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Abstract Ultrasound (US) imaging is clinically used to guide needle insertions because it is safe, real-time, and low

cost. The localization of the needle in the ultrasound image, however, remains a challenging problem due to specular

reflection off the smooth surface of the needle, speckle noise, and similar line-like anatomical features. This study presents a

novel robust needle localization and enhancement algorithm based on deep learning and beam steering methods with three

key innovations. First, we employ beam steering to maximize the reflection intensity of the needle, which can help us to

detect and locate the needle precisely. Second, we modify the U-Net which is an end-to-end network commonly used in

biomedical segmentation by using two branches instead of one in the last up-sampling layer and adding three layers after

the last down-sample layer. Thus, the modified U-Net can real-time segment the needle shaft region, detect the needle tip

landmark location and determine whether an image frame contains the needle by one shot. Third, we develop a needle

fusion framework that employs the outputs of the multi-task deep learning (MTL) framework to precisely locate the needle

tip and enhance needle shaft visualization. Thus, the proposed algorithm can not only greatly reduce the processing time,

but also significantly increase the needle localization accuracy and enhance the needle visualization for real-time clinical

intervention applications.
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1 Introduction

Currently, ultrasound (US) is commonly used for

interventional operations such as therapeutic injection,

biopsy, and anesthesia [1], which usually require high

image quality of the needle shaft and tip for precise

localization. However, specular reflection of the smooth

needle surface often causes returning echoes to reflect to

positions outside the probe field of view, which results

in very blurred or even invisible needles [2]. Further-

more, high-intensity signals coming from soft tissue and

bone along the needle trajectory may interfere with the

needle visibility, especially for complicated tissues [2].

Therefore, accurate needle detection and localization

remains an ongoing challenge in clinical intervention

applications.

At present, needle detection and localization meth-

ods consist of hardware-based and software-based

methods. The hardware-based methods include electro-

magnetic tracking [3], optical tracking [4], and embedded

sensors at the needle tip [5, 6]. Recently, software-based

methods have been commonly used for needle detection

and localization, since hardware-based methods [3–6] are

relatively expensive, impose higher environmental re-
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quirements, and hinder the standard clinical workflow.

Usually, software-based methods include projection-

based [7, 8], 3D ultrasound [9, 10] and line detection [11–13]

methods, which mainly depend on the intensity of the

shaft and tip reflection. Therefore, once the intensities

of the shaft and tip are insignificant, these methods

become unreliable.

Recently, learning-based methods [14–20] have made

great progress in precise localization and robustness.

For example, Hatt et al. developed a learning-based

method with beam steering [20], which obtains in-plane

linear probe needle localization with a mean targeting

error of 0.48 mm and a 86.2% localization success rate

in ex vivo datasets. However, these algorithms are so

computationally intensive [14–16,20] or require such large

amounts of input data [17, 18] that they cannot real-time

locate the needle.

For this reason, Mwikirize et al. developed a real-

time needle tip localization method to locate the needle

tip in 67 fps with a 0.55 mm tip localization error based

on a cascade of simple neural networks [19]. Neverthe-

less, this method is not robust against motion artifacts

since it not only heavily relies on the subtraction of con-

secutive frames [19], but also cannot detect and enhance

the needle shaft.

To address these challenges, we propose a ro-

bust needle localization and enhancement algorithm

(NLEM) with three innovations to overcome the previ-

ous problems. First, we employ beam steering to maxi-

mize the reflection intensity of the needle, which can

help us to detect and locate the needle precisely. Sec-

ond, we modify the U-Net [21], an end-to-end network

commonly used in biomedical segmentation, by using

two branches instead of one in the last up-sampling

layer and adding three layers after the last down-sample

layer. Thus, the modified U-Net can real-time segment

the needle shaft region, detect the needle tip landmark

location and determine whether an image frame con-

tains the needle by one shot. Third, we develop a nee-

dle fusion framework that employs the outputs of the

multi-task deep learning framework (MTL) to precisely

locate the needle tip and enhance the needle shaft visua-

lization.

