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Abstract Many existing warning prioritization techniques seek to reorder the static analysis warnings such that true

positives are provided first. However, excessive amount of time is required therein to investigate and fix prioritized warnings

because some are not actually true positives or are irrelevant to the code context and topic. In this paper, we propose a

warning prioritization technique that reflects various latent topics from bug-related code blocks. Our main aim is to build

a prioritization model that comprises separate warning priorities depending on the topic of the change sets to identify the

number of true positive warnings. For the performance evaluation of the proposed model, we employ a performance metric

called warning detection rate, widely used in many warning prioritization studies, and compare the proposed model with

other competitive techniques. Additionally, the effectiveness of our model is verified via the application of our technique to

eight industrial projects of a real global company.
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1 Introduction

Automatic static analysis tools find potential

bugs [1] in source code during or after the software

development phase. Nowadays, static analysis tools

generate many warnings in software projects, but de-

termining which warnings should be removed or fixed

is difficult because the percentage of false positives

ranges from 35% to 91% of the warnings reported by

the tools [2, 3]. Identifying these warnings could result

in developers wasting 3.6–9.5 days [1] inspecting and fix-

ing false positives, which increase the overhead in their

development.

To solve these problems, warning prioritization

techniques utilize software information in addition to

the automatic static analysis result. These techniques

assist the automatic static analysis tools by assign-

ing warnings in the order of defect-proneness with ap-

proaches using additional information (e.g., lines of

code, revision history, and warning type). Because

these techniques find the information besides that ob-

tained through static analysis and prioritize warnings

automatically, the techniques are more efficient for as-

signing the number of true positive warnings to the first

order in its warning priority list.

However, the existing techniques [4–6] still have a

problem about a level of granularity for fixing the warn-

ing category. To fix a certain warning category in the

techniques, the developers should inspect all warning

instances of the warning category through every source

file. In the source file level inspection, despite of many

false positive warning instances of the category, deve-

lopers cannot stop to inspect until all warning instances

are fixed in each file. Furthermore, developers spend

much time in fixing many false positive warnings not

related to the characteristic of the file. For example,

warnings related to code complexity, such as cyclomatic

complexity, may not be significant in GUI-related files

because developers aptly implement anonymous classes,
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making codes such as event listeners more concise; how-

ever, they also result in increased code complexity, mak-

ing the code difficult to read. In other words, the warn-

ings related to code complexity are false positive warn-

ings in GUI-related files. Because of budget limitations

and schedule restrictions, the existing techniques based

on the coarse-grained (i.e., file-level) inspection without

the characteristic of the files still become a burden to

the developers who have time to fix only a few warnings.

To overcome the abovementioned problems, we pro-

pose a topic modeling based warning prioritization

technique (TOP) from change sets of a software repos-

itory. Change sets represent commits from the soft-

ware repository, consisting of the changed lines (e.g.,

removed and added) for several purposes such as bug

fixing, code refactoring at a specific date and time [7, 8].

Specially, our technique prioritizes warnings from the

change sets called “bug-related code (BRC) blocks”

rather than files and reflects various topics of the code

blocks as one of its prioritization criteria. To iden-

tify the code blocks’ topic, we use topic models, which

are used to analyze large volumes of program ele-

ments and revision history in many software engineer-

ing tasks [9–14]. In particular, we use Latent Dirichlet

Allocation (LDA) [15] among these topic models because

LDA helps identify topics of all source code in a soft-

ware project and group the source code into several top-

ics. Using this process, our TOP technique provides an

individual warning prioritization model for each topic

by measuring fixed warning instances in code change

blocks and topic distribution across the code blocks.

If a warning is fixed frequently in a particular topic,

the weight of the warning is increased in the prioriti-

zation model for the said topic. Thus, in the warn-

ing inspection stage, developers can prioritize which

warnings should be fixed first according to the topic

of the code blocks changed by them. Consequently, our

technique provides more fine-grained warning inspec-

tion (i.e., code block level) with consideration for the

characteristic (i.e., topic) of the source files.

To evaluate the performance of our prioritization

technique, we apply TOP to 27 open source projects

and compare it with the other techniques using the

warning detection rate (WDR), which is one of the mea-

surements to evaluate the performance of warning pri-

oritization technique [3]. The WDR cumulates the per-

centage of true positive warnings detected against the

number of inspections. Our evaluation results demon-

strate that TOP significantly improves warning detec-

tion rate and the area of TOP’s WDR is wider than

those of other techniques. Namely, developers using

TOP can fix warnings more quickly than those using

other techniques, in the limited time available to them.

In addition to open-source projects, we apply TOP

to eight industrial projects of the Lotte Data Commu-

nication Company (LDCC) to verify its usefulness in

real projects. First, in comparisons among the warn-

ing prioritization techniques, i.e., area of WDR, TOP

outperforms the other techniques in all projects. Sec-

ond, we perform Monte Carlo simulations to measure

bug-fixing time when applying our technique in compa-

rison with the other techniques. The simulation results

in that the developers using TOP could virtually save

32 minutes–90 minutes in comparison with those using

other prioritization techniques, to fix 25% of the warn-

ing instances.

The remainder of this paper is organized as fol-

lows. Section 2 details TOP. Section 3 describes our

experimental settings and includes an introduction of

the subject programs, methods, and existing prioritiza-

tion techniques for comparison. Section 4 presents the

results of comparisons. Section 5 analyzes the effective-

ness of our technique in industrial projects and presents

detailed results. Section 6 discusses the time-cost of our

technique and its application to small projects. Sec-

tion 7 discusses related work, and Section 8 describes

potential threats to the validity of our study. Finally,

in Section 9, we conclude our study and outline future

research directions.

2 Topic-Based Warning Prioritization (TOP)

This section describes the process used by TOP for

prioritizing warnings from automated static analysis

tools. Fig.1 shows the overall process of our proposed

technique including data collection, topic modeling and

warning identification, and warning category prioritiza-

tion.

In the data collection phase, we identify changed

code blocks related to bug-fixing, called bug-related

code (BRC) blocks, in the revision history. In the topic

modeling and warning identification phase, topic con-

tributions to the topics of each BRC block are identi-

fied. In the same phase, the number of removed warn-

ing instances between two revisions is measured from

the BRC blocks. In the warning category prioritization

phase, we generate a list of prioritized warning cate-

gories by weighting the warning categories using topic

contributions and the number of removed warning in-

stances.
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Fig.1. Overall topic-based warning prioritization (TOP) process. (a) Data collection phase. (b) Topic modeling and warning identifi-
cation phase. (c) Warning category prioritization phase.

2.1 Data Collection

In this phase, we collect the source files used for

training and testing datasets in our study. The inputs

for this phase are the revision histories (i.e., changesets)

of software repositories, such as Subversion or Git. The

outputs of this phase are BRC blocks, which represent

changed code blocks for fixing bugs in revisions.

There are three steps for identifying BRC blocks in

this phase. First, we identify bug-related revision files

by searching for two keywords, such as “Bug” and “Fix”

in the commit log history [4, 16] within the revision his-

tory. Second, we identify two versions of files called

Buggy and Clean, which are files from before and af-

ter fixing of bugs in each commit history, respectively.

Finally, we identify changed code blocks in the Buggy

and Clean files by using Git’s “-diff” option. For ex-

ample, in the results of the option “@@ -80, 4 + 80,

10 @@,” “-80, 4” indicates that four lines have been

changed starting from line 80 in the Buggy file. The

changed line number in the Clean file is measured from

“+80, 10” in the same manner.

Table 1 lists the commit and revision numbers of

the Buggy and Clean files, as well as the BRC for the

Cassandra project. For example, Cassandr.java is listed

at Commit #1, and its BRC block in the Buggy file is

identified from line 55 to line 65 at revision #000d4d9.

Additionally, we treat files with the same name in diffe-

rent commits as unique files because their pieces of code

are changed by different bugs in each commit. In Ta-

ble 1, the Cassandra.java files collected from Commit

#1 and Commit #2 are considered as two different files

and renamed as [000d4d9/55-65] Cassandra.java and

[012159e/43-78] Cassandra.java, respectively, based on

the changed code blocks.

