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Abstract Iterative control structures allow the repeated execution of tasks, activities or sub-processes according to the

given conditions in a process model. Iterative control structures can significantly increase the risk of triggering temporal

exceptions since activities within the scope of these control structures could be repeatedly executed until a predefined

condition is met. In this paper, we propose two approaches to unravel iterative control structures from process models.

The first approach unravels loops based on zero-one principle. The second approach unravels loops based on branching

probabilities assigned at split gateways. The proposed methods can be used to unfold structured loops, nested loops

and crossing loops. Since the unfolded model does not contain any iterative control structures, it can be used for further

analysis by process designers during the modeling phase. The proposed methods are implemented based on workflow graphs,

and therefore they are compatible with modeling languages such as Business Process Modelling Notation (BPMN). In the

experiments, the execution behavior of unfolded process models is compared against the original models based on the concept

of runs. Experimental results reveal that runs generated from the original models can be correctly executed in the unfolded

BPMN models that do not contain any loops.

Keywords business process management, iterative control structure, unravelling, zero-one principle, branching proba-

bility

1 Introduction

Business process management (BPM) deals with

controlling the execution of application processes and

activities according to pre-defined process models

(workflow schemas) [1]. In many organizations, BPM

is used to effectively model and enact their busi-

ness processes with respect to organizational strategies

and available resources. Workflow Management Sys-

tems (WfMS) can be used to define and use workflow

systems [2]. WfMS can systematically monitor the exe-

cution associated with a business process. Iterative con-

trol structure (loop) is one of the most commonly used

control flow constructs in business processes. Loops

allow the repeated execution of tasks, activities or sub-

processes according to the given conditions in a busi-

ness process model. The descriptions of various loops

are addressed in [3, 4]. During the enactment of busi-

ness processes, iterative control structures in process

models can significantly increase the risk of triggering

temporal exceptions since activities within the scope of

these control structures could be repeatedly executed

until a predefined condition is met. It is also difficult

for the workflow administrator to monitor the status

of the process execution due to the iterations of these

activities. However, a process designer may need to

include these iterative control structures to better re-

flect the actual business processes during the modeling

phase.

One possible solution to this problem is to trans-

form the iterative control structures into workflows that

do not contain any loops. After these loops are trans-

formed, the resulting workflows can be analyzed for po-

tential problems by the process designers. Loop un-

rolling is one of the well-known methods used in op-

timizing compilers [5]. Loop unrolling can be used to

increase the efficiency of programs by reducing instruc-

tions that control the loop [6]. Simple approaches for en-

tirely removing loops in process models have been pro-

posed in recent years. Yu et al. [7] proposed a method
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for removing iterative routing constructions. However,

their method only considers simple structured loop pat-

tern and the maximal number of iterations must be

specified for each loop beforehand. Eder and Pichler [8]

also proposed a method for transforming a simple struc-

tured loop into several executions paths for calculating

a duration histogram. In their approach, the number

of iterations and corresponding probabilities are calcu-

lated from the historical logs. The main purpose of

their approach is to analyze the temporal properties of

the workflow and thus it is not suitable for use in the

process models which often contain complex iterative

control structures.

In this paper, we propose two approaches to un-

ravel (unroll) structured loops, nested loops and cross-

ing loops. The proposed methods are based on workflow

graphs and therefore they are compatible with model-

ing languages such as Business Process Modelling Nota-

tion (BPMN). The first method proposed in this paper

supports Zero-One principle [9]. In this principle, loops

are allowed to be executed at most once. Zero-One

principle can be further extended for designing loops

which are restricted by a maximum number of itera-

tions. The second proposed method allows unravelling

of loops based on branching probabilities assigned at

the split gateways. These probabilities can be extracted

from audit trails or previous execution logs. Branching

probabilities allow process designers to control the iter-

ation of loops based on a probability distribution. Both

Zero-One principle and branching probabilities enable

process designers to achieve finer control on how these

iterative control structures are to be executed in the

workflows. The unraveled workflow models can be ana-

lyzed for any potential issues by process designers or by

automated verification programs. For example, after

unraveling a crossing loop based on branching probabi-

lities assigned at the split gateways, a process designer

can estimate the times each task in the crossing loops is

going to be executed. The unravelling also provides the

detailed visualization of the control flow of the process

model after all loop-back branches are removed.

In this article, several examples are used to illus-

trate the step-by-step unfolding of various process mod-

els based on branching probability in decision nodes.

Based on the concept of runs, we have also conducted

several experiments to analyze the execution behavior

of unfolded process models by comparing against the

original models. From the experimental results, we

find that each set of 10 000 runs generated from the

original models can be correctly executed in the un-

folded BPMN models that do not contain any loops.

In summary, the contributions made in this paper are

two folds.

• In this paper, we propose two novel unravelling

methods that can unfold not only simple structured

loop patterns, but also nested and crossing loops.

• The proposed methods can unravel loops based on

branching probabilities in addition to Zero-One princi-

ple.

The rest of the paper is organized into five sections.

A review of recent work is given in Section 2. The

methods for unravelling of iterative control structures

are given in Section 3. In Section 4, we detail the experi-

mental results for verifying the correctness of unfolded

models. In Section 5, we summarize our ideas and fu-

ture work.

2 Related Work

Transforming or reducing loops from programs has

been extensively studied in the past. In the context

of code optimization by compilers, loop unrolling [10]

is one of the optimization techniques for reducing the

cost of loop overhead [11]. Loop unrolling (also called

loop unwinding) is used by compilers to optimize the

loops and utilizes the CPU pipeline in the best possible

way [12]. In recent work, loops were unrolled based on

a predefined number of fixed iterations [13] or Zero-One

principle [9]. In [13], loop unrolling transforms a loop

by a factor of K in which the loop body is repeated K

times and the loop iteration space is reduced or elimi-

nated when the loop is fully unrolled.

According to [14], loop unrolling can significantly

improve the performance because programs usually

spend a significant fraction of their execution time in-

side the loops. In [15], Huang and Leng proposed an

approach for unrolling different types of loop constructs

such as FOR-loops and WHILE-loops. In [12], Velkoski

et al. studied the performance impact of loop unrolling

on various processor types and memory patterns. Their

study concluded that loop unrolling achieves greater

speed-up on Intel, rather than AMD CPU. Recently,

Weinhardt [16] proposed a transformation which allows

the optimization of WHILE loops nested within a FOR

loop. The proposed transformation was designed to

produce a significant increase in speed over software

execution in large FPGAs by allowing multiple para-

llel tasks to be executed. The difference between ex-

isting unrolling methods and the unravelling methods

proposed in this paper is that in the former methods,
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structured loops and simple-nested loops are only consi-

dered. Whereas in our approach, we also consider cross-

ing loops.

In [17], a loop unrolling approach for loops with

arbitrary (variable) execution counts was proposed for

worst-case execution time (WCET) reduction in real-

time applications. In traditional unrolling approaches,

loops with unknown execution courses are unrolled with

fixed unrolling factors. However, the approach pro-

posed in [17] is based on the code predication method

used in software pipelining of loops. The proposed ap-

proach in [17] performs code predication in conjunction

with the unrolling steps. The technique starts from

a simple data dependent loop (iteration dependent on

the value of a variable) and directly generates an un-

rolled and predicated version. The approach proposed

in [17] is also combined with other unrolling techniques

for data dependent loops and loops with fixed execution

counts.

