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Abstract Commit messages are important complementary information used in understanding code changes. To address

message scarcity, some work is proposed for automatically generating commit messages. However, most of these approaches

focus on generating summary of the changed software entities at the superficial level, without considering the intent behind

the code changes (e.g., the existing approaches cannot generate such message: “fixing null pointer exception”). Considering

developers often describe the intent behind the code change when writing the messages, we propose ChangeDoc, an approach

to reuse existing messages in version control systems for automatical commit message generation. Our approach includes

syntax, semantic, pre-syntax, and pre-semantic similarities. For a given commit without messages, it is able to discover its

most similar past commit from a large commit repository, and recommend its message as the message of the given commit.

Our repository contains half a million commits that were collected from SourceForge. We evaluate our approach on the

commits from 10 projects. The results show that 21.5% of the recommended messages by ChangeDoc can be directly used

without modification, and 62.8% require minor modifications. In order to evaluate the quality of the commit messages

recommended by ChangeDoc, we performed two empirical studies involving a total of 40 participants (10 professional

developers and 30 students). The results indicate that the recommended messages are very good approximations of the

ones written by developers and often include important intent information that is not included in the messages generated

by other tools.

Keywords commit message recommendation, code syntax similarity, code semantic similarity, code change comprehension

1 Introduction

In software maintenance, understanding code

changes costs developers most of their time [1, 2]. These

code changes are often organized and saved as commits

in version control systems (e.g., Git). Normally, a mes-

sage in natural language is written by the developer for

each commit to help understanding the changes [3, 4].
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The previous research shows that commit messages ex-

pound the rationale behind a code change, and they

are used as the most important way to understand the

code change [5, 6]. However, many commits in different

projects still lack messages. Maalej and Happel [7] ana-

lyzed more than 600 000 commit messages demonstrat-

ing that 10% of the messages are empty, and another

study of more than 23 000 projects by Dyer et al. [8]

showed that 14% of the commit messages are empty.

Therefore, much work has been proposed for auto-

matically generating commit messages [9–15]. Linares-

Vàsquez et al. [9] presented ChangeScribe to automati-

cally complement the commit messages. ChangeScribe

firstly identifies the commit stereotype, as well as the

impact set of code changes, and then generates com-

mit messages according to the predefined templates.

Moreno et al. [10, 11] introduced ARENA for the auto-

matic release comment generation. ARENA identifies

different types of changes between two releases, and

generates a comment for the code changes via code

summarization methods [16, 17]. These approaches use

predefined templates to define the skeleton of the com-

mit messages and instantiate these templates via pro-

gram analysis. However, these approaches cannot sum-

marize the intent of the code change. For example,

Fig.1 shows the generated messages for commit #32478

by using ChangeScribe [9], a state-of-the-art approach,

which employs a hierarchical style to describe the code

changes occurring in the software entities, i.e., from

packages to classes, and classes to methods, etc. Al-

though the generated message covers most of the code

changes, it misses the most important piece of informa-

tion — the intent behind the code changes [5, 13]. On the

other hand, the commit message written by the develo-

per (Fig.1, Developer) shows exactly the intent of the

change, “fixing null point exception”, and nothing else.

We observe that version control systems such as Git

save a huge number of commit messages written by

developers which usually describe the change intents.

Therefore, we try to “reuse” the existing messages in

version control systems to automatically recommend

the message for a target commit in this paper. Our ap-

proach, named ChangeDoc, is based on the code simi-

larity between commits for message recommendation.

More specifically, the commit in Git mainly consists of

the changed code fragment as well as the corresponding

message written by the developer [18, 19]. For a target

commit, if its changed code fragment is similar to that

of a commit in the version control system and these two

commits may involve the similar code change, then the

message of the commit in the version control system

may be suitable for the target commit.

It is not easy to utilize existing commit messages to

automate the message recommendation. First, we need

to locate a commit from the version control system with

similar changed code fragments to the target commit.

To do this, a keyword-based search approach is a pos-

sible way. However, in some cases, two similar code

fragments are rendered differently, which makes the

keyword-based search approach useless. The changed

code fragments in commits 1 and 2 (i.e., in Fig.2) im-

plement the functionality of array element sorting. But

it is difficult to retrieve commit 2 from commit 1 by

using a keyword-based search approach, as these two

fragments involve few intersecting keywords.

To overcome this problem, we introduce code syn-

tactic information to measure the similarity of code

fragments in addition to considering the intersecting

keywords in the source code (i.e., semantic informa-

tion). The semantic information is extracted from the

(a) (b) (c) 

ChangeScribe:

Fig.1. Commit messages generated by ChangeScribe and the developer. (a) Changed code fragment in commit #32478. (b) Messages
generated by ChangeScribe. (c) Messages generated by the developer.
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identifiers in source code, while the code syntactic in-

formation is obtained by analyzing the abstract syntax

tree of code fragments. Our goal is to obtain a syntactic

sequence for each code fragment, and this sequence rep-

resents the syntax types of the code lines sequentially

composing of the fragment. If two syntactic sequences

have a high degree of similarity, we can infer that the

corresponding code fragments have a higher syntactic

similarity. As a result, the retrieve task illustrated in

Fig.2 will be easily solved if we consider the code syn-

tactic similarity. However, it is not feasible to directly

construct such a syntactic sequence for a code fragment,

because a code line may contain several different types

of syntax. To overcome this problem, we further fuse

the syntax types after a hash operation.

Commit 1 Commit 2

Fig.2. Commits with similar changed code fragments.

Besides, to further improve the accuracy of Change-

Doc for commit message recommendation, we utilize

the fact that a commit usually contains the source code

of current and previous versions. The current version

of commit code represents the code state after update

(e.g., the code lines in cyan in Fig.1), while the pre-

vious version of commit code represents the code state

before update (e.g., the code lines in magenta in Fig.1).

If the codes of two commits have higher similarities in

both their current and previous versions, they are likely

to be modified toward the same goal (because simi-

lar changes were made to the similar code fragments

in two commits). As a result, the message describing

the code change in one commit is suitable for describ-

ing the code change in another commit. Four types

of similarities, i.e., syntax, semantic, pre-syntax, and

pre-semantic similarities, are introduced to measure the

similarity of two commits before and after update. Syn-

tax and semantic similarities are used to evaluate the

syntactic and semantic similarities of code fragments of

two commits after change, while pre-syntax and pre-

semantics are used to measure the similarities of the

code fragments of two commits before update.

We evaluate ChangeDoc in an experiment involv-

ing 10 projects with 1 000 commits. ChangeDoc is able

to recommend messages for 52.4% of the commits, and

21.5% of the recommended messages can be directly

used without modification, and 62.8% require minor

modifications. In a summary, our contributions are as

follows. 1) To our knowledge, ChangeDoc is the first

one that mines version control system to recommend

messages for commits. 2) The recommended messages

by ChangeDoc can describe the intent behind the code

changes, which the traditional methods cannot. 3) We

evaluate our approach with real-world projects from

SourceForge, and manually verify the correctness of the

recommended commit messages. Our evaluation shows

that ChangeDoc is effective in recommending commit

messages, and can complement existing message gene-

ration approaches. 4) Two empirical studies involving

a total of 40 participants are conducted to evaluate the

quality of the recommended messages. The obtained

results demonstrate that the messages recommended

by ChangeDoc outperform those created by Change-

Scribe in terms of conciseness, expressiveness, and pre-

ciseness. To facilitate research and application, our

ChangeDoc 1○ is available.