2.2 Topic Modeling and Warning
Identification

In this phase, we perform topic modeling and static

analysis, using the BRC blocks collected in Subsec-

tion 2.1 as input data.

2.2.1 Topic Modeling

The inputs for the topic modeling step are BRC

blocks in Buggy files from the outputs of Subsection 2.1

because these blocks include bugs existing prior to revi-

sion. In this step, LDA produces topic contribution to

BRC blocks to identify the topics of the blocks. For this

step, we use a topic modeling tool called MALLET 1○.

To improve the quality of topic modeling results, some

Table 1. Information for Identifying BRC Blocks for the Cassandra Project

Commit Number File Name Buggy File Clean File

Revision Number Changed Code Block Revision Number Changed Code Block

1 Cassandra.java 000d4d9 55–65 f70bdcf 55–102

2 Cassandra.java 012159e 43–78 84e6032 43–60

3 Util.java 006d5f8 10–15 518c045 10–20

25–42 25–43

4 UUIDGen.java 0089ba8 11–102 1a1e902 11–50

1○http://mallet.cs.umass.edu, Sept. 2020.
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meaningless words such as stop words provided by

tools, Java keywords, and package names, symbols (0–

9), punctuation (.,), and special letters (!@#$%ˆ&*)

are all removed from the BRC blocks. Because Java

keywords and package names are common words in all

source files, these keywords do not become discrimina-

tion words. Therefore, we remove stop words in the

blocks using MALLET’s “–remove-stopwords” and “–

extra-stopwords” options during preprocessing.

After the preprocessing, the BRC blocks are im-

ported into MALLET’s internal corpus and used to

generate topic models. Before we build the topic model,

the number of topics K is set appropriately in order to

identify distinguishable topics. Table 2 and Table 3

present an example of the output for this step, which

contains topic contributions for each BRC block and

associated words for topics generated by MALLET for

the Cassandra project respectively.

In the topic contribution results shown in Table 2,

topic IDs and contributions are enumerated in order

of contribution size within each row by the number K

for all BRC blocks. Specifically, the topic ID in the sec-

ond column represents the most dominant topic in each

BRC block, and the third column indicates the extent

to which the topic in the second column contributes

to the BRC block. Table 3 presents the associated

words for each topic as the result of topic modeling.

These are collections of words that frequently occur to-

gether in BRC blocks associated with the corresponding

topic. Additionally, the word on the left side of the sec-

ond column has higher percentages of occurrence than

those on the right side. For example, for [012159e/43-

78] Cassandra.java in Table 2, the most prominent and

the second most prominent topics and their contribu-

tions to the BRC block’s content are 2 (97.05%) and 4

(0.92%), respectively. This means that the BRC block

is more closely related to topic 2 than the other topics

because the associated words for topic 2, such as data,

column, size, key, and index, frequently occur together

in the corresponding block. These topic contributions

are used as weight adjustment factors for our prioriti-

zation model.

2.2.2 Static Analysis

In this step, we use PMD and identify the numbers

of total and removed warning instances for the BRC

blocks in Buggy and Clean files, respectively, which are

collected from Subsection 2.1. PMD, a widely used au-

tomatic static analysis tool to detect potential bugs

such as anti-pattern and coding standard violations,

is used to report warning violations in source code of

both Buggy and Clean files. In the report of warning

violations, the warning category is a type of warning

supported by static analysis tools. A warning instance

is a single violation of the category. In the report of

Buggy files, the total number of warning instances for

each warning category is counted before fixing bugs,

whereas the number of removed warning instances is

counted after fixing bugs in the report of Clean files.

For this step, any static analysis tools (e.g., Findbugs,

CodeSonar, and CheckStyles) can be used depending on

the program language or types of warnings to prioritize

even if the tool is not PMD.

Table 4 lists the numbers of removed and total warn-

ing instances identified in the BRC blocks of Clean and

Buggy files for each warning category in the Cassan-

dra project. For example, for [000d4d9/55-65] Cassan-

dra.java, five and 12 warning instances are removed in

the Clean file based on 20 and 13 warning instances in

the Buggy file for warning categories 1 and 3, respec-

tively.

2.3 Warning Category Prioritization

In this phase, we construct a warning category prior-

itization model using the outputs of Subsection 2.2, in-

cluding topic contributions and the number of warning

instances. Our warning prioritization model is based

on the weight model concept [4] called the removal like-

lihood (RL) and the model is defined by (1), where the

Table 2. Example of Topic Contribution Results of Each BRC Block Generated by Topic Modeling

BRC Block 1st Topic ID Contribution to 2nd Topic ID Contribution to · · ·

1st Topic (%) 2nd Topic (%)

[000d4d9/55-65] Cassandra.java 0 59.56 4 39.85

[012159e/43-78] Cassandra.java 2 97.05 4 00.92 ·

[006d5f8/10-15] Util.java 0 44.75 4 41.53 ·

[006d5f8/25-42] Util.java 3 88.12 2 10.89 ·

[0089ba8/11-102] UUIDGen.java 1 41.04 4 30.37

...
...

...
...

...
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numbers of removed warning instances and total warn-

ing instances are identified in Subsection 2.2.2.

RLC(f)

=
number of removed warning instances of c

Total number of warning instances of c
in f, (1)

Table 3. Example of Associated Words for Each Topic Gene-
rated by Topic Modeling

Topic ID Associated Words

0 Token, end, map, key, strategy, · · ·

1 Message, response, logger, debug, service, · · ·

2 Data, column, size, key, index, · · ·

3 Table, column, logger, family, store, · · ·

4 Column, key, family, type, bytes, · · ·

RLc(f) indicates the removal likelihood of the warn-

ing category c in source file f . If warning instances from

the category are removed many times in the source files,

the weight of the warning category is increased. In con-

trast, if the warning instances are seldom removed, the

weight of the warning category is decreased.

While the removal likelihood model weighs the

warning categories by counting all removed warning in-

stances based on a coarse-grained level (i.e., file level)

regardless of the topic of the files, we count the warn-

ing instances based on a fine-grained level (i.e., BRC

blocks). Furthermore, the weight of the warning cate-

gory is separated into several results according to the

number of latent topics of the BRC blocks. Thus, in our

approach, the weight of warning category c for topic k

(= Wc[k]) was calculated from the whole BRC block as

the following equation:

Wc [k] =

n
∑

b=1

(TCk (b)×RLc (b)) . (2)

In (2), TCk(b) presents the topic k’s contribution to

BRC block b. Also, RLc(b) presents the removal likeli-

hood of warning category c in b. Since the weight value

becomes larger as more BRC blocks are considered, the

priority of the warning category may be biased because

of the number of BRC blocks. Therefore, we normalize

TC through all BRC blocks for each topic k.

To facilitate better understanding of our model, Ta-

ble 5 presents an example of the prioritization of three

warning categories in four BRC blocks for three topics

as follows. The results of Table 5 are identified from

the outputs of Subsections 2.2.1 and 2.2.2, respectively.

The 2nd, 3rd, and 4th columns of Table 5 shows the

topic contributions (TC) and their normalized values

for the BRC blocks obtained via topic modeling. The

5th, 6th, and 7th columns of Table 5 indicate removal

likelihoods (RL) of three warning categories. Specifi-

cally, the number of removed warning instances during

fixing bugs and the total number of warning instances

before fixing bugs are counted by performing static ana-

lysis. The warning instances are separated by “/” sym-

bol in the 5th, 6th, and 7th columns of Table 5.

Using (2), the weights of all warning categories for

each topic are calculated as follows.