The iterative control patterns (loop patterns) can be

classified into structured loop (with pre-test or post-test

condition) and arbitrary loop. A pre-test structured

loop is a while loop construct equivalent to the while-do

structure in programming languages. A post-test struc-

tured loop is a repeat loop construct which is equivalent

to a repeat-until structure. In general, it is possible to

convert these two types of structured loop constructs

into one another without any changes of semantics. The

arbitrary loop can be used to model the repetition of

processes in an unstructured way without the need for

specific looping operators or restrictions [3]. Structured

loop pattern is commonly supported in many workflow

products. In the context of scientific workflows, due

to the exploratory nature of large-scale experiments,

workflow configuration is likely to change during its

life cycle. In [18], a form of iteration called dynamic

loop is introduced where the condition of the loop and

the data being processed in the loop may be adapted

during the execution. In the context of manufactur-

ing systems, loops are often denoted as rework loops

to model the rework of defective parts. Due to their

significant impact on the performance of manufactur-

ing systems, rework loops were also extensively studied

in several performance evaluation methods [19, 20]. In

transactional workflows area, Choi et al. [21] adopted an

approach based on cycle analysis graph (CAG) to for-

mally represent a cycle as a graph to determine whether

it will terminate or not. In their approach, the cycles

in BPTrigger [22] are categorized as incremental, decre-

mental, replacement, and rework.

Recently, a number of researchers have proposed

methods to transform an arbitrary cycle model into

a model with structured loops, each containing only

one entry point and one exit point. Structure loops

are supported by modeling languages such as Business

Process Execution Language (BPEL). In recent work,

a number of techniques [23–25] have been proposed to

restructure or transform the unstructured loops from

process models into equivalent structured loops. One of

the widely-used techniques for analyzing arbitrary loops

or unstructured flow graphs in programming languages

or complier theory is the construction of a Structuring

Tree. The aforementioned technique first decomposes

an undirected or a directed process model graph into a

tree structure. Next, part of the unstructured flow in

the tree is extracted to detect potential errors such as

endless-loop or deadlock in the process model. Several

techniques are proposed to transform the unstructured

model into a structure one according to the detected

errors. Polyvyanyy et al. [23] proposed a method for

searching hidden unstructured regions by the SQRT-

tree technique in a process model. In their approach,

unstructured regions are transformed into structured

regions. They also presented the transformation of a

multi exit arbitrary loop into an equivalent structured

loop which can be accepted by BPEL.

In [26], Eshuis and Kumar defined an automated

method to convert an unstructured process model

containing a structure loop into an equivalent semi-

structured process model, which contains blocks and

synchronization links between parallel branches. In

the context of enhancing reliability in long-running

programs in Cloud and Fog computing, Siavvas and

Gelenbe [27] proposed a mathematical model to estimate

the average execution time of the program. The pro-

posed model also considers programs containing single

loops and nested loops.

In [28] Williams and Ossher proposed methods for

converting loops with multiple entry or exit points into

equivalent structured forms. The approach proposed

in [28] does not entirely remove the loops. Rather, it

eliminates any unstructuredness from the control flow

diagrams and converts them into an equivalent flow di-

agrams. Koehler and Hauser [24] also proposed a novel

transformation method based on Continuation to map

unstructured cyclic business process models to func-

tionally equivalent workflows which support structured

cycles. They transformed the loop structure into a set

of abstract continuation equations similar to the SET

equations and applied the rules to manipulate the links
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in the graph. After the transformation, all unstructured

cycles will be completely replaced by well-structured

cycles. However, the transformed structured models

can only be designed in modeling language such as

Business Process Execution Language for Web Services

(BPELWS). Kiepuszewski et al. [29] analyzed potential

methods for transforming cycles and provided examples

for transforming arbitrary loop structures into struc-

tured ones by re-allocating nodes as well as modify-

ing relevant conditions. The method by Kiepuszewski

et al. [29] duplicates the nodes which occurred in the

paths of multi entry or exit loops. Their approach also

uses conditional nodes to eliminate the unstructured

entry or exit path in order to restructure the model

with structured loop pattern.

In the workflow verification area, Heinze et al. [30, 31]

proposed methods for unfolding conditional control

flow graphs containing loops into unconditional con-

trol flows. The objective of their approach is to pro-

duce a verifiable Petri Nets-based process model from

the input process model. In [32], Choi et al. proposed

a structural verification approach for cyclic workflow

models by means of acyclic decomposition and reduc-

tion of loops. In their stepwise verification approach,

nested loops are reduced in bottom-up order to become

acyclic subgraphs. The difference between the approach

presented in [32] and our approach is that, in our ap-

proach, crossing loops are also considered for unfolding.

Dumas et al. [25] also proposed a method for un-

raveling unstructured process models into structured

models. In their method, Programming Structuring-

Tree (PST) technique is used to decompose the model

and the relationship between each component is deter-

mined. Then the model is restructured without alter-

ing the semantics. Although cyclic models cannot be

handled directly in their method, a technique was pro-

posed for transforming the cyclic models into GOTO-

to-WHILE loop constructs. However, all these methods

focus on transforming unstructured process models into

structured ones and the resulting models may still con-

tain structured loops.

The most relevant start-of-the-art methods based on

node duplication are proposed in [7,8]. Yu et al. [7] pro-

posed a method for unfolding a structured loop based

on node duplication. However, their method only con-

siders the simple structured loop pattern. In addition,

the maximum number of iterations must be pre-defined

in unfolded models. The method proposed in this paper

is similar to Yu et al.’s approach in unfolding. However,

in our approach, we consider nested and crossing loops

as well as the probability distributions at the gateways

to better reflect the actual business logic for repeat-

ing a set of activities. Eder and Pichler [8] proposed a

method to split the probability iteration into sequences

and conditions in order to analyze the temporal pro-

perty. Their method copies a node incrementally into

a set of execution paths respectively based on the iter-

ation number. Their method is useful for analyzing the

duration of the nodes within the iterative control struc-

ture. The main purpose of their approach is to analyze

the temporal properties of the workflow. In contrast

to their approach, in this paper, we propose two novel

unravelling methods that can unfold not only simple

structured loop patterns, but also nested and crossing

loops.

3 Unravelling Iterative Control Structures in

Business Processes

Three types of iterative control structures are consi-

dered in our approach. A structured-loop [3] is a control

flow structure with only one entry and one exit point.

Generally, a structured loop has either a pre-test or a

post-test condition to determine the start and end of

a loop. In our method, we mainly consider the post-

test case. In Fig.1, the structured loop contains a loop

entry point (join gateway g1) and a loop exit point

(split gateway g2). The condition of looping can be

an event trigger, a counter, or a probability condition.

A crossing loop is a control flow structure comprising

two or more loops and only some part of the loops in

the structure are overlapped. An example of a simple

crossing loop is depicted in Fig.2. A simple crossing

loop contains only two loops which are crossing each

other. In this example, one of the outgoing branches

from gateway g4 connects to a join gateway g2 which

is inside another loop. A complex crossing loop may

contain more than two crossing loops. An example of a

complex crossing loop is given in Fig.3. A nested loop

contains loops which are embedded in other loops. In

a simple nested-loop, there is only one structured-loop

surrounded by another loop. Fig.4 is an example of a

simple nested-loop. On the contrary, if one or more

loops or a complex loop structure is surrounded by an

outer loop, we call this structure a complex nested-loop.

In Fig.5(a), there are two structured-loops surrounded

by an outer loop. In Fig.5(b), the inner loop is a nested-

loop. We made following assumptions for the proposed

methods.
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T1 X T2

g1

X

g2

T3

T4

START END

Fig.1. Example of a structured loop.

1) Loops structures with exclusive decisions are only

considered in our method.

2) Only activities are allowed in back edge of the

loop. A back edge is an edge that a workflow instance

can take to return the start point of the loop.

3) Tasks and gateways in a loop are independent

with entities or other loops.

According to assumption 1, we only consider the

loop with exclusive gateways and loops with parallel

gateways at decision point are not considered. There-

fore, both the split and the join gateway for each loop

are Exclusive OR gateway. This assumption is to ensure

that only one outgoing branch will be chosen. In ad-

dition, we assume that each gateway should only have

no more than two out-going (split) or in-coming (join)

branches. However, it is possible to transform gateways

with multiple branches into gateways containing only

two out-going branches by creating new gateways and

by assigning the branches to these gateways. Accord-

X XX X

START END

T1 T2 T3 T4 T5

T7

T6

g4g3g2g1

Fig.2. Simple crossing loop.

