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Abstract For the rapid development of internetware, functional programming languages, such as Haskell and Scala, can

be used to implement complex domain-specific applications. In functional programming languages, a higher-order function

is a function that takes functions as parameters or returns a function. Using higher-order functions in programs can increase

the generality and reduce the redundancy of source code. To test a higher-order function, a tester needs to check the

requirements and write another function as the test input. However, due to the complex structure of higher-order functions,

testing higher-order functions is a time-consuming and labor-intensive task. Testers have to spend an amount of manual

effort in testing all higher-order functions. Such testing is infeasible if the time budget is limited, such as a period before

a project release. In practice, not every higher-order function is actually called. We refer to higher-order functions that

are about to be called as calling-prone ones. Calling-prone higher-order functions should be tested first. In this paper,

we propose an automatic approach, namely Phof, which predicts whether a higher-order function of Scala programs will

be called in the future, i.e., identifying calling-prone higher-order functions. Our approach can assist testers to reduce the

number of higher-order functions of Scala programs under test. In Phof, we extracted 24 features from source code and

logs to train a predictive model based on known higher-order function calls. We empirically evaluated our approach on

4 832 higher-order functions from 27 real-world Scala projects. Experimental results show that Phof based on the random

forest algorithm and the Synthetic Minority Oversampling Technique Processing strategy (SMOTE) performs well in the

prediction of calls of higher-order functions. Our work can be used to support the scheduling of limited test resources.
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1 Introduction

Internetware, a widely-used software paradigm,

connects domain applications via Internet-based

computing [1, 2]. For the rapid development of inter-

netware, functional programming languages, such as

Haskell, Scala, and Lisp, can be used to implement

complex domain-specific applications. As an important

feature of functional programming languages, higher-

order functions are a family of functions that take func-

tions as inputs or return functions. Due to the high

scalability, algorithms written in higher-order functions

can be generalized by changing their input or output

functions [3, 4]. Moreover, higher-order functions are

derived from the field of mathematics. Thus, using

higher-order functions can make source code concise

and precise [5, 6].

Unit testing, i.e., testing a function, is to execute
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paths in a function to detect hidden faults [7, 8]. Many

current testing tools, such as JUnit 1○ in Java and

QuickCheck in Haskell 2○, can support the test mana-

gement and execution of first-order functions (i.e., non-

higher-order functions). However, it is not easy to test

higher-order functions with these testing tools. We list

two difficulties of testing higher-order functions as fol-

lows. First, a higher-order function receives one or

more functions as parameters. Testers have to write

or call functions as parameters, which are expected to

change program states of the higher-order function un-

der test [7]. Second, a higher-order function can return

a function as output. A returned function is expected

to be consistent with the requirements. Testers have

to fully check and understand requirements and then

write tests for higher-order functions. Therefore, man-

ually testing of higher-order functions becomes a time-

consuming and labor-intensive task.

To save the time of testers in testing higher-order

functions, we propose a view that testers can first test

those higher-order functions that are likely to be called

in the future within a limited budget. We refer to these

functions likely to be called as calling-prone. That is,

in a limited budget, instead of testing all higher-order

functions, testers only need to test those higher-order

functions that will be called in the future. To this end,

we propose a predictive approach Phof to identify-

ing calling-prone higher-order functions and evaluate

this approach on Scala programs. Phof is a predictive

model that is trained on known higher-order function

calls. In Phof, we extract 24 features from source code

and logs to characterize whether a higher-order function

is calling-prone.

We conduct an empirical evaluation on 4 832 higher-

order functions from 27 real-world Scala projects and

answer four research questions, including effectiveness,

imbalanced data processing, impactful features, and ef-

ficiency. Experimental results show that Phof based

on the random forest algorithm and the Synthetic

Minority Oversampling Technique Processing strategy

(SMOTE) performs well in the prediction of calling-

prone higher-order functions and reaches the accuracy

of 0.803. The results indicate that SMOTE is effective

among all techniques of imbalanced data processing un-

der evaluation. We use Pearson correlation coefficient

to rank the top-10 features most relevant to higher-

order function calls in each project. The results sug-

gest that the top-10 features can be used to partially

represent the whole set of all features, but cannot fully

replace the original set. The efficiency result reports

that the average time cost is 473 seconds and can be

accepted. Our proposed approach can assist testers to

prioritize higher-order functions under test and save the

cost of testing.

Application Scenario. Given a limited time bud-

get, e.g., the time before a new release of the project,

our approach Phof can be used to identify whether a

higher-order function can be called in the future. Then

a tester can prioritize higher-order functions under test

to avoid testing uncalled ones. Our work can be used

to support the scheduling of limited test resources and

reduce the cost of testers.

Extension. This paper is an extension of our previ-

ous work [9]. In this extension, we add new data pro-

cessing of code clones, an extended experiment on 27

real-world Scala projects, and a detailed analysis of em-

pirical results with new results of impactful features

and efficiency. The new data processing of code clones

can improve the reliability of function data via filter-

ing out 50 sets of cloned functions. The experiment is

extended from the original six projects to 27 projects

and improves the generality of the proposed approach.

The experimental result shows that the average accu-

racy without SMOTE is increased from 0.670 to 0.757,

compared with our previous work. The analysis on im-

pactful features shows that dominant features can par-

tially represent the whole set of all features; the analysis

on efficiency confirms that the average time cost is 473

seconds and suggests that our approach is efficient.

This paper makes the following major contributions.

• We propose an automatic approach, namely

Phof, which predicts whether a higher-order function

will be called in the future. This approach is the

first work that employs function features to prioritize

higher-order functions for testers.

• We empirically evaluate 4 832 higher-order func-

tions from 27 real-world Scala projects. We find that:

the proposed approach is effective and the accuracy

reaches 0.803; the imbalanced data processing is use-

ful for the effectiveness while feature selection does not

improve the result; the time cost of our approach is 473

seconds on average.

The rest of this paper is organized as follows. Sec-

tion 2 shows the background and motivation of studying

the prediction of higher-order function calls. Section 3

presents the proposed approach in our work. Section 4

1○http://junit.org/junit5/, Oct. 2020.
2○http://hackage.haskell.org/package/QuickCheck/, Oct. 2020.
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presents the study setup, including four research ques-

tions and data preparation. Section 5 describes the re-

sults of our exploratory study. Section 6 discusses the

threats to the validity. Section 7 lists related work and

Section 8 concludes the paper.

2 Background and Motivation

In this section, we present the background and the

motivation of our work.

