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Abstract Non-Volatile Main Memories (NVMMs) have recently emerged as a promising technology for future memory

systems. Generally, NVMMs have many desirable properties such as high density, byte-addressability, non-volatility, low

cost, and energy efficiency, at the expense of high write latency, high write power consumption, and limited write endurance.

NVMMs have become a competitive alternative of Dynamic Random Access Memory (DRAM), and will fundamentally

change the landscape of memory systems. They bring many research opportunities as well as challenges on system archi-

tectural designs, memory management in operating systems (OSes), and programming models for hybrid memory systems.

In this article, we first revisit the landscape of emerging NVMM technologies, and then survey the state-of-the-art studies

of NVMM technologies. We classify those studies with a taxonomy according to different dimensions such as memory ar-

chitectures, data persistence, performance improvement, energy saving, and wear leveling. Second, to demonstrate the best

practices in building NVMM systems, we introduce our recent work of hybrid memory system designs from the dimensions

of architectures, systems, and applications. At last, we present our vision of future research directions of NVMMs and shed

some light on design challenges and opportunities.

Keywords non-volatile memory, persistent memory, hybrid memory systems, memory hierarchy

1 Introduction

In-memory computing is becoming increasingly

popular for data-intensive applications in the big data

era. The memory subsystem has an ever-increasing

impact on the functionality and performance of mod-

ern computing systems. Traditional big memory

systems [1, 2] using DRAM (Dynamic Random Access

Memory) are facing severe scalability challenges in

terms of power and density [3]. Although DRAM scal-

ing is continued from 28 nm in 2013 to 10+ nm in

2016 [4, 5], the scaling has slowed down and become more

and more difficult. Moreover, recent studies [6–10] have

showed that DRAM-based main memory accounts for

about 30%–40% of the total energy consumption of a

physical server.

Emerging Non-Volatile Main Memory (NVMM)

technologies, such as Phase Change Memory (PCM),

Spin-Transfer Torque RAM (STT-RAM), and 3D X-
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Point [11], generally offer much higher memory density,

and much lower cost-per-bit and standby power con-

sumption than DRAM. The advent of NVMM tech-

nologies has potential to bridge the gap between slow

persistent storage (i.e., disk and SSD) and DRAM, and

will fundamentally change the landscape of memory

and storage systems.

Table 1 shows different memory features of Flash

SSD, DRAM, PCM, STT-RAM, ReRAM, and Intel

Optane DC Persistent Memory Modules (DCPMM) 1○

including read/write latencies, write endurance, and

standby power consumption [7, 12,13]. Despite various

advantages in density and energy consumption, NVMM

exhibits about 6x–30x higher write latency and about

5x–10x higher write power consumption than DRAM.

Moreover, the write endurance of NVMM is very lim-

ited (about 108 times) while DRAM is able to endure

about 1016 times of write operations [14, 15]. These dis-

advantages make it hard to be a direct substitute for

DRAM. A more practical way of using NVMM is hy-

brid memory architectures, composed of both DRAM

and NVMM [15, 16].

In order to fully exploit the advantages of both

DRAM and NVMMs in hybrid memory systems, there

are many open research problems such as performance

improvement, energy saving, cost reduction, wear lev-

eling, and data persistence. To address those prob-

lems, there have been many studies on the design of

memory hierarchy [15–18], memory management [19–21],

and memory allocation schemes [22–24]. These research

efforts lead to innovations in hybrid memory architec-

ture, operation system (OS), and programming models.

Although academic community and industry have pro-

posed a substantial amount of work on integrating the

emerging NVMMs in the memory hierarchy, there still

remain many challenges to be addressed.

On the other hand, previous studies on NVMM

technologies are mostly based on simulated/emulated

NVMM devices. The promised performance of NVMM

devices may have various deviations compared with real

non-volatile (Dual In-line Memory Modules) DIMMs.

Recently, the announced Intel Optane DCPMM has

finally made NVMM DIMMs commercially available.

The real Intel Optane DCPMM behaves significantly

differently against the promised features that are ex-

pected by previous studies [18, 20,26,28]. For example,

Intel Optane DCPMMs show 2x–3x higher read latency

than DRAM, while its write latency is even lower than

that of DRAM [25], as shown in Table 1. The max-

imal read and write bandwidths for a single Optane

DCPMM DIMM are 6.6 GB/s and 2.3 GB/s, respec-

tively, while the gap between read and write band-

width of DRAM is much smaller (1.3x). Moreover, the

read/write performance is non-monotonic with the in-

creasing number of parallel threads in the system [25]. In

their experiment, the peak performance is achieved be-

tween one and four threads and then tails off. Because

of these key features of Optane DCPMM DIMMs, pre-

vious studies on persistent memory systems should be

revisited and re-optimized to adapt to the real NVMM

DIMMs.

Contributions. In this article, we first revisit the

state-of-the-art studies on hybrid memory architec-

tures, OS-level hybrid memory management, and hy-

brid memory programming models. Table 2 shows a

classification of state-of-the-art studies about NVMM

technologies. We classify these studies in a taxonomy

according to different dimensions including memory ar-

chitectures, persistent memory (PM) management, per-

formance improvement, energy saving, wear leveling,

programming models, and applications. We also dis-

cuss their similarities and differences to highlight the

design challenges and opportunities. Second, to demon-

strate the best practices in building NVMM systems,

we present our efforts of hybrid memory system designs

from the dimensions of architectures, systems, and ap-

plications. At last, we present our vision of future re-

search directions of using NVMMs in real application

scenarios, and shed some light on design challenges and

opportunities in the research field.

Table 1. Different Features of NVMM Technologies

Memory Technology Read Latency (ns) Write Latency (ns) Write Endurance (Times) Standby Power

Flash SSD 25 000 200 000 105 Zero
DRAM 80 80 >1016 Fresh power
PCM 50–80 150–1 000 108 Zero
STT-RAM 6 13 1015 Zero
ReRAM 10 50 1011 Zero
Intel Optane DCPMM 169 (sequential), 305 (random) 90 108 zero

1○https://www.tomshardware.com/reviews/intel-cascade-lake-xeon-optane,6061-3.html, Dec. 2020.
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Table 2. Classification of State-of-the-Art Studies About NVMM Technologies

Category Sub-Category State-of-the-Arts

Memory
architectures

Simulators and
emulators

PMEP [20], NVMain [26], ZSim [27], HSCC [18], HME [28], Quartz [29], LEEF [30]

Hybrid memory
architectures

Horizontal architectures [14,15,17,31–37], hierarchical architectures [16,18,38–42]

OS-level hybrid
memory
management

Persistent memory
management

Working memory: [14–17,31,32,38,39,43,44];
PM file systems: SCMFS [6], BPFS [19], PMFS [20], SIMFS [45],
Contour [46], Dapper [47], NOVA [48], Orion [49], ZoFS [50];
persistent objects: Mnemosyne [12], CDDSs [13], NV-heap [51], NV-Duet [52], NVL-C [53],
Pangolin [54], TimeStone [55], Pisces [56], Espresso [57]

Performance
improvement
and energy saving

Page migration: [14,15,33,34,44,58–61]; buffering NVMM writes: [7, 32,62,63];
NVMM energy saving: [64–68]; DRAM energy saving: [19,69–72]

Write endurance
improvement

Write reduction: [8, 14–16,64,67,73–76]; wear-leveling: [15, 77–79]

PM programming
models and
applications

Programming
models and APIs

Mnemosyne [12], CDDSs [13], NV-heap [51], NV-Duet [52], NVL-C [53], Pangolin [54],
TimeStone [55], Pisces [56], Espresso [57]

Applications
using NVMMs

Key-value stores: [80–90];
graph computing: [91–93]; machine learning: [94–96]

Although there are other surveys about NVMMs,

this survey offers the unique perspective of NVMM

and gives more recent review of this field given the

rapid development of NVMM. In [97], the authors in-

troduced architectural designs of PCM techniques to

address the problems of limited write endurance, po-

tential long latency, high energy writes, power dissipa-

tion, and some concerns for memory privacy. In [98],

the authors presented a comprehensive survey and re-

view of PCM device related computer architectures and

software. Some other interesting surveys focus on ar-

chitecturally integrating four NVM technologies (PCM,

MRAM, FeRAM, and ReRAM) into the existing sto-

rage hierarchy [99], or the software optimizations [100]

of using NVMMs for storage and main memory sys-

tems. Our survey is different from those surveys in

three folds. First, previous studies [97, 98] put a focus

on the PCM designs from the perspective of computer

architecture. In contrast, our paper mainly focuses on

system studies of using hybrid memories from the di-

mensions of memory hierarchy, system software, and

applications. Second, our paper contains more reviews

of newly-published journal/conference papers. Partic-

ularly, we have provided more studies on the new an-

nounced Intel Optane DCPMM device. Third, we in-

troduce more about our recent experiences of hybrid

memory systems to shed some light on design challenges

and opportunities of future hybrid memory systems.

The rest of this paper is organized as follows. Sec-

tion 2 describes the existing hybrid memory architec-

tures composed of DRAM and NVMMs. Section 3

presents the challenges and current solutions of data

persistence guarantees in NVMMs. Section 4 describes

state-of-the-art studies on performance optimization

and energy saving in hybrid memory systems. Sec-

tion 5 introduces studies of NVMM write endurance.

Section 6 presents our efforts and practices of NVMM

techniques. In Section 7, we discuss the future research

directions of NVMMs. We conclude the paper in Sec-

tion 8.

2 Hybrid Memory Architectures

There have been a lot of studies on hybrid memory

architectures. Generally, there are mainly two kinds

of hybrid memory architectures, i.e., horizontal and

hierarchical [18], as shown in Fig.1.