• Weight values of warning categories in topic 1:

W1 [1] =

(

0.33×
5

20

)

+

(

0.17×
3

4

)

+

(

0.33×
2

10

)

≈ 0.28,

Table 4. Removed/Total Numbers of Warning Instances in BRC Blocks of Clean and Buggy Files

BRC Block Number of Removed Warning Instances/Total Number of Warning Instances in BRC Blocks

Warning Category 1 Warning Category 2 Warning Category 3

[000d4d9/55-65] Cassandra.java 5/20 12/13

[012159e/43-78] Cassandra.java 4/7

[006d5f8/10-15] Util.java 3/4

[006d5f8/24-42] Util.java 2/10 10/20

[0089ba8/11-102] UUIDGen.java 15/20 1/5 10/10

Table 5. Example of the Result of Topic Modeling and Static Analysis

BRC Block Topic-Modeling Result Static Analysis Result

TC1 TC2 TC3 Warning Warning Warning

(norm.) (norm.) (norm.) Category 1 Category 2 Category 3

[000d4d9/55-65] Cassandra.java 0.50 (0.33) 0.25 (0.18) 0.25 (0.23) 5/20 12/13

[012159e/43-78] Cassandra.java 0.25 (0.17) 0.50 (0.36) 0.25 (0.23) 4/7

[006d5f8/10-15] Util.java 0.25 (0.17) 0.25 (0.18) 0.50 (0.45) 3/4

[006d5f8/25-42] Util.java 0.50 (0.33) 0.40 (0.28) 0.10 (0.09) 2/10 10/20
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W2 [1] =

(

0.17×
4

7

)

+

(

0.33×
10

20

)

≈ 0.26,

W3 [1] =

(

0.33×
12

13

)

≈ 0.30.

• Weight values of warning categories in topic 2:

W1 [2] =

(

0.18×
5

20

)

+

(

0.18×
3

4

)

+

(

0.28×
2

10

)

≈ 0.24,

W2 [2] =

(

0.36×
4

7

)

+

(

0.28×
10

20

)

≈ 0.35,

W3 [2] =

(

0.18×
12

13

)

≈ 0.17.

• Weight values of warning categories in topic 3:

W1 [3] =

(

0.23×
5

20

)

+

(

0.45×
3

4

)

+

(

0.09×
2

10

)

≈ 0.41,

W2 [3] =

(

0.23×
4

7

)

+

(

0.09×
10

20

)

≈ 0.18,

W3 [3] =

(

0.23×
12

13

)

≈ 0.21.

One can see that the priorities sorted by the weight

of each warning category vary within each topic, even if

the warning category is the same. The prioritized warn-

ing categories sorted by weight are listed in Table 6 as

the final outputs of our technique. For example, warn-

ing category 2 has the highest priority with a weight

of 0.35 in topic 2, while the same warning category has

the lowest priority in topic 3 with a weight of 0.18.

Table 6. Prioritized Warning Categories and the Weight Values
for Each Topic

Rank Topic 1 Topic 2 Topic 3

Warning Weight Warning Weight Warning Weight

Category Category Category

1 3 0.30 2 0.35 1 0.41

2 1 0.28 1 0.24 3 0.21

3 2 0.26 3 0.17 2 0.18

Consequentially, our prioritization model generates

multiple weight values of each warning category accord-

ing to the number of topics. If we set the number of

topic K to 3 in the topic modeling step (see Subsection

2.2.1), the weight values of each warning category must

be 3. The higher the weight value of the warning cate-

gory in topic k, the higher the priority; this is because

the developers remove the warning category in topic k

more frequently than in other topics.

3 Experimental Design

This section describes our experimental setup, in-

cluding subject programs, a comparison between our

technique and other techniques, and descriptions of

evaluation methods and metrics for comparison.

3.1 Experimental Setting

In our experiment, 27 subject programs are used

to evaluate our prioritization technique. The subject

programs of our study meet the following criteria: 1)

open source, 2) of various domains, 3) written in Java

programming language like other warning prioritization

research [1]. We find bug-related commit logs and col-

lected almost all the Java source files related to the bug

in each subject program. These fixed source files are not

always considered to be bug-related files. For example,

some developers classify a warning that disappears dur-

ing a bug fix as a true positive warning. Therefore, we

omitted those source files for the following reasons:

• newly created or deleted files for next revision;

• files in which warnings were not removed or rather

increased during fix changes.

Table 7 shows our subject programs collected from

various open source projects (such as GitHub, Apache

Software Foundation, SourceForge, Eclipse project, and

individual websites). The number of revisions is the to-

tal number of bug-related revisions found by searching

for keywords such as “Bug” and “Fix” from commit log

messages in revision history during the revision period.

Among the revision files, the bug-related files were ex-

tracted and sorted according to above rationale. We

divided all BRC blocks collected from the data collec-

tion phase (Subsection 2.1) into two halves (in time

order) and used the first half of BRC blocks as a train-

ing dataset for our experiment. In other words, the

set of BRC blocks in the first half period (from the

first revision to revision n/2− 1) was used to train our

model, and the remainder of the recent BRC blocks

(from revision n/2 to the latest revision) was used to

test prioritization models as a ground truth [4]. The

time split is based on the time required to train and

test our model [1, 17]. We counted the removed warning

instances contained in the latter half of the BRC blocks

for the bug fixes, and the warning categories were pri-

oritized by the number of warnings removed.

For determining the number of topics K, there exist

some metrics [15, 18] based on the log-likelihood function

for held-out data. However, the metrics suggest setting
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Table 7. Subject Programs Used in Our Experiment

Program Software Type Revision Period Number of Number of Number of Bug-

(MM/DD/YY) Revisions Bug-Related Files Related Lines(×103)

Ant Java build tool 01/26/00–04/10/14 4 999 2 601 393

Bonita BPM and workflow suit 12/21/12–06/13/16 2 196 2 022 316

Cassandra Distributed database management system 03/18/09–01/20/16 3 202 3 072 936

Checkstyle Static code analysis tool 08/17/01–04/16/16 3 677 3 468 163

Drools Business rules management system 01/11/06–08/18/10 5 869 3 654 941

Elasticsearch Distributed full-text search engine 02/14/10–04/15/16 11 355 10 498 3 638

Flink Streaming dataflow engine 12/17/10–04/15/16 5 507 5 336 599

Guava Google core libraries for Java 01/11/10–04/15/16 2 621 2 564 487

Guice Lightweight dependency injection framework 01/29/07–12/01/15 1 044 978 116

Hadoop Big data processing framework 02/27/09–01/29/16 6 380 5 977 1 683

iTextPDF iText core Java library 12/06/00–05/26/16 1 753 1 364 430

Jackrabbit Content repository for Java platform 09/21/04–02/26/16 3 186 3 094 445

jBPM Flexible business process management suite 10/17/10–05/27/16 2 055 1 880 278

jclouds Multi-cloud toolkit for Java platform 01/25/11–01/29/16 3 168 3 057 320

Jenkins Continuous integration tool 11/05/06–03/09/16 2 857 2 718 680

libGDX Game-development application framework 03/08/10–04/02/16 8 424 8 351 1 137

Lucene Java-based search engine 03/18/10–10/22/15 11 269 5 982 993

Mahout Scalable machine learning algorithms 03/14/08–03/27/16 2 642 2 594 307

Maven Build automation tool 01/27/04–01/25/16 2 279 2 246 329

Mylyn Subsystem of Eclipse for task management 07/08/05–05/26/16 2 967 2 736 284

Neo4j Graph database management system 07/03/07–04/06/16 6 675 6 385 9 329

OpenMap JavaBeans-based programmer’s toolkit 01/27/03–04/01/16 2 166 2 156 345

OrientDB Distributed graph database 04/04/10–04/18/16 10 041 9 537 2 632

Pivot Rich web applications building platform 06/19/08–03/14/16 2 469 2 307 509

Titan Distributed graph database 04/22/12–03/04/16 2 233 2 192 474

Tomcat Web server 06/17/05–04/18/16 9 133 8 849 2 486

WildFly Application server 07/21/10–04/13/16 5 519 5 201 566

too many topics. The result of the measures was nega-

tively correlated with the measures of topic quality [19].

In addition, we are unable to acquire enough source

code to build a prioritization model for certain topics

because a few source code files may be included in the

topics. Therefore, we experimentally determined K by

trying to find the minimum number of topics, K, start-

ing from 2 to 10 until each topic had more than 10

source code files, because the increasing number of top-

ics worsens the interpretation of the topics and does not

increase the level of agreement between human subjects

and the model [19] accordingly. As a result, we deter-

mined that the number of topics, K, is consistently 5

for all the open source projects. From the topic models,

we built K prioritization models (see Subsection 2.3).