2.1 Background

Scala is a programming language that supports both

object-oriented programming and functional program-

ming. Scala contains a powerful static type system and

shares many features of functional programming lan-

guages with Standard ML and Haskell, including cur-

rying, type inference, and immutability [10]. The de-

sign of Scala is to make up for the deficiencies of the

Java language. Source code written in Scala is compiled

into bytecodes and runs on a virtual machine. For the

compatibility, Scala programs can directly use libraries

of Java programs.

As a feature of functional programming, Scala di-

rectly supports higher-order functions. In higher-order

functions, functions can be used as input parameters

or as outputs. Higher-order functions make the Scala

programs useful in many scenarios, including construct-

ing distributed systems and web projects. For in-

stance, Nystrom [11] presented a Scala framework for ex-

perimenting with super-compilation techniques; Twit-

ter has moved several basic frameworks from Ruby to

Scala 3○.

Fig.1 shows an excerpt of a real-world higher-order

function subName() in project scala/scala 4○. The

higher-order function subName(), defined inside an-

other function ClassfileParser.sigToType(), is designed

to get a subset of Class Name. Class Name has the

same functions and fields as Class String, such as the

method charAt() and the field length. The definition

of this higher-order function contains one input para-

meter and a return type. The only input parameter

isDelimiter() at line 5 is a first-order function, which

receives a Char object as input and returns a Boolean

object. The parameter isDelimiter() is called at line 7

to determine whether the Char object is a delimiter.

The return type of the function subName() at line 5 is

a Name object. The return statement of the function

subName() locates at line 8.

Fig.1. Excerpt of a real-world higher-order function subName()
from Class scala.tools.nsc.symtab.classfile.ClassfileParser in Pro-
ject scala/scala.

Testing is an important phase to improve the qua-

lity of source code. ScalaTest, like JUnit in Java, is a

testing framework for Scala and Java testers 5○. Many

popular Scala projects, including the 27 projects in our

study, have deployed ScalaTest to support test mana-

gement and execution.

2.2 Motivation

Testing higher-order functions is difficult. For man-

ually testing, to write a test case for a higher-order

function, a tester needs to check the requirements of

the function and then write another function as an in-

put or output for the higher-order function being tested.

However, for the input of a test case, creating a function

parameter is different from creating a primitive para-

meter (e.g., an integer or a floating-point number) or an

object parameter (an object of a class). For automat-

ically testing, a study by Selakovicet al. [7] shows test

cases generated by four test generation methods can

reach higher code coverage when testing higher-order

functions in JavaScript. In their study, several basic

higher-order functions were tested, including higher-

order functions of filter(), map(), and then().

The resources available for testing are limited. Due

to the complexity of the internal structure of higher-

order functions, testing higher-order functions is a time-

consuming and labor-intensive task. In a limited bud-

get (such as the time period before release), it is in-

3○http://news.ycombinator.com/item?id=542716, Oct. 2020.
4○http://github.com/scala/scala/, Oct. 2020.
5○http://scalatest.org/, Oct. 2020.
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feasible to test all higher-order functions in a project.

Instead of testing all higher-order functions, we con-

sider testing higher-order functions that will be called

in the future.

Motivated by the cost of testing higher-order func-

tions, we propose a new approach, namely Phof, which

predicts whether a higher-order function will be called

in the future. These higher-order functions that are

most likely to be called can be tested first to save the

cost. Our approach can assist testers to reduce the

number of higher-order functions under test and reduce

the cost of testing higher-order functions.

3 Predicting Callings for Higher-Order

Functions

We show the overview, the feature extraction, and

the learning algorithm of our proposed approach.

3.1 Overview

We refer to higher-order functions that are likely to

be called in the future as calling-prone ones. In this

paper, we design Phof, which is an abbreviation for

Prediction for Higher-Order Functions. Phof is an

automatic method of identifying calling-prone higher-

order function. The problem of such identification can

be viewed as a classification problem with binary la-

bels: called or uncalled. If there is one or more calls

to a higher-order function, the higher-order function is

labeled as called, and if there is no call for the higher-

order function, the higher-order function is labeled as

uncalled. A tester can then use our approach to prior-

itize higher-order functions to save the cost of testing

within a limited time budget.

Fig.2 shows the overview of our proposed approach

Phof. Phof aims to predict whether a higher-order

function is calling-prone. The input of Phof is source

code and logs of a Scala project. The output of Phof is

the binary prediction result of a new higher-order func-

tion. To build a predictive model in Phof, we extract

24 features from source code and logs of Scala programs.

Then we build a predictive model based on the higher-

order functions with known calls and apply the model

to predict results for new higher-order functions.

3.2 Feature Extraction

To build our model, we extract 24 features from

source code and logs of Scala programs. These 24 fea-

tures are divided into three groups: group CS — 16

features related to code statements (CS01 to CS16),

group CP — 5 features related to function properties

(CP01 to CP05), and group CG — 3 features extracted

from git logs (CG01 to CG03). Table 1 lists the 24

features in Phof. In group CS, we use the 16 features

to represent the structure information of higher-order

functions. In group CP, features related to function

properties, such as the cyclomatic complexity and the

executable lines of code, are used to reveal the overall

state of a higher-order function. In group CG, we distill

three features from commit logs since the information

of commits may be critical for the calls of higher-order

functions. Note that our study is conducted via intra-

project evaluation; thus, the names of authors could be

viewed as enumerated values.

Given the source code of a Scala project, we ex-

tract features of group CS and group CP by convert-

ing source files into abstract synthetic trees (ASTs),

and then traverse ASTs to collect features related to

Source
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Fig.2. Overview of Phof, an automated approach to predicting whether a higher-order function will be called in the future.
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Table 1. Summary of 24 Extracted Features in Three Groups in Phof

Group Feature Description

CS CS01 Whether the higher-order function contains primitive types of parameters

CS02 Whether the higher-order function contains a parameter that is a higher-order function

CS03 Whether the higher-order function contains generic parameters, such as the parameter A in a class definition

class Stack[A]

CS04 Whether the higher-order function contains a return statement

CS05 Number of parameters in the definition of the higher-order function

CS06 Number of for statements in the higher-order function

CS07 Number of while statements in the higher-order function

CS08 Number of else statements in the higher-order function

CS09 Number of match statements in the higher-order function

CS10 Number of if statements in the higher-order function

CS11 Number of assign statements in the higher-order function

CS12 Number of lambda expressions in the higher-order function

CS13 Number of try statements in the higher-order function

CS14 Number of apply statements in the higher-order function

CS15 Number of local variables that can be changed in the higher-order function

CS16 Number of local variables that cannot be changed in the higher-order function

CP CP01 Executable lines of code (eLoC) of the higher-order function

CP02 Cyclomatic complexity of the higher-order function

CP03 Number of style warnings in the higher-order function

CP04 Containing input functions or output functions in the higher-order function (three values: functions only as

input, functions only as output, and functions as both input and output)

CP05 Modifier of the higher-order function (public, protected, private, or default)

CG CG01 Name of the first author of the higher-order function

CG02 Number of commits to source code of the higher-order function

CG03 Number of authors of the higher-order function

code statements and function properties, such as the

number of if statement, the executable lines of code

(eLoC), and the cyclomatic complexity of higher-order

functions. The cyclomatic complexity is a software met-

ric of linearly independent path [12]. We also count the

number of code style warnings in a higher-order func-

tion (see Subsection 4.1 for implementation).