Compared with our previous work [20], the paper

has the following new contributions. Firstly, we op-

timize the similarity calculation algorithm. For a com-

mit containing multiple changed code fragments across

multiple classes, our new algorithm identifies a salient

class (which reflects the main intent of the change in

a commit) in the commit, and uses the changed code

fragments in the salient class instead of all the ones

in the commit to calculate the similarity of commits.

This optimization achieves a better result of recom-

mending reusable messages. Secondly, we add and ana-

lyze datasets from another three software systems (i.e.,

UNICORE, Makagiga, and Kablink) for the message

recommendation, and use a total of 10 subject projects

in our experiment. Thirdly, we investigate an addi-

tional research question (RQ4) in our evaluation that

compares ChangeDoc with ChangeScribe [9], and find

that the messages recommended by ChangeDoc can

provide more important information than those created

by ChangeScribe.

In the following parts of the paper, we start by

introducing related work, summarizing the techniques

for code change message generation, and providing an

overview of the known methods for source code summa-

rization. Then, in Section 3, we describe the proposed

1○https://github.com/zhouhj8/DSCS.git, Sept. 2020.
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method. We describe the setups and results of case

study in Section 4. We outline a discussion regarding

the θ choice effect in Section 5. We discuss the threats

to validity in Section 6, and conclude the paper in Sec-

tion 7.

2 Related Work

Most existing code change messages generating ap-

proaches are based on source code summarization tech-

niques, which will be reviewed in this section. There-

fore, we further survey the techniques for source code

summarization. In addition, we discuss the techniques

regarding the code clone, which is one of the core tech-

niques for building ChangeDoc.

Code Change Message Generation. Recently, a

number of researchers proposed to automatically gene-

rate code change messages. According to the granulari-

ties of description content, we have divided the message

generation approaches into three levels: commit level,

release level , and single code change.

The work proposed by Linares-Vàsquez et al. [9, 21],

Shen et al. [12] and Buse and Weimer [13] generated the

commit-level code change message. Linares-Vàsquez

et al. [9, 21] presented an approach, ChangeScribe, to

generate commit messages based on commit stereotype.

ChangeScribe first extracts the stereotype, the type and

the impact set of a commit by analyzing correspond-

ing source code changes and the abstract syntax trees.

Then it fills predefined templates with the extracted

information to document this commit. Shen et al. [12]

proposed an approach to automatically generate the

“what” and “why” information for software changes,

which is similar to ChangeScribe [9], but it constrains

the length of the generated message by removing the re-

peated information in the change. Both the two meth-

ods analyze the commit’s stereotype to generate com-

mit messages. Buse and Weimer [13] proposed DeltaDoc

to generate the summary of code commit. DeltaDoc ob-

tains path predicates by symbolically executing source

code changes and then generates commit messages us-

ing a set of predefined rules and transformations.

Moreno et al. [10, 11] proposed ARENA to generate

code change messages at the release level. ARENA

combines multiple kinds of changes, e.g., changes to

source code, libraries, documentation and licenses, with

issues from software repositories to generate release

notes. In addition, there are some researchers focusing

on generating messages for single code change [14, 15].

For example, to answer why a change happened,

Rastkar and Murphy [14] proposed an approach to ex-

tract the motivational information of commits from

multiple relevant documents. Parnin and Görg [15] pro-

posed to generate code change description via decompil-

ing bytecode instructions, and the generated summary

includes the information that is harder to obtain with

textual representation. Overall, while the existing ap-

proaches generate different types of code summaries,

they cannot describe the intent behind a code change.

Most of the mentioned approaches are based on

the predefined-templates [9–11, 13]. Recently, Jiang and

McMillan [22] found that most of the commit messages

often begin with a verb followed by a direct object in

their empirical study. Then, as the first step [22], they

used a verb to label each commit diff via employing

a machine learning algorithm. As the second step [23],

they adapted a neural machine translation algorithm

(i.e., NMT) to automatically translate diffs into com-

mit messages with a format of “verb+object”. They

trained an NMT algorithm using pairs of diffs and com-

mit messages from 1 000 popular projects on GitHub.

Essentially, the work of Jiang and Armaly [23] is still

template-based, in which they used a “verb+object”

template and employed machine learning to fill the tem-

plate. However, due to the limitation of the dataset,

only a fixed format message can be generated for each

type of commits by their method.

Hoang et al. [24] proposed a deep learning architec-

ture, namely CC2Vec, that learns distributed represen-

tations of code changes guided by the semantic mean-

ing contained in log messages, and then CC2Vec is ap-

plied to the task of log message generation, and the

result indicates that CC2Vec outputs the state-of-the-

art approach. Xu et al. [25] proposed CoDiSum to ad-

dress the commit message generation problem, and they

jointly modelled the code structure and code seman-

tics of the code changes to learn code representations.

Liu et al. [26] proposed NNGen to generate a commit

message for a code change. NNGen first extracts code

changes from the training set, and then calculates the

cosine similarity between the vector of the new code

change and the vector of each code change in the train-

ing set. A commit message of the code change with the

highest BLEU-4 score to the new code change is reused

as the commit message of the new code change. Nie

et al. [27] proposed a contextualized code representation

learning method for commit message generation (i.e.,

CoreGen). CoreGen learns contextualized code rep-

resentation which exploits the contextual information

behind code commit sequences. Liu et al. [28] proposed
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ATOM to encode AST paths of diffs for code represen-

tation to generate commit messages. ATOM provides a

hybrid ranking module to enhance the output of gene-

ration modules, by providing the most accurate commit

messages among the generated and retrieved results.

The results demonstrate that ATOM increases the per-

formance of the state-of-the-art models by 30.72% in

terms of BLEU-4.

Source Code Summarization. Most of the men-

tioned methods for commit message generation [9–12, 14]

are based on source code summarization techniques.

One of the code summarization techniques adapts

a template-based framework to summarize source

code [26]. Specifically, they first select important con-

tent from source code and then transform the selected

content into natural language descriptions through pre-

defined templates. For example, to summarize Java

methods, the framework proposed by Sridhara et al. [16]

first identifies significant statements of a Java method

according to structural and linguistic clues and then

expresses extracted content in natural language using

predefined text templates. McBurney and McMillan [29]

analyzed the method invocations to summarize the con-

text of why the method exists or what role it plays

in the software. Moreno et al. [17] generated human

readable summaries regarding the responsibilities of the

classes.

The second method for code summarization is based

on the information retrieval techniques. These methods

generate code comments by searching the similar code

snippets from the code base. For example, Wong et

al. [30] proposed a novel method to automatically gene-

rate code comments by mining large-scale Q&A data

from StackOverflow. Meanwhile, Wong et al. [31] ap-

plied code clone detection techniques to discover similar

code segments in software repositories and used existing

comments to describe similar code segments. Haiduc

et al. [32, 33] generated term-based summaries for classes

and methods by employing information retrieval tech-

niques, and they also compared the suitability of several

summarization techniques.

In addition, some work leverages deep learning tech-

niques to summarize source code. These approaches use

deep learning to train probabilistic models for the code

summary generation. Iyer et al. [34] used the LSTM

model to design a code summary automatic generation

method for C# code and SQL queries. Allamanis et

al. [35] used convolutional neural network to summarize

the Java code into short, name-like summaries (average

in three words). Hu et al. [36] took structural and se-

mantic information from the abstract syntax tree, con-

verted it into sequence information, and then used the

machine translation model to translate the code into

summary. Since then, Hu et al. [37] took code API infor-

mation into consideration, which further improves the

accuracy of code summary generation. In our work, we

directly utilize the existing commit messages instead

of the source code summarization techniques to gene-

rate commit messages, different from all the mentioned

methods.

