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Abstract Non-volatile memory (NVM) provides a scalable and power-efficient solution to replace dynamic random access

memory (DRAM) as main memory. However, because of the relatively high latency and low bandwidth of NVM, NVM is

often paired with DRAM to build a heterogeneous memory system (HMS). As a result, data objects of the application must

be carefully placed to NVM and DRAM for the best performance. In this paper, we introduce a lightweight runtime solution

that automatically and transparently manages data placement on HMS without the requirement of hardware modifications

and disruptive change to applications. Leveraging online profiling and performance models, the runtime solution characterizes

memory access patterns associated with data objects, and minimizes unnecessary data movement. Our runtime solution

effectively bridges the performance gap between NVM and DRAM. We demonstrate that using NVM to replace the majority

of DRAM can be a feasible solution for future HPC systems with the assistance of a software-based data management.

Keywords data management, non-volatile memory, runtime system

1 Introduction

Non-volatile memory (NVM), such as phase change

memory (PCM) and resistive random-access memory

(ReRAM), is a promising technique to build future high

performance computing (HPC) systems. The popula-

rity of many-core platforms in HPC and large datasets

in scientific simulations drives the fast development of

NVM, because NVM can provide a scalable and power-

efficient solution as main memory, alternative to DRAM

(dynamic random access memory). Such a solution is

based on the attractive characteristics of NVM, such as

a higher density and near-zero static power consump-

tion.

However, compared with DRAM, NVM as main

memory can be challenging. The promising NVM so-

lutions (e.g., PCM and ReRAM), although providing

larger capacity at the similar or lower cost than DRAM,

can have a higher latency and lower bandwidth (see

Table 1). Such NVM features can introduce a big per-

formance gap between emerging NVM-based and tra-

ditional DRAM-based systems for HPC applications.

Our initial performance evaluation with HPC work-

loads (Section 2) shows that there is 1.09x–8.4x slow-

down on NVM-based systems, depending on bandwidth

and latency features of NVM. Because of the limita-

tion of NVM, NVM is often paired with a small frac-

tion of DRAM to form a heterogeneous memory system

(HMS) [1–7]. By selectively placing frequently-accessed

data in the small amount of DRAM available in HMS,

we are able to exploit the cost and scaling benefits of

NVM while minimizing the limitation of NVM with

DRAM.

To manage the data placement on HMS for HPC,

we have several goals. First, we want to avoid disrup-

tive changes to hardware. The existing hardware-based
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Table 1. NVM Performance Characteristics and Comparison Between NVM Techniques and DRAM [13,14]

Read Time (ns) Write Time (ns) Random Read Bandwidth (MB/s) Random Write Bandwidth (MB/s)

DRAM 10 10 10 000 9 000

STT-RAM (ITRS’13) 60 80 800 600

PCRAM 20–200 80–10 000 200–800 100–800

ReRAM 10–1 000 10–10 000 20–100 1–8

Optane PM 174–304 100–190 3 900 1 300

solutions to manage the data placement on HMS [5, 8–10]

may be difficult to be embraced by the HPC data cen-

ters, because of the concerns on hardware cost. Second,

we want to minimize changes to applications and sys-

tem software. HPC legacy applications should be easily

ported to NVM-based HMS with few programming ef-

forts. Third, managing data placement should be as

transparent as possible. We want to enable automatic

data placement, and relieve users from managing data

placement details.

In this paper, we introduce a software-based solu-

tion to decide and place data objects on NVM-based

HMS. Using a software-based solution to meet the

above goals must address the following research chal-

lenges.

First, how to capture and characterize memory ac-

cess patterns associated with data objects? This ques-

tion is important for making data placement decisions.

As we show in Section 2, after we move some data ob-

ject from NVM with less memory bandwidth to DRAM,

there is a big performance improvement. However, we

do not have such performance improvement after mov-

ing this data object from NVM with longer access la-

tency to DRAM. We claim such data object is sensitive

to memory bandwidth. Similarly, we find some data ob-

ject which is only sensitive to memory latency, or sen-

sitive to both bandwidth and latency. Characterizing

data objects based on their sensitivity to bandwidth or

latency is critical to model and predict the performance

benefit of data placement.

Second, how to strike a balance between different

requirements on the frequency of data movement (i.e.,

the implementation of data placement)? On the one

hand, we want data movement to be frequent such that

data placement is adaptive to the variation of memory

access patterns across execution phases. On the other

hand, we want to minimize the data movement to avoid

performance loss.

Third, how to minimize the impact of data move-

ment on application performance? Data movement is

known to be expensive in terms of performance and en-

ergy cost. Hiding data movement cost and achieving

high performance are a key to be successful in the HPC

domain.

In this paper, we introduce a runtime system

(named “Unimem”) that automatically and transpar-

ently decides and implements the data placement. This

runtime system meets the above goals and addresses the

above three challenges. In particular, we employ on-

line profiling based on performance counters to capture

memory access patterns for execution phases, based

on which we characterize the sensitivity of data ob-

jects in each phase to memory bandwidth and latency.

This addresses the first challenge. We further intro-

duce lightweight performance models, based on which

we predict performance benefit and cost if moving data

objects between NVM and DRAM. Given the perfor-

mance benefit and cost of data movement, we formu-

late the problem of deciding optimal data placement as

a knapsack problem. Based on the performance models

and formulation, we avoid unnecessary data movement

while maximizing the benefits of data movement. This

addresses the second challenge.

To avoid the impact of data movement on applica-

tion performance, we introduce a proactive data move-

ment mechanism. Given an execution phase and a data

movement plan for the phase, this mechanism uses a

helper thread to trigger the data movement before the

phase. The helper thread runs in parallel with the

application, overlapping data movement with applica-

tion execution. This proactive data movement mech-

anism takes data movement overhead off the critical

path, which addresses the third challenge. To further

improve performance, we introduce a series of tech-

niques, including 1) optimizing initial data placement

to reduce data movement cost at runtime, 2) explor-

ing the tradeoff between phase local search and cross-

phase global search for optimal data placement, and 3)

decomposing large data objects to enable fine-grained

data movement. Altogether, these techniques in com-

bination with our performance models greatly narrow

the performance gap between NVM and DRAM.

In summary, we make the following contributions.

•We study the performance of HPC workloads with
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large datasets on multiple nodes with various NVM

bandwidth and latency, which is unprecedented. Our

study reveals a big performance gap between NVM-

based and DRAM-based main memories. We demon-

strate the feasibility of using a runtime-based solution

to narrow such a gap for HPC.

•We introduce a lightweight message passing inter-

face (MPI) runtime system to manage the data place-

ment without hardware modifications and disruptive

changes to applications and system software.

•We evaluate Unimem with six representative HPC

workloads and one production code (Nek5000) using In-

tel Optane DC persistent memory and a DRAM-based

simulator with various memory latency and bandwidth.

Unimem significantly narrows down the performance

gap between DRAM-only and NVM-only by 78.4%. It

outperforms a software-based solution for HPC by up

to 19%.

This work is built based on the conference paper by

Wu et al. [11] The extension introduces a new profiling

method (see in Subsection 3.1) that distinguishes read

and write operations, and a new evaluation of Unimem

on real NVM hardware.