2.1 Horizontal Hybrid Memory Architectures

A number of DRAM/NVMM hybrid memory

systems [14, 15,31] manage DRAM and NVMM in a flat

(single) memory address space by OSes [31, 32], and use

both of them as main memory. To improve data ac-

cess performance, these hybrid memory systems need

to overcome the drawbacks of NVMM by migrating

frequently accessed (hot) NVMM pages to DRAM, as

shown in Fig.1(a). Memory access monitoring mecha-

nisms need to be developed to guide the page migration.

Memory Access Monitoring. Zhang and Li [31] used

a multi-queue algorithm to classify the hotness of pages,

and place hot pages and cold pages in DRAM and

NVMM, respectively. Park et al. [32] also advocated
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Fig.1. Hybrid memory architectures. (a) Horizontal flat-addressable hybrid memory architecture. (b) Hierarchical hybrid memory
architecture.

a horizontal hybrid memory architecture to manage

DRAM and NVMM. Moreover, they proposed three op-

timization strategies to reduce the energy consumption

of hybrid memory systems. They monitored memory

data in a very fine granularity of a DRAM row, and

periodically checked the access counter of each DRAM

row. According to counters, the data is written back to

NVMM in order to reduce the energy consumption of

DRAM refreshing. The data is not cached to DRAM

from NVMM until it is accessed again. The dirty data

is kept in DRAM as long as possible to reduce the over-

head of the data swapping between DRAM and NVMM

as well as the costly writes to NVMM.

Page Migration. There have been a number of page

migration algorithms proposed for different optimiza-

tion goals. Soyoon et al. [33] deemed that the frequency

of NVMM writes is more important than the data ac-

cess recency in identifying hot pages, and proposed a

page replacement algorithm called CLOCK with Dirty

bits and Write Frequency (CLOCK-DWF). For each

NVMM write operation, CLOCK-DWF needs to first

fetch the corresponding page to DRAM and then per-

forms the write in DRAM. This approach may cause

many unnecessary page migrations, and thus introduce

more energy consumption and write-back operations

to NVMM. Salkhordeh and Asadi [34] took both mem-

ory writes and reads into account to migrate the hot

pages that are beneficial for performance and energy

saving, and used two least recently used (LRU) queues

to choose victim pages in DRAM and NVM individu-

ally. Yoon et al. [17] conducted page migrations based

on row buffer locality, where pages with low row buffer

hit rates are migrated to DRAM while pages with high

row buffer hit rates are still kept in NVMM. Li et al. [101]

proposed a utility model to guide page migrations based

on an utility definition on many factors such as page

hotness, memory-level parallelism, and row buffer lo-

cality. Khouzani et al. [35] considered memory layout

of programs and memory-level parallelism to migrate

pages in a hybrid memory system.

Architectural Limitations. There are several chal-

lenges to manage NVMM and DRAM in a horizontal

hybrid memory architecture.

First, page-level memory monitoring is costly. On

the one hand, as today’s commodity x86 systems do not

support memory access monitoring at the granularity

of pages, hardware-supported page migration schemes

require significant hardware modification to monitor

memory access statistics [14, 15,33]. On the other hand,

memory access monitoring at the OS layer usually

causes significant performance overhead. Many OSes

maintain an “accessed” bit in the Page Table Entry

(PTE) for each page to identify whether this page is

accessed. However, this bit cannot truly reflect the

recency and frequency of page accesses. Thus, some

software-based approaches would disable Translation

Lookaside Buffer (TLB) [102] to track each memory refe-

rence. Such page access monitoring mechanisms usually

cause significant performance overhead and even offset

the benefit of page migration in hybrid memory sys-

tems.

Second, page migration is also costly. One time
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of page migration may induce many times of page

read/write operations (costly). As a page may only

contain a small fraction of hot data, the migration at

the page granularity is relatively costly due to a waste

of memory bandwidth and DRAM capacity.

Third, the hot page detection mechanism may take

a long period of time to warm pages up, and thus de-

grades the gain of page migrations. Moreover, the hot

page prediction may not be accurate for some irregu-

lar memory access patterns, causing unnecessary page

migrations.

2.2 Hierarchical Hybrid Memory

Architectures

A number of studies propose to organize DRAM

and NVMM through a hierarchical cache/memory

architecture [16, 38,39]. They use DRAM as a cache of

NVMM, as shown in Fig.1(b). The DRAM cache is in-

visible to operating systems and applications, and are

managed completely by hardware.

Qureshi et al. [16] proposed a hierarchical hybrid

memory system composed of a large size of PCM and a

small size of DRAM. The DRAM cache contains most

recently accessed data to reduce the most expensive

NVMM accesses, while the large-capacity NVMM holds

most of the required data to avoid costly I/O ope-

rations during the execution of applications. Similarly,

Mladenov [38] designed a hybrid memory system with

a small-capacity DRAM cache and a large-capacity

NVMM, and managed them based on the spatial lo-

cality of application data. DRAM is managed as an

on-demand cache and replaced through an LRU algo-

rithm. Loh and Hill [39] managed DRAM in a granu-

larity of cache lines to improve the efficiency of DRAM

cache, and used a group-connected manner to map the

NVMM data to the DRAM cache. They put the meta-

data (tag) and data in the same bank row so that the

data can be quickly accessed for cache hits, and reduces

the performance overhead of tag querying.

In this memory architecture, as DRAM is organized

as N -way set-associative cache, additional hardware is

required to manage the DRAM cache. For example,

an SRAM storage is needed to store the metadata (i.e.,

tag) of data blocks in the DRAM cache, and hardware

looking-up circuit is required to find the requested data

in the DRAM cache. Thus, to access the data in the

DRAM cache, two memory references are required, one

for accessing the metadata and the other for the ac-

tual data. To accelerate metadata accesses, Qureshi

et al. [16] used a high-speed SRAM to store the meta-

data. Meza et al. [40] reduced hardware cost for tag

store by placing metadata alongside data blocks in the

same DRAM row. They also proposed to use an on-chip

metadata buffer to cache frequently accessed metadata

in a small-size SRAM.

Architectural Limitations. Although hierarchical

hybrid memory architectures usually deliver much bet-

ter performance compared with the scenario of access-

ing the data in NVMM solely, it may cause significant

performance degradation when running workloads with

poor locality [103]. The reason is that most hardware-

managed hierarchical DRAM/NVMM systems leverage

an on-demand based data fetching policy for simplicity,

and thus the DRAM cache is in the critical data path

of memory hierarchy. If a data block does not hit in

the DRAM cache, it has to be fetched from NVMM

to DRAM regardless of the page hotness. This cache

filling strategy may cause frequent data swapping be-

tween DRAM and NVMM (similar to the cache thrash-

ing problem). On the other hand, hardware-managed

cache architecture cannot fully utilize the DRAM ca-

pacity. Since the DRAM cache is designed to be set-

associative, each NVMM data block is mapped to a

fixed set. When a set is full, it must evict a data

block before fetching a new NVMM data block into the

DRAM, even though other cache sets are empty.

2.3 Architectures of Intel Optane DCPMM

The recently announced Intel Optane DCPMM sup-

ports both horizontal and hierarchical hybrid memory

architectures when it is used combining with DRAM.

There are currently two operating modes for Optane

DCPMM DIMMs: memory mode and application di-

rect mode [25]. Each of these modes has its advantages

for specific use cases.

Memory Mode. In this mode, DCPMM acts as a

large capacity of main memory. The operating system

(OS) recognizes DCPMM as traditional DRAM and the

persistence feature of DCPMM is disabled. If tradi-

tional DRAM is used combining with DCPMM, it is

hidden from the OS and acts as a caching layer for

DCPMM. Thus, DCPMM and DRAM are actually or-

ganized in a hierarchical hybrid memory architecture.

The primary benefit of the memory mode is to pro-

vide superior memory capacity to be used on mem-

ory bus lanes. This mode strongly emphasizes building

large storage capacity environments around the mem-

ory space without modifying the upper-level systems
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and applications. Recommended use cases would be to

expand the main memory capacity for better infrastruc-

ture scaling, such as parallel computing platforms for

big data applications (MapReduce, graph computing).

Application Direct Mode. In this mode, DCPMM of-

fers all persistence features to OS and applications. OS

exposes both DRAM and DCPMM to the applications

as main memory and persistent storage, respectively.

The traditional DRAM mixed with DCPMM still acts

as the standard DRAM for applications, while DCPMM

is also assigned to the memory bus for faster memory

access. DCPMM is used as one of two types of names-

paces: direct access (DAX) and block storage. The for-

mer namespace offers byte-addressable persistent sto-

rage directly accessed by applications via special APIs.

Thus, DCPMM and DRAM are logically organized in

a horizontal hybrid memory architecture in this mode.

The latter namespace presents DCPMM to applications

as a block storage device, similar to an SSD, but can

be accessed via a faster memory bus. The Application

Direct Mode strongly emphasizes the advantage of la-

tency reduction and bandwidth improvement up to 2.7x

faster than NVMe. Recommended use cases would be

for large in-memory databases which are subjected to

the demand of data persistence.

There is also a mixed memory mode combining the

Memory Mode and the Application Direct Mode. A

portion of the capacity of DCPMM is used for the Mem-

ory Mode operations, and the remaining capacity of

the DCPMM is used for the Application Direct Mode

operations. This mixed memory mode provides a more

flexible approach to manage the hybrid memory system

for different application scenarios.

2.4 Summary

The above two kinds of hybrid memory architec-

tures have their own pros and cons for different sce-

narios. Generally, the hierarchical architecture is more

suitable for applications with good data locality, while

the flat-addressable architecture is more applicable

for latency-insensitive or large-footprint applications.

There is not a conclusion on which architecture is better

than another one. Actually, both hierarchical and flat-

addressable hybrid memory architectures are supported

by Intel Optane DCPMMs. One limitation of current

DCPMM is that the system needs to restart after recon-

figuring the modes of DCPMM. It could be beneficial

and flexible for applications if a re-configurable hybrid

memory system can dynamically fit different scenarios

in a timely and efficient manner. This may be an inter-

esting research direction of NVMM devices.