Code Clone Detection. In order to recommend a

suitable commit message to the target commit, we need

to retrieve a commit with similar changed code seg-

ments to the target commit from the local repository.

Actually, discovering the similar changed code segments

in commits is a code clone detection problem. There are

many ways to detect code clone. One of the represen-

tative methods is comparing the abstract syntax trees

to calculate how similar two code fragments are. This

method is a tree-based method [38]. It firstly calculates

the similarities of the subtrees until the similarity of two

entire trees can be acquired. The tree-based method

may achieve an exponential time complexity [39], which

is not suitable in our search-based scenario.

Another representative method to detect code clone

is a token-based method [40]. This method firstly gene-

rates tokens for each code line. A code fragment is

represented as a token sequence. The syntax simila-

rity of two code fragments can be calculated by finding

the longest matched token sequence of two fragments.

The token-based approach is inherently low-cost [41, 42].

It works faster because it only needs to transform the

source code into tokens, without the need to construct

ASTs. As a result, the time complexity of the token-

based method is O(n × m) [40]. Then, we choose it to

calculate the code syntax similarity in this paper.

3 Approach

3.1 Approach Overview

ChangeDoc firstly collects the commits from the

projects’ version control systems, and then stores these

commits in a local repository. After that, for a tar-

get commit that needs to be a recommended comment,

our approach retrieves the local repository taking the

source code of the target commit as input and yields

and ranks the similar commits in a list. Finally, the

message of the most similar commit is recommended

to the target commit. The overview of the proposed

approach is shown in Fig.3.
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Fig.3. Overview of the proposed approach.

Specifically, for the target commit and the com-

mits in the local repository, our approach firstly iden-

tifies their core modified classes (referred to as salient

class). For each commit, our approach employs the tool

ChangeDistiller [43] to detect the changed code fragment

in the salient class. It utilizes the AST tree of the source

code of the changed code fragments to analyze the syn-

tax structures, and generates syntactic tokens for the

changed code fragment. In addition, the significative

identifiers (denoted by identfi in Fig.3) in changed

code fragment are extracted for analyzing the semantic

information of the source code. For two commits, their

syntax and semantic similarities are calculated based

on the generated tokens and extracted identifiers. At

last, a list of commits is generated according to the syn-

tax and semantic similarities, and the message of the

commit at the top of the list (i.e., most similar to the

target commit) is recommended as the message of the

target commit.

3.2 Similar Commits Retrieving

The goal of ChangeDoc is to retrieve similar com-

mits from the existing commit repository and further

to recommend the messages of the similar commits to

the target commit. In this paper, ChangeDoc utilizes

the code syntax and semantics to calculate the simila-

rities between commits, due to the rich syntactic and

semantic information contained in the source code [44].

To find a suitable message for the target commit, it ac-

tually finds a commit in the repository with a similar

code change to the target commit, and then the mes-

sage of the commit in the repository might be reused

by the code change of the target commit. Therefore,

ChangeDoc firstly extracts the changed code fragments

from commits, and then applies syntax and semantic

analysis algorithms to further measure the similarity

between the changed code fragments of two commits.

3.2.1 Commit Pre-Processing

Salient Changed Class Identification. A commit of-

ten involves multiple classes with multiple changed code

fragments [45]. Different changes may have different lev-

els of significance: some may be the salient changes re-

flecting the intent of the developers, while other changes

may be dependent changes that are required by the

salient change. In our previous study [46], we found that

a single commit often includes a class that is saliently

modified, which usually represents the change intent

of the commit, and the rest of the classes in the com-

mit are dependency modifications. If we take all the

changed code fragments (in salient changed class and

dependency modification classes) into the similarity cal-

culation, the changed code fragment representing the

change intent will be “diluted”.

Therefore, we propose to consider only the changes

in the salient class for similarity calculation, i.e., we

will only compare the changes in salient classes when

we calculate the similarity of two commits. The salient

changed class identification algorithm has been pro-

posed in our previous study [46], known as ISC, and
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we directly employ ISC to identify the salient changed

class of each commit in this paper. ISC tries to use

the structural coupling information between classes, up-

date the degree of a class, and commit type informa-

tion to distinguish the salient and non-salient changed

classes. ISC achieves an accuracy of 87%. The de-

tailed introduction of ISC can be found in [46]. In the

case study section, we will further evaluate the perfor-

mances of ChangeDoc when applying original (with-

out salient changed class identification, referred to as

original similarity calculation algorithm) and improved

(with salient changed class identification, referred to

as improved similarity calculation algorithm) similarity

calculation algorithms.

Changed Code Identification. The algorithm

for identifying changed code fragment is based on

ChangeDistiller [43]. ChangeDistiller compares the ab-

stract syntax trees of two versions of the code to find

out the difference, which has been demonstrated effec-

tive on many problems [47–49]. Specifically, ChangeDis-

tiller uses the statement as the smallest AST node and

categorizes source code changes into four types of ele-

mentary tree edit operations, namely, inserting, delet-

ing, moving and updating. Then, the refactoring-based

operations such as condition expression change, method

renaming, parameter deletion, ordering change, type

change, statement insertion, parent changes, etc., can

be detected.

For a commit, we firstly identify its salient changed

class, and then use ChangeDistiller to identify the

changed code fragments in the salient class. Because

ChangeDistiller can identify the start code line and the

end code line of a changed code fragment from the

source code of the salient class, we can extract the

changed code fragment in the salient class according

to its start and end code lines. It is worth noting that

a salient class may involve multiple changed code frag-

ments, which are scattered in the salient class, and not

connected [46]. To make it easier to compare the simi-

larity of two salient classes later, all the changed code

fragments in a salient class are spliced together to form

a larger changed code fragment. As a result, each com-

mit only corresponds to a changed code fragment.

3.2.2 Syntax Similarity Analysis

Code Tokenizing. In this paper, we extract code

syntactic types to tokenize the code lines, referred to

as syntactic tokens. We mainly focus on 96 types

of code syntactic tokens (e.g., IfStatement, MethodIn-

vocation, SwitchStatement, ThrowStatement, CastEx-

pression, VariableDeclaration, ClassInstanceCreation,

etc.) [50, 51]. For each type of syntactic tokens, we first

get its start line and end line in the source code via

parsing the abstract syntax tree, and then count the

syntactic tokens involved by each code line. For ex-

ample, Fig.4 shows the process of code tokenizing, and

<18, 20> in step 2 represents the start line and the end

line of token IfStatm (i.e., IfStatement) in the source

code, and step 3 shows the syntactic tokens involved

by each code line. It is worth noting that a code line

may contain several syntactic tokens and the syntactic

tokens may be of different types [52], e.g., the code line

“if(epu.getName() == null)” in Fig.4 contains four

syntactic tokens: IfStatement, ConditionalExpression,

MethodInvocation, and NullLiteral.

Hash Sequence. A single code line may contain more

than one syntactic token, which makes it difficult to

quickly calculate the similarity of two code fragments

via comparing the syntactic token. One possible solu-

tion for this issue is to digitize the syntactic tokens, and

then the syntactic tokens contained in a code line can

be fused into a uniform number. Specifically, we firstly

get the syntactic tokens of each code line in the changed

code fragments. Then, each type of syntactic tokens is

defined to correspond to a unique hash value (10 digits).