Our experimental results show that the tip locali-

zation errors for the NLEM method are approximately

0.29±0.02 mm and the overall processing time for the

NLEM is 0.014 9 s per frame, which meets the requests

of real-time clinical intervention applications. Here, we

consider that beam steering innovation increases the re-

flection signal of the needle to a greater extent as well

as the MTL network and the fusion framework greatly

reduces the processing time, improves the localization

accuracy, and significantly enhances the needle visuali-

zation.

2 Proposed NLEM

Fig.1 shows the three steps of the NLEM algorithm.

Step 1 illustrates that the ultrasound front-end (FE) al-

ternately emits normal-angled and steered US beams,

forming the normal-angled image (NI) and steered im-

ages (SI), respectively. Next, we train the MTL frame-

work by deep learning, which is detailed in Fig.A1(a) of

supplementary materials of [22]. After the MTL frame-

work (step 2) receives the SI from step 1, it segments the

needle shaft region (NS), detects the needle tip land-

mark (LM) location, and predicts the probability of

SI including the needle (Pneedle). Subsequently, step

3 shows that NLEM employs the outputs (NS, LM,

Pneedle) from the MTL framework to precisely locate

the needle tip and enhance the needle shaft visuali-

zation. The code for the NLEM algorithm is available

online 1○.

2.1 Datasets and Experimental Setup

We obtain ultrasound images by the iMagoC21

(Saset Healthcare, USA) ultrasound scanner with a L5-

12 linear probe and a 2D handheld wireless ultrasound

(H35L, Stork Healthcare, China). The insertion angle

and the depth of the needle range from (10◦ and 20 mm)

to (45◦ and 50 mm).

During data acquisition, the radiologist adjusts the

steer angle (SA) of the FE to guarantee that the steered

beam is perpendicular to the needle. We collect 80

video sequences from porcine, bovine, and chicken tis-

sues using a hollow 18 G cannula needle, which is the

same as in previous studies [15, 19,20].

Each sequence has more than 200 frames. The train-

ing image set for our NLEM method consists of 7 500

images from 60 sequences, in which 5 000 images have

the needle and 2 500 images do not have the needle.

The testing image set includes 1 200 images from 20 se-

quences, in which 800 have the needle and 400 images

do not have the needle. All of the images are scaled to

256× 256 as the previous research [19]. The coordinates

of the needle tip and tail are annotated in the steered

images by two expert radiologists.

1○https://github.com/gaojun0821/NLEM, Feb. 2021.
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Fig.1. Workflow of NLEM. Details of the centroid detection, the needle mask generation and the steer angle calculation in step 3 are
described by Fig.A1(b), Fig.A1(c) and Fig.A1(d) of the supplementary materials of the paper [22], respectively.

According to the coordinate information, the com-

puter program automatically generates the shaft mask

annotations and tip landmark annotations. The land-

mark annotation is as the same size as the steered im-

age and produces a distance-based 2D Gaussian map

centered at the tip coordinate (σ = 3.0 pixels).

The shaft mask annotation is a line segment that

denotes the needle tail as the starting point and the
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needle tip as the end point, and the width of a line is ω

pixels. The pixel values on the line are set to 255 and

the other pixels are set to 0. The value of ω depends on

the type of needles and the resolution of the US image.

For example, when the scanning depth is 40 mm, the

number of longitudinal sampling points of the image is

512, and the type of needle is 18 G; then, ω is set to 8

pixels.

For negative examples, we generate an empty nee-

dle shaft mask and an empty tip landmark in which

all of pixels are set to 0. We implement the proposed

NLEM method on an NVIDIA GeForce GTX 1050Ti

4 GB GPU, 3.70 GHz Intelr CoreTM i7-8700k 16 GB

CPU Windows PC [23–25]. The needle fusion framework

is implemented in MATLAB [19]. The MTL framework

is implemented in Keras 2.2.4 on the Tensorflow 2.0.0

backend [15].

2.2 MTL Framework

Fig.2 and Fig.A2 in the supplementary materials

of [22] show that the MTL framework consists of a

segmentation network (S), a discriminator network (D)

and a classification network (C). Here, the segmenta-

tion network is used to estimate the needle shaft (NS)

region and the tip landmark (LM); the discriminator

network is used to improve the training effect for the

segmentation network; the classification network is used

to determine if an SI frame has a needle or not.