T8

T8

T2

T2

T1

g1 g2 g3 g4 g4 g5

g1 g2 g3 g4 g4 g5

T4 T5 T6 T7

T10T9

T10
T9

T1 T3

T3

T4 T5 T6 T7

Loop L1

Loop L1

Loop L2

Loop L2

Loop L3

Loop L3

END

START

START

END

XX X X X X

XX X X X X

(b)

(a)

Fig.3. Complex crossing loops.

 

X XX X

START END

T3 T5T1

T6

T7

T2 T4

g1 g2 g3 g4

Fig.4. Simple nested-loop.
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X X X X X X

XXXXXX

START

START

END

END

T1

T1 T2

T2 T3

T3 T4

T4 T5

T5 T6

T6 T7

T7

T8

T8

T9

T9 T10

T10

g1

g1 g2

g2 g3

g3 g4

g4 g5

g5 g6

g6

(b)

(a)

Fig.5. Examples of complex nested-loops.

ing to assumption 2, the back edge of the loop should

only contain tasks or activities since any gateways in

a back edge increase the difficulty in detecting and un-

ravelling of the loops. According to assumption 3, the

attributes of tasks and gateways among different loops

are independent no matter whether they are overlapped

or nested. Therefore, the conditions of looping back are

independent.

In the proposed unravelling method, we consider

business processes which are modelled in Business Pro-

cess Modelling Notation (BPMN). The overview of the

unravelling process is given in Fig.6. First, Loop Ex-

ploring traverses the imported BPMN model using the

Depth-First Search (DFS) algorithm to find loops in

the process model. Second, the loops from the previ-

ous step are parsed by Loop Parsing module. It then

stores the loops information in a data structure called

Loop Table. Loop parsing also uses a table to extract

the probabilities assigned to the split gateways in an-

other data structure called Probability Table. Third,

Loop Unfolding module selects and unfolds a loop from

the Loop Table. Loop Unfolding is repeatedly executed

until there are no more loops in the process model.

3.1 Loop Exploring

The Loop Exploring is a procedure to search all

loops in a given BPMN model using a DFS algorithm.

In the proposed method, all paths are traversed from

the start event to the end event of a process model. A

process model may contain more than one path when

it contains a decision construct.

Start

BPMN

Model

1. Loop

Exploring
Unfolded

Models

Finish
Is Loop
Found?

2. Loop

Parsing

Loop Table

No

Yes

Probability

Table

3. Loop

Unfolding

Fig.6. Overview of the unravelling process.

A workflow graph is a tuple of directed graph WG =

(N,T,G, PG,EG,E).

N is a finite set of nodes or vertices. T ⊂ N is

a finite set of tasks or activities. G ⊂ N is a finite

set of gateways. PG ⊂ G is a finite set of parallel

gateways. EG ⊂ G is a finite of exclusive gateways.

G = PG ∪ EG. N = T ∪G. E ⊆ N ×N is finite set of

directed edges that are also the flow relation between

two nodes. T S is the start event of workflow and TE is
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the end event of the workflow.

The Loop Explorer module uses a set of paths EPath

in traversing. For the nodes containing one out-going

route, the Loop Explorer adds them into the current

path. For any nodes containing more than one out-

going route, it clones the current path and inserts the

new path for later traversing. The exploring is stopped

when an end event or a visited join gateway is reached.

A join gateway is used in discovering potential loops at

the later stage.

An example of exploration is illustrated in Fig.7.

The exploration of all paths is ended when traversing

each of them reaches the end event. The set of paths

found by Loop Explorer is as follows.

EPath = {e1, e2, e3} ,

e1 =

{
(START, T1) , (T1, g1) , (g1, T4) , (T4, g3) ,

(g3, T3) , (T3, g4) , (g4,END)

}
,

e2 =

{
(START, T1) , (T1, g1) , (g1, g2) , (g2, T2) ,

(T2, g3) , (g3, T3)

}
∪{(T3, g4) , (g4,END)} ,

e3 =

{
(START, T1) , (T1, g1) , (g1, g2) , (g2, g4) ,

(g4,END)

}
,

e1 ∪ e2 ∪ e3 ⊆ E.

Identifying Loop. The workflow model is likely to

contain a loop when a previously visited join gateway

is reached during the traversal. To identify the exis-

tence of a loop in a given path, we define the function

loop (e, x) in (1). Parameter e is an exploring path and

x is the join gateway which was previously visited.

loop(e, x) : x ∈ {m|(n,m) ∈ e}, e ⊂ EPath, x ∈ N.(1)

In (1), n and m represent the start and the end

nodes of an edge in the exploring path e respectively.

The function loop(e, x) checks all paths from the set of

paths (Epath) found by the Loop Explorer module. The

function returns true when a previously visited node x

is equal to the target node m of one of the edges in a

path. The following example in Fig.8 is used to illus-

trate the loop identification process.

In the following paragraphs, we illustrate a step-by-

step example of identifying loops based on an SESE

process model depicted in Fig.8. In this example, we

assume that the path exploring module has already

reached gateway g2 and recorded two paths e1 and e2.

EPath = {e1, e2} ,

e1 =

{
(START, T1) , (T1, g1) , (g1, T2) ,

(T2, g2) , (g2, T4)

}
,

e2 =

{
(START, T1) , (T1, g1) , (g1, T2) ,

(T2, g2) , (g2, T3)

}
.

Next, path e1 is used to identify a loop. According

to (1), function loop (e1, g1) = true because g1 has been

already visited. Path e2 does not contain any loop.

EPath = {e1, e2} ,

e1 =

{
(START, T1) , (T1, g1) , (g1, T2) ,

(T2, g2) , (g2, T4) , (T4, g1)

}
,

e2 =

{
(START, T1) , (T1, g1) , (g1, T2) ,

(T2, g2) , (g2, T3) , (T3, END)

}
.

Any loops found during the exploration are stored in

a data structure called Loop Table which can be repre-

sented as an eight tuple LT = (ID, EGJ , EGS , EFS ,

EFE , EBS , EBE , GF ). ID is the unique identifier of

X X X X

START
END

T1

T4

T2 T3

g2

g1
g3 g4

Fig.7. Example of loop exploration.

 

T1 X T2 X T330%

T4

70%

g1 g2
START END

Fig.8. Example of loop identification.
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the loop. EGJ ∈ EG is the loop entry point of a loop.

EGS ∈ EG is the loop exit point of a loop. EFS ⊂ E

is the edge at the start of a forward flow. EFE ⊂ E is

the edge at the end of a forward flow. EBS ⊂ E is the

edge at the start of a backward flow. EBE ⊂ E is the

edge at the end of a backward flow. GF ⊂ G is the set

of gateways in a forward flow.

The loop entry point is an Exclusive OR join gate-

way leading to a loop region. The loop exit point is an

Exclusive OR split gateway. The forward flow is the

flow from the loop entry point to the loop exit point.

We can define the Loop Table for the example given in

Fig.8 as follows.

LT (1) =

(
L1, g1, g2, (g1, T2) , (T2, g2) ,
(g2, T4) , (T4, g1) , {g1, g2}

)
.

3.2 Loop Parsing

Loop Parsing is a procedure for removing all mis-

recognized loops in the Loop Table. It is also used to

identify the relation among nested-loops, crossing loops

and structured loops. The overview of the loop parsing

process is illustrated in Fig.9.

Duplicate loops are the loops which are recognized

more than once during loop parsing process. Individual

loops are used to denote any remaining loop after pars-

ing the process model. An individual loop is a struc-

tured loop without any nesting or crossing. The reason

for removing duplicate loops is that in some situations,

a loop may be recognized twice in two paths which are

created by a split gateway. There are three situations

in which a loop can be identified more than once.