3.2 Method of Performance Comparison

In this subsection, we introduce a method for clas-

sifying true and false positive warnings as ground truth

labels, as well as warning prioritization techniques and

a metric for comparison.

3.2.1 Ground Truth

In this study, we adopt a widely-used method [3, 5, 20]

to classify true and false positive warning categories in

a test dataset of 27 open-source projects. According to

the methods, a warning instance is regarded as a true

positive when the warning instance is removed in a next

revision. On the other hand, if the warning instance is

still remained in the next revision, the warning instance

is regarded as a false positive. Although each warning

instance was labeled as true or false, we use the accu-

mulated number of warning instances in the following

process:

• selection of revisions across a subject program’s

history starting from the first revision in the test

dataset defined in Subsection 3.1;

• running of an automated static analysis tool
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(PMD) on each revision to generate a report of warning

violations;

• counting of warning instances that are removed in

later revisions: accumulation of the number of removed

warning instances as actionable alerts if a warning in-

stance is removed; accumulation of the number of re-

maining warning instances as unactionable alerts if a

warning instance is still present in a later revision;

• summarizing of the number of removed or remain-

ing warning instances for each warning category over

all revisions: the total number of inspected warning

instances is calculated by adding the removed and re-

maining warning instances.

Finally, we obtain the following three variables for

each warning category, which are used for calculating

the performance metrics described in Subsection 3.2.3:

• number of removed warning instances,

• number of remaining warning instances,

• total number of inspected warning instances.

As part of our technique, the variables are measured

from the changed code blocks belonging to topics, while

the variables as part of the other techniques are mea-

sured from source files. Therefore, the values of the

variables in our technique differ among different topics.

The topic of the blocks is identified by the MALLET

inference tool 2○.

3.2.2 Prioritization Techniques for Comparison

To investigate the effectiveness of our technique,

we compare the existing prioritization techniques such

as HWP [4], ACP [5], ALT [6], and other prioritization

methods, such as TOOL and RAND. The reason why

we choose those techniques [4, 6] is that they are nom-

inated as representative studies from the literature

reviews [1, 21] about the warning prioritization technique

and the studies have similar conditions with our ex-

perimental settings, which makes comparison fair and

replicable.

To generate the warning category list prioritized by

the HWP technique, we identify warning removal in-

formation using the method proposed in [4]. We in-

crease the weight of a warning category when warning

instances from the category are removed many times in

all source files in the training datasets for each project.

In contrast, the weight of a warning category is reduced

if the corresponding warning instances are seldom re-

moved.

Additionally, we calculate the lifetime of a warn-

ing instance, as discussed in [6], to generate the warn-

ing category list prioritized by the ALT technique. We

count the days from the appearance of the first warn-

ing until the removal of the final instance in all revisions

of each project. The counted days for the warning in-

stances are accumulated in each warning category.

The ACP technique is a warning classification model

for determining if warning instances should be resolved

and classified as actionable alerts (AAs) or left alone

and classified as unactionable alerts (UAs). To clas-

sify these instances as AAs and UAs, we adopt the

method described in [5] to extract the patterns of the

alert characteristics (ACPs), consisting of Call, New,

Binary Operation, Field Access, and Catch statements

in the five revisions of the train dataset over six-month

intervals for each project. We construct a warning clas-

sification model using these patterns as feature vectors

in a classification algorithm. To train the model, we

use a machine learning utility called Weka employing

a random forest classification algorithm, which guaran-

tees reasonable performance for the alert characteristics

in an evaluation study of all publicly available features

for identifying actionable warnings [20].

In random (RAND) prioritization, warning cate-

gories are prioritized by randomly selecting the warn-

ing instances in our test dataset. In the case of the

tool (TOOL), warning categories are prioritized by the

predefined priority of the tool. If there were warning

categories with the same priority, they are sorted ran-

domly within the same priority range.

The biggest difference between TOP and the HWP,

ALT, TOOL, and RAND techniques is the number of

warning category lists prioritized in the outputs of the

techniques. While TOP produces multiple warning

category lists based on the topics in BRC blocks, as

shown in Table 6, the other techniques produce only a

single warning category list. Consequently, the process

of TOP for inspecting a given warning category in the

source files of a test dataset consists of the following

steps:

• division of each file into BRC blocks;

• identification of the topics of each block using

the MALLET inference tool based on the trained topic

model discussed in Subsection 2.2.1;

• application of different warning priorities (as

shown in Table 6) to the warning categories in each

block according to the weights of the topics.

In the other techniques, there are no processes for

dividing files into code blocks and identifying the top-

ics in blocks. These techniques consistently apply the

2○http://mallet.cs.umass.edu/topics.php, Oct. 2020.
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weights from a single warning category list to all source

files.

3.2.3 Performance Metrics for Comparison

To compare our technique with other techniques,

we use the warning detection rate (WDR) metric [3]

as a performance evaluation metric. This metric

has been widely used in many warning prioritization

studies [1, 3–5]. In our study, we use WDR to cumulate

the percentage of removed warning instances out of the

total number of inspected warning instances counted

based on the ground truth labels discussed in Subsec-

tion 3.2.1, according to the priorities of the warning

categories. The percentage of fixed warning instances

increases when true positive warnings are fixed by each

technique. Typically, in an actual software project,

developers focus on only top 10 to top 50 warnings,

in terms of priority, as they have not enough time and

budget in their project. Thus, the higher the warning

detection rate in the early inspection stage, the bet-

ter the technique because it allows developers to find

true positive warnings quickly. The area under WDR

of a good technique is also wider than those of other

techniques. In our experimental result, we compare the

WDR curve and the area under the curve among all

techniques.

To measure and compare the WDRs of prioritiza-

tion techniques, we sort the warning categories by the

weights in the warning category lists generated by each

technique. Next, we assume that developers fix warning

categories in order of weight and consider the changes

in the number of fixed warning instances and the num-

ber of inspected warning instances in the test dataset

as the ground truth. Based on ground truth obser-

vations, we measure WDR by accumulating the num-

ber of removed warning instances and the total num-

ber of inspected warning instances. Some results are

presented in Subsection 4.1 as representative examples.

Unlike the other techniques for prioritizing warning cat-

egories, ACP classifies warning instances into binary

classes (i.e., AA or UA) instead of prioritizing warning

categories. Therefore, we sort the warning instances for

this technique based on the distribution probability of

the AA class using the distributionForInstance class in

the WEKA tool. Additionally, we randomize the order

of warning instances with the same distribution proba-

bility and calculated WDR values across 100 runs to

avoid any bias resulting from randomization.

4 Results

This section presents the prioritization results gene-

rated by several techniques to explain the calculation of

WDR and provide intuitive performance comparisons.

4.1 Example Prioritization Results

We precede the evaluation with an example of the

warning prioritization results sorted by TOP, HWP,

and TOOL for the Ant program, as shown in Tables 8–

10. The reason for HWP and TOOL being selected as

comparison targets is that HWP has been determined

to be the best competitor for TOP as a warning prior-

Table 8. Warning Category List Generated by TOP and the Metrics for WDR

Topic Category Name Weight Number of Accumulated Number Total Number Accumulated Number

Removed Warning of Removed Warning of Inspected of Inspected Warning

Instances Instances (Percentage) Warning Instances Instances (Percentage)

4 ProperCloneImplementation 0.544 5 0 0 (0.0) 0 0 (0.0)

1 ProperCloneImplementation 0.186 6 0 0 (0.0) 0 0 (0.0)

0 UseLocaleWithCaseConversions 0.077 0 11 11 (2.5) 14 14 (0.8)

2 UseLocaleWithCaseConversions 0.072 3 5 16 (3.7) 11 25 (1.5)

1 AvoidDuplicateLiterals 0.070 5 1 17 (3.9) 3 28 (1.6)

1 UseLocaleWithCaseConversions 0.069 7 2 19 (4.4) 2 30 (1.8)

0 AssignmentInOperand 0.063 4 39 58 (13.3) 42 72 (4.2)

4 AvoidDuplicateLiterals 0.044 6 1 59 (13.5) 4 76 (4.4)

0 EmptyCatchBlock 0.042 5 6 65 (14.9) 12 88 (5.1)

4 NullAssignment 0.038 7 2 67 (15.4) 18 106 (6.2)

0 AvoidLiteralsInIfCondition 0.036 9 11 78 (17.9) 34 140 (8.2)

0 NullAssignment 0.036 8 5 83 (19.0) 24 164 (9.6)

1 DataflowAnomalyAnalysis 0.034 1 11 94 (21.6) 174 338 (19.7)

...
...