2.2.1 Segmentation Network

The segmentation network is based on the U-Net [21]

architecture, which is a U shape network. We develop

this modified U-Net (segmentation network) by using

two branches instead of one in the last up-sampling
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Fig. 2. Structure of segmentation network (S), classification network (C) and discriminator network (D) for the proposed MTL
framework. The discriminator network (D) is only used in the training phase.
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layer, as shown in Fig.2. One branch predicts the shaft

region, and the other branch detects the landmark lo-

cation of the tip.

We denote SNS (SI, θs) and SLM (SI, θs) as the

functions to estimate the needle shaft (NS) region and

tip landmark (LM) from the input steered image (SI),

respectively. θs is the parameter for the segmentation

network (S). To train the segmentation network, we

use a weighted binary cross-entropy LNS to compare

the shaft prediction pi with the ground truth p̂i by (1).

LNS = wns

∑
i

(− (p̂i log pi + (1− p̂i) log (1− pi))) , (1)

where i represents the index of a pixel. The weight

of wns = T/(2Tc1 + 1) is given to class c1, where

c1 ∈ {shaft mask, background}. T is the total num-

ber of pixels in a training sample, and Tc1 denotes the

number of pixels in class c1.

For the landmark detection, (2) uses a weighted

mean square error LLM as the loss function.

LLM = wlm

N∑
i=1

(gi − ĝi)2 , (2)

where ĝi and gi are the ground truth and the pre-

diction of the tip landmark respectively, and i rep-

resents the index of a pixel. To balance against the

number of samples during the training, a weight of

wlm = N × (N +Nc2) /Nc2 is given to class c2 ∈
{tip landmark, background}, where N is the total

number of pixels and Nc2 denotes the number of pixels

in class c2.

2.2.2 Discriminator Network

The predicted shaft region and the tip landmark are

concatenated in the last channel and then passed to the

discriminator network (D) with adversarial training [26].

The concatenated predictions from the segmentation

network (S) to identify true or false outputs on the

basis of Nm patches. The discriminator network (D)

regularizes the output with binary cross-entropy. The

discriminator loss LAD is described by (3).

LAD =
1

Nm

∑
m

(∑
i∈m
−(ŷi log yi +

(1− ŷi) log (1− yi))
)
, (3)

where m indicates a single patch, ŷi is the real

true/false, and yi is the probability of true/false predic-

tion. Here, i represents the index of m. The discrim-

inator network learns to discriminate the distributions

of the ground truth annotations against the outputs of

the segmentation model.

2.2.3 Classification Network

Here, we develop the classification network to de-

termine if a needle is in the SI image or not. Described

in Fig.2, this network shares the down-sampling layers

of modified U-Net with the segmentation network.

To train the classification network, we use tradi-

tional binary cross-entropy to compare the needle pre-

diction with the label of ground truth ĉi by (4).

L (θc) =
∑
i

(− (ĉi log ci + (1− ĉi) log (1− ci))), (4)

where ci is the predictive probability of needle, i rep-

resents the index of the training samples, and θc is the

parameter for classification network (C).

Here, we define the probability Pneedle as the out-

put of (5) and set SI and θc as the input of (5) for the

classification network (C).

Pneedle = Classification network (θc, SI) . (5)

2.2.4 Training for the Network

Fig.2 and Fig.A1(a) in the supplementary materials

of [22] detail the network structure and training pro-

cess, respectively.

Given the set of predictions
{
SNS (SI; θs),

SLM (SI; θs)
}

and D (U ; θd), we define the optimized

function for the segmentation network as in (6).

L (θs) = µ1LNS (SNS (SI; θs) , p̂) +

µ2LLM (SLM (SI; θs) , q̂) +

µ3LAD

(
D (m; θd) , t̂

)
, (6)

where p̂ and q̂ are the ground truth for the shaft seg-

mentation and tip landmark localization respectively,

µ1, µ2, and µ3 are the weighting parameters of the

individual loss terms, and t̂ is a 32× 32 patch with

the value of 1. The discriminator network (D) is ad-

ditionally trained with (7) to classify the distribution

of ground truth annotations against the distribution of

predicted masks by the segmentation networks (S).