If a code line contains only one type of tokens, its hash

value is the same as the hash value of this kind of to-

kens. If a code line involves multiple types of syntactic

tokens, the hash values of each type of syntactic tokens

are added together to generate a new hash. At last, a

code line is mapped to a hash value, and a changed code

(b)(a) (c)

Fig.4. Code tokenizing. (a) Step 1. (b) Step 2. (c) Step 3.
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fragment is mapped to a sequence of hash values. We

calculate the syntactic similarity of two changed code

fragments based on the hash sequences.

Matching Algorithm. We employ the token-based

code clone detection method [40] to discover the simi-

lar changed code in this paper. For the correspond-

ing hash sequences of two changed code fragments, we

try to find their longest matching subsequence to mea-

sure the syntactic similarity of these two code frag-

ments. We employ the algorithm proposed by Wettel

and Marinescu [40] to find out the longest matching sub-

sequence. The difference is that we utilize the abstract

syntax tree to parse and tokenize the code to generate

the hash sequence, while Wettel and Marinescu [40] used

regular expressions in identifying the elements in the

source code.

As shown in Algorithm 1, the matching algorithm

includes four steps. Firstly, the hash values in hash se-

quence 1 (corresponding to code fragment 1) are com-

pared with the hash values in hash sequence 2 (corre-

sponding to code fragment 2). A matrix Mtrx is used

to store the result. A matrix cell Mtrx[i, j] stores the

comparison result of the i-th hash value in sequence 1

and the j-th hash value in sequence 2. Mtrx[i, j] = 1

means the two hashes are matched. Secondly, we tra-

verse the matrix from the upper left and examines each

matched cell. From a matched cell, we further extend

up until the first unmatched cell in the main diago-

nal direction. These continuously matched cells form

a subsequence. At last, we find out all of the matched

subsequences in the matrix. Thirdly, we identify the

gap between any two subsequences in the matrix. The

gap is the unmatched cells in the matrix. If the gap is

less than or equal to 2 [40], these two subsequences are

merged to form a longer one, which is added into the

subsequence list. The gaps are repeatedly checked until

we traverse all the subsequences and then we can find a

longest subsequence at last. Fourthly, the length of the

longest subsequences is divided by the maximal length

of hash sequence 1 and hash sequence 2 and the result

is the syntactic similarity.

3.2.3 Semantic Similarity Analysis

The code semantics can also be used to measure the

similarity of two code fragments, because the simila-

rity of code fragments can be reflected from the word-

choices in the source code. For example, if both two

code fragments contain an identifier “login”, they are

probably related to the implementation of the login

functionality. As a result, these two code fragments

may be similar. Therefore, to further evaluate how

similar two changed code fragments are, our approach

analyzes the semantic similarity via analyzing the simi-

larity of word-choices of two code fragments.

Algorithm 1. Sequence Matching Algorithm

Input: HashList1: hash sequence 1;

HashList2: hash sequence 2;

Output: SyntaxSimilarity

Begin

//step 1: check the matched hashed in two sequences

1: For i = 0 to HashList1.length do:

2: For j = 0 to HashList2.length do:

3: If (HashList1.get(i) == HashList2.get(j)) do:

4: Mtrx [i,j ] = 1; // two hashes are matched

5: End If

6: End For

7: End For

//step 2: find the subsequences from Mtrx

8: Foreach Mtrx [n,m] do:

9: While (true) do:

10: If(Mtrx [n , m] == 1) do:

11: subseqt.add(Mtrx [n,m])

12: n++;

13: m++;

14: remove(Mtrx [n,m]);

15: Else:

16: break;

17: End If

18: End While

19: End Foreach

//step 3: check the gap between subsequences

20: Foreach subseqt do:

21: While (true) do:

22: If gap(subseqt, subseqt+1) 6 2 do:// the gap is less

than 3

23: subseqt = link(subseqt, subseqt+1); // link two

subsequences

24: t = t + 1;

25: remove(subseqt+1);

26: Else:

27: break;

28: End If

29: End While

30: End Foreach

//step 4: calculate the syntactic similarity

31: SyntaxSimilarity

=
max length{subseq1 , subseq2 , ... , subseqt}

max size{HashList1 , HashList2}

32: Return SyntaxSimilarity ;

End

However, there may be some noise words that affect

the semantic similarity analysis, e.g., variable “asass”,

“tttt”, “kkk”, and “b”. These words may weaken the

semantics of other words, and we need to filter them. To
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do that, a series of preprocessing rules are introduced:

1) spliting the camel-case words into single words, e.g.,

“setFamiyAddress” is split into “set”, “famiy” and “ad-

dress”; 2) filtering out the function words, such as “to”,

“the”, “a”, etc.; 3) filtering out the letters sequence

which does not denote a word, such as “asass”, “tttt”;

4) removing the punctuation and operational symbols

from the source code. Additionally, we also apply the

stem segmentation technique to help us identify the

verbs in different tenses. Because English verbs may

appear in different tenses, such as past tense, future

tense, and perfect tense, we transform the verbs with

different tenses into their original forms. This operation

can help us accurately measure the similarity of two

code fragments when they involve a verb with different

tenses.

After the preprocessing, the code fragment is repre-

sented by a list of significative words. The preprocess-

ing result of the code fragment is saved as a text docu-

ment. However, the text document is not formed by

meaningful sentences but a set of words. Therefore, we

cannot directly employ the methods for calculating the

semantic similarity of sentences, such as [53], to mea-

sure the semantic similarity of two code fragments. In-

stead, the vector space model [54] is introduced to build

a term-document matrix for each code fragment, and

then we calculate the semantic similarity of any two

code fragments via the vetorial angle of their semantic

vectors.

3.3 Mining Candidate Messages from Commit

Repository

Given the changed code fragment of the target com-

mit, our algorithm generates a hash sequence according

to its code syntax, and extracts the significative words

to generate the semantic vector. After that, we calcu-

late the syntax similarity between the hash sequences

and the semantic similarity between the semantic vec-

tors of the target commit and the commit in local repos-

itory. To use a total similarity to represent the syntax

and semantic similarities, we introduce (1).

CodeSimi = α× SyntSimi+ β × SemanSimi. (1)

CodeSimi, SyntSimi, and SemanSimi are the total,

syntax, and semantic similarity, respectively. α plus β

equals 1.0. CodeSimi is a weighted value of SyntSimi

and SemanSimi.

To measure the similarity of two commits, the first

thought is to calculate the syntax and semantic simila-

rities of their changed source code using (1). However,

a commit consists of the code of current and previous

versions. If the changed code fragments of two com-

mits have a high similarity in their previous versions,

i.e., before they are changed, we should reward their

final similarity. When we apply the code change to

two similar code fragments, and the modified code frag-

ments are also similar, it is more possible that their

code change targets are similar, and their messages are

more likely to be interchangeable. The code fragments

of the current version are used to calculate the total

code similarity (CodeSimi), and the code fragments of

the previous version are used to calculate the similarity

of the code fragments before being changed. (2) shows

how to calculate the similarity of the previous versions:

PreCodeSimi

= α× PreSyntSimi+ β × PreSemanSimi. (2)

Here, the values of α and β equal the ones in (1).

Then, the final comprehensive commit similarity can be

calculated by a weighted value of CodeSimi and Pre-

CodeSimi, as (3) shows:

ComprehSimi

= γ × CodeSimi+ δ × PreCodeSimi. (3)

Here, γ + δ = 1.0. For a target commit, our algo-

rithm will calculate its ComprehSimi values with all

the commits in the repository. The message of a com-

mit with the highest ComprehSimi value will be rec-

ommended to the target commit if the ComprehSimi

value is greater than a certain threshold θ.

4 Evaluation

4.1 Research Questions

In order to analyze ChangeDoc’s capability to rec-

ommend commit messages, we would like to answer the

following research questions in the evaluation.