2 Background

In HMS, we assume that DRAM shares the same

physical address space as NVM (but with different ad-

dresses) and DRAM memory allocation can be man-

aged at the user level. This assumption has been widely

used in the existing work [1–7].

2.1 Definitions and Basic Assumptions

We target at the MPI programming model. For a

parallel application based on MPI, we decompose the

application into phases. A phase can be a computa-

tion phase delineated by MPI operations; a phase can

also be an MPI communication phase doing collective

operations, point-to-point communication operations,

or synchronization. For a non-blocking communication

(e.g., MPI Isend), the MPI communication call is not

a phase. Instead, it is merged into the immediately

following phase. The communication completion ope-

ration (e.g., MPI Wait) is a communication phase.

Furthermore, we target at parallel applications from

the HPC domain with an iterative structure. In those

applications, each program phase is executed many

times. Such parallel applications are very common. As

an example, Fig.1 depicts a typical iterative structure

from CG (an NAS parallel benchmark [12]), which dom-

inates the execution time of CG.

Fig.1. Conceptual description for an MPI-based program (CG)
decomposed into phases. A is a 2D matrix, and q , p, z , and r
are vectors.

We claim a data object is bandwidth-sensitive, if

there is a big performance difference between placing it

on NVM with lower memory bandwidth and on DRAM

with higher memory bandwidth. We claim a data ob-

ject is latency-sensitive, if there is a big performance

difference between placing it on NVM with longer mem-

ory access latency and on DRAM with shorter memory

access latency.

2.2 Preliminary Performance Evaluation with

NVM-Based Main Memory

NVM has relatively long access latency and low

memory bandwidth. In addition, NVM has asymmet-

ric read and write performance. Table 1 shows NVM

performance characteristics. The table is based on [14]

gathering a comprehensive survey of 340 non-volatile

memory technology papers published between 2000 and

2014 in relevant conferences. The recent released In-

tel Optane DC Persistent Memory Module (PMM) 1○

is the first mass-production of byte-addressable NVM.

We also include its performance characteristics reported

1○Intel, Inc. Myrinet Express (MX): A high-performance, low-level, message passing interface for Myrinet. http://www.myri.co-
m/scs/MX/doc/MX.pdf, Dec. 2020.
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in [13] in Table 1. Based on such performance charac-

teristics, we perform the preliminary performance study

to quantify the impact of NVM on the HPC application

performance.

We use Quartz, a DRAM-based, lightweight per-

formance emulator for NVM [15]. The existing work

uses the cycle-accurate simulation to study the NVM

performance [7, 16]. However, the long simulation time

makes it impossible to simulate HPC applications with

large datasets on multiple nodes. The performance of

HPC workloads on NVM is always mysterious. Using

Quartz, we can study the performance (execution time)

of HPC workloads with much shorter time. We deploy

our tests on four nodes in platform A (the configura-

tions of those nodes and platform A are summarized in

Section 5). We change the emulated NVM bandwidth

and latency, and run a set of NAS parallel benchmarks.

We use class D as input and run 16 MPI processes (4

MPI processes per node). For the benchmark Fourier

transform (FT), we use class C as input because of the

long execution time with class D. Fig.2 and Fig.3 show

the emulation results.

Observation 1. We find a big performance gap be-

tween DRAM-only and NVM-only systems. This ob-

servation is contrary to an existing conclusion (i.e., no

big gap) for HPC workloads based on a single node

simulation [16]. Furthermore, HPC application perfor-

mance (execution time) is sensitive to different NVM

technologies with various bandwidth and latency. With

the memory bandwidth reduced by only 1/2 or the la-

tency increased by only 2x in NVM, some benchmarks

have already shown a big slowdown. For example, LU

has 2.19x and 2.14x slowdown with NVM configured

with 1/2 DRAM bandwidth (Fig.2) and 2x DRAM la-

tency (Fig.3) respectively.

We further study whether the data placement in
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Fig.2. Benchmark performance (execution time) on NVM-based main memory (NVM-only) with various bandwidth (BW). The
performance is normalized to that of DRAM-only systems.
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HMS can bridge the performance gap between DRAM-

based and NVM-based systems. We choose the SP

benchmark and focus on four critical data objects of SP

(the arrays lhs, rhs, in buffer and out buffer). We

use two configurations for NVM, one with 1/2 DRAM

bandwidth and the other with 4x DRAM latency. For

each data object with an NVM configuration (either 1/2

DRAM bandwidth or 4x DRAM latency), we do three

tests. In the first test, we use a DRAM-only system.

In the second test, we use a DRAM+NVM system. For

this test, a target data object is placed in DRAM (see

the legend entries in Fig.4), while the rest of data ob-

jects are placed in NVM. In the third test, we use an

NVM-only system. In each test, we use four nodes with

one MPI task per node, and use class C and class D as

input. Fig.4 shows the results. The results are normal-

ized to the performance of DRAM-only.

Observation 2. A good data placement can effec-

tively bridge the performance gap. For example, with

the data object lhs placed in DRAM, we bridge the

performance gap between DRAM and NVM (using the

configuration of 4x DRAM latency and class C) by 31%

(see Fig.4).

Observation 3. Different data objects manifest diffe-

rent sensitivity to limited NVM bandwidth and latency,

shown in Fig.4. For example, for the data objects

in buffer and out buffer (class D), there is no big

performance difference (2.1 vs 2.15) between placing

them in DRAM and placing them in NVM configured

with 4x DRAM latency. However, there is a big perfor-

mance difference (1.14 vs 1.25) between placing them in

DRAM and placing them in NVM configured with 1/2

DRAM bandwidth (class D). This indicates that the

two data objects are sensitive to memory bandwidth

but not memory latency. lhs (class D) tells us a diffe-

rent story: it is sensitive to latency (1.71 vs 2.15), but

not bandwidth (1.21 vs 1.25). Also, rhs is sensitive to

both latency and bandwidth.

Different data objects have different memory access

patterns which manifest a different sensitivity to band-

width and latency. A data object with a memory access

pattern of bad data locality and massive, concurrent

memory accesses (e.g., streaming pattern) is sensitive

to memory bandwidth, while a data object with a mem-

ory access pattern of bad data locality and dependent

memory accesses (e.g., pointer-chasing) is sensitive to

memory latency.

Our preliminary performance study highlights the

importance of capturing memory access patterns of

data objects. It also shows us that it is possible to

bridge the performance gap between NVM and DRAM

by appropriately directing data placement on HMS.

3 Design and Implementation

Motivated by the preliminary performance study,

we introduce a runtime system (named “Unimem”) tar-

geting at directing data placement on HMS for HPC

applications.

Unimem directs the data placement for data objects

(e.g., multi-dimensional arrays). The data objects must

be allocated using certain Unimem APIs by the pro-

grammer. We call those data objects, the target data

objects, in the rest of the paper. Unimem is phase-
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based. It decides and changes the data placement for

target data objects for each phase based on runtime

profiling and lightweight performance models.

In particular, Unimem profiles the memory refer-

ences to target data objects with a few invocations of

each phase. Then Unimem uses performance models to

predict the performance benefit and cost of data place-

ment, and formulates the problem of deciding the opti-

mal data placement as a knapsack problem. The results

of the performance models and formulation direct data

placement for each phase in the rest of the application

execution. We describe the design and implementation

details in this section.