3 Persistent Memory Management

Data persistence is an important design considera-

tion for NVMMs. In the following, we first present the

technical challenges of persistent memory (PM) mana-

gement, and then introduce the state-of-the-art studies

on PM management, including the usage of PM, PM

access modes, fault tolerance mechanisms, and persis-

tent objects.

3.1 Technical Challenges

In hybrid memory systems, NVMM can act as main

memory when running applications and serve as per-

sistent storage when applications are completed. The

byte-addressability and the non-volatility features of

NVMM eliminate the distinction of memory and ex-

ternal storage. However, the data in NVMM should be

reorganized and relocated when the data needs to be

persisted in NVMM.

Fig.2 shows management operations of Persistent

Memory (PM). The NVMM region is a physical PM

device. The NVMM region can be used as working

memory like DRAM, and can also work as persistent

storage like disk. When the program is completed, the

data in the working memory should be flushed into the

persistent storage. Besides, to guarantee high reliabi-

lity, a checkpointing mechanism is widely exploited to

recover systems from a power failure or a system crash.

Gao et al. [104] developed a novel method to leverage

NVMM for real-time checkpointing in hybrid memory

systems.

NVMM Region

Working Memory
Persistent Storage

(Write Order, 
Atomicity) 

Checkpoint

ity

tent S

Persistent Object/Data Structure
(Transactions)

Fig.2. Data persistence in NVMM.

There are several challenges to manage PM effi-

ciently. First, persistent storage is widely managed

in the form of file systems. As the byte-addressable
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NVMMs offer much better random access performance

than traditional block devices, the performance bot-

tleneck of PM-based file systems has shifted from the

hardware to the system software stack. It is essential

to shorten the data path in the software stack. Second,

since many CPUs use write-back cache to achieve high

performance for write operations, the last-level cache

(LLC) may change the order of data written back to

PM. In case of a power failure or system crash, it may

cause a data inconsistency problem. Thus, to guarantee

data consistency in PM, the order of write operations

and a write atomicity model are required to guarantee

the data consistency in PM. Third, persistent objects

and data structures are more promising for PM pro-

gramming compared with PM-based file systems, be-

cause they eliminate the complex data structures in file

systems, including i-nodes, metadata, and data. How-

ever, these persistent objects and data structures still

face the challenges of guaranteeing data consistency.

In the following, we will review studies that have at-

tempted to address those challenges.

3.2 Working Memory

A number of studies [14, 105,106] use NVMM just as a

replacement of DRAM, without concerning about the

non-volatility property of NVMM. In this use case, both

DRAM and NVM are allocated and reclaimed in pages.

Application data is written back to external storage

when programs complete.

Due to the performance gap between NVMM and

DRAM, memory allocation should take the different

features of DRAM/NVMM into account. Park et al.

proposed to place different types of data in hybrid mem-

ory system according to application virtual memory

layout [43]. Both the DRAM region and the NVM region

are managed by the buddy system separately. Upon a

page fault, the page allocator selects a type of pages

for allocation based on the segment in which they are

placed. Pages in heap and stack segments with inten-

sive write operations are allocated in DRAM. Pages in

other segments are allocated in NVMM, including read-

only text segment and initialized data segment. Sim-

ilarly, Wei et al. [44] also exploited application seman-

tics to direct data placement in hybrid memory sys-

tems. However, they determined the placement of heap

objects based on object read/write ratios. The above

memory allocation policies are implemented in OSes

and transparent to programmers. The page placement

is also too coarse-grained to some extent since program-

mers often allocate small-size objects rather than pages.

3.3 Persistent Memory File System

Some work manages NVMM with traditional file

systems to transparently support legacy applications.

The file system managed NVMM region is called Per-

sistent Memory File System (PMFS) [20]. In PMFS,

applications can access the data in PM via read/write

interfaces as traditional disk-based file systems. CPU

can also directly access PM via load/store instructions

based on Direct Access (DAX), which is implemented

by the mmap interface, as shown in Fig.3.

Applications

L
o
a
d
/
S
to
re

L
o
a
d
/
S
to
re

R
e
a
d
/
W
ri
te

mmap PMFS

DRAM NVM

Fig.3. PM access modes in hybrid memory systems.

Although PM is able to significantly improve appli-

cation performance compared with persistent storage,

the direct access to byte-addressable PM still faces chal-

lenges of data consistency. As an update to a com-

plex data structure usually contains multiple write ope-

rations on NVMM, a power failure or a system crash

may incur data inconsistency problems if only a portion

of critical data is being written. For example, there are

two write operations to insert an item to a hash table

in PM: one to write the data and the other to write

the metadata. If the metadata is persisted before the

data itself and a power failure occurs, the data and its

metadata become inconsistent.

Current file systems or databases use atomic up-

dates to tackle this problem, where the correlated write

operations are grouped and are performed in a trans-

action manner, namely transaction updating. Also, in

each transaction, multiple writes usually should be con-

strained in order.

3.3.1 Write Order Guarantee

For block-based file systems, the order of writes to

persistent storage is usually guaranteed by software due

to the huge performance gap between main memory and

disk. The I/O operations are buffered sequentially in

DRAM and flushed to persistent storage synchronously.
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However, in hybrid memory systems, cache lines may

be written back to NVMM in an order different from

the order issued by CPUs. To guarantee the order of

data writes to PM, there are generally three kinds of

approaches in the following.

Hardware Primitives. PM file systems and program-

ming frameworks can ensure the write order by ex-

plicitly evicting cache lines to NVMM. Modern CPUs

provide clflush and mfence instructions to achieve this

goal. The clflush instruction is used to evict a cache line

to main memory explicitly. The mfence instruction is

used to guarantee the order of all load and store ope-

rations before it. There have been various index access

methods that optimize the usage of those instructions

such as NV-tree [107] and Bztree [108].

Nevertheless, clflush invalidates a cache line in all

cache levels and leads to performance degradation.

Moreover, clflush only flushes a cache line to memory

controller, and does not guarantee that the data is ac-

tually written in NVMM. To tackle these problems, In-

tel has developed two new instructions, i.e., clwb and

PCOMMIT 2○. clwb writes back a cache line to mem-

ory controllers without invalidating it in the cache, and

PCOMMIT ensures the data is finally written to the

NVMM chips.

Write-Through Cache. Some previous studies adopt

the write-through cache to guarantee data persistence

in PM [12, 109]. Write operations can bypass CPU caches

via instructions like movntq. It writes dirty data di-

rectly to memory rather than cache, offering a sim-

ple way to guarantee the write order to NVMM, with-

out using the complicated barrier and costly flush ope-

rations. However, this strategy leads to significant per-

formance degradation because write operations are ma-

nipulated in a stream manner. Mnemosyne [12] provides

both the hardware primitives and write through policies

to guarantee the order of writes.

Persistent Cache. Kiln [74] utilizes a non-volatile

cache as the last-level cache (LLC) to guarantee data

persistence at the cache level. In the non-volatile LLC,

updates can be completed in-place. Kiln tracks the

dirty lines that need to be updated but still retain

them in the non-volatile cache. As most of the updated

writes have existed in the non-volatile LLC, Kiln im-

proves the system performance by reducing most writes

to NVMM. Besides, the updated data is kept even when

a system failure occurs.

3.3.2 Atomic Updating

Atomicity implies each update should be done in a

“all-or-nothing” manner. It can avoid a data structure

being partially updated upon power failures or system

crashes. It is always implemented by a transaction ope-

ration. Modern processors can provide 8-byte atomic

updates to DRAM or NVMM. An update to a simple

variable up to 8 bytes can be done in-place. For more

complex data structures, atomic updating operations

become more complicated. There are three technolo-

gies to guarantee complex atomic operations, such as

journaling, shadow updating, and logging structure.

Journaling. Journaling is commonly used in

databases and file systems to guarantee atomic updat-

ing. All updates in a transaction are recorded to a jour-

nal file before the real object is updated. Thus, journal-

ing always writes the same data twice, one to the jour-

nal file and the other for the actual data. To diminish

the performance overhead due to duplicate writes, most

systems only record metadata in journal files. For ex-

ample, Ext4-DAX 3○ supports direct access to NVMM

and uses the journaling mechanism to achieve metadata

atomicity.

Shadow Paging. Shadow paging is a copy-on-write

(COW) mechanism for tree-based file systems and

databases. Each write operation triggers a memory

copy. In the context of file systems, the COW operation

needs to transfer from the root to the leaf in a cascade

way. This cascade updating is costly. In BPFS [19],

Condit et al. proposed a short-circuit shadow paging

mechanism for atomic updating. Data updates are to-

ken in-place, including in-place updating and in-place

appending. Fig.4 shows an example of in-place ap-

pending. The appended data is written to the end of

the file in-place, and then the file size is updated in-

place. In case of a system crash before the updating

of file size, the appended data is invalid. In PMFS [20],

DRAM pages are allocated and reclaimed by virtual

memory manager and NVMM pages are managed by

PMFS. Atomic updating is achieved through three ap-

proaches: in-place, logging and COW. In-place updates

are used for 8-byte metadata atomic writes and meta-

data updates at 64-byte cache line size. Logging up-

dates are used for more complicated metadata updates.

The COW mechanism is used to update file data.

2○https://software.intel.com/sites/default/files/managed/0d/53/319433-022.pdf, Dec. 2020.
3○https://lwn.net/Articles/613384/, Dec. 2020.
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Fig.4. Shadow paging.