RQ1. What is the performance of ChangeDoc in

recommending commit messages?

RQ2. What are the reasons for a recommended mes-

sage to be good or bad?

RQ3. For a fix message, what has to be done to fix

it?

RQ4. How does ChangeDoc perform compared with

existing work?

For a target commit, ChangeDoc retrieves commits

in the repository, and ranks the searched results accord-

ing to the comprehensive similarities. We find that if

the comprehensive similarity is less than 0.4, it is dif-

ficult to find a reusable message for the target commit
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from the searched results. Therefore, to avoid recom-

mending too many useless messages to users, we set the

threshold θ = 0.4 to filter out the low-similarity com-

mits. To evaluate ChangeDoc in the experiment, we

use the same weights parameters described in [20], i.e.,

α = 0.6, β = 0.4, γ = 0.8, δ = 0.2.

4.2 Dataset

Because ChangeDoc needs the existing commit mes-

sages for recommendation, we collect the projects from

SourceForge 2○ which have hundreds or thousands of

commits (ranging from 500 to 30 000 commits). In to-

tal, we download 156 Java projects from SourceForge in

our case study. However, not all the messages of com-

mits are reusable due to the quality problem. Since

ChangeDoc tries to recommend the messages of the

existing commits to the target commit, we filter out

the commits with no messages. Besides, as ChangeDoc

needs to calculate the code similarity between commits,

we filter out the commits without code change. Finally,

there are more than half a million commits left after the

filter. We build a local repository to save the commits,

and our recommending algorithm works on the commit

repository.

We apply ChangeDoc to recommend commit mes-

sages for 10 projects in the evaluation. The se-

lected projects are commonly used in the eval-

uations of most of the software engineering re-

lated studies [45, 55], they are: JHotDraw 3○, jEdit 4○,

iText 5○, FreeCol 6○, Spring 7○, dcm4che 8○, openNMS 9○,

UNICORE 10○, Makagiga 11○, and Kablink 12○. For the

purpose of evaluating ChangeDoc on the projects com-

ing from different domains, we select projects belong-

ing to graphics editor, text editor, game, programming

frame, network management software, middleware sys-

tem, etc. The introduction of the projects is shown in

Table 1.

Table 1. Projects Used in the Case Study

Project Domain Number of Commits

JHotDraw Graphics 1 000

jEdit Text 25 000

iText Library 6 800

FreeCol Game 9 600

dcm4che Health 18 500

openNMS Network 10 700

Spring Frame 13 700

UNICORE Middleware 20 000

Makagiga Business 10 000

Kablink Team software 23 000

4.3 Evaluation Criteria

Since the results of ChangeDoc require manual ver-

ification, we cannot verify all the messages of all com-

mits of the evaluated projects. Instead, we choose 100

latest commits of each project to be used in message

recommendation. We collect the 100 commits from the

evolutionary history of each project along a backward

time line. When we encounter the commits that have

no message or the messages are less informative, we

will filter out these commits until we have collected 100

commits. Note that the 156 projects in the local repos-

itory include these 10 projects. In our method, the

message of the former commit is allowed to be recom-

mended to the later commit of the same project (when

the later commit is the target commit), but not vice

versa.

We manually verify and evaluate the quality of the

recommended commit messages. The recent work pro-

posed by Wong et al. [31] evaluates the code messages

based on the good, fix, and bad criteria. In this paper,

we use the same criteria in evaluating the quality of rec-

ommended messages. We compare the original message

of a commit with the recommended message, and man-

ually verify if the recommended message satisfies the

good\fix\bad criteria. If the meanings of the recom-

2○https://sourceforge.net/, Apr. 2020
3○http://www.jhotdraw.org, Feb. 2017.
4○http://www.jedit.org, Sep. 2019.
5○http://itextpdf.com, Oct. 2018.
6○http://www.freecol.org, Oct. 2018.
7○http://projects.spring.io/spring-framework/, Aug. 2019.
8○http://www.dcm4che.org, Dec. 2019.
9○https://www.opennms.org/en, May 2018.
10○https://www.unicore.eu/, Apr. 2020.
11○http://makagiga.sourceforge.net/, Mar. 2020.
12○http://www.kablink.org/, Mar. 2020.
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mended message and the original message are the same

or similar, the recommended message is regarded as a

good one. If the recommended message is not a good

one but can express the same or similar meanings with

the original message after minor modifications (e.g., re-

placing or deleting some words), it is regarded as a fix

one. Otherwise, it is regarded as a bad one.

To make the verification more objective, three par-

ticipants (i.e., one Ph.D. student and two postgradu-

ates, all with no overlap with the authors of this paper)

were invited to verify the results. In the verification,

the first and the second participants manually evalu-

ated the quality of all the recommended messages us-

ing good\fix\bad criteria. In this process, the two par-

ticipants accomplished their work independently. If a

result was given different criteria by the first two partic-

ipants, the third participant would intervene to decide

which result was correct.

4.4 Results Analysis

4.4.1 RQ1: Performance of ChangeDoc

To evaluate the performance of ChangeDoc, we ap-

ply ChangeDoc to 10 projects via using the original and

improved similarity calculation algorithms, respectively

(as mentioned in Subsection 3.2.1: the salient changed

class identification). As Table 2 shows, we try to recom-

mend messages for 1 000 commits from the 10 different

projects. When setting θ = 0.4, ChangeDoc recom-

mends messages for 493 commits when employing the

original similarity calculation algorithm (corresponding

to the original algorithm of Table 2).

We perform a manual evaluation on all the recom-

mended messages by the original similarity calculation

algorithm, as shown in Table 2. We observe that 94

(19.1%) of the recommended messages are good, which

can be directly used by the target commits. Up to 292

(59.2%) of the recommended messages are fix, which

needs minor modifications, and 107 (21.7%) are bad.

Also in Table 2 (the improved algorithm), the re-

sults of ChangeDoc by employing the improved simi-

larity calculation algorithm are listed. In general, the

performance of ChangeDoc has been improved slightly

by using the improved similarity calculation algorithm,

and the commits successfully recommended messages

by ChangeDoc reach 52.4%. We also observe that

ChangeDoc with the improved algorithm provides an

improvement from 19.1% to 21.5% for the good recom-

mended commit messages, an improvement from 59.2%

to 62.8% for the fix type of recommended commit mes-

sages, and a reduction from 21.7% to 15.7% for the bad

ones.

The results show that ChangeDoc with the im-

proved algorithm can recommend more good and fix

messages and avoid more bad messages from the local

repository. This indicates that using the changed frag-

ments of the salient modified class can make the change

intent of a commit more prominent, and further help to

retrieve a suitable commit for the target one.

We also find that the good and fix cases from the

improved algorithms cover the ones of the original al-

gorithms. Namely, all the good and fix cases recom-

mended by the original algorithms can be found in the

results recommended by the improved algorithms. In

addition, most of the bad cases recommended by the

original algorithms and the improved algorithms are

overlapped. This indicates that the improved algo-

rithm keeps stable in the recommended results when

Table 2. Evaluation Results of ChangeDoc with Applying Original and Improved Algorithms

Project Original Algorithm Improved Algorithm

Good Fix Bad Sum Good Fix Bad Sum

JHotDraw 8.0 27.0 13.0 48.0 9.0 28.0 11.0 48.0

jEdit 7.0 21.0 6.0 34.0 7.0 27.0 9.0 43.0

Spring 5.0 33.0 11.0 49.0 11.0 28.0 11.0 50.0

FreeCol 9.0 34.0 12.0 55.0 9.0 40.0 6.0 55.0

iText 4.0 30.0 9.0 43.0 5.0 38.0 5.0 48.0

dcm4che 18.0 20.0 8.0 46.0 20.0 37.0 2.0 59.0

openNMS 12.0 27.0 11.0 50.0 18.0 25.0 9.0 52.0

UNICORE 10.0 29.0 18.0 57.0 10.0 31.0 12.0 53.0

Makagiga 8.0 30.0 12.0 50.0 8.0 34.0 10.0 52.0

Kablink 13.0 41.0 7.0 61.0 15.0 41.0 8.0 64.0

SUM 94.0 292.0 107.0 493.0 112.0 329.0 83.0 524.0

Ratio (%) 19.1 59.2 21.7 49.3 21.5 62.8 15.7 52.4
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compared with the original one.