...
...

...
...

...
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Table 9. Warning Category List Generated by HWP and the Metrics for WDR

Category Name Weight Number of Accumulated Number Total Number Accumulated Number

Removed Warning of Removed Warning of Inspected of Inspected Warning

Instances Instances (Percentage) Warning Instances Instances (Percentage)

UseEqualsToCompareStrings 0.300 0 0 0 (0.0) 1 1 (0.00)

FinalizeDoesNotCallSuperFinalize 0.180 0 0 0 (0.0) 0 1 (0.00)

FinalizeShouldBeProtected 0.180 0 0 0 (0.0) 0 1 (0.00)

ProperCloneImplementation 0.136 4 0 0 (0.0) 0 1 (0.00)

AvoidBranchingStatementAsLastInLoop 0.100 0 0 0 (0.0) 1 2 (0.01)

AvoidUsingOctalValues 0.081 8 0 0 (0.0) 0 2 (0.01)

EmptyWhileStmt 0.056 3 0 0 (0.0) 0 2 (0.01)

UseLocaleWithCaseConversions 0.056 0 26 26 (6.0) 35 37 (2.20)

ImportFromSamePackage 0.052 9 0 26 (6.0) 0 37 (2.20)

MissingBreakInSwitch 0.050 0 1 27 (6.2) 2 39 (2.30)

AvoidDuplicateLiterals 0.032 6 5 32 (7.3) 15 54 (3.20)

EmptyStatementNotInLoop 0.025 0 1 33 (7.6) 1 55 (3.20)

AvoidCatchingNPE 0.024 3 0 33 (7.6) 0 55 (3.20)

NullAssignment 0.023 5 8 41 (9.4) 61 116 (6.80)

DataflowAnomalyAnalysis 0.023 4 209 250 (57.3) 816 932 (54.30)

.

..
.
..

.

..
.
..

.

..
.
..

Table 10. Warning Categories List Provided by TOOL and the Metrics for WDR

Category Name Weight Number of Accumulated Number Total Number Accumulated Number

Removed Warning of Removed Warning of Inspected of Inspected Warning

Instances Instances (Percentage) Warning Instances Instances (Percentage)

DataflowAnomalyAnalysis 5 209 209 (47.9) 816 816 (47.6)

InvalidSlf4jMessageFormat 5 0 209 (47.9) 0 816 (47.6)

DoNotThrowExceptionInFinally 4 2 211 (48.4) 6 822 (47.9)

DontImportSun 4 0 211 (48.4) 0 822 (47.9)

InstantiationToGetClass 4 0 211 (48.4) 0 822 (47.9)

StringBufferInstantiationWithChar 4 0 211 (48.4) 0 822 (47.9)

AssignmentInOperand 3 39 250 (57.3) 45 867 (50.5)

AssignmentToNonFinalStatic 3 0 250 (57.3) 1 868 (50.6)

...
...

...
...

...
...

itization technique, and TOOL has the most inefficient

prioritization results. The results for other techniques,

such as ALT and RAND, are publicly available at the

GitHub Wiki page 3○. ACP is omitted because it cannot

generate warning category lists.

In each table, the warning categories are sorted by

the weight values assigned by each prioritization tech-

nique. The number of removed warning instances and

the total number of inspected warning instance indi-

cate the observations values based on the ground truth.

The accumulated numbers of removed and inspected

warning instances represent the cumulative numbers

and percentages of removed and inspected warning in-

stances, respectively.

As shown in Table 8, TOP has a “topic” (first col-

umn) for each warning category because the weight of

a warning category varies between topics, as discussed

in Subsection 2.3. Therefore, the first and the second

categories of ProperCloneImplementation in the table

have different weight values according to different top-

ics. In the same manner, the third and the fourth

warning categories of UseLocaleWithCaseConversions

are distinguished by topics (i.e., topic 0 and topic 2, re-

spectively). The number of removed warning instances

and the total number of inspected warning instances

for each warning category are the accumulated values

from the BRC blocks belonging to each category.

To compare the techniques in these tables, we as-

sume that developers established a goal to fix only

the top 20% of the warning instances prioritized

by each technique based on time and budget limi-

tations. For TOP, it is sufficient to inspect only 338

3○https://github.com/TOP-public/supplementary/wiki/Supplement1, Sept. 2020.
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warning instances in the 13th warning category (i.e.,

DataflowAnomalyAnalysis of topic 1) because approxi-

mately 20% of the warning instances are removed based

on the ground truth. In contrast, HWP could not

guarantee whether 20% of the warning instances are

removed, until it inspected 932 warning instances in

the 15th warning category (i.e., DataflowAnomalyAnal-

ysis). For TOOL, developers only need to inspect

the first warning category. However, unless they in-

spect 816 warning instances simultaneously, they can-

not know how many true positive warning instances are

removed.

4.2 Performance Comparison

Fig.2 presents WDR curves ranked by the prioriti-

zation results of each prioritization technique, including

those used to obtain the observations listed in Tables 8–

10. We average the WDR value over all subject pro-

grams. The horizontal axis represents the percentage of

inspected warning categories sorted by the techniques,

and the vertical axis represents the percentage of fixed

warnings cumulatively from the prioritization.
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Fig.2. WDR curves for all programs until all warning instances
are inspected.

As shown in Fig.2, the WDR of TOP outperforms

those of the other techniques. Specifically, TOP finds

nearly 40% of true positive warning instances until

approximately 40% of the warning instances are in-

spected. In contrast, ACP finds nearly 30% of the true

positive warning instances while other techniques, such

as HWP, ALT, and RAND, find less than 20% of the

true positive warnings. Although the WDR of ACP is

greater than those of the other techniques, TOP still

outperforms ACP on all warning inspections. Because

many warning instances in ACP have the same distri-

bution probabilities as the corresponding classes (i.e.,

AA or UA), the results of these techniques are affected

by the random ordering of the warning instances. In

the case of TOOL, no true positive warning instances

are found in the given time, and WDR increases sharply

by 50% when approximately 50% of warning instances

are inspected. This is because a large number of true

positive warning instances are removed previously, and

approximately 50% of the total warning instances must

be inspected before any additional true positives are

found (see DataflowAnomalyAnalysis in Table 10).

Fig.3 shows the results of the areas under WDR

curve shown in Fig.2 among all techniques for all the

subject programs. The horizontal and vertical axes rep-

resent each technique and their corresponding WDR

areas, respectively.
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Fig.3. Area under WDR for all programs until all warning in-
stances are inspected.

As shown in Fig.3, on average, the area of TOP

is close to 60% of the WDR curve and larger than

the areas of other techniques. The results for all tech-

niques on all 27 projects are publicly available at the

GitHub Wiki page 4○. The area of TOP is approxi-

mately 9%, 8%, 15%, 10%, and 13% wider than that of

the ACP, HWP, ALT, TOOL, and RAND techniques,

respectively. The distribution of ACP is more stable

than those of other techniques because ACP guaran-

tees similar performance for most projects. We confirm

that the differences between TOP and the other tech-

niques are statistically significant (p-value < 0.000 1)

based on a Wilcoxon signed rank test performed using

the R statistical software. The results show that TOP

is quicker at finding the true positive warnings than the

other techniques with the least effort.

4○https://github.com/TOP-public/supplementary/wiki/Supplement2, Sept. 2020.
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5 Application to Industrial Projects

In this section, we analyze the effectiveness of

our warning prioritization technique by applying the

TOP technique to eight industrial projects, which

are executed at Lotte Data Communication Company

(LDCC) 5○, software integration and system mana-

gement parties of Korea, a leading developer of ERP

projects of global company Lotte, and a leading develo-

per of Korea government projects. Table 11 lists the

industrial projects for our case study.

