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Abstract Identification of abnormal cervical cells is a significant problem in computer-aided diagnosis of cervical cancer.

In this study, we develop an artificial intelligence (AI) system, named CytoBrain, to automatically screen abnormal cervical

cells to help facilitate the subsequent clinical diagnosis of the subjects. The system consists of three main modules: 1) the

cervical cell segmentation module which is responsible for efficiently extracting cell images in a whole slide image (WSI);

2) the cell classification module based on a compact visual geometry group (VGG) network called CompactVGG which is

the key part of the system and is used for building the cell classifier; 3) the visualized human-aided diagnosis module which

can automatically diagnose a WSI based on the classification results of cells in it, and provide two visual display modes for

users to review and modify. For model construction and validation, we have developed a dataset containing 198 952 cervical

cell images (60 238 positive, 25 001 negative, and 113 713 junk) from samples of 2 312 adult women. Since CompactVGG is

the key part of CytoBrain, we conduct comparison experiments to evaluate its time and classification performance on our

developed dataset and two public datasets separately. The comparison results with VGG11, the most efficient one in the

family of VGG networks, show that CompactVGG takes less time for either model training or sample testing. Compared

with three sophisticated deep learning models, CompactVGG consistently achieves the best classification performance. The

results illustrate that the system based on CompactVGG is efficient and effective and can support for large-scale cervical

cancer screening.
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1 Introduction

Globally, cervical cancer is one of the most lethal

cancers in human life, only after breast, colorectal, and

lung cancers [1–4]. In 2018, about 570 000 new cases of

cervical cancer were diagnosed worldwide, accounting

for 3.2% of all new cancer cases; the number of deaths

of cervical cancer was approximately 311 000, account-

ing for 3.3% of all cancer deaths, and nearly 90% of

them were in underdeveloped and developing nations

due to lack of awareness of the disease and limited ac-

cess to health services [5]. Without urgent attention,

the number of deaths of cervical cancer is expected to

reach 400 000 annually by 2030 [6]. Fortunately, regu-

lar Pap-smear testing, the most successful and effective

approach in medical practice, can facilitate the early

detection and screening of cervical cancer and signifi-

cantly reduce the morbidity and mortality [7–11]. In

Pap-smear testing, the cervical cell samples collected

from the outer opening of the cervix are placed on
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a glass slide and stained, and then a cytopathologist

makes diagnosis by observing them under a microscope

with naked eyes. However, a Pap-smear slide usually

contains such a large number of cervical cells that it is

time-consuming to observe whether there are abnormal

cells [12]. Obviously, it is inefficient for a cytopatholo-

gist to make diagnosis by observing slides under a mi-

croscope. With the increase of Pap-smear slides, the

clinical feasibility of manual examination approach is

further limited. Additionally, different people or the

same person at different times may give different re-

sults to the same slide, leading to the strong subjective

results. Thus, developing an automatic cervical cyto-

logical screening system would be of great significance,

and can assist cytopathologists to efficiently evaluate

Pap-smear slides and to make objective diagnosis.

Thanks to the development of micro-scanning tech-

niques, it is easy to obtain the cytological images, which

make it possible to develop computer-aided cervical

cancer diagnosis methods. Over the past several years,

machine learning techniques have successfully been ap-

plied for screening cervical cancer. Yamal et al. utilized

the logistic regression (LR) algorithm to distinguish cer-

vical cancer at the cellular level, which achieved the

sensitivity of 61% and specificity of 89% on the inde-

pendent dataset [13]. Su et al. applied a two-level cas-

cade integration of C4.5 and LR to identify the cervical

cells, yielding the recognition rate of 95.6% [14]. Kurni-

awati et al. reported the accuracy of 80.18% in distin-

guishing cancers by using a random forest classifier [15].

Sharma et al. evaluated the k-nearest neighbor method

for the classification of cervical cells, and obtained the

accuracy of 82.9% [16]. These methods heavily depend

on the handcraft features defined by cytopathologists

based on their expertise, as well as accurate segmen-

tation of cells and nuclei. Although many segmenta-

tion algorithms have been proposed and achieved good

performance [17, 18], there are still great challenges in the

accuracy and efficiency of cervical cell segmentation.

Moreover, it is usually difficult to know what features

and how many features are suitable for building a cell

classification model, resulting that above methods are

poor of generalization.

Of late, deep learning algorithms have been applied

in cervical cell classification. After comparing several

neural networks, Gupta et al. showed that multiple

backpropagation neural networks achieved the best per-

formance with accuracy of 95.62% and sensitivity of

95.6% on their data [19]. Wu and Zhou described a

deep learning method based on convolutional neural

network (CNN), and obtained the classification accu-

racy of 93.33% on the augmented dataset [20]. We no-

tice that the existing methods simply gather all cervi-

cal cell images together and randomly divide them into

training and test sets for training and evaluating mod-

els respectively. Since there are usually hundreds of or

even tens of thousands of cells in one cytological smear,

it would happen that cell images in different sets orig-

inate from the same subjects. Accordingly, test sets

are not truly independent with training sets, and are

unable to objectively evaluate the performance of the

models.