For group CG (that is, log-related features), we ex-

tract logs from the version control system and collect

all historical commits related to changes of higher-order

functions. We then traverse these commits and collect

features of authors and commits [13].

3.3 Learning Algorithms

Phof uses a classification algorithm to build a pre-

dictive model. Any binary classification algorithm can

be used as the learning model. We evaluate six al-

gorithms in Phof: C4.5, random forest, SVM, MLP,

BayesNet, and SimpleLogistic. C4.5 is a decision tree

algorithm and uses the information gain rate as a cri-

terion of selecting branch attributes to achieve induc-

tive classification of data [14]. Random forest is a clas-

sifier that contains multiple decision trees and its out-

put category is determined by the mode of the out-

put category of individual trees [15]. SVM is a classi-

fier to find a hyperplane to segment samples [16]. The

principle of segmentation is to maximize the intervals

and to finally transform into a convex quadratic pro-

gramming problem. MLP is a forward-structured ar-

tificial neural network that maps input vectors onto

output vectors [17]. BayesNet is a classification algo-

rithm based on the Bayes theorem, which can be used

for predictive modeling [18]. SimpleLogistic is a widely

used classification algorithm, which is a kind of linear

classification [19].

The distribution of called and uncalled higher-order

functions is imbalanced. For most of the machine learn-

ing algorithms, the issue of data imbalance may cause

incorrect prediction results [20]. Thus, we adopt the

Synthetic Minority Oversampling Technique Process-

ing strategy (SMOTE) to address the data imbalance

issue. The SMOTE strategy is a typical oversampling

technique [21] of analyzing the minority samples and

adding new samples to the dataset according to the

minority samples to achieve the data balance.

4 Experimental Setup

In this section, we introduce the data preparation

and the evaluation metrics.
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4.1 Data Preparation

Our study aims to build a learning model to pre-

dict whether a higher-order function will be called

in the future, i.e., called or uncalled. We mined 27

Scala projects and extracted features for the construc-

tion of classifiers. Datasets in this paper are publicly

available 6○.

Our work is to train a learning model, which re-

quires sufficient data for higher-order functions. Thus,

we selected 27 widely-used and open-sourced Scala

repositories. The main steps of project selection are

listed as follows. First, we sorted all Scala reposito-

ries in GitHub according to the stars 7○. We consi-

dered that a repository with many stars indicates that

the quality of the repository is identified by many

developers. We selected top-100 repositories with the

most stars. Among these repositories, we removed

three repositories, including fpinscala/fpinscala

(a supplement material of practices in a book),

scala-exercises/scala-exercises (exercises for

many libraries of Scala), and jacksu/utils4s (learning

materials for Scala and Spark) since these repositories

are not software projects. Second, we leveraged Se-

manticDB, a tool of static program analysis, to extract

definitions and callings of functions 8○. Third, we lever-

aged SourcererCC [22], a tool of token-based code clone

detection, to detect the code clone in higher-order func-

tions. We filtered out code clone groups in higher-order

functions and selected the repositories that contain

more than 50 higher-order functions as the repositories

in the study. Table 2 shows the 4 832 higher-order func-

tions from 27 Scala projects in the study. We present

the steps of data processing as follows.

Higher-Order Function Identification. We employed

the static analysis tool SemanticDB to extract the se-

mantic structure, such as types and function signa-

tures. Then we collected definitions and callings of

functions. SemanticDB is a Scala library to analyze and

compile Scala source code. The main steps to extract

higher-order functions are as follows. First, we used

SemanticDB to create a semantic database for each

project. Second, we collected the definitions of higher-

order functions from the semantic database if parame-

ters or return values of the definition contain a function.

Third, we filtered out override higher-order functions

that are defined by default to implement an abstract

function in a super class in the Scala language. The

reason for such filtering is as follows. It is required to

implement an abstract function with an override func-

tion in a sub class, but calling this override function is

not required. Fourth, we extracted callings of higher-

order functions by matching the function definitions.

Therefore, we are able to extract definitions and calls

of all higher-order functions in each project.

Code Clone Removal. Code clone is common in

large software repositories. To avoid the impact of code

clone on the experimental results, we leveraged Sourcer-

erCC, proposed by Sajnani et al. [22], to detect the

code clone of higher-order functions in Scala projects.

SourcererCC is a state-of-the-art tool of token-based

code clone detection. SourcererCC employs tokens to

represent code fragments and collects the frequency of

each token. To detect code clones, SourcererCC ob-

tains the similarity between two pieces of code via cal-

culating the ratio between the frequencies of the same

tokens and the frequencies of all involved tokens. This

makes SourcererCC efficient in detecting similar code

pairs in large-scale codebases [23]. In our study, we set

the threshold of SourcererCC to 0.99, i.e., higher-order

functions with the similarity greater than 0.99 will be

considered as code clone groups. The reason for choos-

ing 0.99 as the threshold is to fully remove the same

code clones. From the 27 projects in the study, 50 clone

groups are detected and filtered out. Each code clone

group contains two or more higher-order functions. We

further analyzed whether one group of code clones are

called in the same calling-proneness, i.e., higher-order

functions in a group are all called (or uncalled) by other

functions. We checked all clone groups and find that

only six out of 50 clone groups are not called in the

same calling-proneness. This suggests that most of code

clones of higher-order functions show the same calling-

proneness.

Feature Extraction. We leveraged static analysis

tools Scalamata 9○ and ScalaStyle 10○ to extract features

in group CS and group CP (Subsection 3.2). Scalameta

is a Scala library to parse Scala files and construct

ASTs. ScalaStyle is an off-the-shelf checking tool of

the code style; we leveraged it to extract the number of

6○
Phof. http://cstar.whu.edu.cn/p/phof/, Oct. 2020.