Case 1. When a loop has two or more entry points

(XOR join gateways) and one exit point (XOR split

gateway).

In Fig.10, there are two paths entering the loop from

gateways g2 and g3. Therefore, we obtain two loops L1

and L2 as the result of Loop Exploring.

LT (1) =

(
L1, g2, g4, (g2, T2) , (T3, g4) ,
(g4, g2) , (g4, g2) , {g2, g3, g4}

)
,

LT (2) =

(
L2, g3, g4, (g3, T3) , (T3, g4) ,

(g4, g2) , (T2, g3) , {g3, g4}

)
.

Let l and m be two loops in a Loop Table and they

are considered duplicate loops if the following function

dup1 (l,m) returns true.

dup1 (l,m)

=

 true, if
(
l.EGS = m.EGS

)
AND

(l.GF = (m.GF ∪ l.EGj)),
false, otherwise.

(2)

The function dup1 (l,m) returns true when 1) the

loop exit points of both loops (l and m) are the same

and 2) the set of gateways from loop l in the forward

flow is equal to the union of the set of gateways from

loop m in the forward flow and the loop entry point of

loop l. In the preceding example, we can observe that

dup1 (LT (1) , LT (2)) = true. Therefore, L1 will be se-

lected for unfolding since L2 contains a gateway in the

forward flow.

Case 2. In this case, a loop has more than one en-

try point (XOR join gateway) and one exit point (XOR

split gateway). If a loop contains multiple exit points,

this loop will be recognized more than once during loop

exploring. The entry and the exit points of each loop

recorded will also be different.

In Fig.11, there are two paths entering the loop from

gateways g2 and g4. Therefore, we obtain two loops L1

and L2 from the Loop Exploring process.

 

Start End

Remove

Duplicate

Loops

Parse 

Nested

Loops

Parse 

Nested

Loops

Parse 

Individual

Loops

Fig.9. Overview of the loop parsing process.

X X XX

START END

T1 T2 T3

T4

g1

g2

g3

g4

Fig.10. Example workflow model for case 1.
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T1 X T2X T4

T6

g1 g5g2

XX

g4

X T5

g6

X

T7

g3

T3

START END

Fig.11. Parsing a duplicate loop in case 2.

LT (1) =

(
L1, g2, g5, (g2, T2) , (T4, g5) ,

(g5, T7) , (T7, g2) , {g2, g3, g4, g5}

)
.

LT (2) =

(
L2, g4, g3, (g4, T4) , (T2, g3) ,

(g3, T3) , (T3, g4) , {g3, g4, g5, g2}

)
.

Let l and m be the two loops in the Loop Table

and they are considered duplicate loops if the following

function dup2 (l,m) returns true.

dup2 (l,m)

=

 true, if (l.EGS 6= m.EGS) AND
(l.GF = m.GF ),

false, otherwise.
(3)

The function dup2 (l,m) returns true when 1) the

set of gateways from both loops (l and m) in the for-

ward flow are the same and 2) the loop exit points

of both loops (l and m) are different. In this ex-

ample, we can observe that dup2 (LT (1) , LT (2)) =

dup2 (LT (2) , LT (1)) = true. In this case, we select

only one of the loops to unfold.

Case 3. Duplicate loops will be recorded when there

are two or more paths leading to the loop. For the ex-

ample given in Fig.12, two loops will be recorded in the

Loop Table and one of the loops will be removed after

parsing.

LT (1) =

(
L1, g3, g4, (g3, T3) , (T3, g4) ,

(g4, g3) , (g4, g3) , {g3, g4}

)
,

LT (2) =

(
L2, g3, g4, (g3, T3) , (T3, g4) ,

(g4, g3) , (g4, g3) , {g3, g4}

)
.

Parsing Nested Loops. A hierarchical tree structure

is used to record the relationship of loops in a nested

loop. The root node of the tree is the outmost loop and

all leaf nodes are the inner loops. A loop is not a nested

loop if there are no edges connecting to the nodes in the

tree. We define function CHILD(nl) for constructing

the hierarchical tree. Function CHILD(nl) returns the

set of immediate child nodes from the sub-tree at node

nl. To identify the relationship among loops in a nested

loop, the proposed method will compare all loops in

the Loop Table to build the hierarchical tree. In to-

tal, Sn = k(k − 1)/2 rounds of comparison are needed

where k is the total number of loops in the Loop Table.

The algorithm for parsing the loops and building the

hierarchical tree is given in Algorithm 1.

An example process model containing seven nested

loops is depicted in Fig.13. The relationship structure

given in Fig.14 can be obtained from applying Algo-

rithm 1 to the process model from Fig.13. According

to the computed tree, L4 is the outermost loop. L3, L5

and L7 are the inmost loops and L6 does not have any

relationship to other loops.

Parsing Cross Loops. The relationship of loops

within a crossing loop can be defined as a directed

graph. An edge from the graph denotes the crossing

relationship between two loops. The node at the tar-

get node of a directed edge drawn in a solid line is the

left loop and the node at the target node of a directed

edge drawn in a dashed line is the right loop. We define

two functions for constructing the relationship graph.

 

T1 X T2 X T3

T4

g1

g4

XX

g3

g2

START END

Fig.12. Example process model containing two or more paths leading to the loop.
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Function LEFT (cl) returns the left loops of node cl.

Function RIGHT (cl) returns the right loops of node cl.

To build the relationship graph among crossing loops,

Algorithm 2 performs pairwise comparisons among all

the loops from the Loop Table. A total of k(k − 1)/2

comparisons will be performed and k is the total num-

ber of loops in the Loop Table.

An example of a process model containing seven

crossing loops is depicted in Fig.15. The results of ap-

plying Algorithm 2 to the process model are given in

Fig.16. In this example, L4 and L7 are the leftmost

loops. L1, L3 and L5 are the rightmost loops. L5, L6

and L7 are crossing with each other’s and they are part

of a non-chained complex crossing loop structure.

After parsing the process model for nested loops and

crossing loops, remaining iterations are labelled as in-

dividual loops.

3.3 Loop Unfolding

Unfolding is the core component of the proposed

method. Loop unfolding includes the algorithms for

calculating probability conditions and step-by-step un-

folding of each loop.

3.3.1 Probability Computation

In real-world business processes, a loop should not

be allowed to execute indefinitely. However, it is dif-

ficult to accurately predict the exact number of iter-

ations during run-time [16]. The number of iterations

can be estimated from the past execution history, ex-

perts’ opinion, and relevant statistics of the business

process. In this paper, we propose a probability-based

method for estimating the maximum number of itera-

tions. Specifically, we use a pre-defined tolerance value

to determine the upper limit of iterations. Whenever

a loop is iterated, an accumulated probability assigned

to the split gateway is reduced. When the accumu-

lated probability is smaller than the tolerance, the loop

will be stopped from iterating. Intuitively, a loop is

less likely to be executed again when the accumulated

probability is low.