L (θd) = LAD

(
D (Concatenate (p̂, q̂, SI) ; θd) , t̂

)
+

LAD (D (U ; θd) , ẑ) , (7)

where ẑ is a 32× 32 patch with the value of 0, U =

Concatenate (SNS (SI; θs) , SLM (SI; θs) , SI), D is the

function representing the discriminator network, and θd
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is the parameter for the discriminator network. Here,

Concatenate() is a commonly used function in deep

learning, described in [18].

Table A1 in the supplementary materials of [22] lists

the hyper parameters for the MTL network.

2.3 Needle Fusion Framework

From the segmentation network (S), we obtain the

needle shaft segmentation SNS and the needle tip land-

mark SLM. Then, we employ (8) and (9) to process SNS

and SLM with a commonly used 3× 3 median filter [14]

in image processing to yield SNS M and SLM M, respec-

tively.

SNS M = medfilt2 (SNS, [3, 3]) , (8)

SLM M = medfilt2 (SLM, [3, 3]) . (9)

Subsequently, we detect the centroid (xtip, ytip)T in

the SLM M image and estimate the shaft angle αs by ap-

plying least-squares regression [27] to the SNS M image

data. We locate the needle tail coordinates (xtail, ytail)
T

by the tip centroid (xtip, ytip)T and the shaft angle

(αs). Here, we use (xnor cd, ynor cd)T to represent the

coordinates for the normal-angled image (NI) as well

as (xst cd, yst cd)T to represent the coordinates for the

steered image (SI), respectively. Thus, (xtail, ytail)
T and

(xtip, ytip)T are two unique points for (xst cd, yst cd)T;

in addition, (xtail n, ytail n)T and (xtip n, ytip n)T are

two unique points for (xnor cd, ynor cd)T. Then, (10)

converts the coordinate locations (xtail, ytail)
T and

(xtip, ytip)T in the steered image to the normal-angled

image locations (xtail n, ytail n)T and (xtip n, ytip n)T.(
xnor cd

ynor cd

)
=

(
1 − sin (SA)
0 cos (SA)

)(
xst cd

yst cd

)
, (10)

where SA is the steer angle of the front-end (FE). If

|90◦ − SA− αn| > 5◦, then we set the steer angle SA to

90◦−αn to guarantee that the steered beam is perpen-

dicular to the needle. The needle angle in the normal-

angled image is

αn = tan−1
(xtip n − xtail n)

(ytip n − ytail n)
. (11)

As described in Figs.A1(b)–A1(g) of the supple-

mentary materials of [22], we employ (10) to con-

vert such points with steered image (SI) coordinates

(xst cd, yst cd)T in the red area into normal-angled im-

age (NI) coordinates (xnor cd, ynor cd)T. We define

the set of these normal-angled image (NI) coordinates

(xnor cd, ynor cd)T as Smask
M×N , which can be imagined as

an M ×N normal-angled (NI) image. Here, M and N

are the width and the height of the normal-angled (NI)

image, respectively.

Finally, (12) embeds Smask
M×N into the normal angled-

image.

SFusion
M×N =


max

(
γ
(
Smask
M×N , 255

))
,

if Smask
M×N > 0,

NI,
if Smask

M×N = 0,

(12)

where γ is a fusion coefficient that can be adjusted by

the clinical user and the range of γ is from 1.0 to 2.0. It

is noted that the needle fusion framework is used when

the needle is detected in SI.

3 Results

The section will show the effect of NLEM, evaluate

the impact of two major steps on NLEM, and compare

NLEM with other state-of-the-art methods.

3.1 Effect of NLEM

Fig.3(a) and Fig.3(g) show that in the normal-

angled images, the needle shaft and the needle tip

are almost invisible in the bovine and porcine tis-

sues, respectively. Fig.3(b) and Fig.3(h) are the

steered images in the bovine and porcine tissues re-

spectively, in which the needle is relatively prominent

(shown by the pink box) compared with Fig.3(a) and

Fig.3(g). Fig.3(c) and Fig.3(i) are the segmentation re-

sults (SNS (SI; θs) , SLM (SI; θs))of the MTL network,

respectively. The needle masks of the normal-angled

images (Smask
M×N ) are illustrated in the red box of Fig.3(d)

and Fig.3(j) for the bovine and porcine tissues, respec-

tively, which are extracted from the SI images (Fig.3(b)

and Fig.3(h)) by (10). (12) fuses the needles with the

normal-angled images (Fig.3(a) and Fig.3(g)) to get

Fig.3(f) and Fig.3(k). Comparing the enhanced results

of Fig.3(f) and Fig.3(k) with the normal angle images

of Fig.3(a) and Fig.3(g) respectively, the needle visua-

lization is significantly enhanced.