Logging Structure. Log-structured file systems are

designed to exploit the relatively high performance of

sequential writes to disk. Random writes are converted

into sequential writes in a DRAM buffer, and then are

synchronized to disk. However, for byte-addressable

NVMM, the contiguous free memory region required

by logging usually leads to difficulties in memory alloca-

tion and garbage collection [48, 110]. NOVA [48] redesigns

a traditional logging-structure file system to improve

the parallelism of data I/O and relax the constraints of

contiguous memory allocation. NOVA maintains a log

for each updated i -node rather than a uniform contigu-

ous log file. Thus, multiple file updates and recovery

can be token in parallel. To mitigate the pressure of

contiguous memory allocation and garbage collection

operations in log-structured file systems, NOVA adopts

a linked list to store log pages. Besides, to acceler-

ate the access to persistent files, NOVA maintains a

directory tree in DRAM. Doshi et al. [111] exploited a

backend cache controller to write the data to PM in an

asynchronous way. A victim DRAM cache is used to

store cache lines evicted from LLC, and then the per-

sistent updates to NVMM are combined and written

to NVMM in a streaming way. CCDS [13] guarantees

data consistency by atomic updating and maintaining

multiple versions of data. After an atomic update to a

critical data structure, a new version of the data is cre-

ated. To guarantee data consistency during updating,

the most recent version is recorded and can be accessed

by all threads. Upon a power failure, the most recent

version is used for recovery while all in-progress updates

are removed.

3.4 Persistent Objects

As PM-based file system interfaces still rely on com-

plex software I/O stack and can introduce multiple

times of data copying, a more attractive way is to store

and access application data structures directly in PM,

namely persistent data structures.

Persistent data structures have been widely ex-

plored in object-oriented databases. Berkeley DB [112]

and Stasis [113] can define persistent data structures ex-

plicitly by application programming interfaces (APIs).

However, all these systems store the persistent data

structures in block-based disks. Recently, there have

been a number of persistent object programming frame-

works proposed for NVMM, such as NV-heaps [51], NV-

Duet [52] and NVL-C [53]. Therefore, programmers can

definitely allocate NVMM via pmalloc and DRAM via

malloc, and further optimize data placement in hybrid

memory systems according to application semantics.

A major challenge of using persistent objects is to

guarantee referential integrity of objects, i.e., all refer-

ences must point to a valid data. Otherwise, a mem-

ory leak or a memory error occurs because of dangling

pointers or wild pointers. For example, if a pointer in

PM refers to an object in DRAM, upon a power fai-

lure the pointer in PM becomes a dangling pointer. In

a PM system, memory leaks and memory errors are

usually more destructive since these exceptions may be

permanent. The referential integrity may occur in three

scenarios: memory allocation, pointer assignment ope-

rations and deallocation. In the following, we use NV-

heaps as an example to illustrate these scenarios.

NV-heaps [51] is a lightweight and high-performance

persistent object system using the emerging persistent

memory. To guarantee data consistency and durabil-

ity, NV-heaps provide a set of easy-to-use program-

ming primitives, including persistent objects, special-

ized pointers, a memory allocator and atomic sections.

For memory allocation, NV-heaps are also subject

to wild pointers as conventional programming models.

Once an NV-heap is not pointed by a valid pointer, its

memory space may be permanent unavailable until the

NVMM device is reset. To prevent memory leak due to

wild pointers, NV-heaps explore reference counters for

garbage collection. A heap is reclaimed immediately

once no other objects point to it.

For pointer assignment, four new pointer types

may be generated in hybrid memory systems: point-

ers within an NV-heap (intra-heap NV-to-NV point-

ers), pointers from an NV-head to another NV-heap
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(inter-heap NV-to-NV pointers), pointers from volatile

memory to an NV-heap in NVMM (V-to-NV pointers),

and pointers from an NV-heap in NVMM to volatile

memory (NV-to-V pointers). To guarantee referential

integrity, NV-to-V pointers and inter-heap NV-to-NV

should not be assigned. The NV-to-V pointers are un-

safe when a program ends. For instance, a pointer A in

NVMM points to a data structure B in DRAM. When

the program ends, the memory assigned to B in the

DRAM is reclaimed while the persistent pointer A re-

mains. An error may occur if the pointer A is accessed.

The inter-heap NV-to-NV pointers are also dangerous.

For example, a pointer P from NV-heap M points to

another NV-heap N. If N becomes unavailable, the

pointer P will point to invalid data. However, the inter-

heap NV-to-NV pointers are still needed in some cases

such as doubly-linked lists. Thus, weak pointers are

proposed to implement inter-heap NV-to-NV pointers.

Weak NV-to-NV pointers act like normal pointers but

they do not affect the reference counts. When the refe-

rence count becomes zero, all weak pointers should be

atomically released. When an NV-heap is closed, V-to-

NV pointers may lead to a memory leak. To prevent

this unsafe closing, NV-heaps are unmapped only when

the program ends.

3.5 Studies on Intel Optane DCPMMs

The emergence of Intel Optane DCPMM arouses

increasing interests in disclosing its performance fea-

tures and the potential impact on data center

applications [25, 114–117]. These experimental studies are

essential to guide the design of hybrid memory systems

and the application programming of DCPMM. Izraele-

vitz et al. offered an earliest, scholarly, and comprehen-

sive performance measurement of DCPMM [114]. They

explored its capabilities as a main memory device, as

well as byte-addressable persistent memory exposed to

user-space applications. This report enlightens the re-

search community to understand the non-volatile mem-

ory devices, and to guide the future work on hybrid

memory systems. They also explored the performance

characteristics of Intel Optane DIMMs through both

microbenchmarks and macrobenchmarks, and recom-

mended a set of best practices to maximize the per-

formance of this device [25]. Weiland et al. explored

the performance features of Intel Optane DCPMM and

the impact on high-performance scientific applications

in the context of performance, efficiency and usability

in both Memory and App Direct modes [116]. A similar

work was presented by Patil et al. [115] They evaluated

the performance characterization of DRAM-NVM hy-

brid memory systems for HPC applications using real

DCPMM. They found that the NVMM-only executions

are slower than DRAM-only and Memory-mode execu-

tions by a minimum of 2%, and a maximum of 6 times.

Peng et al. [117] evaluated the impact of using DCPMM

on in-memory graph processing workloads, and the ex-

perimental results suggest that the performance and

power efficiency of applications can be optimized by

properly distributing the data between NVMM and

DRAM.

There have been a few hybrid memory systems de-

signed from scratch, and also performance optimiza-

tions of existing systems using the new Intel Optane

DCPMM device. Lersch et al. [86] conducted an exten-

sive study of range indexes on DCPMM. They used a

unified programming model for all trees to guarantee

fair comparison and developed a benchmarking frame-

work called PiBench. The empirical evaluation has rec-

ognized effective techniques, insights, and caveats to

direct the design of the future PM-based index struc-

tures. Dash [87] is a holistic approach to building dy-

namic and scalable hash tables on DCPMM. The de-

sign takes scalability, load factor and recovery into con-

sideration. The authors develop two popular dynamic

hashing schemes, i.e., extensible hashing and linear

hashing to demonstrate the efficiency of Dash. Gill et

al. [93] presented the runtime and algorithmic principles

of performing large-scale graph analytics on DCPMM

and highlighted the principles of graph analytics on all

large-memory platforms. Mahapatra et al. [88] argued

that it is inefficient to persist all data structures such

as Doubly Linked List, B+Tree and Hashmap in the

persistent memory. They showcased that partial partly

persistent implementations can also recreate the data

structures along with the redundant data fields upon a

system crash. Their solution can significantly improve

the performance for a flush-dominated data structure.

Ni et al. [89] presented performance studies on the in-

terplay of DCPMM hardware and indexing data struc-

tures, and proposed group flushing and persistent opti-

mized log-structuring techniques for improving the per-

formance of indexing data structure on persistent mem-

ories. FlatStore [90] is an efficient PM-based key-value

store particularly optimized for DCPMM. It decouples

the data structure of a KV store into a persistent log

structure for efficient storage and a volatile index for

fast indexing. Due to the wider availability of DCPMM,

more research studies of system design and implemen-
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tation on real NVMMs emerge.

4 Performance Improvement and Energy

Saving

As NVMMs show much higher access latency and

write energy consumption, there have been a lot of stu-

dies on performance improvement and energy saving

for NVMMs [32–34,63,65,66]. These studies can be classi-

fied into three kinds: reducing the number of NVMM

writes, reducing the energy consumption of NVM writes

themselves, and reducing the energy consumption of

DRAM through page migrations.

4.1 NVMM Write Reduction

To reduce NVMM writes, a hierarchical architecture

is obviously more appropriate since the DRAM cache

reduces abundant NVMM writes. Two major tech-

niques namely page migration and bypassing NVMM

writes have been developed for this purpose.

Page Migration. Page migration [14, 15,33,58,59] poli-

cies choose the pages to be migrated mainly based on

the number of writes and the recency of each page.

Their main differences are in the conditions in which

a page migration is triggered.

PDRAM [15] migrates PCM pages to DRAM accord-

ing to the number of writes. In PDRAM, the memory

controller maintains a table to record access counts of

each PCM page. If the number of writes to a PCM

page exceeds a given threshold, a page fault is triggered

and then the page is migrated from the PCM page to

DRAM.

CLOCK-DWF [33] integrates the write history of

pages into the CLOCK algorithm. When a page fault

occurs, the virtual page is fetched from the disk to the

PCM. Otherwise, the page is allocated in DRAM as the

page is likely to be a write-intensive one.

RaPP [14] migrates pages between DRAM and PCM

based on the rank of pages. In RaPP, pages are ranked

by the access frequency and recency. Top-ranked pages

are migrated from PCM to DRAM. Thus, frequently

written pages are placed in DRAM while seldom writ-

ten pages are placed in PCM. Moreover, RaPP also

places mission-critical pages in DRAM to improve ap-

plication performance. By monitoring the number of

writeback operations for each page in LLC, the memory

controller is able to track the access frequency and re-

cency of each page. RaPP ranks pages according to the

Multi-Queue (MQ) algorithm [118]. A conventional MQ

defines multiple least recently used (LRU) queues. Each

LRU queue is a queue of page descriptors which include

a reference counter and a logical expiration time. When

a page is accessed at the first time, the page is moved

to the tail of queue 0. If the reference count of the

page reaches 2i+1, the page is prompted to queue i+ 1.