Algorithm 1. Function BuildNLTree( ) for Building the Relationship Tree of a Nested Loop

Input: Loop Table L which is recorded in Loop Explorer

Output: Nested-Loop Relation Tree NL

1: Let sizeofLT be the size of L

2: for i = 1 . . . to (sizeofLT − 1)

3: Let m as the loop at L[i]

4: for j = 2 . . . to sizeofLT do

5: Let n be the loop at L[i + 1]

6: if m’s loop exit point is not equal to n’s loop exit point and

7: m’s loop entry point is not equal to n’s loop entry point and

8: m’s loop exit point and m’s loop entry point are inside n then

9: % Two loops are Nested-Loop; m is the inner loop and n is the outer loop

10: if sub-function SuccExist(CHILD (m) ,m) returns false then

11: Insert m into CHILD (n)

12: Call function NOT ROOT (m) to set m as not the root of the tree

13: end if

14: end if

15: end for

16: end for

17: return NL

18: sub-function SuccExist(s, target):

19: begin

20: if s is empty then

21: return false

22: else if s contains target then

23: return true

24: else

25: for elem in s

26: if SuccExist(CHILD (elem) , target) returns true then

27: return true

28: end if

29: end for

30: end if

31: end
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Algorithm 2. Function BuildCLGraph( ) for Building Relation Graph of Crossing-Loop

Input: Loop Table L which is recorded by Loop Explorer

Output: Crossing-Loop Relation Graph CL

1: Let sizeofLT be the size of L

2: for i = 1 . . . to (sizeofLT − 1)

3: Let p be the loop at L[i]

4: for j = 2 . . . to sizeofLT

5: Let q be the loop at L[i + 1]

6: if p’s loop exit point is not equal to q’s loop exit point and

7: p’s loop entry point is not equal to q’s loop entry point then

8: if p’s loop exit point is inside q’s forward path and

9: q’s loop entry point is inside p’s forward path then

10: Insert p into LEFT (q)

11: Insert q into RIGHT (p)

12: else if p’s loop entry point is inside q’s forward path and

13: q’s loop exit point is inside p’s forward path then

14: Insert p into RIGHT (q)

15: Insert q into LEFT (p)

16: end if

17: end if

18: end for

19: end for

20: return CL

An example process model for applying Algorithm 3

is given in Fig.17. In this example, the probability

of looping back p is assumed to be 0.3 (30%). After

the first iteration, the accumulated probability becomes

accu = 1 × 0.3 = 0.3. If we assume that the tolerance

value is tol = 0.003, then the maximum number of iter-

ations max is 4 because accu = (0.3)
5

= 0.002 43 < tol.

3.3.2 Flow Copying

During the unfolding process, we may need to du-

plicate the forward and backward flows inside the loop

depending on the maximum number of iterations cal-

culated. The function CopyFlow in Algorithm 4 is used

to duplicate the forward and backward flows. The al-

gorithm simply copies the nodes and connects them ac-

cordingly for unfolding.

An example of flow copying is illustrated in Fig.18.

In this example, the workflow model contains a struc-

tured loop. The forward path is from task T2 to T4 and

the backward path contains only one task T5. For the

purpose of discussion, we assume that the maximum

number of iterations max is equal to 3. Therefore, the

nodes inside the flow will be duplicated three times.

Next, we apply the function CopyF low() to duplicate

the loop’s forward path. In Fig.19, the first node T2

is copied three times. To distinguish the original node

from its clones, we label the duplicated node with the

current round number of unfolding and a counter. Since

the process is at the first round of unfolding, we label

the duplicated nodes as T2 1(1), T2 1 (2) and T2 1(3).

For the complex workflow models containing more than

one loop, flow copying may be performed for several

rounds. The resulting process model after the first

round of copying nodes is depicted in Fig.19.

Next the algorithm continues to copy all the nodes

in the forward flow. The resulting process model is de-

picted in Fig.20.

After the copying of nodes is completed, the algo-

rithm connects the copied nodes. The connections (di-

rected edges) between the copied nodes are based on the

original process model. In Fig.21, we can observe that

the nodes are connected by directed edges. Therefore,

the algorithm returns following three flows.{
T21(1), T31(1), T41(1)

}
,

{T2 1(2), T3 1(2), T4 1(2)},
{T2 1(3), T3 1(3), T4 1(3)}.

3.3.3 Unfolding Structured Loops

In this subsection, we provide the algorithm of un-

folding a structured loop. The function UnfoldStLoop

given in Algorithm 5 uses functions CalMaxIT and

CopyFlow which are defined in Subsection 3.3.2.
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Algorithm 3. Function CalMaxIT () for Computing the Maximum Number of Iterations

Input: tolerance value tol for the upper limit of iterations

Input: loop l for computing its maximum number of iterations

Output: the maximum number of iterations of the loop

1: Retrieve p as the probability value of looping back for loop l from the probability table

2: Set max as the maximum number of iterations

3: Set accu as the accumulated probability value

4: do

5: max increased by 1

6: accu multiplied by p

7: while accu is less than tol

8: return max

START END

T1 X XT2

T3

g1 g2

30%

70%

Fig.17. Example process model annotated with probability for
looping back.

Unfolding structured loops from two example pro-

cess models is illustrated in Fig.22. In both process

models in Fig.22, gateway g1 is identified as the loop en-

try point EGJ . In Fig.23(a), the algorithm first discon-

nects the edges (T1, g1), (T4, g1) and (g1, T2). Next, it

connects the edge (T1, T2). In Fig.23(b), the algorithm

disconnects the edges (T1, g1) and (g1, T2). Next, it

connects the edge (T1, T2). The results of the above

steps are shown in Fig.23.

Next, the algorithm inserts the loop entry point

g1 right after g2. For the example model given

in Fig.23(a), the algorithm disconnects the edge

(g2, END). For the model in Fig.23(b), the algorithm

disconnects the edge (g2, END). After that, the al-

gorithm connects the edge (g2, g1) and (g1, END) in

both models. The results of these steps are shown in

Fig.24.

Unfolding a Structured Loop Based on Zero-One

Principle. When unfolding based on Zero-One prin-

ciple, a loop is permitted to be executed (iterated) at

most once. Hence, the maximum number of iterations is

set as 1. The process of unfolding structured loops from

two example process models given in Fig.22 based on

Zero-One principle is illustrated in Fig.25 and Fig.26.

Firstly, according to Fig.25(a), the task T2 is copied

once and SF is set to S {T2 1(1)}. Next, tasks T2 and

T3 are copied once and SF is set to {T2 1(1), T3 1(1)}
(see Fig.25(b)).

For the model given in Fig.25(a), the algorithm then

connects task T4 and task T2 1(1). Finally, it connects

T2 1(1) and the loop entry point g1. The final result is

shown in Fig.26(a).

Algorithm 4. Function CopyF low[ERR : md : MbegChr = 0x0028,MendChr = 0x0029, nParams = 0] for Copying a Flow

Input: the graph WG of workflow model; the flow f which will be copied; the number of iterations num will be copied

Output: the set of flows S copied from f

1: Create a set of flows S

2: for node n contained in f

3: Copy n in num times

4: end for

5: Connect copied nodes and push the flows into S

6: return S

T2T1 T3 T4

T5

X X

g1 g2
START END

Fig.18. Example process model for flow copying.
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T 2

T 2_1(1)

T 2_1(2)

T 2_1(3)

T 1 T 3 T 4

T 5

X X

g1 g2
START END

Fig.19. Process model after the first node in the forward flow is copied in the first round.

T 2

T 2_1(1)

T 2_1(2)

T 2_1(3)

T 3_1(1)

T 3_1(2)

T 3_1(3)

T 4_1(1)

T 4_1(2)

T 4_1(3)

T 1 T 3 T 4

T 5

XX

g1 g2
START

END

Fig.20. Copying of all nodes in the forward flow.

T 2

T 2_1(1)

T 2_1(2)

T 2_1(3)

T 1 T 3 T 4

T 5

X X

g1 g2
START END

T 3_1(1)

T 3_1(2)

T 3_1(3)

T 4_1(1)

T 4_1(2)

T 4_1(3)

Fig.21. The last stage of flow copying.

For the model given in Fig.25(b), the algorithm con-

nects loop exit point g2 and task T2 1(1). Next, it con-

nects task T3 1(1) and loop entry point g1. The final

results of unfolding are shown in Fig.26(b). We can ob-

serve that the process models after unfolding contain

no more structured loops.