Fig.4(a) demonstrates that the segmentation loss

of the MTL framework converges after 10 iterations.

Fig.4(b) demonstrates that the discrimination loss of

the MTL framework oscillates in a narrow range around

0.5 after 10 iterations.
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(b)(a) (c) (d) (e)

(g)(f) (h) (i) (j)

Fig.3. Results of our NLEM method. (a) Normal-angled images (NI) of bovine tissues. (b) Steered images (SI) corresponding to (a).
(c) Outputs (SNS, SLM) of our segmentation network corresponding to (b). (d) Needle marks (Smask

M×N ) extracted through the needle

fusion framework. (e) Fusion results of (a) and (d) (γ = 1.5). (f) Normal-angled image (NI) of porcine tissues. (g) Steered images (SI)
corresponding to (f). (h) Outputs (SNS, SLM) of our segmentation network corresponding to (g). (i) Needle mark (Smask

M×N ) extracted

through the needle fusion framework. (j) Fusion results of (f) and (i) (γ = 1.6).

3.2 Evaluation of the Impact of Two Major

Steps on NLEM

Fig.1 shows that the NLEM algorithm consists of

three steps. Since the beam steering for step 1 and

the MTL framework of step 2 are the key components

of the algorithm, we verify their impact on the locali-

zation, classification accuracy and processing time by

five commonly used metrics [14, 16,19,20] (shown in Ta-

ble 1).
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Fig.4. Mode performance during training. (a) Segmentation loss
for semantic segmentation of the needle during training on the
validation datasets. (b) Discrimination loss for the adversarial
training on the validation datasets.

First, we verify the impact of beam steering on the

NLEM algorithm. We remove the steered image (SI)

in step 1, but keep the other configurations as before,

which means that we only use the normal-angled (NI)

images to train and test the MTL framework. Fig.5(a)

defines this method as “NA NLEM”.

Second, we verify the impact of the MTL framework

on the NLEM algorithm. We adopt network ablation

studies to verify the effectiveness of the MTL frame-

work, as previous studies [15, 28]. Because U-Net [21] is

considered to be a standard state-of-the-art model for

medical image segmentation, we train two single task

U-Nets. One is used to segment the needle shaft (NS)

region and the other is used to detect the needle tip

landmark (LM). Here, we set the configuration of each

single task U-Net to be identical as the segmentation

model (S) of NLEM. As in the previous work [29], we

implement a single-task convolution neural network us-

ing the same configurations as the proposed classifica-

tion network (C) to verify the effectiveness of the clas-

sification network (C). Fig.5(a) defines this method as

“STL NLEM”.

Third, the NLEM method employs adversarial

training to reduce artifact noise in the segmentation.

Therefore, we remove adversarial training from the

NLEM method to investigate the effect of adversar-

ial training on the performance of the NLEM method.

Fig.5(a) defines this method as “WAT NLEM”.

Fig.5(a) and Table A2 in the supplementary materi-
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Table 1. Metrics for Localization Performance of Needle

Name Equation Purpose & Description

TE [15,20] TE =
∣∣dtrue − dpred∣∣ Targeting error (TE) [15,20] is used to measure the localization accuracy

of needle orientation. Details of the TE definition refer to Fig.A3 in
the supplementary materials of [22].

ED [16,19] ED =
∥∥T (xtrue, ytrue)− T

(
xpred, ypred

)∥∥
2

Tip localization error (ED) [16,19] is used to measure the localization
error of the needle tip. T (xtrue, yture) and T

(
xpred, ypred

)
are the

ground truth and the prediction coordinate of needle tip, respectively.

