations for Cooperation Control

Node

Similarly, according to the “forward simulation”,

the abstract event abs and concrete events con1 and

con2 can be represented in Fig. A3. And the concrete

events must be a trace of the abstract event,

r−1; (rem||ren) ⊆ aei; r
−1. (A16)

(b)

(a)

aei abs

rem con1

ren con2

A A

C C

Refine Refine
↼con con↽ Refines abs

v v ¢

w w ¢

Fig.A3. Formal representation of the Event-B cooperation node.
(a) Traces of cooperation refinements. (b) Set theoretic represen-
tation of the Event-B models.

Among them, the cooperation events can be ex-

pressed as,

rem||ren = {w 7→ w′|∃v × (I(v) ∧ J(v, w) ∧

(Guard1(w) ∧Guard2(w)) ∧

((Guard1(w) ∧Guard2(w))

⇒ (PostCondition1(w,w′) ∧

(PostCondition2(w,w′))}.

According to the “forward formulation”, the traces

of the concrete event and the abstract event can be ex-

pressed as (A17) and (A18), respectively.

r−1; (rem||ren) = {v 7→ w′|∃w × (I(v) ∧

J(v, w) ∧ (Guard1(w) ∧Guard2(w)) ∧

((Guard1(w) ∧Guard2(w))

⇒ (PostCondition1(w,w′) ∧

(PostCondition2(w,w′))}, (A17)

aei; r
−1

= {v 7→ w′|∃v′ × I(v) ∧Guard(v) ∧

PostCondition(v, v′) ∧

I(v′) ∧ J(v′, w′)}. (A18)

According to (A16), (A17) and (A18), we can

achieve (A19),

(I(v) ∧ J(v, w) ∧ (Guard1(w) ∧Guard2(w)) ∧

((Guard1(w) ∧Guard2(w)))

⇒ {PostCondition1(w,w′) ∧

(PostCondition2(w,w′))} ⊢

I(v) ∧Guard(v) ∧ ∃v′ × PostCondition(v, v′) ∧

I(v′) ∧ J(v′, w′). (A19)

With the inference rule of IMP-L [14], the above sequent

can be simplified as,

I(v) ∧ J(v, w) ∧Guard1(w) ∧Guard2(w) ∧

PostCondition1(w,w′) ∧ PostCondition2(w,w′) ⊢

I(v) ∧Guard(v) ∧ ∃v′ × PostCondition(v, v′) ∧

I(v′) ∧ J(v′, w′). (A20)

It needs three sufficient POs to guarantee (A20),

Guard1 ⇒ Guard. (PO1)

Guard2 ⇒ Guard. (PO2)

PostCondition1 ∧ PostCondition2

⇒ PostCondition. (PO3)

	1 Introduction
	2 Background
	2.1 UML and Its Extending Mechanism
	2.2 Event-B Model
	2.3 Adaptation Scenario: ZNN.com

	3 Overview of the EasyModel Approach
	3.1 Requirements for Modeling SAS Systems
	3.2 Conceptual Framework of EasyModel

	4 Implementation of the EasyModel Approach
	4.1 Visual Modeling of SAS by Extending UML
	4.1.1 Structure View: Adapt Class Diagram
	4.1.2 Behaviour View: Adapt Activity Diagram
	4.1.3 Supporting Tool: AdaptML Profile

	4.2 Model Transformation Rules from AdaptML to Event-B
	4.2.1 Transforming Adapt Class Diagram into Event-B Model
	4.2.2 Transforming Adapt Activity Diagram into Event-B Model

	4.3 Model Transformation Tool: AdaptML2EventB
	4.4 Event-B Refinement Patterns for SAS Systems
	4.4.1 Sequential Refinement Pattern
	4.4.2 Branch Refinement Pattern
	4.4.3 Cooperation Refinement Pattern
	4.4.4 Refinement Pattern for Self-Adaptation Loop

	4.5 Formal Verification of SAS SystemsBased on Event-B
	4.5.1 Model Correctness
	4.5.2 Safety Property of Self-Adaptation Logic
	4.5.3 Effectiveness of Self-Adaptation Strategies

	5 Example Application
	5.1 Visual Modeling of ZNN.com
	5.2 Formal Modeling of ZNN.com
	5.3 Formal Verification of ZNN.com
	5.4 Discussion

	6 Experimental Evaluation
	6.1 Experiment Planning and Design
	6.1.1 Experiment Participants
	6.1.2 Evaluation Metrics Selection
	6.1.3 Evaluation Case Selection
	6.1.4 Experimental Design

	6.2 Experiment Operation
	6.3 Experimental Results
	6.3.1 Evaluation of Each Index
	6.3.2 Comprehensive Evaluation

	6.4 Discussion

	7 Related Work
	7.1 Visual Modeling Approaches for SAS
	7.2 Formal Approaches for SAS
	7.3 Model Transformation Approaches for SAS

	8 Conclusions