Because we perform a manual verification on all the

recommended messages, we analyze the reliability and

validity of the manual verification. For the reliability

analysis, the Cronbach’s Alpha [56] is 0.92, which indi-

cates the reliability of our manual verification is good.

For the validity analysis, the KMO value [56] is 0.93,

which indicates the validity of our manual verification

is also very good.

Therefore, we answer RQ1 by concluding that

ChangeDoc with the improved algorithm provides im-

provements to the good and fix recommended commit

messages when compared with the original one, and

ChangeDoc is able to recommend messages for 52.4%

of the commits, in which there are 21.5% of good mes-

sages as well as 62.8% of fix messages.

4.4.2 RQ2: Reasons Behind the Good and Bad

Messages

The result of RQ1 shows that 21.5% of the recom-

mended messages are good messages. We classify the

major reasons that make a message be good in Table 3.

Our results show that the most common reason for

a good message is the sameness between the recom-

mended messages and the original messages. Mean-

while, we notice that the number of good messages in

project dcm4che is the largest, i.e., 20. After analyz-

ing the evolution history of dcm4che, we can see that a

bug can be fixed in different commits in different peri-

ods, and their messages are identical. As a result, if we

use the latter released commit as a target commit, and

the messages of previous released commits in the evolu-

tion will be recommended to it, then the recommended

messages can be directly used by the target commit.

We also count all the identical cases, and find that 57

identical recommended messages are from the previous

commits of the same project and eight cases are from

other projects.

The other two reasons for a good message are se-

mantic inclusion and paraphrasing. Semantic inclusion

means that the meaning of the recommended message

can cover that of the original message, and they belong

to an inclusion relationship. For example, as shown in

Table 3, “performance optimization work” covers the

meaning of “performance optimization for file sync-

batch processing support”. Paraphrasing means that

two messages express the same meaning, but they use

different words, for example, “it will require java 6” and

“switched to Java 1.6”, where java 6 is the same with

Java 1.6.

In summary, we recommend messages for 524 com-

mits in total, while 21.5% of the recommended mes-

sages can be directly used by the target commits. The

majority of the good messages are due to the identical

cases.

RQ1 shows that 15.7% of the recommended mes-

sages are bad ones. We also classify the major reasons

that make a message not applicable in Table 4. The

result shows that the most common reason for a bad

message is that the message includes specific informa-

tion. For example, “add toString method to BaseDocu-

ment” and “remove the EDIT button from Mac clients”

are both meaningful messages. However, they are only

Table 3. Types of Good Messages

No. Type Description Amount

1 Identical The sentences of recommended and original messages are the same, e.g., two messages are:
“consistent button size and positioning”

65 (58.0%)

2 Semantic inclusion The meanings of recommended and original messages are of inclusion relation, e.g., original:
“performance optimization for file syncbatch processing support”; recommended: “perfor-
mance optimization work”

26 (23.2%)

3 Paraphrasing The recommended and original messages have the same meaning but different expressions,
e.g., original: “it will require java 6”; recommended: “switched to Java 1.6”

21 (18.8%)

Table 4. Types of Bad Messages

No. Type Description Amount

1 Too specific The recommended message contains too specific information to be suitable for more cases,
e.g., “add toString method to Base-Document”, “remove the EDIT button from Mac clients”

61 (74.5%)

2 Too much content The recommended message contains too much information, and covers too broad scope, e.g.,
“Ported stable branch changes ...
- enable running WebApp ...
- added parms to web.xml ...
- put static eventproxy ...”

22 (26.5%)
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suitable for a specific context, and hard to be useful for

other commits.

Another reason for a bad message is that the content

of a message is complex. The example message shown

in Table 4 (the second row) contains the information

about several operations. The scope of this commit is

too broad. As a result, its message is hard to be reused

for other commits.

The majority of bad messages contain too specific

information or too much content. However, it is reason-

able. For a commit with a minor change, the change

may be a specific code change in a specific project. For

a commit with several changes for different purposes, its

commit message is required to specify a list of changes.

4.4.3 RQ3: Reasons Behind the Fix Messages

The result of RQ1 shows that 62.8% of the rec-

ommended messages require minor modifications. We

manually analyze these messages and classify the major

reasons that make them repairable, as shown in Table 5.

In the results, the majority reason is the error ob-

jects (type 1). For example, the object of the original

message “fix rollover button performance problem” is

“rollover button”, while the object of the recommended

message “fix window scrolling performance problem” is

“window scrolling”. To make the recommended mes-

sage reusable for the target commit, a correct object

should be replaced.

The second main problem is that the recommended

commit messages consist of incorrect sentence con-

stituents (i.e., an adverbial or attributive error). As

a result, only part of the sentences of these messages

are reusable. For example, the recommended message

describes “consistent button size and positioning for

dialogs”, while the original message has no adverbial

constituent that is used to limit the “scope” (i.e., for

dialogs). In this case, the direct-reuse of the recom-

mended message becomes impossible.

The third reason for a fix message is due to the error

subject (type 3), which is similar to the object error.

For example, the original message “proper height de-

fault for JTable” is with the subject “JTable”, while

the recommended message “proper height default for

JMenuTab” is with the subject “JMenuTab”. A proper

replacement for the subject can make the recommended

message reusable.

Another problem is that the recommended messages

may contain too many clauses (type 4), where most

contents are suitable for describing the target commit,

while some of the content may be irrelevant informa-

tion. For example, the recommended message contains

two clauses: “enable to configure maximal number of

image compression” and “improve logging of concur-

rency”. The message of the target commit is the same

with the first clause, but the second clause is redun-

dant. In such a case, the second clause is required to

eliminate to obtain a reusable message.

Besides, in some cases, two of the fix types (type 5)

may occur together in the same message. For example,

a recommended message may contain both the object

error and the subject error. It is worth noting that

if a recommended message contains more than two fix

types, we classify it as a bad one. The more fix types

a message contains, the more difficult it is to make the

message reusable in the target commit.

In summary, we conclude RQ3 that the majority of

fix messages are due to the object error and incorrect

sentence constituents. In fact, these problems can be

repaired by leveraging natural language analyzing tech-

niques to identify the consistency between messages and

code changes in the commit. Inconsistency can possibly

be solved by eliminating the redundancy or replacing

object names.