7○http://github.com/search?l=Scala&o=desc&q=scala&s= stars&type=Repositories, Oct. 2020.
8○http://scalameta.org/docs/semanticdb/guide.html, Oct. 2020.
9○http://scalameta.org/, Oct. 2020.
10○http://scalastyle.org/, Oct. 2020.
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Table 2. Summary of 27 Scala Projects in the Study

Project Abbreviation #Stars eLoC #HOFs #HOFs Project Description

(×103) (×103) w/o Clone

scalaz/scalaz scalaz 4.4 35.4 991 987 A package for functional programming

scala/scala scala 12.8 143.6 583 577 The programming language

zio/zio zio 2.4 13.9 337 335 A toolkit for concurrent programming

lift/framework framework 1.2 65.7 348 334 A web framework

akka/akka akka 11.0 114.8 288 280 A tool for building applications

scalatest/scalatest scalatest 0.9 420.7 168 162 A testing tool

tpolecat/doobie doobie 1.7 14.7 162 160 A functional JDBC layer

sbt/sbt sbt 4.2 34.9 157 157 A build tool

twitter/scalding scalding 3.2 29.6 155 155 A toolkit for cascading

lampepfl/dotty dotty 4.0 387.1 137 137 A compiler

typelevel/cats-effect cat-effect 1.0 13.4 130 128 A functional runtime system

twitter/util util 2.4 27.4 121 120 A package of utilities

ornicar/lila lila 7.2 70.3 117 116 A chess game server

twitter/algebird algebird 2.0 22.7 101 101 A tool for abstracting algebra

JetBrains/intellij-scala intellij-scala 1.0 363.4 100 100 A plug-in for Intellij IDEA

polynote/polynote polynote 3.9 16.1 99 96 A notebook

slick/slick slick 2.4 20.8 93 93 A toolkit of database query and access

sangria-graphql/sangria sangria 1.7 15.0 89 86 A GraphQL toolkit

http4s/http4s http4s 1.9 29.1 82 82 A Scala interface for HTTP

twitter/finagle finagle 7.7 63.0 82 81 A RPC system

playframework/playframework playframework 11.6 41.5 77 77 A web framework

gatling/gatiling gatling 4.8 25.6 73 73 A testing tool

scalikejdbc/scalikejdbc scalikejdbc 1.1 23.5 71 71 A toolkit of database query and access

getquill/quill quill 1.7 15.6 66 63 A toolkit of database query and access

json4s/json4s json4s 1.3 11.8 57 57 A JSON toolkit

circe/circe circe 2.0 6.9 95 55 A JSON toolkit

spotify/scio scio 1.9 30.5 53 53 A toolkit for Apache Beam

Total 101.4 2 057.0 4 832 4 738

Note: For the sake of space, each project will be denoted by their abbreviation in the following sections. #HOFs is short for the
total number of higher-order functions. #HOFs w/o Clone denotes the number of higher-order functions whose cloned code has been
removed.

code style warnings in higher-order functions. For fea-

tures in group CG, we first used the Git API to extract

Git logs and collected all historical commits related to

the changes of higher-order functions [24]. We traversed

these commits and collected the author information, in-

cluding names, e-mails, and timestamps of all commits

related to higher-order functions. Then we extracted

the first author of the higher-order function according

to the timestamp.

In our experiment, we used Weka for the implemen-

tation of machine learning algorithms [25]. Feature se-

lection techniques and imbalanced processing methods

are also integrated into Weka 11○.

All experiments were run on a laptop with an In-

tel Core i5-7360U 2.30 GHz CPU, 8 GByte memory,

and an SSD disk of 256 GByte. The time cost of the

evaluation was collected on this platform.

4.2 Evaluation Metrics

In the evaluation, we used four metrics, including

precision, recall, F -measure, and accuracy. We define

the four evaluation metrics based on true positive (TP),

false positive (FP), true negative (TN), and false neg-

ative (FN). We list the definitions as follows:

• TP : number of higher-order functions in Category

called that are predicted as called;

• FP : number of higher-order functions in Category

uncalled that are predicted as called;

• TN : number of higher-order functions in Cate-

11○http://www.cs.waikato.ac.nz/ml/weka/, Oct. 2020.
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gory uncalled that are predicted as uncalled;

• FN : number of higher-order functions in Cate-

gory called that are predicted as uncalled.

Then we define the precision, recall, F1 (short for F -

measure), and accuracy as follows:

Precision(called) =
TP

TP + FP
,

Precision(uncalled) =
TN

TN + FN
,

Recall(called) =
TP

TP + FN
,

Recall(uncalled) =
TN

TN + FP
,

F1(called)

=
2× Precision(called)×Recall(called)

Precision(called) +Recall(called)
,

F1(uncalled)

=
2× Precision(uncalled)×Recall(uncalled)

Precision(uncalled) +Recall(uncalled)
,

Accuracy =
TP + TN

TP + TN + FP + FN
.

5 Empirical Results

We design four research questions (RQs) to evaluate

our proposed approach, including effectiveness of our

proposed approach, imbalance data processing strate-

gies, feature correlation of callings of higher-order func-

tions, and efficiency of our approach.

5.1 RQ1. How Effective Is Our Approach in

Predicting Whether a Higher-Order Func-

tion Will Be Called in the Future?

We build a predictive model to predict whether a

higher-order function can be called in the future. Ma-

chine learning algorithms play an important role in the

prediction. We analyze the effectiveness of our pro-

posed approach Phof. Six classification algorithms are

used in Phof, including random forest, C4.5, SVM,

MLP, BayesNet, and SimpleLogistic. In random forest,

the number of decision trees is set by default to 100;

in C4.5, the minimum number of instances per leaf is

2 and the confidence factor is set to 0.25; in SVM, the

complexity is set to 1.0 and the calibrator is the lo-

gistic regression; in MLP, the learning rate for weight

updates is set to 0.3; in BayesNet, the estimator is the

SimpleEstimator; and in SimpleLogistic, the maximum

number of iterations for LogitBoost is set to 500. The

SMOTE strategy is combined with each classification

algorithm to eliminate the risk of data imbalance.

We used 5-fold cross validation to evaluate the ef-

fectiveness of the experiment. For each project, we

randomly divided the higher-order functions into five

equal-sized folds. Then we built five rounds of experi-

ments. In each round, one fold is used as a test set and

the other four folds are used as a training set. Then

the average of five rounds is reported as the result.

We present the evaluation of precision, recall, F -

measure, and accuracy on individual projects. For the

sake of space, Table 3 shows the prediction results of the

top 10 projects, which contain the most higher-order

functions. And we bold the maximum value of different

algorithms in all metrics for each project. Among six al-

gorithms under evaluation, the random forest beats the

others in most projects. In 27 projects, random for-

est achieves the highest accuracy in six projects except

projects scalatest, sbt, scalding, and dotty; SVM

achieves the highest accuracy in projects scalatest

and scalding; SimpleLogistic achieves the highest ac-

curacy in project scalding, and C4.5 achieves the high-

est accuracy in project dotty. In the project doobie,

the random forest performs best in all metrics, i.e., pre-

cision, recall, F -measure, and accuracy of class called

and class uncalled. Moreover, project doobie is the

best classified project with the accuracy of 0.956.