For the industrial projects, we find and classify re-

visions by searching for Korean words related to “bug”

and “fix” because all commit log messages are specified

in Korean. Thus, we have to double-check the log mes-

sages of all projects manually to determine if the mean-

ing of the word in the log messages is really related to

“bug” and “fix”. Because we are unable to access the

source code based on project constraints (i.e., sched-

ules and policies), we could not conduct an evaluation

of ACP. This process was conducted with one practi-

tioner who has over 20 years’ experience and another

developer that is a CVS manager at LDCC.

Most of the revisions of the first five projects had

bug-related files because the revisions were collected for

the development stage. On the other hand, the revi-

sions of the last three projects had relatively less bug-

related files because these revisions were collected for

the maintenance stage after the projects are released

to the customer. Overall, the volume of the dataset is

small, and fewer developers participated in the projects

as excluding the last three projects. These projects are

short-term intensive projects unlike our subject pro-

grams in Table 7. However, we think that the envi-

ronment is more practical than that of an open source

project for applying our technique.

5.1 Performance Comparison

Fig.4 shows the result of the area under WDR for all

the subject projects presented in Table 11. Although

the total number of warning instances (average of ap-

proximately 301 000 instances) is smaller than those of

the open-source programs (average of approximately

2 201 000 instances) mentioned in Section 3, the WDR

value is similar throughout all techniques.

The area under WDR of TOP also outperforms

those of other techniques and the area of TOP is about

10%, 17%, 15%, and 7% wider than that of HWP, ALT,

TOOL, and RAND, respectively, in all the projects. Al-

though the difference between TOP and HWP is sta-

tistically insignificant (p-value > 0.10), the differences

between TOP and the other techniques are statistically

significant (p-value 6 0.01) based on a Wilcoxon signed-

rank test using the R statistical software. The result

shows that developers using our TOP could have found

the true positive warnings more quickly than those us-

ing the other techniques.

5.2 Simulation of Bug Fixing Time

Because a high-performance prioritization model

should guarantee the detection of most warnings with

a low cost, measuring the time to fix bugs is of pri-

mary importance [22–27]. To simulate bug fixing time,

we measure WDR, as shown in Subsection 3.2.3. We

measure the average WDR for all industrial projects

based on observations of warning category lists, similar

to those listed in Tables 8–10.

Table 11. Subject Projects for the Analysis of Effectiveness

Project Software Type Revision Period Number of Bug- Number of Bug- Number of Bug-

(MM/DD/YY) Revisions Related Files Related Lines (×103)

L.Message Messaging integration platform 09/21/16–07/12/17 739 932 24

L.Thing-platform Virtual data management core for 09/23/15–02/21/17 665 659 25

IoT platform

L.Thing IoT Busan Virtual data management core for 07/04/16-09/29/16 470 466 12

IoT platform (Busan Version)

L.Thing-IoT Portal Control website for IoT platform 12/01/16–05/22/17 305 304 9

LEMP Native app. & web-based hybrid 09/19/16–04/26/17 2 183 2 183 47

mobile platform

Fcss Field consultant support system 05/16/07-07/24/17 2 603 1 219 38

for convenience store

K7 Point of Sale (POS) system 02/14/06-07/21/17 3 765 439 13

K7MDC Merchandiser (MD) support system 08/14/08-01/22/16 2 602 167 11

5○https://www.idcc.co.kr/, Sept. 2020.
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Fig.4. Area under WDR for all programs until all warning in-
stances are inspected.

For example, as shown in Fig.5, TOP could find

nearly 25% of true positive warning instances by in-

specting approximately 150 warning instances while

HWP, ALT, TOOL, and RAND need to inspect ap-

proximately 225–300 warning instances.
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Fig.5. WDR curve for all programs until all warning instances
are inspected.

We assume that if developers inspect 500 warnings,

they can find 100% of the true positive warnings eventu-

ally. However, sufficient time is not available to inspect

500 warnings. As shown in Fig.5, ALT can inspect

approximately 300 warnings to find 25% of the true

positive warnings, assuming an inspection time of T .

However, under the same conditions, TOP only needs

to inspect approximately 150 warnings to find 25% of

the true positives. Therefore, the inspection time for

TOP can be as low as T/2 if we assume that time con-

sumption increases linearly with the number of warning

instances investigated.

To measure the time required to inspect warning

categories, we conduct an online survey using Google

Forms to determine the average decision time for in-

specting a warning instance for eight representative

developers from the corresponding projects. In our

survey, we present the 10 most-violated warning cate-

gories for each project and their references (i.e., a sum-

mary and some examples) for inspection on the PMD

website 6○. We use decision time as response options

with the following values: under 10 seconds, 30 seconds,

1 minute, 2 minutes, 3 minutes, 4 minutes, 5 minutes,

and over 5 minutes. Table 12 lists the results for the

decision time for each developer and the project they

participated in. As shown in Table 12, some developers

participated in multiple projects.

Table 12. Decision Time to Fix a Warning Instance per Develo-
per

Developer Project Decision Time (s)

baebon L.Message 30

J. Y. Jang L.Message 30

Spectacle L.Message 120

E. Y. Oh Fcss 30

J. S. Ryu Fcss 30

J. W. Jung Fcss 120

M. S. Go L.Thing-IoT Busan 30

Kms K7, Fcss 10

If we assume that the decision time to inspect the

warning instance ranges from 10 seconds to 120 sec-

onds as shown in Table 12, the developers using TOP

may spend 25–300 minutes (150 warnings instances ×

10–120 seconds) in fixing 25% of true positive warning

instances. By contrast, the developers using ALT may

spend as twice as much time, i.e., approximately 50–600

minutes (300 warning categories × 10–120 seconds) in

fixing 25% of the true positive warning instances.

As the decision time may vary according to the

developer, as shown in Table 12, we perform a Monte

Carlo simulation to measure the cumulative spending

time required to fix 25% the true positive warning in-

stances for each project. Simulations conducted using

Microsoft Excel 2019. Prior to conducting the simu-

lation, we consider decision time as Kernel density es-

timates (KDEs) with different bandwidths within the

range of 10 to 120 seconds, as shown in Table 12. Next,

we generate a random value ranging from 0.0 to 1.0 in

Excel to choose a decision time based on the value of

the KDE for every trial. The decision time was chosen

randomly, and we multiplied the decision time by the

6○https://pmd.github.io, Sept. 2020.
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number of warning instances to inspect for each tech-

nique. In case of TOP, when the decision time was

set to 30 seconds, we multiplied 30 by 150 warning in-

stances (= 4 500 seconds). We repeated this process for

100 000 trials to obtain a convergence point for the sim-

ulation results of bug fixing time. We excluded other

projects from these simulations because the developers

of the other projects did not answer our questions re-

garding decision time.

Table 13 shows the results of the Monte Carlo sim-

ulation. The results show that TOP may save more

than approximately 34%, 22%, 19%, and 40% of the

inspection time spent in comparison with HWP, ALT,

TOOL, and RAND, respectively. It is true that other

factors (e.g., usability of a given tool, and developer

skillset and experience) can affect estimation results in

the real world, but we focused on reporting estimations

of time savings in a bug fixing scenario with the assump-

tion that code fixing time as specified by developers

would increase proportionally with the performance of

the warning prioritization method.

6 Discussion

This section discusses the cost of using our tech-

nique and its application to small projects.

6.1 Cost of Using TOP

For engineers or developers who wish to apply TOP

to their projects, we discuss the cost of generating TOP

models in terms of computational cost and engineer-

ing effort. The steps for generating a TOP model are

very simple, as discussed in Subsection 2.2.1. Regard-

ing engineering effort, because these steps are fully au-

tomated by Python scripts codes, manual operations

such as searching for log messages, parsing data, static

analysis, topic modeling, and prioritizing warning cat-

egories are unnecessary. To achieve the best results,

developers should determine the optimal value for the

number of topics K based on iterative topic modeling,

as discussed previously. However, once an optimal K

is chosen for a project, no further engineering effort is

required for generation of a TOP model.