3.1 Design

Unimem includes three steps in its workflow: phase

profiling, performance modeling, and data placement

decision and enforcement. The phase profiling happens

in the first two iterations of the main computation loop

of the application. At the end of the first two iterations,

we build performance models and make data placement

decision. After the first two iterations, we enforce the

data placement decision for each phase. We describe

the three steps in details as follows.

3.1.1 Phase Profiling

This step collects the memory access information for

each phase. This information is leveraged by the sec-

ond and the third steps to decide the data placement

for each phase.

We rely on hardware performance counters widely

deployed in modern processors. In particular, we col-

lect the number of store and load events, and then

map the event information to data objects. Lever-

aging the common sampling mode in performance

counters (e.g., precise event-based sampling from Intel

or instruction-based sampling from AMD), we collect

memory addresses whose associated memory references

cause memory stores or loads. These memory addresses

help us identify target data objects that have frequent

memory accesses in main memory.

Note that the number of loads and stores can reflect

how intensive data accesses happen within a fixed sam-

pling interval. It works as an indication for which tar-

get data objects potentially suffer from the performance

limitation of NVM. However, load and store events do

not filter out cache effects. The current performance

counter supports counting the last-level cache misses

in sampling mode, which can eliminate the impact of

the cache. However, that event does not support dis-

tinguishing read and write. NVM has asymmetric per-

formance on read and write. In addition, we find that

not distinguishing between reads and writes can signifi-

cantly affect the effectiveness of data placement deci-

sions and lose application performance. Hence, we can-

not include that event. Instead, we use the load and

store events, which account for a large part of the main

memory access, and also allow Unimem to distinguish

reads and writes to better estimate the performance

benefit of data placement. According to the experimen-

tal results in the evaluation section, the load and store

events can work as a reliable indicator to direct data

placement. To compensate for the potential inaccuracy

caused by the limitation of performance counters, we

introduce constant factors in the performance models

in step 2.

3.1.2 Performance Modeling

Given the memory access information collected for

each phase, we select those target data objects that

have memory accesses recorded by performance coun-

ters. These data objects are potential candidates to

move from NVM to DRAM. To decide which target

data objects should be moved, we introduce lightweight

performance models.

General Description. The performance models esti-

mate performance benefit ((2) and (3)) and data move-

ment cost ((6)) between NVM and DRAM. We trigger

data movement only when the benefit outweighs the

cost. To calculate the performance benefit, we must de-

cide if the data object is bandwidth-sensitive or latency-

sensitive ((1)). This is necessary to model the per-

formance difference between bandwidth-sensitive and

latency-sensitive workloads.

Bandwidth Sensitivity vs Latency Sensitivity. To de-

cide if a target data object in a phase is bandwidth-

sensitive or latency-sensitive, we use (1). This equation

estimates main memory bandwidth consumption due to

memory accesses to the data object (BWdata obj).

BWdata obj = #data access× cacheline size/(
#samples with data accesses

#samples
×

phase execution time

)
. (1)

The numerator of (1) is the accessed data size.

#data access in the numerator is the number of mem-

ory accesses to the data object in main memory.
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#data access is the sum of the number of stores and

loads collected in step 1 (phase profiling) with per-

formance counters. For a target data object in a

phase, the accessed total data size is calculated as

(#data access× cacheline size).

The denominator of (1) is the fraction of the

execution time that has memory accesses to the

target data object in main memory. This frac-

tion of the execution time is calculated based on

#samples with data accesses/#samples, which is the

ratio between the number of samples that collect non-

zero accesses to the target data object and the total

number of samples.

For example, suppose that the phase execution time

is 10 seconds, the hardware counter sampling rate is

1 000 cycles, and the CPU frequency is 1 GHz. Then

we will have 107 samples in total during the phase exe-

cution. Assuming that 105 samples of all samples have

memory accesses to the data object, then the fraction

of the execution time that accesses the data object is

105/107 × 10 = 0.1 s.

Given a data object in a phase, if its BWdata obj

reaches t1% of the peak NVM bandwidth BWpeak

(t1 = 80 in our evaluation), then this data object

is most likely to be bandwidth-sensitive. The per-

formance benefit after moving the data object from

NVM to DRAM (i.e., BFTdata obj bw) is dominated

by the memory bandwidth effect, and can be cal-

culated based on (2), which will be discussed next.

If BWdata obj of the data object is less than t2% of

BWpeak (t2 = 10 in our evaluation), then this data

object is most likely to be highly latency-sensitive.

The performance benefit of moving the data object

from NVM to DRAM (i.e., BFTdata obj lat) is domi-

nated by the memory latency effect, and can be cal-

culated based on (3), which will be discussed next.

If BWdata obj of the data object is between t1% and

t2%, then the data object is likely to be sensitive to

either bandwidth or latency. The performance bene-

fit after data movement from NVM to DRAM is es-

timated by max(BFTdata obj bw, BFTdata obj lat). To

measure BWpeak, we run a highly memory bandwidth

intensive benchmark, the STREAM benchmark 2○, with

maximum memory concurrency, and use (1) and per-

formance counters.

Calculation of Data Movement Benefit. (2) and

(3) calculate performance benefits (after the data

movement from NVM to DRAM) for bandwidth-

sensitive and latency-sensitive data objects, respec-

tively. The two equations are simply based on an es-

timation of the performance difference between run-

ning the applications on NVM and on DRAM. If the

data object is bandwidth-sensitive, then the applica-

tion performance on a specific memory is modeled by

accssed data size/mem bw (mem is NVM or DRAM).

accessed data size is #data access × cacheline size,

the same as the one in (1). If the data object is latency-

sensitive, then the application performance on a specific

memory is modeled by #data access×mem lat (mem

is NVM or DRAM).

BFTdata obj bw

=

(
#data access× cacheline size

NVM bw
−

#data access× cacheline size

DRAM bw

)
× CF bw, (2)

BFTdata obj lat

= (#data access×NVM lat−
#data access×DRAM lat)× CF lat. (3)

In (2) and (3), we have constant factors CF bw (see

(2)) and CF lat (see (3)). Such constant factors are

used to improve the modeling accuracy. To meet high

performance requirement of our runtime, the perfor-

mance models are rather lightweight, and only capture

the critical impacts of memory bandwidth or memory

latency. However the models ignore some important

performance factors (e.g., overlapping between mem-

ory accesses, and overlapping between memory accesses

and computation). Also, the limitation of the sampling-

based approach to count performance events can un-

derestimate the number of memory accesses due to the

sampling nature of the approach. The constant fac-

tors CF bw and CF lat work as a simple but powerful

approach to improve the modeling accuracy without in-

creasing modeling complexity and runtime overhead.

The basic idea of the two factors is to measure

performance ratios between measured performance and

predicted performance for representative workloads,

and then use the ratios to improve online modeling ac-

curacy for other workloads.