As shown in Table 3, random forest achieves the

highest values of accuracy in most of the projects. Then

we count the average of 27 projects in Table 4. As

shown in Table 4, random forest achieves the high-

est value in six metrics except recall for uncalled ones.

Meanwhile, MLP obtains the best recall for uncalled

higher-order functions. All six algorithms exceed 0.700

in the accuracy. From Table 3 and Table 4, we find

that the evaluation values of six algorithms are similar.

Random forest performs well in most of the evaluation

metrics while MLP performs well in the recall of un-

called higher-order functions.

Finging 1. Our proposed approach, Phof is effec-

tive in predicting whether a higher-order function will

be called in the future. Random forest and the other

algorithms, i.e., C4.5, SVM, MLP, BayesNet, and Sim-

pleLogistic, exceed the accuracy of 0.700 in the evalua-

tion. Moreover, random forest performs better than the

other algorithms.

5.2 RQ2. Can Imbalanced Data Processing

Strategies Improve Prediction Results?

The data imbalance of two categories of higher-order

functions may lead to inaccurate classification [20]. We
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Table 3. Precision, Recall, F -Measure, and Accuracy of Prediction Results for the Top 10 Projects

Project Algorithm Called Uncalled Accuracy

Precision Recall F -Measure Precision Recall F -Measure

scalaz Random forest 0.760 0.787 0.773 0.677 0.642 0.659 0.727

C4.5 0.704 0.802 0.750 0.645 0.516 0.573 0.685

SVM 0.705 0.830 0.762 0.672 0.501 0.574 0.695
MLP 0.688 0.821 0.749 0.644 0.464 0.539 0.675

BayesNet 0.741 0.751 0.746 0.635 0.622 0.628 0.698

SimpleLogistic 0.717 0.826 0.768 0.680 0.531 0.596 0.705
scala Random forest 0.833 0.923 0.876 0.600 0.383 0.468 0.799

C4.5 0.769 1.000 0.870 N/A 0.000 N/A 0.769
SVM 0.805 0.959 0.876 0.625 0.226 0.331 0.790

MLP 0.830 0.838 0.834 0.442 0.429 0.435 0.744

BayesNet 0.809 0.944 0.871 0.576 0.256 0.354 0.785
SimpleLogistic 0.805 0.964 0.877 0.644 0.218 0.326 0.792

zio Random forest 0.674 0.604 0.637 0.847 0.883 0.865 0.803

C4.5 0.577 0.469 0.517 0.802 0.862 0.831 0.749

SVM 0.638 0.385 0.481 0.787 0.912 0.845 0.761

MLP 0.652 0.604 0.627 0.846 0.870 0.858 0.794
BayesNet 0.598 0.604 0.601 0.840 0.837 0.839 0.770

SimpleLogistic 0.656 0.438 0.525 0.801 0.908 0.851 0.773
framework Random forest 0.656 0.628 0.642 0.749 0.772 0.760 0.713

C4.5 0.596 0.657 0.625 0.743 0.690 0.716 0.677

SVM 0.633 0.504 0.561 0.698 0.797 0.744 0.677
MLP 0.632 0.577 0.603 0.722 0.766 0.744 0.689

BayesNet 0.567 0.679 0.618 0.741 0.640 0.687 0.656
SimpleLogistic 0.610 0.445 0.515 0.675 0.802 0.733 0.656

akka Random forest 0.815 0.846 0.830 0.777 0.737 0.757 0.800

C4.5 0.784 0.741 0.762 0.669 0.720 0.694 0.732
SVM 0.778 0.802 0.790 0.717 0.686 0.701 0.754

MLP 0.782 0.821 0.801 0.736 0.686 0.711 0.764
BayesNet 0.831 0.636 0.720 0.622 0.822 0.708 0.714

SimpleLogistic 0.783 0.802 0.793 0.719 0.695 0.707 0.757

scalatest Random forest 0.844 0.806 0.824 0.867 0.895 0.881 0.858
C4.5 0.915 0.806 0.857 0.874 0.947 0.909 0.889

SVM 0.921 0.866 0.892 0.909 0.947 0.928 0.914

MLP 0.885 0.806 0.844 0.871 0.926 0.898 0.877

BayesNet 0.817 0.731 0.772 0.824 0.884 0.853 0.821

SimpleLogistic 0.918 0.836 0.875 0.891 0.947 0.918 0.901
doobie Random forest 1.000 0.930 0.964 0.896 1.000 0.945 0.956

C4.5 0.957 0.890 0.922 0.836 0.933 0.882 0.906
SVM 0.690 0.890 0.777 0.645 0.333 0.440 0.681

MLP 0.968 0.900 0.933 0.851 0.950 0.898 0.919

BayesNet 0.741 0.830 0.783 0.646 0.517 0.574 0.713
SimpleLogistic 0.848 0.890 0.868 0.800 0.733 0.765 0.831

sbt Random forest 0.755 0.762 0.758 0.510 0.500 0.505 0.675
C4.5 0.730 0.695 0.712 0.439 0.481 0.459 0.624

SVM 0.695 0.933 0.797 0.563 0.173 0.265 0.682

MLP 0.748 0.762 0.755 0.500 0.481 0.490 0.669
BayesNet 0.802 0.771 0.786 0.571 0.615 0.593 0.720

SimpleLogistic 0.736 0.743 0.739 0.471 0.462 0.466 0.650
scalding Random forest 0.683 0.755 0.717 0.549 0.459 0.500 0.639

C4.5 0.655 0.766 0.706 0.511 0.377 0.434 0.613

SVM 0.667 0.851 0.748 0.600 0.344 0.437 0.652

MLP 0.692 0.766 0.727 0.569 0.475 0.518 0.652

BayesNet 0.658 0.798 0.721 0.537 0.361 0.431 0.626

SimpleLogistic 0.682 0.798 0.735 0.578 0.426 0.491 0.652

dotty Random forest 0.762 0.877 0.816 0.133 0.065 0.087 0.693

C4.5 0.778 0.991 0.871 0.500 0.032 0.061 0.774

SVM 0.771 0.953 0.852 0.167 0.032 0.054 0.745

MLP 0.808 0.755 0.780 0.316 0.387 0.348 0.672

BayesNet 0.798 0.934 0.861 0.462 0.194 0.273 0.766
SimpleLogistic 0.798 0.934 0.861 0.462 0.194 0.273 0.766