We spent considerable time on data collection (Sub-

section 2.1), topic modeling, and static analysis (Sub-

section 2.2). For data collection, if source files are col-

lected and managed well within a local SCM system,

this step is much faster. For such cases, over 90% of

the total time required for generating a TOP model

is spent on extracting features, such as the number of

warnings, and topic contributions from source files. Ad-

ditional steps, such as parsing data formats and pri-

oritizing warning categories using our weighting algo-

rithm, account for less than 10% of the total running

time. As mentioned in Subsection 2.2, for topic mod-

eling and static analysis, the computational cost is re-

lated to the number of source files (N) collected from

an SCM. Therefore, the time required for generating a

TOP model increases linearly with N .

Although new source files or programs are collected

and added after generating prioritized warning category

lists for topics, modern static analysis tools plugged into

an IDE tool can check warnings in real time. PMD

used in our static analysis was also developed as an

Eclipse plugin that can check source code when new

code is written or added. Additionally, based on online

inference algorithms [28–30], an LDA model can help up-

date the estimates of topics when each document is ob-

served because such models incrementally construct an

updated framework. The MALLET tool used for our

topic modeling process provides an option to write a se-

rialized topic trainer object for pausing and restarting

training. Therefore, developers only need to perform

static analysis and topic modeling once.

6.2 Application to Small Projects

In our experiments, large open source projects were

used to train prioritization models proposed based on

historical data techniques, such as TOP, ACP, HWP,

Table 13. Result of the Monte-Carlo Simulation Required to Fix 25% of True Positive Warning Instances for 100 000 Trials

Program Average of Cumulated Decision Time (min) and Standard Deviation
TOP HWP ALT TOOL RAND

L.Message 63 (±52) 219 (±179) 219 (±179) 79 (±66) 236 (±193)
L.Thing-IoT Busan 286 (±234) 373 (±304) 205 (±168) 373 (±305) 404 (±330)
Fcss 181 (±148) 205 (±168) 253 (±207) 205 (±168) 246 (±201)
K7MDC 5 (±4) 9 (±7) 9 (±7) 7 (±6) 8 (±6)
Average (Std.) 134 (±110) 202 (±165) 172 (±140) 166 (±136) 224 (±183)

Note: Std: standard deviation.
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and ALT. Although industrial projects have less his-

torical data than open-source projects, they still typ-

ically have sufficient data to train models. However,

not all projects have enough historical data. Small and

medium enterprises, and venture companies have little

historical data in their SCM systems (e.g., Git or CVS)

or do not even manage their code using such systems.

In such circumstances, historical data based prioritiza-

tion techniques will not work properly.

Nevertheless, we believe TOP still can work on

projects with a small amount of historical data for any

other existing TOP model that was constructed in ad-

vance with a sufficiently large historical dataset from

other similar projects consisting of similar components

(i.e., domains, functions, and developers). Once the

topic model classifies the topics of source files in the

projects, the generated warning category lists can be re-

cycled for similar topics without any additional training

processes being required. Therefore, the adaptation of

an existing TOP model is useful if project similarity is

verified in advance. Learning-based methods all present

a similar limitation in that insufficient data results in

poor performance. However, transfer learning could be

a promising solution to this problem and should be in-

vestigated in future work.

6.3 Granularity Effects in LDA Application

TOP still outperforms other techniques in most sub-

ject programs using the topic model at a coarse-grained

level (i.e., source file level). However, we find that WDR

of TOP is insignificantly higher than some subjects.

The subjects have many source files including mixed

topics such as network, GUI, database in a single java

class. In such a case, the quality of the topic model

based on the source file is low, and MALLET infer-

encer cannot work well for classifying the source files

into a specific topic. Thus, it is likely that wrong warn-

ing category list of TOP is applied to the files. To

overcome the problem, we perform topic modeling at

fine-grained level (i.e., code block level). In addition,

once we divide the source code into code blocks, there is

no need to inspect a large amount of warning instances

including many false positives like coarse-grained level

based techniques such as HWP, TOOL as described in

the example of Subsection 4.1.

7 Related Work

In this section, we provide some context about the

application of topic models to software engineering and

explore some studies on warning prioritization.

7.1 Topic Model Application to Software

Engineering

Topic models, in particular Latent Semantic Index-

ing (LSI) [31, 32] and LDA [15], are a type of informa-

tion retrieval (IR) methods for analyzing textual infor-

mation. They provide a simple way to analyze large

volumes of unstructured text. A “topic” is composed

of a group of words that frequently occur together.

Topic models can link words with similar meanings

and distinguish between the use of words with multiple

meanings [33]. Among the models, LDA is a probabilis-

tic statistical model that estimates the distributions of

latent topics from textual documents. LDA uses the

co-occurrence of terms in a text corpus to identify the

latent structure of topics in the corpus.

Recently, topic models have been used extensively

to extract topics in many software engineering tasks,

as topic models require no training data, which makes

them easy to use in practical settings. In addition, topic

models do not require expensive data acquisition and

preparation cost because they use unstructured text.

Finally, topic models have proven to be fast and scal-

able to millions of documents or more [34].

Topic models accomplish these tasks by discover-

ing a set of topics within the unstructured information

from software repositories including the issue track-

ing system, communication archives, source control

management (SCM) system, etc., as well as the source

code [35].

There is a lot of irrelevant information in the soft-

ware repositories and hence it is necessary to imple-

ment the maintenance request on the current system.

For improving the maintenance task, MSR4SM [35] uses

the topic model from software repositories and extracts

the relevant information from each software repository

based on the maintenance request and the current sys-

tem.

For understanding the functional intent and

overview of the software, LDA-based business domain

topic extraction method [9] identifies some of the do-

main topics from the source code and assists the

developer in comprehending large software systems.

TopicXP
[10] also supports developers in gaining an

overview of a software system by extracting and vi-

sualizing the natural language topics from the source

code identifier names and comments using LDA. Similar

to these studies, LDA-based feature location technique
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(FLT) [13] identifies source code entities that implement

a functionality. Through the result of the case study,

they offer specific recommendations for configuring the

LDA-based FLT.

For automatic bug localization, LDA-based static

technique [11] investigates whether it is suitable for use

with the open-source software systems of varying sizes

and evaluates its effectiveness as compared with LSI.

In the study, it is concluded that the LDA-based tech-

nique is widely applicable because its accuracy has no

significant relationship with the size of the subject soft-

ware system or the stability of its source code base.

BugScout [12] reduces the efforts of searching through a

large number of files in a project to locate the buggy

code by narrowing the search space of buggy files when

the developers are assigned to address bug reports.

In the study for the visualization of topic similarity

from the source code, LDA-based concepts extraction

approach [14] analyzes and visualizes source file simila-

rity by computing the tangling and scattering of the ex-

tracted concepts. Also, Semantic Clustering technique

based on LSI [36] visualizes how the topics found in the

source code are distributed over the system by cluster-

ing to group source artifacts.

Recently, LDA has been used for bug report assign-

ment. Entropy optimized LDA (En-LDA) [37] proposes

entropy to optimize the number of topics of the LDA

model and also uses it to capture the expertise and

interest of developers in bug assignments. A reviewer

recommendation approach based on LDA [7] generates

the review expertise of developers from the topics of

source code changes in the review history of a software

repository. Then, the approach computes the review

scores of the developers for recommending the existing

reviewers.

There are no warning prioritization methods [1, 21]

using topic modeling as in LSI and LDA, to the best

of our knowledge. Our prioritization technique is the

first one to focus on warning prioritization based on the

topic model of the source code in software engineering.

7.2 Warning Prioritization and Classification

Dealing with a large number of daily bug reports

from the bug tracking systems requires considerable

time and resources. This leads to delay in the removal

of important bugs. In software maintenance, bug triag-

ing process analyzes these bug reports to determine

whether the bugs are important or not and who will

fix them [38–40].

Bug prioritization is similar to the bug triaging pro-

cess. In bug prioritization, most of the studies prioritize

bug reports from the bug tracking system using many

techniques such as machine learning, information re-

trieval, clustering, mathematical, and statistical mod-

els in order to overcome the incorrect bug reports, and

warning prioritization [21]. However, these studies differ

from our technique in that the subject of prioritization

is of high level, i.e., bug reports, in software mainte-

nance. Our technique prioritizes the warning categories

from static analysis in the source code level.