To sum up, the following problems exist in

computer-aided cervical cancer screening. First, the

training and test sets are generated by dividing cer-

vical cells images, rather than by dividing whole slide

images (WSIs) corresponding to subjects, resulting that

the evaluation results cannot objectively reflect the per-

formance of the models. Second, there is a lack of public

large datasets, and thus the built models are prone to

over-fitting. Third, on the one hand, building the cell

classifying models usually requires accurately segment-

ing cervical cell images at first; on the other hand, the

complexity of the cervical cell morphology makes the

low accuracy and efficiency of cell segmentation. Espe-

cially, the low efficiency of the cell segmentation cannot

meet the needs of large-scale cervical cancer screening

in practical application.

To address the above questions, we develop an AI

system called as CytoBrain for the large-scale cervi-

cal cancer screening. CytoBrain consists of three main

modules: the cervical cell segmentation module, deep

learning based cervical cell classification module, and

visualized human-aided diagnosis module, as shown in

Fig.1. The cell image extraction module is responsi-

ble for efficiently extracting every single cell image in

a whole slide image (WSI). The cervical cell classifica-

tion module is based on our proposed CompactVGG

network and is used for categorizing cells into different

types. The visualized human-aided diagnosis module

makes diagnosis by integrating the classification results

of all cell images in a WSI and displays the results in

visual ways. Specifically, the system provides two vi-

sual interaction modes: the cell display mode and the

WSI display mode. In the cell display mode, the sys-

tem displays the thumbnails of all cells by categories,

and the user can check them one by one by scrolling the

screen; the user can also click the mouse button on a

cell thumbnail to view its original image and modify its

classified category. In the WSI display mode, the sys-
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Fig.1. Outline of the CytoBrain system. (a) Input WSI of cervical cytopathology. (b) Cell localization and segmentation module
responsible for extracting every single cell image in a WSI. (c) Extracted cell images in the WSI. (d) Cell classification module that
automatically categorizes cells into different types. (e) Illustration of different cell types. (f) Visualized human-aided diagnosis module.
(g) Visualization interface (cell display mode). (h) Visualization interface (WSI display mode).

tem displays the WSI corresponding to a whole slice on

the screen and its diagnosis result based on the integra-

tion of all cell classification results. All cells classified

as abnormal are marked with bright boxes in the WSI.

Users can view different areas of the WSI by scrolling

the screen. The user can also click the mouse button

in a marked box to view the enlarged image of the cor-

responding cell and modify its classified category. In

this mode, users can also modify the diagnosis result

of the WSI. The details of the visualized human-aided

diagnosis module are not discussed in this paper.

In this paper, we focus on critical details involved

in the other two modules of the system, including data

preparation, cell image extraction and construction of

the cell classification model. Our contributions are

summarized as follows.

1) We propose a simple cell extraction method cen-

tered on the key point of the nucleus, which can extract

all cell images from a WSI efficiently. Since there are

usually tens of thousands of cells in a WSI, our method

is more practical in large-scale cervical cancer screen-

ing than sophisticated yet inefficient cell segmentation

methods.

2) We generate a large number of cervical cell sam-

ples from WSIs collected from hospitals in different ge-

ographical locations and build the largest cervical cell

images dataset we have known so far. This dataset

is not only helpful to build classification models which

have strong generalization abilities and can be used in

practical applications, but also beneficial for studying

machine learning methods as a benchmark dataset.

3) We propose a compact VGG network, Com-

pactVGG, which is more compact and has lower com-

puting cost than existing VGGs, and thus it is more

suitable for large-scale applications.

The rest of this paper is organized as follows. Sec-

tion 2 introduces the data collection of cervical cell im-

ages, including WSIs collection, cell images extraction,

and cell images labeling. Section 3 describes the pro-

posed cervical cell classifier based on CompactVGG.

Section 4 assesses the performance of the developed

CompactVGG. Section 5 ends with concluding remarks.

2 Data Collection

2.1 WSIs Collection

The quantity and diversity of data is very impor-

tant to train a good model with high performance [21].

However, there are few such public cervical cytological

images. In this paper, we build a real-world clinical cer-

vical cell images dataset to help promote the develop-

ment of cervical cytology.

We conduct a retrospective study and collected cer-

vical cell samples from 2 312 participants aged 25-64

years from multiple health care institutions in 2018 and

2019. This study abides by the ethical standards of

the institutional research committee and the tenets of

the Helsinki Declaration. Since this work is anonymous

and retrospective, the need for an informed consent is

waived.