Once a PCM page is moved to queue 5, it is migrated

to DRAM.

Buffering NVMM Writes. In a hybrid memory sys-

tem, caches are able to reduce a large number of writes

to NVMM. A proper cache replacement policy not only

improves application performance, but also reduces the

energy consumption of NVMM. Previous studies [7, 18]

have found that many blocks in cache would not be

reused again before they are evicted from the cache.

These blocks are called dead blocks and consume pre-

cious cache capacity. DASCA [7] proposes a dead block

prediction method to reduce the energy consumption

of STT-RAM caches. Evicting these dead blocks will

reduce the writes to STT-RAM caches and does not

affect the cache hit rate. WADE [62] further exploits

the asymmetry of energy consumption between NVMM

read and NVMM write. As NVMM write operations

consume much more energy than NVMM read ope-

rations, the frequently-written blocks should be kept

in the cache. WADE divides the blocks in cache

into two categories: frequently written-back blocks and

non-frequently written-back blocks. Non-frequently

written-back blocks are replaced to offer more opportu-

nities for keeping other data blocks in the cache.

4.2 NVMM Energy Consumption Reduction

Since an NVMM write shows several times higher

energy consumption than an NVMM read, there have

been many efforts in reducing the energy consumption

of NVMM writes. These approaches can be divided into

two categories: differential write (only write dirty bits

rather than a whole line), and parallel multiple writes

during a single write.

Flip-N-Write [64] tries to reduce PCM write energy

consumption by flipping the bits if the number of bits

to be written exceeds half of the total bits in a cache

line. During a single write, if more than half of bits in

the line are written, each bit is flipped and thus the bit

flips are no more than 50% of total bits. Meanwhile, a

tag bit is set to identify whether the bits in a line are

flipped. When the line is read, the tag bit is used to

determine whether the bits in the line should be flipped.

Similar to Flip-N-Write, Andrew et al. [73] advo-

cated fine-grained write. It only monitors dirty bits

rather than all bits in a line. A new term called PCM
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power token was introduced to indicate the power sup-

ply during a single write. Assume each chip is assigned

Plimit Watts power and each bit-write requires Pbit

Watts, bPlimit/Pbitc bits can be written simultaneously.

Within a chip, banks can be written concurrently. Dur-

ing a single write, if a number of write requests locate in

different banks and the total power consumption does

not exceed Plimit, these writes can be executed simulta-

neously. Thus, the fine-grained write not only reduces

the NVMM writes, but also improves system perfor-

mance by achieving higher bank parallelism.

A few studies [65, 66] improve the energy efficiency

of NVMMs by separating the SET and RESET ope-

rations. As NVMMs consume more energy and time to

write 1 than to write 0, both the write latency and the

energy consumption can be reduced if these writes are

performed in a proper manner. Three-stage-write [65]

divides a write operation into a comparison stage, a

write-zero stage and a write-one stage. In the compa-

rison stage, the Flip-N -Write mechanism is exploited

to reduce the number of writes. The zero bits and one

bits are written separately in the write-zero stage and

the write-one stage, respectively. Because write-zero

operations account for a majority of write operations

in most workloads, Tetris Write [66] further takes the

asymmetry of SET and RESET operations into ac-

count, and schedules the costly write-one operations in

parallel. The write-zero operations are inserted in the

remaining interval of write-one operations under the

power constraint.

CompEx [67] proposes a compression expansion en-

coding mechanism to reduce the energy consumption

for MLC/TLC NVMMs. To improve the lifetime of

MLC/TLC cells, the data is compressed first to reduce

data redundancy. An expansion code is then applied to

the compressed data and written to physical NVMM

cells. For a TLC cell with 8 states, states 0, 1, 6 and

7 are called terminal energy state while states 2, 3, 4

and 5 are called central energy states. Central energy

states consume more time and energy as they need more

program and verify iterations. CompEx leverages the

expansion code to use only terminal energy state for

NVMM cells. This idea is motivated since the terminal

energy state needs less energy and time than the central

energy states when programming an MLC/TCL cell.

Hybrid on-chip caches were also proposed to reduce

the power consumption of CPUs. RHC [68] constructs a

hybrid cache, in which each way in SRAM and NVMM

can be powered on or off independently. If a row has

not been accessed for a long time, the row is powered

off while its tag is still powered on to track the accesses

of this row. When the accesses to the tag exceed a

threshold, the row is powered on. To best utilize the

high-performance SRAM and the low dynamic-power

NVMM, RHC adopts different thresholds for SRAM

and NVMM.

4.3 DRAM Energy Consumption Reduction

In a memory system with only DRAM, the static

energy consumption can account for more than half

of total energy consumption of memory systems [69–71].

In hybrid memory systems, page migration techniques

are widely used to mitigate the energy consumption

of DRAM. The inactive pages can be migrated from

DRAM to NVMM so that the idle DRAM banks can

be powered off. When the page becomes active later,

it is migrated to DRAM again. However, if the page

migration is not properly performed, the DRAM ranks

may be frequently powered off and reactivate. The ex-

tra energy consumption is likely to offset the benefit

gained by page migrations.

To reduce energy consumption in hybrid memory

systems, RAMZzz [8] reveals two major roots of high

energy cost. One is the sparse distribution of active

pages, and the other is that page migrations may not

be effective since the transfer among multi-energy states

of DRAM introduces additional energy consumption.

To solve the former problem, RAMZzz uses multiple

queues to collect pages with a similar activity into

the same DRAM rank, avoiding frequent energy state

transfers. The multiple queues have L LRU queues to

record the page descriptors. A page descriptor contains

the page’s ID and access (both read and write) counts

in a period of time. To reduce the energy overhead of

data migration, the pages with a similar memory access

behavior are regrouped together. In this way, the pages

need to be allocated to new banks. RAMZzz migrates

these pages between banks in parallel.

Refree [72] further reduces the DRAM energy con-

sumption in hybrid memory systems by avoiding

DRAM refresh. When a DRAM row requires to be

refreshed, it means the row has not been accessed for

a long time. The data in the row is obsolete and it is

not likely accessed again in the near further. Refree

evicts these rows to PCM rather than refreshes them

in DRAM. In Refree, all rows are monitored periodi-

cally. The interval of this period is equal to half of the

retention time of a DRAM row since its last refresh.

Therefore, rows are divided into active rows and non-

active rows. The active rows are charged when they are
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accessed. Non-active rows are evicted to PCM so that

DRAM refreshes are eliminated.

5 Write Endurance Improvement

In a hybrid memory system, there are mainly two

strategies to overcome the limited write endurance of

NVMMs. One is to reduce NVMM writes, and the

other is wear-leveling which spreads the write traffic

evenly among all NVMM cells.

5.1 Write Reduction

There have been many write reduction strategies

proposed for improving the lifetime of NVMMs, includ-

ing data migration [8, 14,15], caching or buffering [16], and

inner-NVM write reduction [64, 73,74].

A lazy write mechanism [16] was proposed to reduce

the writes to PCM. In a hierarchical hybrid memory

system, a DRAM buffer is used to hide the high-latency

PCM accesses. When a page fault occurs, the data is

fetched from the disk into the DRAM cache directly.

The page is not written to PCM until the page is evicted

from the DRAM cache. Line-level writes can also re-

lieve write operations on NVMMs and thus reduce the

wear of NVMMs [16]. For memory-intensive workloads,

the write operations may be concentrated in a few lines.

By tracking the cache line in DRAM, only the dirty

lines are written back to PCM other than all lines of

the page. Memory compression mechanisms [67, 75] were

proposed to improve the lifetime of MLC/TLC NVMM.

The data is compressed first before writing to NVMM

cells. Therefore, only a small part of NVMM cells are

written. However, the enhancement of endurance is at

the expense of a moderate performance degradation.

If an NVMM cell is written with a lower dissipated

power, the cell can sustain more writes at the expense

of higher write latency. Specifically, when the speed of

writing an NVMM cell declines N times, the endurance

of the cell can be improved by N to N3 times. Mellow-

Write [76] explores this feature to improve the lifetime

of NVMMs. To mitigate the performance degradation,

Mellow-Write only adopts slow writes to bank with only

one write operation.

5.2 Wear-Leveling

Different from write reduction methods, wear-

leveling spreads writes among all NVMM pages evenly.

Although the total number of writes is not reduced,

wear-leveling techniques can prevent some pages from

being worn out by intensive writes quickly.

For NVMMs, we can record the write counts of each

line to guide the wear-leveling policies. However, the

external storage overhead cannot be ignored. Start-

Gap [77] proposes a fine-grained wear-leveling scheme.

The lines of a PCM page are stored in a rotating man-

ner. A rotating value is generated randomly between

0 and 15 to indicate the shifted positions. For a PCM

page with 16 lines, the rotating value can range from 0

to 15. When the rotating value is 0, the page is stored

in its original address. If the rotating value is 1, line

0 is stored in line 1’s physical address, and each line’s

address is shifted by the rotated value.

In PDRAM [15], wear-leveling is triggered by a

threshold of write counts. When the write counts of

a page exceed the given threshold, a page swapping in-

terrupt is triggered to migrate the page to DRAM. The

swapped PCM page is added to a list in which these

pages will be relocated again.

Zombie [78] offers another direction to achieve weal-

leveling, and further extends the overall lifetime of

PCM. Other than Start-Gap that distributes writes

among PCM cells evenly, Zombie leverages spare blocks

in disabled pages to provide more error correction re-

source for working memory. When a PCM cell is worn

out, it becomes unavailable. As memory footprint is or-

ganized in pages from the perspective of software, the

whole page which contains the failure cell is disabled.