Unfolding a Structured Loop Based on Probability-

Based Principle. In this subsection, we propose a novel

method to unfold a structured loop based on the proba-

bility. To illustrate our ideas, we will use the same

running examples given in Figs.22(a) and 22(b). For

the purpose of discussion, we assume that the maxi-

mum number of iterations max returned from function

CalMaxIT ( ) is 3. The step-by-step unfolding process

of the example model given in Fig.22(a) is illustrated

in Fig.27. The step-by-step unfolding process of the ex-

ample model given in Fig.22(b) is illustrated in Fig.28.
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Algorithm 5. Function UnfoldStLoop( ) for Unfolding a Structured Loop

Input: the graph WG of workflow model; the structured loop strLoop which will be unfolded

Output: updated WG after unfolding of a structured loop

1: Create a set of gateways SG

2: Create two sets of flows SB and SF

3: Let fF low be the loop’s forward path which begins at the successor node of the loop entry point and ends at the predecessor

node of the loop exit point

4: Let bF low be the loop’s backward path which begins at the successor node of the loop exit point and ends at the predecessor

node of the loop entry point

5: Disconnect all incoming and outgoing edges of the loop entry point

6: Insert the disconnected loop entry point directly after the loop exit point

7: Call function CalMaxIT (strLoop) to calculate the maximum number of iterations max

8: Copy loop exit point max times and insert it into SG

9: Call function CopyF low (WG, fF low,max) to copy fF low as SF

10: if backF low is not empty then

11: Call function CopyF low (WG, bF low,max− 1) to copy bF low as SB

12: Set pointer as the last node in flow backF low

13: else

14: Set pointer as the loop exit point

15: end if

16: for counter = 1 . . . to max− 1

17: Connect pointer and the first node in flow SF [counter]

18: Connect the last node in flow SF [counter] and gateway SG [counter]

19: Connect gateway SG [counter] and loop entry point

20: if backF low is not empty then

21: Connect gateway SG [counter] and the first node in flow SB [counter]

22: Set pointer as the last node in flow SB [counter]

23: else

24: Set pointer as the gateway in SG [counter]

25: end if

26: end for

27: Connect pointer and the first node in flow SF [max]

28: Connect the last node in flow SF [max] and loop entry point

29: return WG

T 2T1 T 1

T 3

T 3T 2

T4

X X X X
g1 g1 g2g2

START STARTEND END

(b)(a)

Fig.22. Unfolding structured loops from two example process models.

3.3.4 Unfolding Nested Loops

Recall that nested loops contain structured loops as

their basic components. Therefore, we can reuse the

function UnfoldStLoop( ) which is previously defined

in Algorithm 5 to unfold nested loops. The algorithm

for unfolding a nested loop is described in Algorithm 6.

We define function ROOT (nl) which returns true if the

loop nl is the root of the tree.

The process of unfolding a nested loop can be illus-

trated with the process model given in Fig.29. In this

example, there are two nested loops L1 and L2.

LT (1) =

(
L1, g1, g4, (g1, g2) , (T3, g4) ,

(g4, g1) , (g4, g1) , {g1, g2, g3, g4}

)
,
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T 2T 1 T 1

T 3

T 3T 2

T 4X

X

X

X

g1 g1

g2g2
START STARTEND END

(b)(a)

Fig.23. Disconnecting incoming and outgoing edges at the loop entry point g1.

T 2T 1 T 1

T 3

T 3T 2

T 4

X X X X

g1g2g2 g1
START STARTEND END

(b)(a)

Fig.24. Process models after inserting a loop entry point.

T 2

T 2_1(1)T 2_1(1) T 3_1(1)

T 1 T 2 T 3

T 3 T4

T 1X X X X

g2 g2g1 g1
START START ENDEND

(b)(a)

Fig.25. Intermediate results of flow copying during unfolding structured loops based on Zero-One principle.

T 2T 1

T 2T 1

T 3

T 3

T4X X

X X

g2

g2

g1

g1

START

START

END

END

T 2_1(1)

T 2_1(1) T 3_1(1)

(a)

(b)

Fig.26. Final results of unfolding structured loops based on Zero-One principle.

LT (2) =

(
L2, g2, g3, (g2, T2) ,

(T2, g3) , (g3, g2) , (g3, g2) , {g2, g3}

)
.

Unfolding a Nested Loop Based on Zero-One Prin-

ciple. Similar to structured-loops, we first explain the

unfolding of nested loop in Zero-One Unfolding. The

results of unfolding from inner to outer direction are

depicted in Fig.30. First, the inner loop is unfolded in

Fig.30(a). Next, the outer loop is unfolded, and the

results are shown in Fig.30(b).

Unfolding a Nested Loop Based on Probability-Based

Principle. In this subsection, we use the same example

given in Fig.29 to explain the unfolding process. We

assume that the tolerance value is tol = 0.1 and the

probability values of looing back for loop L1 and L2

are pL1 = 0.4 (40%) and pL2 = 0.3 (30%). The process

of unfolding from inner to outer direction is illustrated

in Fig.31. The intermediate result of unfolding the in-

ner loop based on Algorithm 5 is shown in Fig.31(b).

The progress of unfolding the remaining outer loop is

shown in Fig.31(c). The completely unfolded model is

given in Fig.31(d).
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Algorithm 6. Function UnfoldNeLoop( ) for Unfolding Nested Loop

Input: the graph WG of workflow model; the Nested-Loops Tree NL; loop Table LT

Output: WG which is the model after unfolded Nested Loop

1: for loop rootLoop in L

2: if ROOT (rootLoop) is true then

3: Call sub-function UnfoldNeInnerLoop (WG, rootLoop,NL) to unfold loops

4: end if

5: end for

6: return WG

7: sub-function UnfoldNeInnerLoop(WG, loopNL)

8: begin

9: for loop inner in CHILD (loop)

10: Call function UnfoldNeInnerLoop (WG, inner,NL)

11: end for

12: Call function UnfoldStLoop(WG, loop) to unfold loop

13: end

30%

T 1 X T 2

g1

X

g4

X X

g2 g3

40%

L1
L 2

START
END

T 3

Fig.29. Example process model containing a nested loop.

T 1 X T2 X

g4

T3XX
g2g3g1

T2_1(1)

START END

T1 XT2 XT3XX
g2g3 g1

T2_1(1) T2_2(1) T3_2(1)XX

g2_2(1)g3_2(1)

T2_1(1)_
2(1)

g4
START END

(b)

(a)

Fig.30. Unfolding from inner to outer direction based on Zero-One principle.

3.3.5 Unfolding Crossing Loops

In this subsection, we provide the algorithm for un-

folding a crossing loop.

In this algorithm, the leftmost loop in a crossing

loop will be unfolded first. The example process model

for illustrating the unfolding process is given in Fig.32.

In Fig.32, there are two loops and they are recorded

in loop tables as follows.

LT (1) =

L1, g1, g3, (g1, T1) , (T2, g3) , (g3, g1) ,

(g3, g1) , {g1, g2, g3}

 ,

LT (2) =

L2, g2, g4, (g2, T2) , (T3, g4) , (g4, g2) ,

(g4, g2) , {g2, g3, g4}

 .

Unfolding of a Crossing Loop Based on Zero-One

Principle. We use Algorithm 7 to unfold the crossing

loop given in Fig.32. First, the leftmost loop L1 is

unfolded using the function UnfoldStLoop( ) in Algo-

rithm 5. The step-by-step unfolding process is illus-

trated in Fig.33. We can notice that in Fig.33(b), the

loop exit point g4 of loop L2 still contains three out-

going branches. In Fig.33(c), we create a copy gateway

called g4 C from g4. Next, the algorithm inserts g4 C

directly after the loop entry point g2 of loop L2. Next,

the algorithm disconnects the edge (g4, g2 1(1)) and

creates a new edge (g4 C, g2 1(1)). After that, L2 is

unfolded using Algorithm 5. After L2 is unfolded, there

are no more remaining loops in the process model. The

final result of unfolding is depicted in Fig.33(d).
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T1 X T2

g2

X

g4

T3X X

g1 g3

50%

40%

START
END

Fig.32. Example process model for unfolding a crossing loop.