Fig.2 provides the process of generating a WSI. For

each participant, a small number of cell samples taken
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from the cervix of uterus are placed on glass pieces and

stained with hematoxylin and eosin (H&E) to get the

Pap-smear slide. Every Pap-smear slide is automat-

ically scanned by a micro-scanning device with high

resolution to obtain a set of microscopic images, each

of which corresponds to a small area on the slide. We

use template matching and position fitting algorithms

developed by ourselves to stitch these images to get the

WSIs. Fig.3 illustrates the WSI generation procedure

for the Pap-smear slide by using the above algorithms.

In all, we obtained 2 312 WSIs, each of which corre-

sponds to a participant.

 Microscopic Images

 Fixed on Glass
Microscope Slides 

 Stained with
Hematoxylin and Eosin  

 
Automatic Micro-

Scanning Device with
High Resolution

Image Stitching
Technologies

Cell Extraction and
Image Labeling

Collection of Cervical
Cell Samples from
2 312 Participants

Cervical Cell-Laden
Slides

Pap-Smears

Whole Slide Images
(WSIs)

2 312 WSIs,
198 952 Cell Images

Fig.2. Outline of data collection.

2.2 Cell Images Extraction

The Bethesda system (TBS) rules mention that

different cervical cytological abnormalities are related

to different nucleus abnormalities, which indicates

that the nucleus features in themselves have already

included substantial discriminative information [22].

Thus, in order for the efficiency of CytoBrain, we pro-

pose a very simple and effective method to extract cells

images rather than to accurately segment cells from ev-

ery WSI in this paper. We extract the cell images from

every WSI with 20x magnification. According to the

statistical analysis, an area with the size of 128×128

can cover the whole nucleus and part of cytoplasm of

a cell, thereby we determine the size of a cell image

to be extracted as 128×128 pixels. Our cell extraction

approach consists of the following steps.

First, we utilize the SURF (Speeded-Up Robust

Features) algorithm [23] to detect feature points that are

used for locating nuclei in the WSI (Fig.4).

Second, we utilize the Otsu method [24] to get the

contours of the nuclei area and used morphological

operations [25] to fill the holes and reduce the isolate

noise points in the WSI (Fig.4).

Third, in order to remove stained impurities that

are not real nuclei, we discard those with radius smaller

than 10 pixels or greater than 150 pixels. Moreover, we

further discard those with O/S ratios lower than 0.3

(the O/S ratio refers to the area obtained by using the

Otsu method divided by the area gotten via using the

SURF algorithm).

Finally, for every nucleus, we select one of the fea-

ture points as the key point and extracted the cell image

of size 128×128 centered at the key point. In order to

avoid extracting the same cell areas as many as possi-

ble, the distance between different feature points should

be greater than half of the cell radius.

Template
Matching

Position
Fitting

(b)(a) (c)

Fig.3. Example of generating WSIs. (a) Set of microscopic images with random order. (b) Template matching. (c) Position fitting to
get WSIs.
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Fig.4. Steps of cell images extraction. (a) Original WSI. (b) Detecting feature points for locating nuclei. (c) Segmentation to get the
contours of the nuclei area.

2.3 Cell Images Labeling

Each cell image was labeled as positive (abnormal),

negative (normal) or junk by three cytopathologists

back-to-back. The junk cell images include those of

overlapping cells, mucus, blood cells, and impurities.

Considering that junk cell images will inevitably ap-

pear in the real clinical circumstances, we incorporate a

separate junk category to improve the clinical utility of

the computer-aided system. Only images with the same

labeling results from three experts were preserved. Ul-

timately, we collect 198 952 cervical cell images of 2 312

participants in all (60 238 positive, 25 001 negative, and

113 713 junk). In this work, we randomly select 450

participant samples as the independent test. As a re-

sult, we build a test set consisting of 39 792 cell im-

ages (12 048 positive, 5 001 negative, and 22 743 junk).

The rest images from the remaining 1 862 participants

were used as the training set. The outline of our deve-

loped dataset is listed in Table 1. The training set is

used for fitting and optimizing the parameters of the

model, while the independent test set is used to assess

the model’s performance.

Table 1. Number of Cell Images in Our Developed Dataset

Set of Cell Images Positive Negative Junk

Training Set 48 190 20 000 90 970

Test Set 12 048 5 001 22 743

3 Cervical Cell Images Classifier Construction

The cervical cell classification model is the key part

of CytoBrain, which is deployed in our own cervical

cancer screening cloud platform. Since the accuracy

and the efficiency of the model are important for the

application of large-scale cervical cancer screening, we

propose a compact network based on VGG networks [26]

and use the cross-validation strategy to train the net-

work. In order to improve the robustness of the model,

we also use the online data augmentation technique

during the training process.