SLE [15,16] SLE = |β1 − β2| Shaft localization error (SLE) [15,16] is used to measure the angle locali-
zation error of the needle shaft. Details of the SLE definition refer to
Fig.A3 in the supplementary materials of [22].

OPT The overall processing time (OPT) is used to evaluate the efficiency of
the algorithm, which means the sum of total processing time.

1EDLS 1EDLS =
N(ED<1)

Ntotal
× 100% 1EDLS is used to measure the success rate of tip localization, where

Ntotal is the total number of test samples including the needle, and
N(ED<1) is the number of test samples in which the Euclidean distance
between ground truth tip location and prediction tip location is less
than 1 mm.

als of [22] compare the localization performance among

NLEM, STL NLEM, WAT NLEM and NA NLEM,

demonstrating that 1EDLS of the NLEM method is

significantly greater than those of the STL NLEM,

WAT NLEM and NA NLEM methods; the needle tip

localization error (ED) of the NLEM method is signifi-

cantly less than those of the NA NLEM, WAT NLEM

and STL NLEM methods; the needle shaft locali-

zation error (SLE) and targeting error (TE) of the

NLEM method are significantly less than those of the

STL NLEM, WAT NLEM and NA NLEM methods;

the overall processing time (OPT) of the NLEM method

is significantly less than that of STL NLEM. How-

ever, there is no statistical difference of OPT among

NLEM, WAT NLEM and NA NLEM. The number of

model parameters for NLEM (153.8k) is significantly

less than that for the STL NLEM method (324.6k),

whereas NA NLEM and WAT NLEM exhibit the same

number of model parameters as NLEM.

Next, Fig.5(b) and Table A3 in the supplementary

materials of [22] employ four commonly used metrics [30]

to validate the performance of our classification model

(C) for the NLEM method, which show that the ac-

curacy, precision, sensitivity and specificity are 98.4%,

97.7%, 99.7%, and 96.8%, respectively.

Furthermore, Fig.5(c) shows that approximately

77.5% of the classification failure cases occur when the

insertion length of the needle is less than 10 mm.

Lastly, Fig.5(d) shows that approximately 58.9% of

the cases of needle tip localization failure (ED >1 mm)

occur when the needle tip is occluded by grating lobe

artifacts, which is shown in Fig.A4 in the supplemen-

tary materials of [22].

3.3 Comparing NLEM with Other

State-of-the-Art Methods

Fig.6 shows a comparison among the NLEM method

and three commonly used needle localization algo-

rithms, which are CASPER [16], Mwikirze et al.’s

method [19] and Hatt et al.’s method [20]. It is impor-

tant to note that not every evaluation metric is suit-

able for all methods. For example, Mwikirize et al.’s

method [19] only realizes the localization of the needle

tip and is unsuitable for the metrics of TE and SLE. In

Fig.6, we display the overall processing time (OPT) in

logarithmic scale.

Fig.6 demonstrates that the targeting error (TE) of

NLEM is less than that of Hatt et al.’s method [20]; the

tip localization error (ED) of NLEM is less than that

of Mwikirze et al.’s method [19] and CASPER [16]; the

shaft localization error (SLE) of NLEM is less than that

of CASPER [16], and the overall processing time (OPT)

of NLEM is far less than that of Hatt et al.’s method [20]

and CASPER [16], and close to that of Mwikirze et al.’s

method [19].

4 Discussions

To precisely locate and enhance the needle in real

time and reduce the difficulty of clinical puncture in-

tervention, we propose a robust needle localization

and enhancement algorithm (NLEM) that can increase

the needle localization accuracy, reduce the processing

time, and enhance the needle visualization.

Shown in Fig.3, NLEM greatly increases the visua-

lization capacity for the needle, since NLEM can
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extract the needle from real scanned SI images instead

of low-quality, normal-angled images (NI). Moreover,

Fig.4 turns out that the segmentation network (S) of

the MTL framework is well trained.

We set the NA NLEM method as the control.

Fig.5(a) and Table A2 in the supplementary materi-

als of [22] show the comparison among these meth-

ods, which are consistent in hardware, metrics and

experimental datasets. As indicated in Fig.5(a) and

Table A2 in the supplementary materials of [22], the

proposed NLEM method outperforms the NA NLEM,

WAT NLEM and STL NLEM methods in the location

performance, which is mainly attributed to the func-

tion of both the beam steering and the MTL framework

(Fig.1).