In particular, we run the bandwidth-sensitive

benchmark STREAM to obtain CF bw offline. We cal-

culate the performance ratio between the predicted per-

formance and the measured performance, and such a ra-

tio is CF bw. The predicted performance is calculated

based on (#data access× cacheline size/DRAM bw),

2○McCalpin JD. STREAM: Sustainable memory bandwidth in high performance computers. https://www.cs.virginia.edu/stream,
March 2017.
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where #data access is collected with performance

counters using the sampling-based approach. Hence,

CF bw accounts for the potential performance diffe-

rence between our sampling-based modeling and real

performance. The constant factor CF lat is obtained in

the similar way, except that we use a latency-sensitive

benchmark, the pointer-chasing benchmark 3○ (using

a single thread and no concurrent memory accesses).

Also, to calculate the predicted performance, we use

(#dataaccess × DRAM lat). Given a hardware plat-

form, CF bw and CF lat need to be calculated only

once.

Accounting for Performance Difference Between

Read and Write. NVM is featured with asymmetric

read and write performance. The performance diffe-

rence between read and write operations can be as large

as 50x in terms of latency and 8x in terms of band-

width (see PCRAM in Table 1). We account for the

performance difference in performance modeling. In

particular, we extend (2) and (3) by counting #load

and #store separately (see (4) and (5)). The numbers

of #load and #store are measured in step 1 (phase

profiling).

BFTdata obj bw

=

(
#load× cacheline size

NVM bwread
+

#store× cacheline size

NVM bwwrite
−

(#load + #store)× cacheline size

DRAM bw

)
× CF bw, (4)

BFTdata obj lat

= (#load×NVM latread +

#store×NVM latwrite −
(#load + #store)×DRAM lat)× CF lat. (5)

Calculation of Data Movement Cost. Data place-

ment comes with data movement cost. The data move-

ment cost can be simply calculated based on data

size and memory copy bandwidth between NVM and

DRAM, which is (data size/mem copy bw). To re-

duce the data movement cost, we want to overlap

the data movement with application execution. This

is possible with a helper thread that runs in parallel

with the application to implement an asynchronous

data movement. We discuss this in details in Sub-

section 3.3. In summary, the data movement cost

(COSTdata obj) is modeled in (6) with the overlapped

cost (mem comp overlap) included.

COSTdata obj

= max

(
data size

mem copy bw
−mem comp overlap, 0

)
.(6)

We describe how to calculate mem comp overlap

as follows. To minimize the data movement cost, we

want to overlap data movement with application exe-

cution as much as possible. Meanwhile, we must re-

spect data dependency and ensure execution correct-

ness. This means during data movement, the migrated

data object must not be read or written by the applica-

tion. Given the above requirement on respecting data

dependency and minimizing the data movement cost,

we can estimate mem comp overlap.

Fig.5 explains how to calculate mem comp overlap

with an example. This example shows how to calcu-

late mem comp overlap for a data object a in a spe-

cific phase (phase i). If a is not in DRAM, we can

trigger the data migration of a as early as the begin-

ning of phase j, because a is not referenced between

j and i. We cannot trigger the data migration of a

at the beginning of phase j − 1, because a is refer-

enced there. mem comp overlap is the application exe-

cution time between phases j and i. The data move-

ment time, data size/mem copy bw, can be smaller

than mem comp overlap. In this case, the data move-

ment is completely overlapped with application exe-

cution, and the data movement cost COSTdata obj is

0.

loop

(a)

(b↪ c)

(d↪ e)

(b↪ d)

(a↪ e)

Phase j-1

Phase j

Phase j+1

Phase j+2

Phase i

m
e
m
_
c
o
m

p
_
o
v
e
r
la

p Trigger Data

Migration

(from NVM to DRAM)

Fig.5. Example to show how to calculate mem comp overlap
for the data object a in phase i. The yellow arrow is the point
to trigger the migration of a from NVM to DRAM for phase i, if
a is not in DRAM. The letters in brackets represent target data
objects referenced in the corresponding phases.

3○Besard T. Pointer-chasing memory benchmark. https://github.com/maleadt/pChase, March 2017.
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Our estimation on COSTdata obj could be an over-

estimation (a conservative estimation). In particular,

when a data object is to be migrated from NVM to

DRAM for a phase, it is possible that the data ob-

ject is already in DRAM. We use Fig.5 as an example

again. Since the phase j − 1 references a, it is pos-

sible that a is already in DRAM before the point to

trigger the data migration. Also, COSTdata obj does

not include the cost of moving the data from DRAM

to NVM when there is no enough space in DRAM and

we need to switch the data. Such overestimation and

ignorance of data movement from DRAM to NVM are

due to the fact that the data movement cost for each

phase is isolatedly calculated during the modeling time.

Hence, what data objects are in DRAM and whether

there is enough space in DRAM are uncertain during

the modeling time. We will solve the above problems

in the next step (step 3).

3.1.3 Data Placement Decision and Enforcement

Based on the above formulation for the benefit and

cost of data movement, we determine data placement

for all phases one by one. In particular, to determine

data placement for a specific phase, we define a weight

w for each target data object referenced in this phase:

w = BFTdata obj − COSTdata obj −
extra COSTdata obj . (7)

extra COSTdata obj accounts for the data move-

ment cost, when there is no enough space in DRAM

to move the target data object from NVM to DRAM

and we have to move the data from DRAM to NVM to

save space. To calculate extra COSTdata obj , we must

decide which data object in DRAM must be moved. We

make such decision based on the sizes of data objects

in DRAM. In particular, we move data objects from

DRAM to NVM whose total size is just big enough

to allow the target data object to move from NVM

to DRAM. Note that since we determine data place-

ments for all phases one by one, when we decide the

data placement for a specific phase, we have made the

data placement decisions for previous phases. Hence,

we have a clear knowledge on which data objects are in

DRAM and whether the target data object is already

in DRAM.

Besides the weight w, each data object has a data

size. Given the DRAM size limitation, our data place-

ment problem is to maximize total weights of data ob-

jects in DRAM while satisfying the DRAM size con-

straint. This is a 0-1 knapsack problem [17].

The knapsack problem can typically be solved

by dynamic programming in pseudo-polynomial time.

If each data object has a distinct value per unit

of weight (data size/w), the empirical complexity is

O((log(n))2) [17], where n is the number of target data

objects referenced in a phase.

The above approach can determine the data place-

ment for individual phases. We name this approach

as “phase local search”. Determining data placement

at the granularity of individual phases can lead to

the optimal data placement for each phase, but re-

sult in frequent data movements, some of which may

not be able to be completely overlapped by application

execution. Alternatively, determining data placement

at the granularity of all phases (named “cross-phase

global search”) has less data movement than phase local

search, because all phases are in fact treated as a com-

bined single phase: once the optimal data placement is

determined within the combination of all phases, there

is no data movement within the combination. However,

the optimal data placement for the combination of all

phases does not necessarily result in the best perfor-

mance for each individual phase.

Based on the above discussion, we use dynamic

programming to determine the data placement using

both phase local search and cross-phase global search,

and then choose the best data placement of the two

searches.

After we make the data placement decision at the

end of the first iteration, we enforce data placement

since the second iteration. At the beginning of each

phase, the runtime asks a helper thread (see Subsec-

tion 3.3 for implementation details) to proactively move

data objects between NVM and DRAM based on the

data placement decision for future phases.