Table 5. Types of Fix Messages

No. Type Description Amount

1 Object error The object of the recommended message is wrong, e.g., original: “fix rollover button perfor-
mance problem”; recommended: “fix window scrolling performance problem”

105 (31.9%)

2 Half sentence
reusable

The adverbial or attributive of the recommended message is wrong, e.g., original: “consis-
tent button size and positioning”; recommended: “consistent button size and positioning for
dialogs”

92 (27.9%)

3 Subject error The subject of the recommended message is wrong, e.g., original: “proper height default for
JTable”; recommended: “proper height default for JMenuTab”

58 (17.6%)

4 Partial clauses
reusable

The recommended message contains multiple clauses, but only a part of them are needed,
e.g., original: “enable to configure maximal number of image compression”; recommended:
“enable to configure maximal number of image compression; improve logging of concurrency”

32 (9.7%)

5 Complex type The combination of any two of above types, e.g., object error+ subject error 42 (12.8%)
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4.4.4 RQ4: Compared with Existing Work

1) Compared with ChangeScribe. In this subsec-

tion, we study the research question of what is the

performance of ChangeDoc when compared it with

ChangeScribe [9]. To address this question, we perform

two empirical studies having different settings and in-

volving different kinds of participants. Study 1 aims at

assessing the conciseness, expressiveness and precise-

ness of the ChangeDoc commit messages with respect

to those generated by ChangeScribe. Since the goal of

study 1 does not require high experience or deep know-

ledge of the application domain, we involve mainly stu-

dents. Study 2 aims at evaluating the importance of the

items presented in the ChangeDoc messages, Change-

Scribe messages, and original messages. In this case,

the task assigned to participants is highly demanding;

therefore we ask the experienced developers to eva-

luate the commit messages generated by ChangeDoc

and ChangeScribe.

Conciseness, Expressiveness and Preciseness

Evaluation. The goal of this study is to assess the

conciseness, expressiveness and preciseness of commit

messages generated by ChangeDoc and ChangeScribe.

The context of this study consists of: objects, i.e., the

messages generated by ChangeDoc and ChangeScribe

from the 10 projects, and subjects evaluating the com-

mit messages, i.e., 26 M.Sc. students, three Ph.D.

students, and one faculty. All of these participants

come from Sun Yat-sen University 13○, and they have no

overlap with the authors of this paper. We randomly

select 60 of commits from the 10 subject projects, and

use ChangeDoc and ChangeScribe to generate their

messages.

We distribute the commits to the evaluators, in such

a way that the 60 commits are evenly divided into

three groups, and each group is evaluated by 10 partic-

ipants (i.e., each participant is assigned 20 commits).

We provide each participant with 1) a pre-study ques-

tionnaire; 2) the messages recommended by Change-

Doc; 3) the messages generated by ChangeScribe. Par-

ticipants are asked to determine and indicate whether

the content in the ChangeDoc recommended messages

is 1) equally, 2) less , or 3) more concise (expressive,

or precise), compared with that in the ChangeScribe

generated messages. In order to avoid the bias in the

evaluation, we do not tell participants by which method

each commit message is generated. Specifically, in the

questionnaires we show participants that the concise-

ness is used to measure whether the generated messages

contain unnecessary information; expressiveness is used

to evaluate whether the generated messages are read-

able and understandable; preciseness is used to assess

whether the generated messages can accurately describe

the code changes.

Table 6 summarizes the answers provided by the

participants. On average, 94.67% of the messages gene-

rated by ChangeDoc are more concise than those gene-

rated by ChangeScribe, 4.83% equally concise, only

0.5% less concise. Because ChangeDoc directly uti-

lizes the human-written messages, most of them con-

tain less than 30 words in our statistics. The following

is an example in which the content in the ChangeDoc

message is more concise than that in the ChangeScribe

message. The ChangeDoc message describes the imple-

mentation of NPE fixing: “Bug fixing: fixed possible

NPE in getTargetStateId”. In the ChangeScribe mes-

sage, the change is reported as follows.

• BUG - FEATURE: <type-ID>

◦ This change set is mainly composed of:

1. Changes to package org.springframework.

webflow.engine:

Modifications to Transition.java:

Add if statement at getTargetStateId() method;

Add else part of (targetStateResolver!= null)

condition;

Add return statement at getTargetStateId().

Obviously, the ChangeDoc message describes the code

change in a more concise manner.

Table 6. Conciseness, Expressiveness and Preciseness Evalua-
tion

Conciseness (%) Expressiveness (%) Preciseness (%)

Less Same More Less Same More Less Same More

Group 1 0.0 4.50 95.50 39.0 3.50 57.50 24.00 21.50 54.50

Group 2 1.0 1.00 98.00 28.5 7.00 64.50 42.00 11.00 57.00

Group 3 0.5 9.00 90.50 34.5 15.50 50.00 49.00 18.00 33.00

Average 0.5 4.83 94.67 34.0 8.67 57.33 38.33 16.83 44.83

On the other hand, 57.33% of the messages gene-

rated by ChangeDoc are more expressive than those

generated by ChangeScribe, while 34% are less ex-

pressive. Because human-written messages usually de-

scribe the change intent behind a commit, Change-

Doc reusing the human-written messages can reflect

the code changes more clearly. In the above exam-

ple, this commit handles the null pointer exception.

The ChangeDoc message describes the NPE fixing in a

method. Although we can find the description of “Add

else part of (targetStateResolver != null) condition” in

13○http://www.sysu.edu.cn, Sept. 2020.
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the ChangeScribe message, we cannot realize this de-

scription corresponds to the NPE fixing if we do not

analyze the source code of the commit.

At last, 44.83% of the messages generated by

ChangeDoc are more precise than the messages gene-

rated by ChangeScribe, 38.33% are less precise, and

16.83% are equally precise. We observe that the hand-

written messages by developers usually focus on the

core change in a commit, but neglect the trivial changes

in the same commit. On the contrary, ChangeScribe

covers the code changes as many as possible in its gene-

rated message. As a result, a part of participants may

consider that the ChangeScribe messages can describe

the code changes in a more accurate manner, and they

hold that 38.33% of the ChangeScribe messages are

more precise than those generated by ChangeDoc.

Important Items Evaluation. The goal of this study

is to evaluate the importance of the captured items in

the tool-generated (i.e., ChangeDoc and ChangeScribe)

and original commit messages from the perspective of

software developers. The context of this study consists

of: objects, i.e., 15 commits randomly selected from the

10 projects used in the case study, with ChangeDoc and

ChangeScribe to automatically generate the messages

of the selected commits, and subjects evaluating the

messages, i.e., 10 professional software developers. We

perform this study by questionnaire survey. The ques-

tionnaire consists of two parts on: 1) the participants’

background and their experience in using and creating

commit messages; 2) the evaluation of the ChangeDoc

and ChangeScribe generated commit messages and the

original ones.

The evaluation of each commit message is conducted

as follows. Firstly, we point out to developers that some

items (e.g., phrases) describe the meaning of a commit

message. For example, the items containing in “Bug fix-

ing: fixed possible NPE in getTargetStateId” are “Bug

fixing”, “fixed NPE” and “NPE in getTargetStateId”.

Then, participants are asked to indicate whether the

item is: 1) not at all important; 2) unimportant; 3)

important; or 4) very important. We hope that deve-

lopers can vote to select an item that is most important

to represent the meaning of a message.

The 10 evaluators are professional developers, who

report experience in software development ranging from

3 to 11 years (median 6). Also, four out of the 10

evaluators declare that they use commit messages fre-

quently (i.e., more than 10 times per month), mainly to

check for bug fixes in a software system. The other six

developers declare that they occasionally check in the

commit messages for peer code review to deal with the

code consistency and compatibility issues. In addition,

most of the evaluators report they have created commit

messages many times.