Note: N/A: the value is not available since no higher-order function is predicted as an uncalled one.
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Table 4. Average of Precision, Recall, F -Measure, and Accuracy of Prediction Results for All the 27 Projects

Algorithm Called Uncalled Accuracy

Precision Recall F -Measure Precision Recall F -Measure

Random forest 0.766 0.779 0.771 0.671 0.630 0.645 0.757

C4.5 0.734 0.743 0.729 0.657 0.552 0.635 0.721

SVM 0.734 0.750 0.734 0.592 0.543 0.552 0.717

MLP 0.755 0.736 0.743 0.632 0.640 0.634 0.731

BayesNet 0.737 0.741 0.733 0.622 0.583 0.586 0.719

SimpleLogistic 0.748 0.748 0.741 0.610 0.580 0.584 0.729

examine whether imbalanced data processing strategies

can improve the prediction. Fig.3 presents the distribu-

tion of higher-order functions in both categories of each

project. We find that the distributions of categories are

imbalanced in 20 out of 27 projects.

We evaluated the effectiveness of imbalanced data

processing techniques. We used three imbalanced

data processing strategies, SMOTE, Adaptive Syn-

thetic Sampling (ADASYN), and no strategy (called

NoStrategy for short), to solve the imbalanced problem.

As mentioned in Subsection 3.3, the SMOTE strategy

is a typical oversampling technique [21]. ADASYN is an-

other typical oversampling technique [26]. The key idea

of ADASYN is to weight different minority samples ac-

cording to the learning difficulty of data. ADASYN

can synthesize the data for the minority class that is

difficult to be modeled.

Fig.4 shows the evaluation values of precision, recall,

F -measure, and accuracy of random forest with three

sampling strategies in 27 projects. As shown in Fig.4,

SMOTE achieves the maximum value in all seven met-

rics, i.e., the precision, recall, F -measure for both cat-

egories and the accuracy. NoStrategy achieves a higher

value than ADASYN only in the recall for called higher-

order functions.

Finding 2. Experiments show that the SMOTE

strategy is an effective strategy of the imbalanced data

processing. Compared with using no strategy, the pre-

cision, recall, F -measure and the accuracy can be im-

proved with SMOTE.

5.3 RQ3. Which Features Are More Impactful

on the Prediction Results?

Higher-order functions are expected to abstract the

calling patterns of functions [27]. The features in Phof

are divided into three groups: code statements, func-

tion properties, and logs.

We tend to find out features that affect the predic-

tion of higher-order functions calls. In each project,

we used Pearson correlation coefficient to evaluate the

correlation between a feature and the predicted result.

Then we selected the top-10 features, which correlate

the most with the prediction results. We referred to

these top-10 features as dominant features.
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Fig.4. Average results of the random forest algorithm using three
strategies of imbalanced data processing in 27 projects.

In statistics, Pearson correlation coefficient is used

to measure the degree of the linear correlation between

two variables X and Y and the coefficient value is be-

tween −1 and 1 [28]. The absolute value of a coefficient

is 1 if X and Y can completely linearly correlate and

a coefficient is 0 if there exists no linear correlation.

A positive coefficient indicates that Y increases when

X increases; a negative coefficient indicates that Y de-

creases when X increases.

For each project in the experiment, the Pearson cor-

relation coefficient between each feature and the pre-

dicted result is calculated; then we sort all features

according to the absolute value of Pearson correlation

coefficient. Table 5 presents the list of top-10 domi-

nant features in the top 10 projects, which contain the

most higher-order functions among all projects. CP01

(eLoC of higher-order functions) appears in 21 out of

27 projects. In projects scalaz, zio, sbt, util, and

gatling, CP01 correlates the most with the predicted

result; meanwhile, CP04 (containing input functions or

output functions in the higher-order function) appears

in 18 out of 27 projects. CP04 shows the greatest cor-

relation with the predicated result in project finagle.

Table 5. List of Top-10 Dominant Features for the Top 10 Projects

Project 1 2 3 4 5 6 7 8 9 10

scalaz CP01 CS03 CP02 CS09 CP04 CS16 CS05 CS12 CS14 CS10

scala CP05 CG03 CS03 CS05 CG01 CP01 CS01 CS11 CS07 CS15

zio CP01 CP02 CS16 CS07 CS10 CS11 CS15 CS14 CS03 CS09

framework CS01 CP05 CP04 CS16 CP01 CS06 CS04 CG01 CP02 CS14

akka CP05 CP01 CS04 CG01 CP02 CS10 CS16 CP03 CG03 CS08

scalatest CP05 CS09 CS16 CP01 CP03 CS08 CS11 CS13 CS10 CP04

doobie CS14 CS12 CP03 CG02 CS05 CG01 CS11 CP04 CP05 CS13

sbt CP01 CP02 CS16 CS09 CP03 CS03 CS14 CG02 CS10 CS04

scalding CS05 CG02 CP05 CS14 CS10 CG03 CP02 CS09 CG01 CS08

dotty CS05 CS04 CP01 CP05 CS01 CS09 CP03 CS16 CS11 CP02

cat-effect CP03 CP01 CS16 CS11 CS15 CG02 CS14 CS05 CP02 CP04

util CP01 CP02 CS14 CS09 CS10 CG02 CP04 CS01 CG03 CS15

lila CP05 CS12 CG02 CS01 CP03 CG03 CS05 CS04 CS09 CP04

algebird CG01 CS03 CS10 CP01 CP04 CS16 CP02 CS01 CS12 CS05

intellij-scala CP05 CS05 CG01 CS01 CP01 CS08 CS09 CS15 CP04 CS14

polynote CP05 CP03 CP04 CS12 CS04 CG02 CG01 CS16 CS03 CS02

slick CP02 CP01 CS10 CS07 CS11 CS16 CS09 CS15 CG03 CS08

sangria CP05 CP04 CP03 CS05 CS10 CS07 CS11 CS03 CS13 CS12

http4s CS03 CP05 CP04 CS16 CS11 CS08 CS10 CP01 CG03 CS12

finagle CP04 CP01 CS09 CS16 CP02 CS08 CS12 CS05 CS07 CG01

playframework CP05 CG01 CS01 CG02 CS11 CP01 CS12 CG03 CS09 CP02

gatling CP01 CP02 CS05 CS16 CS14 CP04 CP05 CS09 CG02 CS10

scalikejdbc CS12 CP04 CS14 CS13 CS01 CG01 CS10 CS08 CS03 CS11

quill CP05 CP01 CP04 CG01 CS04 CS14 CS12 CS03 CG02 CS10

json4s CS12 CS05 CG01 CP03 CS03 CP01 CP04 CP02 CS16 CS02

circe CS03 CP01 CG03 CG02 CS14 CS16 CS09 CS01 CP03 CS12

scio CS03 CS14 CP01 CS01 CS08 CP04 CP02 CG02 CS15 CS07

Note: We labeled features that appear in over 2/3 projects, i.e., 18 times, in bold.
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From Table 5, we observe that CP01 and CP04 are

highly correlative with the prediction result. As re-

ported in Table 1, CP01 and CP04 belong to group CP,

i.e., features related to function properties. This obser-

vation shows that properties of higher-order functions,

such as the eLoC, have highly affected the prediction

result, i.e., the callings of higher-order functions.