Warning prioritization is a kind of actionable alert

identification technique (AAIT) classified in [1] to sup-

port ASA tools. These techniques reduce excessive fault

positive warnings and increase the priority of true posi-

tive warnings in the list of reported warnings. Most

of the techniques employ mathematical and statistical

models and machine learning approaches.

Machine learning techniques identify patterns based

on implicit and unknown—but potentially useful—

information. Such patterns are used to prioritize [41, 42]

and classify [5, 20] warnings as true positive or false

positive warnings based on the information regarding

the results of static analysis, alert characteristics, and

related source code. While prioritization techniques

sort warning categories based on historical data, such

as removal likelihood and the time period of warn-

ing removal, classification techniques identify action-

able warnings by learning the patterns of alert charac-

teristics, such as the names and types of files, classes,

methods, and the corresponding change histories. Al-

though warning classification techniques are typically

used to determine if a warning instance is actionable,

such techniques perform well in our warning prioritiza-

tion method by enabling sorting of warning instances

based on their distribution probabilities. In particu-

lar, the statistical approaches [3, 4, 6, 43–45] build a linear

model to prioritize true positive warnings. These tech-

niques prioritize warnings by promoting or demoting

from initial priority such as tool supported priority to

weighted priority using a statistical model.

However, these techniques consider that all of the

source code has a single topic. If the source code is sep-

arated by some topics, the attributes are also classified

into suitable metrics or criteria to prioritize warnings

according to the topics. The proposed TOP is the first

approach to prioritizing warnings using a separate topic

prioritization model classified by the source code topic.

The techniques also use additional information,

called software artifact characteristics, to prioritize the
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warnings. These artifact characteristics can be classi-

fied into five categories [1] based on the origin of the

software artifact as follows:

• Alert Characteristics (AC): warning category

(e.g., null pointer) reported from ASA tools;

• Code Characteristics (CC): code metrics like lines

per file, cyclomatic complexity, etc.;

• Source Code Repository Metrics (SCR): attributes

mined from the software repository (e.g., code churn,

revision log messages, revision history);

• Bugdatabase Metrics (BDB): information from the

bug database;

• Dynamic Analyses Metrics (DA): attributes asso-

ciated with analyzing the source code during execution.

Most of the techniques commonly use attributes as-

sociated with CC, while some techniques use SCR. Our

technique uses multiple software artifact characteristics

such as AC and SCR because only this combination of

the artifacts does not require any external information

(i.e., developer survey or feedback, bug database) and

program execution, including compilation. This infor-

mation is an obstacle to prioritize the warnings auto-

matically.

8 Threats to Validity

• The number of topics, K, may be sensitive to

the result of our prioritization model. Determining

the number of topics, K, is a major threat to vali-

dity (e.g., fishing for a specific result) [46]. If K is

large, i.e., fine-grained topics, the quality of the topic

model is improved but the evaluation results have poor

quality [19]. Conversely, if K is small, the evaluation

results are improved because the number of training

and the test source files classified by the topic k be-

come larger, which results in an improvement of the

TOP model and the evaluation results. To find the

optimal number of topics, K, we used perplexity [15]

and the harmonic mean method [47] as a performance

measurement method. However, the result of the mea-

sures is negatively correlated with the measures of topic

quality. This is consistent with previous research [19].

Therefore, we experimentally determined K until we

obtained sufficient source files for training our prior-

itization model. Nevertheless, we may not have suf-

ficiently addressed the objective method to determine

the number of topics, K. Therefore, additional future

studies are required.

• Subjects examined may not be representative. Al-

though we examined many open-source projects from

various sources for comparison with those of previous

studies, we intentionally chose subject programs and

generalized biased topics that gave better (or worse)

experimental results. Therefore, any subjects without

various types of topics may not be significantly bene-

fited from our prioritization technique.

• No industrial case study was conducted in a real-

world environment. Although our technique outper-

formed the other techniques in eight industrial datasets,

our experiment was not conducted using real-world

projects and developers. Additionally, the results of

the simulation of bug fixing time were not real obser-

vation results from developers. Therefore, the results

of our prioritization techniques may not represent real

industrial cases, and additional surveys and evaluations

using real-world developers and projects are necessary.

9 Conclusions

In this paper, we proposed a topic modeling based

warning prioritization technique (TOP) from change

sets from a software repository. TOP provides mul-

tiple warning prioritization models by reflecting topic

contribution to a static analysis result of BRC blocks.

More specifically, the more the warning removals in

BRC blocks related to a topic, the higher the priority

of the warning categories in the topic.

To evaluate the performance of five warning prior-

itization techniques, namely TOP, ACP, HWP, ALT,

RNAD, and TOOL, we applied each technique to 27

open source projects, and compared them with each

other. Through the performance evaluation results,

TOP proved that topic prioritization models based on

the topics of the fine-grained code block level (i.e.,

BRC blocks) can find true positive warnings more

quickly than the other prioritization techniques based

on coarse-grained source file level. Additionally, we ap-

plied our technique to some industrial projects to verify

its practicality. TOP still outperforms the other tech-

niques on the considered actual projects, and a sim-

ulation of bug fixing time reveals that TOP can help

developers save the inspection time by focusing on true

positive warnings. However, based on the limitations

of these simulations, it cannot be conclusively deter-

mined that TOP saves bug fixing time in real industrial

projects.

Overall, we expect that a future warning prioriti-

zation technique will reflect the latent topics of source

code to increase the detection rates of true positive from

the result of the static analysis tool. To the best of our
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knowledge, our technique is the first to focus on warning

prioritization based on the topic model of fine-grained

code block level. TOP is, thus, a first step in this direc-

tion. For future work, we will analyze the usability of

TOP as an automated tool and investigate real bug fix-

ing time for developers using the TOP tool in practice.

Additionally, we will transfer our prioritization model

(i.e., transfer learning) to small projects that have simi-

lar domains and functions to verify that our technique

is still effective for such projects.
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[36] Kuhn A, Ducasse S, Ĝırba T. Semantic clustering: Iden-

tifying topics in source code. Information and Software

Technology, 2007, 49(3): 230-243.

[37] Zhang W, Cui Y, Yoshida T. En-LDA: An novel approach

to automatic bug report assignment with entropy optimized

latent Dirichlet allocation. Entropy, 2017, 19(5): Article

No. 173.

[38] Moin A, Neumann G. Assisting bug triage in large open

source projects using approximate string matching. In Proc.

the 7th International Conference on Software Engineering

Advances, November 2012.

[39] Murphy G, Cubranic D. Automatic bug triage using text

categorization. In Proc. the 16th International Conference

on Software Engineering and Knowledge Engineering, June

2004, pp.92-97.

[40] Jeong G, Kim S, Zimmermann T. Improving bug triage with

bug tossing graphs. In Proc. the 7th Joint Meeting of the

European Software Engineering Conference and the ACM

SIGSOFT Symposium on the Foundations of Software En-

gineering, August 2009, pp.111-120.

[41] Jung Y, Kim J, Shin J, Yi K. Taming false alarms from a

domain-unaware C analyzer by a Bayesian statistical post

analysis. In Proc. the 12th International Conference on

Static Analysis, September 2005, pp.203-217.

[42] Yi K, Choi H, Kim J, Kim Y. An empirical study on clas-

sification methods for alarms from a bug-finding static C

analyzer. Information Processing Letters, 2007, 102(2/3):

118-123.

[43] Ruthruff J, Penix J, Morgenthaler J, Elbaum S, Rothermel

G. Predicting accurate and actionable static analysis warn-

ings: An experimental approach. In Proc. the 30th Inter-

national Conference on Software Engineering, May 2008,

pp.341-350.

[44] Kremenek T, Engler D. Z-ranking: Using statistical analysis

to counter the impact of static analysis approximations. In

Proc. the 10th International Conference on Static Analysis,

June 2003, pp.295-315.

[45] Kremenek T, Ashcraft K, Yang J, Engler D. Correlation

exploitation in error ranking. In Proc. the 12th ACM SIG-

SOFT International Symposium on Foundations of Soft-

ware Engineering Notes, October 2004, pp.83-93.

[46] Wohlin C, Runeson P, Höst M, Ohlsson M C, Regnell
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