Fig.6 gives an example for how to enforce data place-

ment with a helper thread after determining data place-

ment. In this example, there are three target data ob-

jects (a, b, and c) and five phases. The data placement

decision for each phase is represented with letters in

brackets (e.g., (a) for the phase 1). We assume DRAM

can hold two data objects at most. The data move-

ment enforced by the helper thread respects data de-

pendence across phases and the availability of DRAM

space. Such an example is a case of phase local search,

where each phase makes its own decision for data place-

ment. There are eight data movements in total. With a

cross-phase global search, only two data objects will be

moved to DRAM for all phases. The cross-phase global

search results in only two data movements. Based on
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loop

(a)

(b)

(c)

(a)

(b)

Phase 

Phase 

Phase 

Phase 

Phase 

DRAM Status at the Beginning

of Each Phase in an Iteration

Helper ThreadMain Thread

Proactively move b for phase 2 and c
for phase 3

Proactively move c for phase 3, and
move a out to save space for c 

Proactively move a for phase 4, and
move b out to save space for a 

Proactively move b for phase 5, and
move c out to save space for b 

Do nothing

a in

b in

c in

a in

b in

a

a↪ b

b↪ c

a↪ c

a↪ b

a out

b out

c out

Fig.6. Example to show proactive data migration with a helper thread. The letters in the figure represent data objects. The letters
in brackets (e.g., (a) and (b)) represent target data objects that are determined to be placed in DRAM for the corresponding phases.
DRAM can hold two data objects at most.

the performance modeling and dynamic programming,

we can decide whether the cross-phase global search or

the phase local search is better.

3.2 Optimization

To improve runtime performance, we introduce a

couple of optimization techniques as follows.

Handling Workload Variation Across Iterations.

In many scientific applications, the computation and

memory access patterns remain stable across iterations.

This means once the data placement decision is made at

the end of the first iteration, we can reuse the same de-

cision in the rest of iterations. However, some scientific

applications have workload variation across iterations.

We must adjust data placement decision correspond-

ingly.

To accommodate workload variation across itera-

tions, Unimem monitors the performance of each phase

after data movement. If there is obvious performance

variation (larger than 10%), then the runtime will ac-

tivate phase profiling again and adjust the data place-

ment decision.

Initial Data Placement. By default, all data ob-

jects are initially placed in NVM and moved between

DRAM and NVM by Unimem at runtime. However,

data movement can be expensive, especially for large

data objects, even though we use the proactive data

movement to overlap data movement with application

execution. To reduce the data movement cost, we se-

lectively place some data objects in DRAM at the be-

ginning of the application, instead of placing all data

objects in NVM. The existing work has demonstrated

the performance benefit of the initial data placement

on GPU with HMS [5, 18]. Our initial data placement

technique on NVM-based HMS is consistent with those

existing efforts.

For initial data placement, we place in DRAM those

target data objects with the largest amount of mem-

ory references (subject to the DRAM space limitation).

To calculate the number of memory references for each

target data object, we employ compiler analysis and

represent the number of memory references as a sym-

bolic formula with unknown application information,

similar to [19]. Such information includes the num-

ber of iterations and coefficients of array access. This

information is typically available before the main com-

putation loop and before memory allocation for target

data objects. Hence it is possible to decide and imple-

ment initial data placement before main computation

loop for many HPC applications. However, we cannot

determine initial data placement for those data objects

that do not have the information available before the

main computation loop (e.g., the number of iterations

is determined by a convergence test at run time).

Our method determines initial data placement sim-

ply based on the number of memory references and ig-

nores caching effects. The ignorance of caching effects

can impact the effectiveness of initial data placement.

In particular, some data objects with intensive mem-

ory references may have good reference locality and do

not cause a lot of main memory accesses. However, our

practice shows that in all cases of our evaluation, ini-



100 J. Comput. Sci. & Technol., Jan. 2021, Vol.36, No.1

tial data placement based on compiler analysis makes

the data placement decision consistent with the runtime

data placement decision using the cross-phase global

search. Using compiler analysis can work as a practical

and effective solution to direct initial data placement,

because the target data objects with a large amount

of memory references tend to frequently access main

memory.

Handling Large Data Objects. We move the data be-

tween DRAM and NVM at the granularity of data ob-

ject. This means a data object larger than the DRAM

space cannot be migrated. This problem is common to

any software-based data management on HMS.

A method to address the above problem is to par-

tition the large data object into multiple chunks with

each chunk smaller than the DRAM size. At runtime,

we can profile memory access for each chunk instead

of the whole data object, and move data chunk if the

benefit overweights the cost of data chunk movement.

This method exposes new opportunities to manage the

data and improve the performance.

However, this solution is not always feasible, be-

cause it can involve a lot of programming efforts to

refactor the application such that memory references

to the large data object are based on chunk-based par-

titioning. A compiler tool can be helpful to transform

some regular memory references into new ones based

on chunk-based partitioning (assuming the input prob-

lem size and the number of loop iterations are known).

However, this kind of automatic code transformation

can be impotent for high-dimensional arrays with the

notorious memory alias problem and irregular memory

access patterns. In Unimem, we employ a conservative

approach which only partitions those one-dimensional

arrays with regular memory references.

In our evaluation with representative numerical ker-

nels, we find that partitioning large data objects is often

not helpful, because making the data placement deci-

sion based on chunks leads to much more frequent data

movements, most of which are difficult to be overlapped

with application execution and hence exposed to the

critical path, but we do have a benchmark (FT) benefit

from partitioning large data objects.

3.3 Implementation

We have implemented Unimem as a runtime library

to perform the online adaptation of data placement on

HMS. To leverage the library, the programmer needs

to insert a couple of APIs into the application. Such a

change to the application is very limited, and is used

to initialize the library and identify the main compu-

tation loop and target data objects. In all applications

we evaluated, the modification to the applications is

less than 20 lines of code. Table 2 lists those APIs and

their functionality.

Table 2. APIs for Using Unimem Runtime

API Name Functionality

unimem init Initialization for hardware counters, timers
and global variables

unimem start Identify the beginning of the main computa-
tion loop

unimem end Identify the end of the main computation loop

unimem malloc Identify and allocate target data objects

unimem free Free memory allocation for target data objects

The runtime library decides data placement at the

granularity of execution phase. As discussed before,

a phase is delineated by MPI operations. To auto-

matically form phases, we employ the MPI standard

profiling interface (PMPI). PMPI function behaves in

the same way as MPI function, but PMPI allows one

to write functions that have the behavior of the stan-

dard function plus any other behavior one would like

to add. Based on PMPI, we can transparently iden-

tify execution phases and control profiling without pro-

grammer intervention. Fig.7 depicts the general idea.

In particular, we implement an MPI wrapper based

on PMPI. The wrapper encapsulates the functionality

of enabling and disabling profiling and uses a global

counter to identify phases.