Going to the core of this study, the answers pro-

vided by the 10 developers on the importance of the

terms from the tool-generated (i.e., ChangeDoc and

ChangeScribe) and the original messages are summa-

rized in Figs.5–7, respectively. Among the items pre-

sented in the messages generated by ChangeDoc, the

ones considered as important/very important by deve-

lopers are: “Performance optimization”, “Server not

started”, “Handle infinite loop”, “Allow sharing”, etc.,

summarizing the most important changes in the com-

mit. On the other hand, for the items presented in the

ChangeScribe generated messages the ones considered

as important/very important by developers are: “Add

else part”, “Modify conditional expression 2”, “Mod-

ify arguments”, “Remove variable”. We can observe

that the items presented in the messages generated by

ChangeDoc usually describe the change intent of a com-

mit, i.e., these terms indicate “why” the change occurs.

In contrast, the items presented in the messages gene-
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Fig.5. Important terms reported by the evaluators for the commit messages generated by ChangeDoc.
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Fig.6. Important terms reported by the evaluators for the commit messages generated by ChangeScribe.
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Fig.7. Important terms reported by the evaluators for the original commit messages.

rated by ChangeScribe describe the code changes at a

fine-grained level, and usually describe “what” has been

changed in a commit. Therefore, the terms presented in

Fig.5 confirm that our method can generate the change

intent behind the code changes.

On the other hand, we can also observe that most of

the terms in the messages generated by ChangeDoc are

presented in the original commit messages (see Fig.7).

For example, 12 out of the 15 messages generated by

ChangeDoc are with the same terms to the original mes-

sages. Because the terms selected from original mes-

sages can be regarded as the ones that can best repre-

sent the meaning of the messages, the messages gene-

rated by ChangeDoc can capture most of the important

information of the code change.

In summary, ChangeScribe messages usually de-

scribe the “what” information of code changes, while

ChangeDoc messages describe the “why” information

of code changes. Also, most terms considered as im-

portant or very important in the original messages can

be captured by ChangeDoc messages.

There are some guidances that might be given to

the developers from the results. First, the terms in the

original messages focus more on a specific task, such as

“Server not started”, “Handle infinite loop”, and this

suggests that developers put more description on a spe-

cific task when they write the commit messages. Sec-

ond, the original messages usually describe the “why”

information of code changes, rather than the “what”

information of code changes. This suggests that deve-

lopers focus more on the intent of a code change when

they write the commit messages.

2) Compared with NNGen. We have compared

ChangeDoc with the updated work NNGen [26]. To run

NNGen, we use the model proposed by Liu et al. [26]

Then, we use the 1 000 commits (coming from the 10

projects) used in the experiment of this paper as the

test set. NNGen can generate messages for every com-

mit. For the sake of fairness, we set the value of thresh-

old θ as 0, and then ChangeDoc can generate messages

for every commit by recommending the message of a

commit with the highest ComprehSimi value.

The average BLEU values for NNGen and Change-

Doc can be observed in Table 7. We can see that the
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performances of ChangeDoc and NNGen are almost on

the same level. In essence, ChangeDoc and NNGen

have similar principles, and both of them seek a similar

commit from the historical commits, and recommend

the message of a commit with the highest similarity to

the target commit. NNGen employs the nearest neigh-

bor algorithm with bags-of-words to find the similar

commit, while ChangeDoc uses the clone algorithm and

the syntactic and semantic information to find the simi-

lar commit. Although the methods used are different,

they are both effective in finding similar commits from

historical commits.

Table 7. Comparing ChangeDoc with NNGen

Approach BLEU-1 BLEU-2 BLEU-3 BLEU-4

NNGen 25.52 18.76 16.44 13.79

ChangeDoc 25.68 19.26 16.67 14.54

5 Discussion: θ Choice Effect

In this paper, the threshold θ is set to avoid recom-

mending too many useless messages to users. Namely,

when the highest ComprehSimi value is greater than

threshold θ, and the message of a commit will be rec-

ommended to the target commit. We have analyzed

the impact of the threshold choice on the performance

of ChangeDoc, as Table 8 shows.

Table 8. Threshold Choice Effect on the Performance of
ChangeDoc

No. Threshold Covered Good (%) Fix (%)

Value Commit (%)

1 0.2 63.6 16.3 51.5

2 0.3 58.5 19.5 55.4

3 0.4 52.4 21.5 62.8

4 0.5 33.5 22.6 64.1

5 0.6 18.3 24.1 65.4

When the threshold value is 0.4, ChangeDoc is able

to recommend messages for 52.4% of the commits (i.e.,

covered commits in Table 8) with a performance of

21.5% good cases and 62.8% fix cases. When the thresh-

old value is 0.2 or 0.3, ChangeDoc is able to recom-

mend more messages for the commits, but the perfor-

mance of recommending good and bad cases becomes

worse. The result indicates that ChangeDoc can rec-

ommend messages for more commits, but the quality of

recommended messages has declined. Similarly, when

the threshold value is 0.5 or 0.6, although the propor-

tion of recommending good and bad cases increases, the

proportion of the covered commits decreases seriously.

As a compromise, we set the threshold value as 0.4 for

ChangeDoc.

6 Threats to Validity

The main threat to external validity is the suitabil-

ity of our evaluation measure. We use a new measure

to evaluate the effectiveness of the proposed approach

in this paper. We compare the original message of a

commit with the recommended messages, and manu-

ally verify if the recommended message satisfies the

good\fix\bad criteria. In the manual verification, we

invite three participants to verify the quality of recom-

mended messages. Two participants manually verify

the quality of all the recommended messages indepen-

dently, and the other one participant will intervene if

there exist conflicts in the verified results. While, even

with these restricted conditions, it is still possible that

a small portion of results are misjudged by the partic-

ipants. In the future, we need to invite more partici-

pants to mitigate this threat.

A threat to external validity is the generalizability of

our results. We have recommended messages for 1 000

commits from 10 different open-source Java software

projects. When applying our approach to projects writ-

ten by other programming languages, some particular

code syntax (e.g., pointer operation in C/C++) should

be carefully handled when extracting the code syntax.

In the future, further investigation by analyzing even

more projects written by other programming languages

is needed to mitigate this threat.

To compare ChangeDoc with ChangeScribe, we per-

form two empirical studies having different settings and

involving different kinds of participants in RQ4. The

message generated by ChangeScribe follow some pat-

terns and may be easy to recognize by the participants.

Then, this may cause some interference in the evalua-

tion. In the future, inviting more participants to involve

in the empirical studies can mitigate this threat. Be-

cause fewer validation tasks are assigned to single par-

ticipant, the participant is not easy to recognize mes-

sages generated by ChangeScribe.

In this work, we have taken some measures to dis-

ambiguate the meaning of words. For example, an En-

glish verb may appear in different tenses, such as past

tense, future tense, and perfect tense, and we transform

verbs of different tenses into their original forms. De-

spite these measures, it is possible that the problem of

Word Sense Disambiguation (i.e., WSD) [57] may not be

completely avoided. In the future, some more effective

WSD techniques are needed to mitigate this threat.
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7 Conclusions

In this paper, we proposed ChangeDoc to automat-

ically recommend messages for the target commits by

mining version control systems. Given a target com-

mit, ChangeDoc retrieves a most similar commit in the

local repository from the code syntactic and semantic

perspectives, and the message of the most similar com-

mit is recommended to the target commit. The experi-

mental results showed that 21.5% of the recommended

messages are good, 62.8% are fix, and 15.7% are bad.

Besides, we analyzed the reasons which make a mes-

sage reusable or non-reusable in detail, and we also

compared ChangeDoc with ChangeScribe in terms of

conciseness, expressiveness, preciseness and the impor-

tant terms.

In the future, we plan to evaluate ChangeDoc with

more commits from more software projects and develop

a better technique which could improve the accuracy of

commit message recommendation further.
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