To analyze features that affect the prediction result,

we calculate the distribution of the top-10 dominant

features in the top 10 projects. Fig.5 presents the per-

centage of each group of features that belong to the

top-10 dominant features in each project. Features of

group CS are the majority of all 27 projects. One possi-

ble reason is that group CS contains 16 features, which

are the majority of all extracted features.

We then count the ratio of dominant features in each

feature group as follows:

ratio(group) =
# dominant features from the group

# features in the group×# projects
,

where dominant features of each project are directly ex-

tracted from Table 5. Fig.6 presents the ratio of dom-

inant features in each feature group. We can observe

that the ratio of group CP is the highest, i.e., 0.600, and

the ratio of group CS is the lowest, i.e., 0.359. This ob-

servation is consistent with the conclusion of Table 5:

features in group CP are more influential on the pre-

diction result than features in the other two groups.

We evaluate whether the dominant features can rep-

resent all features in the prediction. Table 6 presents

the comparison between the top-10 dominant features

and all the 24 features in the top 10 projects. As

shown in Table 6, three out of 10 projects, i.e., akka,

scalatest and dotty, can obtain better prediction

with the dominant features than with all features. In

project dotty, all the evaluation metrics of predic-

tion with the top-10 dominant features are better than

the prediction with 24 features except for recall for

called higher-order functions. In projects akka and

scalatest, prediction with top-10 dominant features

achieves a higher value in precision for called higher-

order functions, recall for uncalled higher-order func-

tions, and F -measure for uncalled higher-order func-

tions. In the other seven projects under evaluation, the

accuracy with top-10 dominant features is lower than

the accuracy with all 24 features.

From Table 6, we find that dominant features can-

not fully represent all the 24 features. To this end,

we study whether the feature selection algorithms are

suitable for Phof. Feature selection, also called fea-

ture subset selection, aims to improve prediction results

by removing redundant and irrelevant features [29]. In

this study, we use two feature selection algorithms, i.e.,

information gain and correlation-based feature subset

selection (called CfsSubset for short). In information

gain, the feature selection is calculated based on how

much information the feature can bring to the classifi-

cation system [30]. The more information it brings, the

more important the feature is. The CfsSubset algo-

rithm is a feature selection that evaluates each feature
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based on the predictive ability in the attribute subset

and the correlation [31].
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Fig.7 presents the evaluation values of precision, re-

call, F -measure, and accuracy of random forest with

feature selection in 27 projects. In Fig.7, results with

the information gain algorithm and results with the Cf-

sSubset algorithm are worse than those with no feature

selection algorithm (Default). From Fig.7, we can find

that using feature selection cannot lead to significant

differences, compared with the prediction with no fea-

ture selection.

Finding 3. Two features, CP01 (eLoC of higher-

order functions) and CP04 (containing input functions

or output functions in the higher-order function), highly

correlate with the prediction result. The top-10 domi-

nant features can partially represent all 24 features in

the prediction. Meanwhile, the results obtained using

feature selection algorithms are not better than those

without feature selection.

5.4 RQ4. How Efficient Is Our Approach to

Prediction?

We calculate the time cost of Phof in each project

with the random forest algorithm and the SMOTE

strategy. The reason is that the random forest algo-

rithm and the SMOTE strategy achieve the highest ac-

curacy in the prediction in Subsection 5.1 and Subsec-

tion 5.2. We show the time cost of feature extraction,

model training, and model deployment for each project:

the cost of feature extraction is the time of extracting

features from source code and logs; the cost of model

training is the time of training the random forest al-

gorithm in the prediction; and the cost of model de-

ployment is the time of deploying the trained model to

the test set. Let Textraction, Ttraining, and Tdeployment be

the time cost of feature extraction, model training, and

model deployment, respectively. The total time cost of

Phof is called Ttotal.

Table 6. Comparison Between the Whole Set of 24 Features and the Top-10 Features on Higher-Order Functions from the Top 10
Projects

Project Feature Called Uncalled Accuracy

Precision Recall F -Measure Precision Recall F -Measure

scalaz All 24 0.760 0.787 0.773 0.677 0.642 0.659 0.727

Top-10 0.735 0.784 0.759 0.657 0.595 0.624 0.706

scala All 24 0.833 0.923 0.876 0.600 0.383 0.468 0.799

Top-10 0.836 0.910 0.872 0.574 0.406 0.476 0.794

zio All 24 0.674 0.604 0.637 0.847 0.883 0.865 0.803

Top-10 0.613 0.479 0.538 0.808 0.879 0.842 0.764

framework All 24 0.656 0.628 0.642 0.749 0.772 0.760 0.713

Top-10 0.620 0.584 0.602 0.722 0.751 0.736 0.683

akka All 24 0.815 0.846 0.830 0.777 0.737 0.757 0.800

Top-10 0.832 0.827 0.830 0.765 0.771 0.768 0.804

scalatest All 24 0.844 0.806 0.824 0.867 0.895 0.881 0.858

Top-10 0.883 0.791 0.835 0.863 0.926 0.893 0.870

doobie All 24 1.000 0.930 0.964 0.896 1.000 0.945 0.956

Top-10 0.989 0.900 0.942 0.855 0.983 0.915 0.931

sbt All 24 0.755 0.762 0.758 0.510 0.500 0.505 0.675

Top-10 0.736 0.743 0.739 0.471 0.462 0.466 0.650

scalding All 24 0.683 0.755 0.717 0.549 0.459 0.500 0.639

Top-10 0.627 0.734 0.676 0.444 0.328 0.377 0.574

dotty All 24 0.762 0.877 0.816 0.133 0.065 0.087 0.693

Top-10 0.786 0.868 0.825 0.300 0.194 0.235 0.715
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Fig.7. Average results of random forest algorithm with feature
selection in 27 projects.