To identify target data objects, the programmer

must use unimem malloc to allocate them before the

main computation loop. This API is similar to the

memory allocation API in the existing NVM mana-

gement library, such as pmalloc in Intel PMDK

library 4○, which explicitly specifies the type of the

memory allocated for the data objects. This API also

allows Unimem to collect pointers pointing to target

data objects. Collecting these pointers is necessary to

implement data movement without asking the program-

mer to change the application after data movement. In

particular, after data movement for a target data ob-

ject, the runtime changes the data object pointer and

makes it point to the new memory space of the data ob-

ject without disturbing execution correctness. If there

is a memory alias to the data object but such an alias

4○Intel. Persistent Memory Development Kit. https://pmem.io, Dec. 2020.
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Fig.7. Transparently identifying phases based on PMPI.

is created within the main computation loop, then the

memory alias can still work correctly, because it is up-

dated in each iteration and will point to the new mem-

ory space of the data object after data movement. If

the memory alias to the data object is created before

the main computation loop, then such memory alias in-

formation must be explicitly sent to the runtime by the

programmer using unimem malloc such that the mem-

ory alias can be updated and points to the correct mem-

ory space after data movement.

The DRAM space is limited in HMS. To manage the

DRAM space, we avoid making any change to the ope-

rating system (OS), and introduce a user-level service.

Each node runs an instance of such a service. The ser-

vice coordinates the DRAM allocation from multiple

MPI processes on the same node. In particular, the

service responds to any DRAM allocation request from

the runtime, and bounds the memory allocation within

the DRAM space allowance. Our current implemen-

tation for such service is based on a simple memory

allocator without the consideration of memory alloca-

tion efficiency and fragmentation, because we expect

that data movement should not be frequent, and data

allocation for data movement should not be frequent for

performance reason. However, an advanced implemen-

tation could be based on an existing memory allocator,

such as HOARD [20] and the lock-free allocator [21].

As discussed in Subsection 3.1 (see step 2), we

use a helper thread to proactively trigger data move-

ment such that data movement is overlapped with ap-

plication execution. The helper thread is invoked in

unimem init. In the main computation loop, the helper

thread and the main thread interact through a shared

FIFO queue. The main thread puts data movement

requests into the queue; the helper thread checks the

queue, performs data movement, and removes the data

movement request off the queue once the data move-

ment is done. At the beginning of each phase, the run-

time of the main thread will check the queue status to

determine if all proactive data movements for the cur-

rent phase are done. Hence, the queue works as a syn-

chronization mechanism between the helper thread and

the main thread. Note that checking the queue status

and putting data movement requests into the queue are

lightweight, because we avoid frequent data movement

in our design.

As discussed in Subsection 3.1 (see step 2), to ensure

execution correctness, the runtime must respect data

dependency across phases when moving data objects

with the helper thread. The data dependency check

is implemented by static analysis. We introduce an

LLVM [22] pass to analyze data references to target data

objects between MPI calls. To handle those unresolved

control flows during the static analysis, we embed data

dependency analysis result for each branch, and delay

data dependency analysis until runtime. The compiler-

based data dependency analysis can be conservative due

to the challenge of pointer analysis [23]. There is also a

large body of research related to the approximation of

pointer analysis to improve compiler-based data depen-

dency analysis. However, to simplify our implementa-

tion, we currently use a directive-based approach that

allows the programmer to use directives to explicitly

inform the runtime of data dependency for target data

objects across phases. This approach is inspired by task

dependency clauses in OpenMP, and works as a prac-

tical solution to address complicated data dependency

analysis. Fig.8 depicts the general workflow.
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App Code

Offline Hardware Profiling
(This Only Needs to Be Done Once in a Platform, But the
Results Are Valid for All Apps Running in the Platform)

(1) Initial Data Placement

(2) Data Dependency Analysis

(3) Handling Large Data Objects

(1) Determine the Constant Factors

(CF_bw and CF_lat)

(2) Measure Peak Memory Bandwidth

Unimem Runtime

Phase Profiling

Performance Modeling

Data Placement Decision

Fig.8. General workflow for Unimem.

4 Evaluation Methodology

In our evaluation, we use Quartz emulator [15].

Quartz enables an efficient emulation of a range of

NVM latency and bandwidth characteristics. Quartz

has low overhead and good accuracy (with emulation

errors of 0.2%–9%) [15]. We do not use cycle-accurate

architecture simulators because of their slow simula-

tion which cannot scale to large workloads. Further-

more, Quartz allows us to consider cache eviction ef-

fects, memory-level parallelism, and system-wise mem-

ory traffic, which is not available in other state-of-the-

art, software-based emulation approaches 5○ [24]. How-

ever, due to the limitation of Quartz, we can only emu-

late either bandwidth limitation or latency limitation,

but cannot emulate both of them.

Using Quartz requires the user to have privilege ac-

cess to the test system. We do not have such privi-

lege access on the test platform for our strong scaling

tests. Hence, instead of using Quartz, we leverage the

NUMA architecture to emulate NVM. In particular, we

carefully manage data placement at the user level such

that, given an MPI task, a remote NUMA memory node

works as NVM while the NUMA node local to the MPI

task works as DRAM. The latency and bandwidth diffe-

rence between the remote and the local NUMA mem-

ory nodes emulates that between NVM and DRAM.

On our test platform for strong scaling tests, the emu-

lated NVM has 60% of DRAM bandwidth and 1.89x of

DRAM latency.

In addition to the above emulated NVM platform,

we use a real NVM platform based on Intel Optane

PMM for evaluation. This Optane-based machine has

two sockets, each with two integrated memory con-

trollers (iMCs) and six memory channels. In total,

the system has 192 GB DRAM and 1.5 TB PMM on

two sockets. There are two operating modes for PMM,

Memory Mode and App-direct Mode. In Memory

Mode, DRAM works as a hardware-managed, direct-

mapped, write-back cache to PMM. In this mode, the

program cannot control data placement on DRAM and

PMM. On the contrary, App-direct Mode allows the

runtime system to explicitly control memory accesses to

DRAM and PMM. In App-direct Mode, PMM on each

socket can be exposed as a non-uniform memory ac-

cess (NUMA) node to CPUs. Standard NUMA mana-

gement mechanisms such as numactl can be used to

control data placement in this mode. We use PMM in

App-direct Mode exposed as NUMA nodes; we use nu-

mactl to control data placement on DRAM and PMM.

In general, we have three test platforms for per-

formance evaluation. The first test platform (named

“platform A”) is a small cluster. Each node of this

platform has two 8-core Intel Xeon E5-2630 processors

(2.4 GHz) and 32 GB DDR4. We use this platform

for all tests except the scalability study and the per-

formance study on Optane PMM. We deploy Quartz

on this platform. The second test platform is the Edi-

son supercomputer at Lawrence Berkeley National Lab

(LBNL). We use this platform for the scalability tests.

Each Edison node has two 12-core Intel Ivy Bridge pro-

cessors (2.4 GHz) with 64 GB DDR3. As discussed

before, we perform strong scaling tests and leverage

NUMA architectures to emulate NVM on this system.

The third test platform is an Optane PMM-based ma-

chine. Table 3 summarizes hardware features of the

Optane platform.