However, if some spare cells are provided to replace the

failed cells, the page can be used again. These spare

cells are called error correction resource. When all spare

cells are exhausted, the page with failed cells is aban-

doned finally. Usually, there are about 99% bits availa-

ble when a page is disabled. Zombie utilizes the large

number of good bits in disabled pages as the spare error

correction resource, in which good bits are organized in

fine-grained blocks. By pairing the working page with

error correction resources, Zombie can extend the life-

time of NVMMs much longer.

DRM [79] adds an intermediate mapping layer be-

tween the virtual address space and the physical

NVMM address space. In the intermediate address

space, a page may map to a good page in PCM or two

compatible PCM pages with faults. The compatible

page means a pair of pages with fault bytes, but none

of these fault bytes locate in the same place of the two

pages. Thus, two compatible pages can be combined to

form a new good page. In this way, DRM significantly

improves PCM lifetime by 40x.
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6 Practices of Hybrid Memory System Designs

In this section, we introduce our recent efforts

and practices of system designs and optimizations on

NVMMs from the perspective of memory architec-

ture, OS-supported hybrid memory management, and

NVMM-supported applications, as shown in Fig.5. In

the following, we will present our practices briefly.

6.1 Memory Architectural Designs

In this subsection, we present our studies on hybrid

memory simulation and emulation, hardware/software

cooperative hybrid memory architecture, fine-grained

NVM compression and wear leveling, and hybrid mem-

ory aware on-chip cache management.

6.1.1 Hybrid Memory Architectural Simulation

A hybrid memory architectural simulation is a pre-

requisite for studying hybrid memory systems. We in-

tegrate zsim [27] with NVMain [26] to build a full-system

architectural simulator. Zsim is a fast processor sim-

ulator for x86-64 multi-core architectures. It is able

to model multi-cores, on-chip cache hierarchy, cache

coherence protocols such as MESI, on-chip intercon-

nect topology network, and physical memory interfaces.

Zsim collects the memory trace of processes using In-

tel Pin toolkit, and then replays the memory trace to

characterize the memory access behaviors. NVMain

is an architectural-level main memory simulator for

NVMMs. It is able to simulate different profiles of

memories such as read/write latency, bandwidth, power

consumption, and so on. It also supports subarray-level

memory parallelism and different memory address en-

coding schemes. Moreover, NVMain can also model hy-

brid memories such as DRAM and different NVMMs in

the memory hierarchy. Since OS-level memory mana-

gement is not simulated by zsim, we extend zsim by

adding Translation Lookaside Buffer (TLB) and mem-

ory management modules (such as buddy memory allo-

cator and page tables) to support a full-system sim-

ulation. Implementation details are refereed to our

open-source software 4○. Our work provides a fast, and

full-system architectural simulation framework to the

research community. It can help researchers to under-

stand different NVMM features, design hybrid memory

systems, and evaluate the impact of various system de-

signs on application performance in an easy and effi-

cient manner.

6.1.2 Lightweight NVMM Performance Emulator

Current simulation-based approaches for studying

NVMM technologies are too slow, or cannot run com-

plex workloads such as parallel and distributed appli-

cations. We propose HME [28], a lightweight NVMM

DRAM PCM Memristor ReRAMIntel Optane

DCPMM

Hardware

Memory 
Architecture

System 

Software

Applications

NVM Simulator

and Emulator

NVM Wear

Leveling

Hybrid Memory

Architecture

Hybrid Memory Aware

LLC Management

Hybrid Memory

Allocation

 NUMA-Aware 

Page Migration

NVM-Enable

VMs

Superpage

Support

In-Memory

K-V Store

Graph 

Computing

Machine

Learning
MapReduce

Fig.5. Our practices of system designs on hybrid memories.

4○https://github.com/CGCL-codes/HSCC, Dec. 2020.
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performance emulator using Non-Uniform Memory Ac-

cess (NUMA) architectures. HME exploits hardware

performance counters available in commodity Intel

CPUs to emulate the performance features of slower

NVMMs. To emulate the access latency of NVMMs,

HME injects software-generated latency into DRAM

accesses on the remote NUMA nodes periodically. To

mimic the NVMM bandwidth, HME utilizes DRAM

thermal control interfaces to throttle the amount of

memory requests to a DRAM channel in a short period

of time. Unlike another NVMM emulator Quartz [29]

that does not emulate the write latency of NVMMs,

HME identifies write-through and write-back cache

eviction operations to emulate their latencies sepa-

rately. In this way, HME is able to significantly reduce

emulation errors of NVMM access latencies on average

compared with Quartz [29]. Before the advent of real

NVMM device — Intel Optane DCPMM, this work can

help researchers and programmers to evaluate the im-

pact of NVMM performance characteristics on applica-

tions, and guide the system designs and optimizations

on hybrid memory systems.

6.1.3 Hardware/Software Cooperative Caching

Based on our hybrid memory simulator, we pro-

pose a hardware/software cooperative hybrid memory

architecture called HSCC [18]. In HSCC, DRAM and

NVMM are physically organized in a single memory

address space and are all used as main memory. How-

ever, DRAM can be logically used as a cache of NVMM

and also managed by OSes. Fig.6 shows the system ar-

chitecture of HSCC. We extend page tables and TLB to

maintain the NVMM-to-DRAM physical address map-

pings, and thus manage DRAM/NVMM in the form of

a cache/memory hierarchy. In this way, HSCC is able

to perform NVMM-to-DRAM address translation as ef-

ficient as virtual-to-NVMM address translation. Also,

we add an access counter in each TLB entry and page

table entry to monitor memory references. Unlike pre-

vious approaches monitoring memory accesses in the

memory controller or OSes, our design can track all

data accesses accurately with trivial storage (SRAM)

and performance overhead. We identify frequently ac-

cessed (hot) pages through a dynamic threshold ad-

justment strategy to adapt to different applications,

and then the hot pages in NVMM are migrated to

DRAM cache for higher performance and energy effi-

ciency. Moreover, we develop a utility-based DRAM

cache filling scheme to balance the efficiency of DRAM

cache and DRAM utilization. As the software-managed

DRAM pages are able to map to any NVMM pages,

DRAM is actually used as a fully associative cache.

This approach can significantly improve the utilization

of DRAM cache, and also offers opportunities to re-

configure the hybrid memory architecture according to

dynamic memory access behaviors of applications. As

CPUs can bypass the DRAM cache to directly access

cold data in NVMM, DRAM can be used either as

main memory in the flat-addressable hybrid memory

architecture, or as a data filter cache of NVMM in the
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hierarchical hybrid memory architecture. As a result,

HSCC can significantly improve system performance by

up to 9.6x and reduce energy consumption by 34.3%

compared with the state-of-the-art work [16]. Our work

offers the first architectural solution to achieve recon-

figurable hybrid memory systems that can dynamically

change the DRAM/NVMM management between hor-

izontal and hierarchical memory architectures.

We further propose the following techniques on

HSCC to improve the cache performance and improve

the wear-leveling mechanisms.

As the cache miss penalty for an NVMM block is

several times higher than that for a DRAM block, the

cache hit rate is not the only one performance met-

ric that should be improved in a flat-addressable hy-

brid memory architecture. To best utilize the expensive

LLC, we propose a new metric, i.e., Average Memory

Access Time (AMAT), to assess the overall performance

of hybrid memory systems. We take the asymmetri-

cal cache miss penalty of DRAM blocks and NVMM

blocks into account, and propose an LLC miss penalty

aware replacement algorithm called MALRU [36, 37] to

improve AMAT in hybrid memory systems. MALRU

partitions LLC into a reserved region and a normal re-

placement region dynamically. MALRU preferentially

replaces dead and cold DRAM blocks in LLC so that

NVMM blocks and hot DRAM blocks are kept in the re-

served region. In this way, MALRU achieves the appli-

cation performance improvement by up to 22.8% com-

pared with the LRU algorithm. This work showcases

how the hybrid memory system can effect the architec-

tural design of on-chip cache.

To improve the write endurance of NVMM, we

propose a new NVMM architecture to support space-

oblivious data compression and wear-leveling [119]. As

memory blocks of many applications usually contain a

large amount of zero bytes and frequent values, we pro-

pose Zero Deduplication and Frequent Value Compres-

sion mechanisms (called ZD-FVC [119]) to reduce bit-

writes on NVMM. ZD-FVC can be integrated into the

NVMM module and implemented entirely by hardware,

without any intervention of operating systems. We im-

plement ZD-FVC [119] in Gem5 and NVMain simula-

tors, and evaluate it with several programs from SPEC

CPU2006. Experimental results show that ZD-FVC is

much better than several state-of-the-art approaches.

Particularly, DZ-FVC can improve data compression

ratio by 1.5x compared with Frequent Value Compres-

sion. Compared with Data Comparison Write, ZD-

FVC is able to reduce bit-writes on NVMM by 30%,

and significantly improve the lifetime of NVMM by

5.8x on average. Correspondingly, ZD-FVC also re-

duces NVMM write latency by 43% and energy con-

sumption by 21% on average. Our design provides a

fine-grained data compression and wear-leveling solu-

tion for NVMMs in simple and efficient manner. It is

complementary to other wear-leveling schemes to fur-

ther improve NVMM lifetime.

6.2 System Software for Hybrid Memories

In this subsection, we present our practices of hy-

brid memory systems in the software layer, including

object-level hybrid memory allocation and migration,

NUMA-aware page migration, superpage supporting,

and NVMM virtualization mechanisms.

6.2.1 Object Migration in Hybrid Memory Systems

Page migration techniques have been widely ex-

ploited to improve system performance and energy ef-

ficiency in hybrid memory systems. However, previous

page migration schemes all rely on costly online page

access monitoring schemes in the OS layer to track page

access recency or frequency. Moreover, data migration

at the page granularity often results in non-trivial per-

formance overhead because of additional memory band-

width consumption and cache/TLB consistency guar-

antee mechanism.