Table 7 presents the time cost of Phof in seconds

with the random forest algorithm and the SMOTE

strategy. As shown in Table 7, the average time of

Phof in the top 10 projects is 472.795 seconds, which

consists of 472.708 seconds for feature extraction, 0.084

seconds for model training, and 0.003 seconds for model

deployment. This result suggests that our proposed

method is efficient in identifying calling-prone higher-

order functions.

Table 7. Time Cost of Feature Extraction, Model Training, and
Model Deployment of Phof in the Top 10 Projects

Project Textraction Ttraining Tdeployment Ttotal

scalaz 1 380.120 0.260 0.010 1 380.390

scala 916.590 0.170 0.010 916.770

zio 495.361 0.090 0.002 495.453

framework 223.944 0.070 0.001 224.015

akka 401.201 0.070 0.001 401.272

scalatest 175.465 0.030 0.001 175.496

doobie 158.625 0.040 0.001 158.666

sbt 445.430 0.040 0.001 445.471

scalding 139.642 0.030 0.001 139.673

dotty 390.702 0.040 0.001 390.743

Average 472.708 0.084 0.003 472.795

Finding 4. Our proposed approach is efficient: the

average time cost of Phof in the top 10 projects is 473

seconds.

6 Threats to Validity

We discuss the threats to the validity to our work

in three dimensions.

Threats to Construct Validity. In our study, we

extracted 24 features from source code and logs from

three groups, including code statements, function prop-

erties, and logs. However, it is possible to design better

features to characterize the prediction problem via de-

tailed manual selection. Meanwhile, we chose six typi-

cal machine learning algorithms, three typical strategies

of imbalanced data processing, and two typical feature

selection algorithms according to our experience. There

may exist several algorithms or processing strategies

that can achieve better results. The design of this work

is to assist testers in scheduling higher-order functions

in manual testing. The evaluation in the paper does

not count the manual effort by testers. Instead, we

consider that higher-order functions that will be called

in future should be tested first. This provides the sce-

nario of using our approach. In addition, the motiva-

tion of this work is to prioritize higher-order functions

in a limited resource. It is possible that uncalled func-

tions contain bugs. We did not explore hidden bugs in

uncalled functions since potentially called higher-order

functions should expose bugs first.

Threats to Internal Validity. In machine learning,

the setting of parameters is important: the prediction

may be hurt by the setting of parameters. In our study,

we set parameters according to the API document of

the Weka document. These parameter values are not

well-tuned for our dataset. A better way of setting

parameter values is to conduct a large-scale experiment

and tune parameter values accordingly. Moreover, this

study did not analyze the calling-proneness for stand-

alone libraries. Detecting the calling chains of these

libraries requires huge efforts. We leave this work as a

piece of future work.

Threats to External Validity. Our study selected

27 Scala projects from GitHub. Such selection may

hurt the generality of our study. We do not claim that

our prediction result can be generalized to other Scala

projects or even other functional languages, such as

Haskell. This results in a threat to the generality.

7 Related Work

We present the related work in two categories, the

studies on higher-order functions and the studying on

Scala programs.

7.1 Studies on Scala Programs

The Scala programming language has received much

attention. Existing work has studied the Scala lan-
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guage and Scala programs. Reynders et al. [32] defined

a multilevel language, Scalagna, which combines the

existing Scala JVM and the JavaScript ecosystem into

a single programming model. Nystrom [11] designed a

Scala framework to implement efficient super-compilers

for arbitrary programming languages. In the field of

symbolic execution, Cassez and Sloane [33] proposed

ScalaSMT, which supports the Satisfiability Modulo

Theory (SMT) solving in Scala. In the field of edu-

cation, van der Lippe et al. [3] used the Scala program-

ming language and the WebLab online learning system

to examine quizzes by students. Kroll et al. [4] proposed

a framework that supports straightforward and simpli-

fied the translation between formal specifications and

executable code.

7.2 Studies on Higher-Order Functions

The higher-order function is a feature of the Scala

language. Higher-order functions are employed as a res-

olution for complicated problems. Xu et al. [34] con-

ducted an empirical study on the use of higher-order

functions and analyzed the Scala code in 35 open-source

projects. Bassoy and Schatz [5] used optimized higher-

order functions to quickly calculate tensors, and their

optimized higher-order functions achieved 68% of the

maximum throughput of the Intel Core i9-7900X. Nak-

aguchi et al. [6] treated services as functions and used

higher-order functions to combine these services with-

out creating new services.

Testing and validating higher-order functions is dif-

ficult due to the complexity of higher-order functions.

To test a higher-order function, a tester has to under-

stand the requirements and then writes an input func-

tion for the higher-order function under test. Koopman

and Plasmeijer [35] proposed a method to test higher-

order functions by mimicking and controlling the struc-

ture of functions. This method can find errors that

have not occurred in higher-order functions for sev-

eral years. Selakovic et al. [7] proposed LambdaTester,

which uses feedback techniques to automatically gene-

rate test cases for higher-order functions in JavaScript.

For the validation of higher-order functions, Madhavan

et al. [36] proposed a novel method to specify and ver-

ify the resource utilization of higher-order functional

programs using lazy evaluation and memory. Voirol et

al. [37] proposed a validator for pure higher-order func-

tional Scala programs; this validator supports the vali-

dation of arbitrary function types and arbitrary nested

anonymous functions. Rusu and Arusoaie [38] embed-

ded a higher order functional language with imperative

features into the Maude framework to verify higher-

order functional programs. Lincke and Schupp [39] pro-

posed a transformation that converts higher-order func-

tions to lower-order functions by mapping higher-order

types to lower-order types.

Different from existing work, we design an auto-

mated approach to the prediction of future callings

of higher-order functions. Instead of directly testing

higher-order functions, we identify higher-order func-

tions that need to be tested to assist the manual testing

by testers.

8 Conclusions

Manually testing a higher-order function is difficult.

In this paper, we proposed an approach to the identi-

fication of calling-prone higher-order functions in Scala

programs, namely Phof. This approach can predict

whether a higher-order function will be called in the

future and help testers to identify higher-order func-

tions that need to be tested first. Our work can save

the time cost of testing higher-order functions in a lim-

ited time budget. Our study showed that the random

forest algorithm with the SMOTE strategy in Phof is

effective in the prediction.

In future work, we plan to extract new features such

as semantic features to enhance the prediction perfor-

mance. A study on understanding dominant features

could help design the feature extraction. We also plan

to investigate the calling-proneness of code libraries

since the libraries are originally designed for callings.

We are about to conduct a study to understand rea-

sons for uncalled higher-order functions, including the

reason from source code and the reason from deve-

lopers or testers. Cross-project evaluation is another

future work. We aim to examine the identification of

calling-proneness higher-order functions beyond a sin-

gle project.
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