5○Macko P. PCMSIM: A simple PCM block device simulator for Linux. https://code.google.com/p/pcmsim, Dec. 2020.
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Table 3. Platform Specifications

Hardware Specification

Processor 2nd Gen Intelr XeonTM Scalable processor

Cores 2.4 GHz (3.9 GHz Turbo frequency) × 24 cores
(48 HT) × 2 sockets

L1-icache Private, 32 KB, 8-way set associative, write-
back

L1-dcache Private, 32 KB, 8-way set associative, write-
back

L2-cache Private, 1 MB, 16-way set associative, write-
back

L3-Cache Shared, 35.75 MB, 11-way set associative, non-
inclusive write-back

DRAM Six 16-GB DDR4 DIMMs × 2 sockets (192 GB
in total)

PM Six 128-GB Optane DC NVDIMMs × 2 sockets
(1.5 TB in total)

Interconnect Intelr UPI at 10.4 GT/s, 10.4 GT/s, and
9.6 GT/s

We use six benchmarks from NAS parallel bench-

mark (NPB) suite 3.3.1, and one production scientific

code Nek5000 6○. For Nek5000, we use eddy input prob-

lem with a 256× 256 mesh. The target data objects of

those benchmarks are listed in Table 4. Those data ob-

jects are the most critical data objects accounting for

more than 95% of memory footprint except CG and

Nek5000. For CG, there are three large data objects

(aelt, acol, and arow) only used for problem initializa-

tion. They are not treated as target data objects. For

Nek5000, we use main simulation variables and geo-

metry arrays in Nek5000 core. Those are the most im-

portant data objects for Nek5000 simulation. We use

GNU compiler (4.4.7 on Platform A, 6.1.0 on Edison

and 8.6.0 on Optane platform) and use default compiler

options for building benchmarks. We use the sampling-

based approach to collect performance events on the

three platforms. The sampling interval is chosen as

1 000 CPU cycles such that the sampling overhead is

ignorable while the sampling is not sparse to lose mod-

eling accuracy.

5 Evaluation

The goal of our evaluation is multiple-folding. First,

we want to test if our runtime can effectively direct

data placement to narrow the performance gap between

NVM and DRAM. Second, we want to test if our run-

time is lightweight enough. Third, we want to test the

performance of our runtime in various system configu-

rations, including different DRAM sizes and different

system scales. Unless indicated otherwise, the per-

formance in this section is normalized to that of the

DRAM-only system.

Table 4. Target Data Objects in NPB Benchmarks and Nek5000

Benchmark Target Data Object Percentage of

Total Application

Memory (%)

CG colidx, a, w, z, p, q, r,
rowst, x

42

FT u, u0, u1, u2, twiddle 99

BT rhs, forcing, u, us, vs,
ws, qs, rho i, square,
out buffer, in buffer,
fjac, njac, lhsa, lhsb,
lhsc

99

LU u, rsd, frct, flux, a, b, c,
d, buf , buf1

99

SP u, us, vs, ws, qs, rho i,
square, rhs, forcing,
out buffer, in buffer,
lhs

98

MG buff , u, v, r 99

Nek5000 (eddy) Geometry arrays and main
simulation variables (48
data objects in total)

35

Basic Performance Tests. We compare the perfor-

mance (execution time) of DRAM-only, NVM-only, and

HMS with Unimem. We use four nodes in platform A

with one MPI task per node. We use class C as the in-

put problem for NPB benchmarks. NVM and DRAM

sizes are 16 GB and 256 MB respectively. Figs.9 and 10

show the results. NVM is configured with 1/2 DRAM

bandwidth (Fig.9) or 4x DRAM latency (Fig.10).

We first notice that there is a big performance gap

between NVM-only and DRAM-only cases. On ave-

rage, the gap is 18% for NVM with 1/2 DRAM band-

width and 47% for NVM with 4x DRAM latency. How-

ever, Unimem greatly narrows the gap and makes per-

formance very close to DRAM-only cases: the average

performance difference between DRAM-only and HMS

is only 3% for NVM with 1/2 DRAM bandwidth and

7% for NVM with 4x DRAM latency, and the perfor-

mance difference is no bigger than 10% in all cases. This

demonstrates that Unimem successfully directs the data

placement for those performance-critical data objects.

This also demonstrates that Unimem is very lightweight

after we optimize runtime performance and hide data

movement cost.

We compare Unimem and X-Mem [1] (a recent

software-based solution for data placement in HMS).

6○Fischer P, Lottes J. Nek5000. http://nek5000.mcs.anl.gov, Dec. 2020.
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Fig.10. Normalized performance (execution time) comparison among DRAM-only, NVM-only, the existing work (X-Mem), and HMS
with Unimem. NVM has 4x DRAM latency.

The results are shown in Figs.9 and 10. X-Mem uses

PIN-based offline profiling to characterize memory ac-

cess patterns and make the decision on data placement.

They do not consider data movement cost and assume

a homogeneous memory access pattern within a data

object. The results show that Unimem performs simi-

larly to X-Mem, but performs 10% better than X-Mem

for Nek5000. Nek5000 is a production code with var-

ious memory access patterns across phases. Unimem

adapts to those variations, hence performing better.

Also, Unimem does not need any offline profiling for

applications.

Detailed Performance Analysis. Based on the re-

sults of basic performance tests, we further quantify the

contributions of our runtime techniques to performance

improvement on HMS. This quantification study is im-

portant to investigate how effective our techniques are

and when they can be effective. We study four major

techniques: 1) cross-phase global search, 2) phase local

search, 3) partitioning large data objects, and 4) initial

data placement.

We apply the four techniques one by one. In particu-

lar, we apply technique 1, and then apply technique 2

to technique 1, and then apply technique 3 to technique

1 + technique 2, and then apply technique 4 to tech-

nique 1 + technique 2 + technique 3. We measure the

performance variation after applying each technique to

quantify the contribution of each technique to perfor-

mance. We use the same system configurations as ba-

sic performance tests with NVM configured with 1/2

DRAM bandwidth. Fig.11 shows the results.

We notice that cross-phase global search can be very

effective. In fact, in benchmarks CG and LU, more

than 90% of the contribution comes from this tech-

nique. However, cross-phase global search could lose

some opportunities to improve the performance on indi-

vidual phases, because it uses the same data placement

decision on all phases. Using the phase local search

can complement the cross-phase global search. For BT

and SP, using the phase local search we improve per-

formance by 19% and 5% respectively.

Initial data placement is very useful. In fact, it takes

effect on all benchmarks. For SP, it is the most effec-

tive approach (87% contribution comes from this tech-
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Fig.11. Quantifying the contributions of our four major techniques to performance improvement.

nique).

Partitioning large data objects does not take effect

except FT, because it introduces very frequent data

movement which loses performance. In FT, this tech-

nique contributes to 58% performance improvement,

while the other three techniques make 42% contribu-

tion by manipulating small data objects. In general,

by this study, we learn the importance of combining all

techniques to maximize the performance improvement

for various HPC workloads.

To further study the effectiveness of Unimem, we

collect some detailed data migration information for

HMS with Unimem (NVM has 1/2 DRAM bandwidth).

Table 5 shows the results. “Pure runtime cost” in the

table accounts for the overhead of collecting hardware

counters, modeling costs, and synchronization cost be-

tween the helper thread and the main thread. “Pure

runtime cost” does not include data movement cost and

benefit. “%overlap” in the table shows the percentage

of data movement cost that is successfully overlapped

with the computation.