To mitigate the performance overhead of data mi-

gration in hybrid memory systems, we propose more

lightweight object-oriented memory allocation and mi-

gration mechanisms called OAM [120]. The frame-

work of OAM is shown in Fig.7. Unlike previous

studies [44, 121] that only profile memory access beha-

viors in a global view for static object placement, we

further analyze object access patterns in fine-grained

time slots. OAM leverages a compile framework LLVM

to profile application memory access patterns at the

object granularity, and then divides the execution of

applications into different phases. OAM exploits a

performance/energy integrated model to guide the ini-

tial memory allocation and runtime object migration

in different execution phases, without intrusive mod-

ifications of hardware and OSes for online page ac-

cess monitoring. We develop new memory allocation

and migration APIs by extending the Glibc library

and Linux kernel. Based on these APIs, program-

mers are able to allocate DRAM or NVMM to diffe-

rent objects explicitly, and then migrate the objects

whose access patterns are dynamically changed between
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DRAM and NVMM. We develop a static code instru-

mentation tool to automatically modify legacy appli-

cations’ source codes, without re-engineering the ap-

plications by programmers. Compared with the state-

of-the-art page migration approaches CLOCK-DWF [33]

and 2PP [44], experimental results show that OAM can

significantly reduce data migration cost by 83% and

69%, respectively, and achieve about 22% and 10% ap-

plication performance improvement. Previous persis-

tent memory management schemes often rely on mem-

ory access profiling to guide static data placement, and

page migration (costly) techniques to adapt to dynamic

memory access patterns at runtime. OAM provides a

more lightweight hybrid memory management scheme

which supports fine-grained object-level memory allo-

cation and migration.

6.2.2 NUMA-Aware Hybrid Memory Management

In Non-Uniform Memory Access (NUMA) archi-

tectures, application-observed memory access latencies

in different NUMA nodes are usually asymmetrical.

Because NVMM is several times slower than DRAM,

hybrid memory systems can further enlarge the per-

formance gap among different NUMA nodes. Tradi-

tional memory management mechanisms for NUMA

systems are no longer effective in hybrid memory sys-

tems and may even degrade application performance.

For example, the automatic NUMA balancing (ANB)

policy always migrates application data in a remote

NUMA node to an NUMA node in which the applica-

tion threads or processes are running. However, since

the access performance of remote DRAM may be even

higher than that of local NVMM, ANB may falsely

move the application data to a slower place. To address

this problem, we propose HiNUMA [60], a new NUMA

abstraction for hybrid memory management. When ap-

plication data is first placed in the hybrid memory sys-

tem, HiNUMA places application data on both NVMM

and DRAM to balance memory bandwidth utilization

and total access latency for bandwidth-sensitive appli-

cations and latency-sensitive applications, respectively.

The initial data placement is based on the NUMA

topology and hybrid memory access performance. For

runtime hybrid memory management, we propose a new

NUMA balancing policy named HANB [60] for page mi-

grations. HANB is able to reduce the total cost of

hybrid memory accesses by taking both data access

frequency and memory bandwidth utilization into ac-

count. We implement HiNUMA in Linux kernel, with-

out any modifications of hardware and applications.

Compared with traditional memory management poli-

cies in NUMA architectures and other state-of-the-art

work, HiNUMA can significantly improve application

performance by efficiently utilizing hybrid memories.

The lessons learned from HiNUMA [60] are also applica-

ble to hybrid memory systems equipped with real Intel

Optane DCPMM device.

6.2.3 Supporting Superpages in Hybrid Memory
Systems

With a rapid growth of application footprint and

the corresponding memory capacity, virtual-to-physical

address translation has become a new performance bot-

tleneck for hybrid memory systems. Superpages have

been widely exploited to mitigate address translation

overhead in big-memory systems. However, the side

effect of using superpages is that they often impede

lightweight memory management such as page migra-

tion, which is widely exploited in hybrid memory sys-

tems to improve system performance and energy effi-

ciency. Unfortunately, it is challenging to have both

world of superpages and lightweight page migration.

To address this problem, we propose a novel hy-

brid memory management system called Rainbow [41]

to bridge the fundamental conflict between superpages

and lightweight page migration. As shown in Fig.8,

Rainbow manages NVMM at the granularity of su-

perpages (2 MB), and manages DRAM as a cache to
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store hot data blocks in superpages at the granularity

of base pages (4 KB). To speed up address translations,

Rainbow employs the existing hardware feature of split

TLBs to support superpages and normal pages.

We propose a two-stage page access monitor mech-

anism to identify hot base pages within superpages.

In the first stage, Rainbow records the access counts

of all superpages to identify top-N hot superpages.

In the second stage, we logically split those hot su-

perpages into base pages (4 KB) and further monitor

them to recognize hot base pages. The schemes signifi-

cantly diminish the SRAM storage overhead for page

access counters and runtime performance overhead due

to sorting the hot base pages. With a new NVMM-

to-DRAM address remapping mechanism, Rainbow is

able to migrate hot base pages to DRAM while still

guaranteeing the integrity of superpage TLB. The split

superpage TLBs and base page TLBs are consulted

in parallel. Our address remapping mechanism logi-

cally uses superpage TLBs as a cache of the base page

TLBs. Because the hit rate of superpage TLB is of-

ten very high, Rainbow is able to significantly acceler-

ate base page address translation. To further improve

TLB hit rate, we also extend Rainbow to support mul-

tiple page sizes and migrate contiguous hot base page

together [42]. Compared with a state-of-the-art hybrid

memory system [18] without superpage support, Rain-

bow can significantly improve application performance

by at most 2.9x by having the benefit of using both

superpages and lightweight page migration.

This work provides a hardware/software coopera-

tive design to bridge the fundamental conflict between

superpages and lightweight page migration techniques.

This may be a promising solution to mitigate the ever-

increasing virtual-to-physical address translation over-

head in large-capacity hybrid memory systems.

6.2.4 NVMM Management in Virtual Machines

NVMMs are expected to be more popular in cloud

and data center environments. However, there have

been few studies on using NVMMs for virtual machines

(VMs). We propose HMvisor [61], a hypervisor/VM co-

operative hybrid memory management system to uti-

lize DRAM and NVMM efficiently. As shown in Fig.9,

HMvisor exploits a pseudo-NUMA mechanism to sup-

port hybrid memory allocation in VMs. Since virtual

NUMA nodes in a VM can be mapped to different phys-

ical NUMA nodes, HMvisor can map different memory

regions to a single VM and thus expose memory het-

erogeneity to VMs.

To support lightweight page migration in VMs,

HMvisor monitors page access counts and classifies



22 J. Comput. Sci. & Technol., Jan. 2021, Vol.36, No.1

Allocator Front-Endl

Allocator Back-End

Guest OS

KVM

Balloon

Migration Driver

Memory
Management

NUMA Abstraction

Hot Pages Tracking & 

Dynamic Memory Monitor

7. Perform Migration

2. Get Memory Pages

4. Enable

Detection

9. Update Guest Hybrid Memory

8. Guide Balloon 

to Adjust Memory 

Type of VM

DRAM NVM

1. Request 

Memory Pages

3. NUMA-Based Memory 

Allocator & Update Page Tables

Application-Transparent

5. Track Hot/Cold Pages

6. Add Target 

Page Frames to 

Shared Memory

Fig.9. System overview of HMvisor [61].

hot pages and cold pages in the hypervisor, and then

the VM periodically collects the information of hot

pages through an inter-domain communicate mecha-

nism. We implement a loadable driver in the VM to

perform process-level page migrations between DRAM

and NVMM. Since HMvisor performs page migrations

by the VM itself, HMvisor does not need to suspend

the VM for page migrations. HMvisor also advocates a

hybrid memory resource trading policy to dynamically

adjust the size of NVMM and DRAM in a VM. In this

way, HMvisor can meet different memory requirements

(capacity or performance) of diversifying applications

while keeping the total monetary cost of the VM un-

changed.

The prototype of HMvisor is implemented in the

QEMU/KVM platform. Our evaluation shows that

HMvisor is able to reduce NVMM write traffic by 50%

at the expense of only 5% performance overhead. Fur-

thermore, the dynamic memory adjustment policy can

significantly reduce major page faults in a VM when it

suffers high memory pressure, and thus can even im-

prove application performance by 30 times.

This is an early system work to manage hybrid

memory in a virtualization environment. The proposed

schemes are completely implemented by software, and

thus also applicable to hybrid memory systems com-

prising of the new Intel Optane DCPMM device.

6.3 NVMM-Supported Applications

Since hybrid memory systems can provide very large

capacity of main memory, they have been widely ex-

plored for big data applications such as in-memory key-

value (K-V) stores and graph computing. In this sub-

section, we present our practices of NVMM-supported

system optimizations for those applications.

In-memory K-V stores with large-capacity memory

can cache more hot data in main memory, and thus

deliver higher performance to applications. However,

there are several challenges to directly deploy tradi-

tional K-V stores such as memcached in hybrid memory

systems. For example, how to identify hot K-V objects

efficiently? How to redesign an NVMM-friendly K-V

indexes to reduce NVMM writes? How to redesign the

cache replacement algorithm to balance object access

frequency and recency in hybrid memory systems? How

to address the slab calcification problem [122] to best uti-

lize the DRAM resource in hybrid memory systems?

To address the above problems, we propose

HMCached [80], an extension of K-V cache (mem-

cached) for hybrid DRAM/NVMM systems. Fig.10

shows the system architecture of HMCached. HM-

Cached tracks K-V object accesses and records the ac-
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cess counts in each K-V pair’s metadata structure so

that HMCached can easily identify frequently-accessed

(hot) objects in NVMM and migrates them to DRAM.

In this way, we logically use DRAM as an exclusive

cache of NVMM to avoid more costly NVMM accesses.