Algorithm 7. Function UnfoldCrLoop( ) for Unfolding Crossing-Loop

Input: the graph WG of workflow model; the Crossing-Loops CL; loop Table L

Output: WG

1: for loop loopL in L

2: if CL→ LEFT [loopL] is empty and CL→ RIGHT [loopL] is not empty then

3: % loopL is the leftmost loop in CL

4: Call function UnfoldStLoop(WGloopL) to unfold loopL

5: for loop loopR in CL→ RIGHT [loopR]

6: % loopR is the right loop of loopL

7: Duplicate loopR’s loop-exit point once and set it as tempGateway

8: Insert tempGateway directly after loopR’s loop-entry point

9: for each node n where n is the successor of loopR’s loop-exit point

10: if node n is copied from loopR’s loop-entry point then

11: Disconnect the edge from n to loopR’s loop-exit point

12: Connect the edge from n to tempGateway

13: end if

14: end for

15: Call function UnfoldStLoop(WGloopR) to unfold loopR

16: end for

17: end if

18: return WG

Unfolding a Crossing Loop Based on Probability-

Based Principle. In this subsection, the same process

model given in Fig.32 is used to explain the unfolding

of a crossing loop based on probability-based principle.

We assume that the tolerance value is tol = 0.2 and the

probability values are pL1 = 0.5 (50%) and pL2 = 0.4

(40%). Therefore, the maximum number of iterations

is 3 for the left loop because p3L1 = 0.125 < tol and the

maximum number of iterations is 2 for the right loop

because p2L2 = 0.16 < tol.

We use Algorithm 7 to unfold the crossing loop given

in Fig.32. First, the leftmost loop L1 is unfolded us-

ing the function UnfoldStLoop( ) in Algorithm 5. The

step-by-step unfolding process is illustrated in Fig.34

and Fig.35. We can notice that in Fig.34(b), the

loop exit point g4 of loop L2 contains more than two

outgoing branches. According to Fig.35(a), we cre-

ate g4 C from gateway g4. Next, the algorithm in-

serts the gateway g4 C directly after the loop entry

point g2 of loop L2. Then, the algorithm disconnects

the edges (g4, g2 1(1)), (g4, g2 1(2)) and (g4, g2 1(3)).

The algorithm also creates new edges (g4 C, g2 1(1)),

(g4 C, g2 1(2)) and (g4 C, g2 1(3)). After that, L2 is

unfolded using Algorithm 5. After L2 is unfolded, there

are no more remaining loops in the process model. The

final results of unfolding are given in Fig.35(b).

3.4 Complexity of the Algorithms

Complexity of the algorithm UnfoldStLoop can be

written as TSt = T (n) +T (m). T (n) is for the first

recursive call of copying elements in the loop when

n is the size of loop. T (m) is for the second recur-

sive call to unfold the loop when m is the maximum

number of iterations by calculation. T (m) is equal

to constant 1 for unravelling based on the Zero-One

principle and the complexity of the algorithm is O(n).

For the probability-based unravelling, the complexity is

O(n×m).

Complexity of the algorithm UnfoldNeLoop can be

written as TNe = T (p) × TSt. T (p) is for the recursive

call of unfolding all nested loops when p is the number

of loops in the workflow. The complexity of Zero-One

principle for UnfoldStLoop is TSt = T (n) and therefore,

the complexity of the algorithm UnfoldNeLoop for the

Zero-One principle is O(p × n). For the probability-

based principle, the complexity of the algorithm Un-

foldNeLoop is O(p× n×m).
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Complexity of the algorithm UnfoldCrLoop is simi-

lar to that of the algorithm UnfoldNeLoop. It can be

written as TCr = T (l)×TSt+T (p−l)×TSt = T (p)×TSt

where l is the number of loops which contain the en-

try point from another loop in crossing loops, p is the

number of loops in the workflow and p−l is the num-

ber of loops which contain the exit point from another

loop in crossing loops. Therefore, the complexity for

the Zero-One principle is O(p× n) and for probability-

based principle is O(p× n×m).

4 Experiments

Simulation experiments are performed to analyze

the correctness of the proposed algorithms. In these

experiments, all the process models are defined in

BPMN, which include various types of iterative con-

trol structures. Signavio Process Manager 1○ was used

to model the processes and they were converted into

Oryx 2○ specific BPMN models. Loops in each BPMN

model are annotated with probabilities and tolerance

values at the split gateways. The prototype system

was developed in JAVA programming language on a

computer with Intelr CoreTM i5-4210 CPU, 8 GB of

RAM and 64 bits Windows 10 operating system. The

probability and the tolerance used for the experiments

are summarized in Table 1. In real cases, probability

and tolerance could be defined by the process designers

or calculated from historical information such as au-

dit trails. The overview of the experimental setting is

depicted in Fig.36.

First, we generate 10 000 runs for each BPMN

model. A run is a directed acyclic graph. Each run

represents one possible execution path of the workflow

model. A run consists of all or a subset of nodes and

edges within a workflow schema beginning from the

start node to the end node [9, 33]. Detailed discussion

of about the runs and relevant examples can be found

in [34]. Second, we unfold the BPMN models based

on the probability-based unfolding algorithms. Due to

the page limitation, we do not include the experiments

for unfolding with the Zero-One principle in this paper.

Third, we use the unfolded BPMN models to execute all

the runs generated from the previous step. The main

purpose of this execution is to verify whether each run

can be correctly executed in the unfolded BPMN model.

Table 1. Experimental Settings

Probability Tolerance Number of

Runs Generated

Experiment 1 Case 1 0.6 0.10 10 000

Case 2 0.3 0.10 10 000

Experiment 2 Case 1 0.2, 0.6 0.10 10 000

Case 2 0.2, 0.6 0.50 10 000

Experiment 3 Case 1 0.3, 0.2 0.10 10 000

Case 2 0.4, 0.4 0.08 10 000

We define the following conditions for generating

runs.

1) The sequence of tasks and gateways will be

recorded in each run. We also record the probability

value when a path is selected at the gateways.

2) The choice of route for the gateway will be de-

cided after the randomly generated probability value is

compared against the pre-defined probability value at

the gateways.

3) Similar to the unfolding algorithm, the run gen-

erator adheres to the maximum number of iterations

calculated for each loop.

The BPMN models used for the three experiments

are shown in Fig.37–Fig.41.

Unfolded Model

Unfold Algorithm

Start Process Model

Runs Generator

Runs

Simulator End

Fig.36. Overview of experimental setting.

1○https://www.signavio.com/, October 2020.
2○https://code.google.com/archive/p/oryx-editor/, October 2020.
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40%
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Fig.37. Process model for the case 1 of experiment 1. (a) Wheel adjustment process. (b) Simplified process model.

T2 T3X

g2

X

g1

T4

T1

30%

START END

Fig.38. Process model for case 2 of experiment 1.

• The process model for case 1 of experiment 1 is

depicted in Fig.37(a). The model illustrates the pro-

cess of new wheels installation in a car factory. In this

process, the alignment of new wheels is adjusted until

they are satisfactory. Adjustment is needed in 60% of

the every checking of all wheels. After all the wheels

are aligned correctly, headlights can be installed. The

simplified version of the new wheels installation pro-

cess is depicted in Fig.37(b) where activity names are

replaced with task ID. The process model for case 2 of

experiment 1 depicted in Fig.38 is identical to the case

1 except the split probability at gateway g2.