In step 1 of NLEM, the steer angle (SA) of the ul-

trasound front-end is almost always perpendicular to

the needle and thus the reflected signal of the needle is

received by the ultrasound probe to the greatest ex-

tent (Fig.3(b) and Fig.3(h)). The one tailed paired

t-test [31–36] determines that the beam steering mech-

anism has significant impact on the performance of the

NLEM method, which greatly increases the localization

accuracy (ED, SLE, TE, 1EDLS) compared with that

of the NA NLEM method (Fig.5(a)).

In step 2 of NLEM, the proposed NLEM employs a

lightweight MTL network (153.8k parameters) to accu-

rately segment the needle shaft region, detect the needle

tip landmark location and determine whether an image

frame has the needle, which not only significantly re-

duces the overall processing time but also makes NLEM

meet the real-time requirements for clinical interven-

tional applications. Moreover, Fig.5(a) and Table A2

in the supplementary materials of [22] show that the

localization performance for NLEM is better than that

of STL NLEM and WAT NLEM, because NLEM em-

ploys adversarial training [26] to effectively reduce arti-

fact noise in the segmentation and employs multi-task

learning (MTL) to decease processing time. Hence, we

consider that the subsequent fusion framework (step 3

of Fig.1) can extract the needle more precisely.

To the best of our knowledge, current needle locali-

zation methods do not have a needle classification net-

work. However, we consider that using a needle classi-

fication network could enhance the performance of the

system. For this reason, we share the down-sampling

layers of the segmentation model (S) and implement a

classification model (C) by increasing only a few para-

meters (Fig.2). Fig.5(b) and Table A3 in the supple-

mentary materials of [22] demonstrate that our classi-

fication model (C) can not only determine whether the

needle is in the SI images, but also determine whether

it significantly increases the computing efficiency (OPT

of Fig.5(a)).

Fig.5(c) shows that approximately 77.5% of the clas-

sification failure cases occur when the insertion length

for the needle is less than 10 mm, which implies that

the classification model (C) has difficulty in processing

samples that have a short length for the needle to insert

into. We explain this phenomenon as follows: since the

short length of the sample where the needle is inserted

has fewer needle features than those of the long length

sample where the needle is inserted, these samples are

more vulnerable to background noise.
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Fig.5(d) determines that approximately 58.9% of

the cases of needle tip localization failure (ED > 1 mm)

occur when the needle tip is occluded by grading lobe

artifacts. We explain these findings as follows. Since

the proposed NLEM method is based on beam steering

(step 1 of Fig.1), it is prone to interference from ul-

trasound grating lobe artifacts. Such acoustic artifacts

occur when the steered beams reflect from other strong

tissue reflectors, such as muscle fascia, tendons, and

bone interfaces, at large incident angles with respect to

the steered beam [37, 38]. When an artifact happens to

occlude the tip area, the tip localization accuracy of the

NLEM method is reduced.

Fig.6 demonstrates that the proposed NLEM

method performs better than other state-of-the-art

methods [16, 19,20] in localization accuracy, and its per-

formance is very close to that of Mwikirize et al.’s

method [19] in terms of its overall processing time. How-

ever, Mwikirize et al.’s method [19] can only locate the

needle tip, and cannot locate the needle shaft, which

greatly limits its visualization capacity in many inter-

ventional applications.

5 Conclusions

This study proposed a robust needle localization

and enhancement algorithm (NLEM) that can increase

the needle localization accuracy, reduce the processing

time, and enhance the needle visualization. The experi-

mental results showed that the tip localization errors for

the NLEM method are approximately 0.29±0.02 mm

and the overall processing time for NLEM is 0.014 9 s

per frame, which meets the requests of real-time clinical

intervention applications. Although this study already

makes great progress in localization accuracy and over-

all processing time, our further work will focus on how

to reduce the impact of grating lobe artifacts on the

localization accuracy by ultrasound signal processing.

Additionally, we plan to evaluate the NLEM method

by using vivo ultrasound data in the distant future.
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