In Table 5, we notice that Unimem has very small

runtime overhead (less than 3% in all cases). Directed

by Unimem, the data migration can happen very often

(e.g., 102 times in Nek5000 and 24 times in BT), and

the migrated data size can be very large (e.g., 1.1 GB in

Nek5000 and 720 MB in BT). However, even with the

frequent data migration, Unimem successfully overlaps

data migration with computation (70.6% in Nek5000

and 87.5% in BT). Also, the performance benefit of data

migration outweighs those non-overlapped data migra-

tion, and narrows down the performance gap between

NVM and DRAM to 9% at most (see Fig.9).

Scalability Study. To study how Unimem performs

in larger system scales, we do strong scaling tests on

Edison at LBNL. For each test, we use one MPI task

per node and use class D as input problem. We use

256 MB for DRAM and 32 GB for NVM. Fig.12 shows

the results for CG. The performance (execution time) in

the figure is normalized to the performance of DRAM-

only.

As we change the system scale, the sizes of data ob-

jects change. The numbers of main memory accesses

also change because of caching effects: such changes in

main memory accesses impact the sensitivity of data

object to memory bandwidth and latency. Because of

the above changes, the runtime system must be adap-

tive enough to make a good decision on data placement.

In general, Unimem does a good job for all cases: the

performance difference between DRAM-only and HMS

with Uimem is no bigger than 7%.

Sensitivity Study. We use various configurations of

the DRAM size in HMS and test if our runtime can per-

form well. As DRAM size changes, we will have diffe-

Table 5. Data Migration Details for HMS with Unimem

Benchmark Times of Migration Migrated Data Size (MB) Pure Runtime Cost (%) %Overlap (%)

CG 3 132 0.50 66.7

FT 4 201 1.50 75.0

BT 24 720 1.00 87.5

LU 3 187 1.00 60.0

SP 9 348 1.50 66.7

MG 1 17 2.00 100.0

Nek5000 (eddy) 102 1 101 3.00 70.6

Note: NVM has 1/2 DRAM bandwidth.
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rent opportunities to place data objects. The change of

the DRAM size will impact the frequency of data move-

ment and impact whether we should decompose large

data objects to improve performance. Fig.13 shows the

results as we use 128 MB, 256 MB and 512 MB DRAM.

In all tests, we use 16 GB NVM configured with 1/2

DRAM bandwidth and class C as the input problem.

We use platform A and four nodes (1 MPI task per

node) to do the tests. In Fig.13, the performance (exe-

cution time) is normalized to that of DRAM-only.

In general, Unimem performs well in all cases except

one case: the performance difference between DRAM-

only and HMS with Unimem is no bigger than 7% in all

cases except MG with 128 MB DRAM. For MG with

128 MB DRAM, we have 13% performance difference

between DRAM-only and HMS with Unimem. After

careful examination, we find that DRAM is not well

utilized, because large data objects cannot be placed in

such small DRAM. We also cannot partition large data

objects in MG by using our compiler tool because of

widely employment of memory alias in the benchmark.

But even so, our runtime still narrows performance gap

between NVM-only and DRAM-only by 35%.

Performance Test on Optane PMM. In each test,

we use one MPI task per core and use class C as an

input problem. Since peak memory consumption of all

benchmarks is smaller than 192 GB (the DRAM ca-

pacity in our platform), we limit the DRAM size to

256 MB in our evaluation to avoid placing all data ob-

jects in DRAM. Fig.14 shows the results. The per-

formance (execution time) in the figure is normalized

by that of DRAM-only. We show the performance

of Unimem with and without distinguishing read and

write in performance modeling, labelled as “w. drw”

and “w.o drw” respectively in the figure.

Overall, the performance of the NVM-only system

is significantly worse than that of DRAM-only system

(12.7x performance loss on average). Unimem signifi-

cantly reduces the performance gap. In particular,

Unimem outperforms NVM-only system by 6.9x on ave-

rage and up to 8.7x. Unimem (i.e, w. drw) outperforms

X-Mem by 9% on average (19% at most). The above
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performance improvement highlights the effectiveness

of Unimem. In addition, distinguishing read and write

in performance modeling improves the performance by

12% over no distinction.

6 Related Work

Software-managed HMS has been studied in prior

work. Dulloor et al. [1] introduced a data placement

runtime based on offline profiling of application memory

access patterns. Their work targets at enterprise work-

loads. To decide data placement, they classified mem-

ory access patterns into streaming, pointer chasing, and

random. Giardino et al. [2] relied on OS and application

co-scheduling data placement. In particular, they built

APIs that allow programmers to describe their memory

usage characteristics to OS, through which OS receives

and implements responsive page placement and data

migration. Lin et al. [3] introduced a protected OS ser-

vice for asynchronous memory movement on HMS. Du

et al. [4] developed a PIN-based offline profiling tool to

collect memory traces and provide guidance for plac-

ing data on HMS. ProfDP [25] is a lightweight profiler

that employs differential data object level analysis to

provide intuitive guidance for data placement on HMS.

Different from the prior efforts, our work requires

neither offline profiling as in [1, 4, 25] nor program-

mer involvement to identify memory access patterns as

in [2]. Furthermore, our work does not require the mod-

ification of OS, which is different from [3]. Some exist-

ing efforts [26–30] use the hardware performance counter-

based approach (e.g., Precise Event-Based Sampling

from Intel or Instruction-based Sampling from AMD) to

identify locality, scalability and NUMA bottlenecks. In

contrast, Unimem focuses on managing data placement

on HMS. ATMem [31] employs a sampling-based profiler

to select performance-critical data to guide data migra-

tion for graph applications. Our work aims for legacy

HPC applications and systems. Moreover, ATMem

does not distinguish between read and write events of

data objects. NVMs such as Intel Optane have asym-

metric read and write characteristics. Ignoring asym-

metric read and write can lead to inaccurate model-

ing of performance benefits, which affects the effec-

tiveness of data placement and loses application per-

formance. We show the importance of distinguishing

between reads and writes in the performance model in

Fig.14.

Some studies introduce hardware-based data place-

ment solutions for the NVM-based HMS. Bivens et

al. [32] and Qureshi et al. [8, 9] used DRAM as a set-

associative cache logically placed between the processor

and NVM. NVM is accessed when DRAM buffer evic-

tion or buffer miss happens. Yoon et al. [10] placed data

based on row buffer locality in memory devices. Wang

et al. [7] relied on static analysis and advanced memory

controller to monitor memory access patterns to deter-

mine data placement on GPU. Wu et al. [7] leveraged

the knowledge of numerical algorithms to direct data

placement. They introduced hardware modifications to

support massive data migration and performance opti-

mization. Agarwal et al. [18] introduced a bandwidth-

aware data placement on GPU, driven by compiler ex-

tracted insights and explicit hints from programmers.

A key limitation of the above hardware-based ap-

proaches is that they heavily rely on modified hard-

ware to monitor memory access patterns and migrate

data. Some work, such as [5, 8–10], ignores application

semantics and triggers data movement based on tempo-

ral memory access patterns, which could cause unnec-

essary data movement. Our work avoids any hardware
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modification, and explores global optimization on data

placement.

7 Conclusions

The limitation of NVM imposes a question on

whether NVM is a feasible solution for HPC work-

loads. In this paper, we quantified the performance gap

between NVM-based and DRAM-based systems, and

demonstrated that using a carefully designed runtime,

it is possible to significantly reduce the performance

gap. We hope that our work can lay the foundation to

embrace NVM for future HPC.
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