• The process model for case 1 of experiment 2 is

depicted in Fig.39(a). The model illustrates a project

management process of a marketing department. In

this process, the department first prepares a proposal

for marketing campaign. The proposal includes objec-

tives for achieving specific outcomes. Next, the cost

of achieving these objectives is estimated. After that,

the proposal is submitted to the department head for

approval. Each submitted case has 20% of being re-

jected by the department head (split gateway g3). In

case the proposal is rejected by the department, the

adjustment to the resources required for the campaign

is performed. If the proposal is endorsed by the de-

partment head, it will be submitted to the executive

committee for final approval. For each proposal sub-

mitted to the executive committee, the probability of

disapproval is 60% (split gateway g4). If the proposal

is rejected by the executive committee, it will be sent

back to the marketing department for revising the ob-

jectives. Revising objectives include the re-work of cost

estimation and obtaining department head approval. If

the proposal is approved by the executive committee, it

will be announced to the customers by public relation

(PR) department. The simplified version of the project

management process is depicted in Fig.39(b) where ac-

tivity names are replaced with task ID.

• The process model for case 1 of experiment 3 is

depicted in Fig.40(a). The model illustrates a part of

design process from a mobile phone factory. In this

process, designers first choose the model of a central

processing unit (CPU) for the new mobile phone. Next,

designers decide the storage and SIM card option for the

phone. For instance, the new phone may be equipped

with an SD card slot and two SIM slots for dual

standby. Next, an estimation for the size of battery (ca-

pacity) for the phone is made. Based on the estimated

capacity, the size of battery compartment in the phone

is checked for fitting. Such checking results in 20%

of cases (split gateway g2) require adjusting the sto-

rage and SIM card options. For example, by omitting

some of these options, the size of battery compartment

could be increased. If the size of battery compartment

is within an acceptable range, designers will continue

with the selection of display panel type (e.g., IPS-LCD,

OLED or AMOLED). Next, based on the preceding

selection of CPU model, Storage and SIM card op-

tions, and the display, the total power consumption

is calculated and compared against battery capacity.

In 30% of the cases (split gateway g4), the estimated

total power consumption is incompatible with the bat-

tery capacity. In this case, the adjustment in the size of
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battery (capacity) must be made. The adjustment in

battery capacity requires recalculation of battery com-

partment dimension and re-selection of display panel.

It may also require the reconsideration of storage and

SIM card options (split gateway g3). If the estimated

total power consumption is compatible with the bat-

tery capacity, designers will proceed with the selection

of colors for the back/front covers of the phone. The

simplified version of the process is depicted in Fig.40(b)

where activity names are replaced with task ID. The

process model for case 2 of experiment 3 depicted in

Fig.41 is identical to that for case 1 except the split

probabilities at the gateways.

In experiment 1, tolerance value is kept constant

for both case 1 and case 2 but different probabilities at

the split gateway are used in testing. In experiment 2,

probability values at two split gateways are kept con-

stant for both case 1 and case 2 but different tolerance

values are used for testing. In experiment 3, different

probability and tolerance values are used in case 1 and

case 2.

These BPMN models are unfolded based on the

probability-based principle. For the purpose of visuali-

zation, the results of unfolding are exported into graphs

which are formatted in the DOT language of Graphviz

software 3○. We do not include the figures of the un-

folded model in this paper since the unfolded models

can include more than 100 nodes (tasks) and they are

too large to fit in an A4 size paper.

A model containing a Structure-Loop in Fig.37 is

used to illustrate the functions of Run Generator. In

this example, we define the probabilities of the branches

for gateway g2 as 0.6 and 0.4 (for Pr ((g2, T4)) and

Pr ((g2, T3))). We also assume that the tolerance of ac-

cumulated probability is 0.1. Therefore, the maximum

number of iterations is 5 because 0.65= 0.077 76 < 0.1.

When the Run Generator reaches a gateway, it will ran-

domly generate a probability value which is denoted as

p and the generator will decide which route to be se-

lected. For example, if the randomly generated proba-

bility value is 0.7, the generator will choose the edge

(g2, T4). The generator continues until it reaches the

End node. Based on this procedure, we can generate

a set of runs from the model given in Fig.37. Three of

the generated runs are shown in Fig.42.

run1 = (START, T1, g1, T2, g2(p1 = 0.82),

T4, g1, T2, g2(p2 = 0.63),

T4, g1, T2, g2(p3 = 0.27), T3,END).

run2 = (START, T1, g1, T2, g2(p1 = 0.58),

T3,END).

run3 = (START, T1, g1, T2, g2(p1 = 0.66),

T4, g1, T2, g2(p2 = 0.63),

T4, g1, T2, g2(p3 = 0.93),

g1, T2, g2(p4 = 0.28), T3,END).

We proceed to unfold the process model given in

Fig.37 by using the proposed unfolding algorithms and

obtain the model in Fig.43. Next, we execute/compare

the first run in Fig.42(a) against the unfolded model.

First, the execution starts at the start node from the

first run. Next, the task T1 from the run matches with

the task T1 from the unfolded model. Then, the exe-

cution reaches the XOR-gateway g1 which contains one

incoming branch and one outgoing branch. Since, this

gateway only contains one outgoing branch, it can be

ignored. After that, task T2 is reached and executed

on the unfolded model. After task T2 is executed, the

next node in sequence will be gateway g2. According

to the run, the randomly generated probability value at

g2 is p1 = 0.82. The simulator chooses the branch from

gateway g2 to task T4 since p1 is larger than 0.6. The

simulator continues the execution until the END node

is reached.

From the experiment results, we find that each set

of 10 000 runs generated from the original models can

be correctly executed in the unfolded BPMN models

that do not contain any loops.

5 Conclusions

Iterative control structures are widely used in busi-

ness processes. However, the use of iterative con-

trol structures can result in unanticipated outcomes in

workflow management systems, specifically, when loops

are labelled with branching probabilities at split gate-

ways. In this paper, we proposed two methods for un-

ravelling iterative control structures in process models:

the first method is based on Zero-One principle and the

second method is based on probabilistic conditions at

the split gateways. The proposed methods can be used

to unfold structured loops, nested loops and crossing

loops. In the proposed methods, the process model con-

taining iterative control structures is transformed (un-

folded) into a process model that does not contain any

loops. The unravelling methods proposed in this arti-

cle address all three types of iterative control structures

(structured loops, nested loops, and crossing loops).

3○http://www.graphviz.org/, October 2020.
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Our methods are based on workflow graphs and

therefore they are compatible with modeling languages

such as Business Process Modelling Notation (BPMN).

The proposed methods are tested on a number of pro-

cess models containing various types of loops. By using

the concept of runs, the execution of unfolded process

models is compared against the original models.

The models unfolded by the proposed approaches no

longer contain loops when they are compared with the

original process models. However, the size of unfolded

models becomes larger since additional gateways and

duplicate tasks are added during the unravelling pro-

cess. Therefore, for the nested and crossing loops, the

readability and the simplicity will be negatively affected

by the unravelling. However, the unraveled process

models can be more easily analyzed for any potential

issues by process designers or by automated verification

programs due to their deterministic nature. Therefore,

a trade-off needs to be made by process designers in

balancing the readability, simplicity, and verifiability

in unravelling of iterative control structures from the

models. Although the proposed unravelling approaches

can be used to unfold structured loops, nested loops,

and simple crossing loops, the proposed algorithms have

following limitations. First, the proposed methods only

consider loops structures with exclusive decisions. For

unravelling, only activities are allowed in back edge of

the loop. A back edge is an edge that a workflow in-

stance can take to return the start point of the loop.

We also assume that tasks and gateways in a loop are

independent with entities or other loops.

Since the unfolded model does not contain any ite-

rative control structures, it can be used for further ana-

lysis by process designers during the modeling phase.

For instance, one of the analyses could focus on the

temporal constraints. Since unraveled results become

deterministic process models, the maximum execution

time of the workflow can be estimated. By compar-

ing with the maximum allowable execution time set by

the workflow designer, potential temporal exceptions

can be predicted during the design time. Another di-

rection in further analysis could be the optimization

of the programs. For example, the proposed approach

could be extended for loop unrolling in real-time ap-

plications and compiler constructions. Likewise, the

proposed approaches could be used for more efficient

resource assignment in multistage manufacturing sys-

tems involving rework loops.
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