Moreover, we redesign an NVMM-friendly K-V data

structure by splitting the hash-based K-V indexes to

further reduce NVMM accesses. We put the frequently-

updated metadata (e.g., reference counts, timestamp,

and access counts) of K-V objects in DRAM, and the

remaining portion (e.g., keys and values) in NVMM.

We exploit a multi-queue algorithm [118] to take both

object access frequency and recency into account for

DRAM cache replacement. Moreover, we set up a

utility-based performance model to evaluate the ben-

efit of slab class reassignment. Our dynamic slab real-

location policy is able to address the slab calcification

problem effectively, and significantly improve applica-

tion performance when the data access pattern changes.

Compared with the vanilla memcached, HMCached

can significantly reduce NVMM accesses by 70% and

achieves about 50% performance improvement. More-

over, HMCached is able to reduce 75% DRAM cost

while the performance degradation is less than 10%.

To the best of our knowledge, we are the first to ex-

plore the object-level data management for K-V stores

in hybrid memory systems. We implement HMCached

based on Memcached and open the source codes 5○. We

find that later studies such as flatstore [90] have a similar

idea to decouple data structures of KV stores.

Today we have witnessed a number of in-memory

graph processing systems in which application perfor-

mance is highly bound to the capacity of main memory.

High-density and low-cost NVMM technologies are es-

sential to mitigate I/O cost for graph processing. As

shown in Fig.11, a hybrid memory system can signifi-

cantly improve application performance compared with

an SSD-based storage system. Fig.12 shows the appli-

cation performance gap between a hybrid memory sys-

tem and a DRAM-only system. Although the gap is

5○https://github.com/CGCL-codes/HMCached, Dec. 2020.
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acceptable, it indicates that there are still opportuni-

ties to further exploit the advantages of NVMM and

DRAM for in-memory graph processing systems.
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We propose NGraph [91], a new graph processing

framework particularly designed to better utilize hy-

brid memories. We develop hybrid memory aware data

placement policies based on access patterns of diffe-

rent graph data to mitigate random and frequent ac-

cesses to NVMM. Generally, graph structure data ac-

counts for a majority of total graph data. NGraph

partitions graph data according to destination ver-

tices and employs a task decomposition mechanism

to avoid the data contention between multiple pro-

cessors. Moreover, NGraph adopts a work stealing

mechanism to minimize the maximum time of para-

llel graph data processing on multicore systems. We

implement NGraph based on a graph processing frame-

work Ligra [123]. NGraph can improve application per-

formance by up to 48% compared with the state-of-the-

art Ligra. The lessons learned from this work [91] can be

exploited to further improve the performance of large-

scale graph analytics in a graph processing platform

equipped with real PM device.

7 Research Directions

The advent of NVMM technologies has aroused

many interesting research topics in the area of mate-

rial, microelectronics, computer architecture, system

software, programming model, and big data applica-

tions. As real NVMM devices such as Intel Optane

DCPMM have been increasingly applied to data center

environments, NVMMs may change the storage land-

scape of data centers. Our experiences and practices

have demonstrated some preliminary and interesting

studies on those dimensions. In the following, we share

our vision of future research directions of NVMMs, and

analyze the research challenges and new opportunities.

Fig.13 illustrates the future trends of NVMM technolo-

gies in different dimensions.

1) The Development of of 3D-Stacked NVMM Tech-

nologies Is Still Continuing. NVMMs are expected to

provide higher integration density for cost reduction.

Currently, the high-end NVDIMMs are still too ex-

pensive for enterprise applications. The key challenge

for NVMMs to compete with traditional DRAM and

NAND flash is the storage density or the cost per byte.

There are mainly two monolithic 3D integration mech-

anism for NVMM technologies [124]. One is to stack the

horizontal cross-point array layer by layer, such as In-

tel/Micron 3D X-point. The other is the vertical 3D

stacked structure that is referred to ReRAM techno-

logy. However, the 3D integrate technologies are not

full-blown. There still remain many challenges such as

fabrication cost, pillar electrode resistance, and sneak

path problems.

2) NVMMs Are Increasingly Used in Distributed

Shared Memory Systems. As the density of NVMMs

is continuously increasing, the main memory capac-

ity can approach hundreds of Terabytes in a single

server. To improve the utilization of large-capacity

NVMMs, it is essential to share them among multi-

ple servers via remote direct memory access (RDMA)

techniques. A typical approach of using NVMMs is to

aggregate all shareable memories from multiple servers

in a hybrid shared memory resource pool, such as
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Hotpot [49, 125,126]. All memory resources are shared in

a global memory space. There have been a few prelimi-

nary studies on using NVMMs in datacenter and cloud

environments [49, 126,127]. A new trend of using PM is

to manage it as disaggregated memory, like traditional

disaggregated storage systems. This model is different

from the previous shared PM systems in which the PM

DIMMs are distributed in multiple servers and shared

by user-level applications. These computation-memory

tightly-coupled architectures have several drawbacks in

terms of manageability, scalability, and resource uti-

lization. In contrast, the disaggregated PM systems

equipped with a large amount of PM in a few mem-

ory nodes can be connected by computation nodes via

high-speed fabric. This computation/memory disaggre-

gated architecture can mitigate the above challenges in

data center environments more easily. However, there

still remain a lot of challenges. For example, the per-

sistent feature of NVMMs also should be guaranteed

in distributed environments. Traditional PM mana-

gement instructions such as clflush and mfence can only

guarantee data persistence in a single server, but can-

not guarantee data persisting to a remote server over

RDMA networks. For each RDMA operation, once

the data arrives at the network interface card (NIC)

in the remote server, it issues an acknowledgment to

the data sender. As there are data buffers in NICs,

the data is not stored to the remote NVMM imme-

diately. If a power failure occurs at this time, data

persistence is not guaranteed. Thus, it is essential to

redesign the RDMA protocol to support flushing primi-

tives. Moreover, the computation nodes should support

remote page swapping which should be transparent to

user-level applications. To support this mechanism, the

traditional virtual memory management policies should

be redesigned. On the other hand, since PM shows

memory-like performance and is byte-addressable, new

designs on memory scheduling and management are re-

quired to adapt to disaggregated PM.

3) NVMM-Based Computation/Memory Integrated

Computer Architectures Are Arising. For example,

the use of emerging NVMMs in processing-in-memory

(PIM) [95, 96] and near data processing (NDP) [128,129]

architectures is arising. PIM and NDP have emerged as

new computing paradigms in recent years. NDP refers

to the integration of a processor with memory on a sin-

gle chip so that the computation can access the data

in memory as close as possible. NDP is able to signifi-

cantly reduce the cost of data movement. There are

mainly two approaches to this goal. One is to integrate

small computation logics such as (FPGA/ASIC) into

memory chips so that the data can be pre-processed be-

fore it is finally fetched to CPUs. The other approach

is to integrate memory units (HBM/HMC) into compu-

tations (CPUs/GPGPUs/FPGAs). This model is com-

monly used by many processor architectures such as

Intelr Xeon PhiTM Knights Landing series, NVIDIAr

tesla V100, and Google Tensor Processing Unit (TPU).

PIM refers to processing data entirely in computer

memory. It offers high bandwidth, massive parallelism,

and high-energy efficiency by performing computations

in main memory. PIM using NVMMs (such as ReRAM)

usually can compute the bitwise logic of two or more

memory rows in parallel, and support one-step multi-

row operations. This paradigm is particular efficient

for matrix-vector multiplication in an analog comput-

ing manner, and can achieve an extremely large degree

of performance speedup and energy saving. As a result,

PIM is widely explored in accelerating machine learn-

ing algorithms such as convolutional neural networks



26 J. Comput. Sci. & Technol., Jan. 2021, Vol.36, No.1

(CNN) and deep neural network (DNN). Although

there are growing interests in using NVMM technolo-

gies in PIM architectures [94–96,130], current studies are

mainly based on electrical simulations, and none of

them are available for mid-scale prototyping.

4) Beyond the Traditional Applications, Some Novel

Applications Using NVMMs Are Emerging. Although

NVMM technologies have been preliminarily adopted

in a lot of big data applications, such as K-V store,

graph computing, and machine learning, most of those

programming frameworks/models and runtime systems

are designed for disk devices and DRAM-based main

memory, and they are not effective and efficient in

hybrid memory systems. For example, buffering and

lazy-write mechanisms are widely utilized in those sys-

tems to hide the high latency of I/O operations. How-

ever, those mechanisms may not be needed in hybrid

memory systems and may even hurt application per-

formance. These big data processing platforms such

as Hadoop/Spark/GraphChi/Tensorflow should be re-

designed to adapt to the features of NVMM technolo-

gies. Beyond those traditional applications, some novel

applications based on NVMMs are emerging. For ex-

ample, there have been a few proposals to use NVMMs

as hardware security primitives such as physical un-

clonable functions (PUFs) by exploiting the intrinsic

variations of NVMM’s switching processes [131]. PUFs

are typically used in applications with high-security

requirements, for example, cryptography. Recently, a

number of logic circuits based on NVMM technologies

have been proposed and prototyped [132–134]. For exam-

ple, the ReRAM technology is proposed to use as recon-

figurable switch for ReRAM-based FPGAs [133]. More-

over, the STT-RAM technology is proposed to design

non-volatile cache or registers [135].

8 Conclusions

Emerging NVMM technologies have many good fea-

tures compared with traditional DRAM technologies.

They have a potential to fundamentally change the

landscape of memory systems and even add new func-

tionalities and features to the computer systems. There

are vast opportunities to rethink the designs of to-

days’ computer systems to achieve orders of magni-

tude improvement in system performance and energy

consumption. This paper presents a comprehensive

survey of the state-of-the-art work and our practices

from the perspective of memory architecture, OS-level

memory management, and application optimizations.

We also shared our vision of future research direc-

tions about NVMM technologies. By taking advan-

tage of the unique features of NVMMs, there are enor-

mous opportunities to innovate the future’s computing

paradigm and develop a lot of diverse novel applications

of NVMMs.
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