3.1 Data Augmentation

Data augmentation has been widely used in the

model construction for it can result in better perfor-

mance, and more generalizable models invariant to cer-

tain types of image transformations and variations in

image quality [27–29]. In this work, we perform the

data augmentation by randomly combining operations

of flipping, rotating, translating, changing brightness,

and adding Gaussian noise and Gaussian blur. Each

augmented cell image is assigned to the same label as

the original one. Fig.5 displays an example of an input

image and the corresponding augmentation.

3.2 CompactVGG Architecture

Inspired by the VGG16 network [26], in this paper

we propose a more compact version of the VGG net-

work, called as CompactVGG, to save computational
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costs and speed up the calculation process to meet

the needs of large-scale cervical cancer screening. The

macro-architecture of CompactVGG is listed in Table 2.

It consists of 10 convolution layers, four max-pooling

layers, and two fully-connected layers. The convolu-

tional layers pick up distinct features from the input

cell image to generate feature maps. The max-pooling

layers reduce the output dimensionality of the feature

maps by merging semantically similar features into one.

The fully-connected layers combine these features and

output the prediction probabilities for different classes.

Obviously, CompactVGG is narrower (with fewer con-

volution filter channels, that is, a maximum of 64 chan-

nels) and shallower (with three less convolution layers

and one less full connection layer) than VGG16, which

could reduce the calculation cost.

Data Augmentation

(b)(a)

Fig.5. Example of positive cervical cell image and the corre-
sponding augmented image. (a) Original image. (b) Augmented
image.

The essence of training process of the network is

to learn the data distribution, and the output of the

last layer is directly related to the input of the next

layer. If the data distribution of each layer significantly

shifts, the learning process needs to adjust the para-

meters continuously to fit different data, resulting in

the long training process and even making the network

Table 2. Details of CompactVGG Architecture

Layer Number of Neurons Size of Feature Maps Size of Kernels Stride

Input N/A 128×128×3 N/A N/A

Conv 32 128×128×32 3×3×3 1

BN N/A 128×128×32 N/A N/A

Conv 32 128×128×32 3×3×32 1

BN N/A 128×128×32 N/A N/A

MP 32 64×64×32 2×2 2

Conv 32 64×64×32 3×3×32 1

BN N/A 64×64×32 N/A N/A

Conv 32 64×64×32 3×3×32 1

BN N/A 64×64×32 N/A N/A

MP 32 32×32×32 2×2 2

Conv 64 32×32×64 3×3×32 1

BN N/A 32×32×64 N/A N/A

Conv 64 32×32×64 3×3×64 1

BN N/A 32×32×64 N/A N/A

Conv 64 32×32×64 3×3×64 1

BN N/A 32×32×64 N/A N/A

MP 64 16×16×64 2×2 2

Conv 64 16×16×64 3×3×64 1

BN N/A 16×16×64 N/A N/A

Conv 64 16×16×64 3×3×64 1

BN N/A 16×16×64 N/A N/A

Conv 64 16×16×64 3×3×64 1

BN N/A 16×16×64 N/A N/A

MP 64 8×8×64 2×2 2

FC 128 N/A N/A N/A

FC 3 N/A N/A N/A

Note: Conv: convolution layer; BN: batch normalization layer; MP: max-pooling layer; FC: fully-connected layer; N/A: not applicable.
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difficult to converge. In order to speed up the train-

ing process, we propose to reduce the internal covariate

shifts by normalizing each convolutional layer in Com-

pactVGG. Concretely, we perform a batch normali-

zation operation [30] after each convolutional layer to

perform the layer normalization by fixing the mean and

the variance computed as (1) and (2).

µl =
1

M

M∑
i=1

ali, (1)

σl =

√√√√ 1

M

M∑
i=1

(ali − µl)
2
, (2)

where ali is the vector representation of the input to

the i-th neuron in the l-th layer, and M represents the

number of nearons in this paper.

In order to alleviate overfitting, VGG16 performs

two dropout operations respectively along with the first

and the second full connection layers. Since Com-

pactVGG only contains two full connection layers, we

adopt one dropout operation along with the first full

connection layer. Moreover, we use the regularization

method to further prevent CompactVGG from overfit-

ting. Assume L0 be the original loss function, we add

the L2-norm regularization term to get the regularized

loss function L as (3):

L = L0 +
λ

2m

∑
w

w2, (3)

where λ is L2-norm regularization factor, m is the to-

tal number of the input, and w represents all weight

parameters of the model. Then the updating rule for w

becomes:

w = w − η ∂L
∂w

= w − η ∂L0

∂w
− ηλ

m
w

=

(
1− ηλ

m

)
w − η ∂L0

∂w
, (4)

where η represents the learning rate.

It can be seen from (4) that the L2-norm regulari-

zation term can make w smaller, which may help sup-

press overfitting of the model to the training data.

3.3 Training Process of CompactVGG

As a powerful strategy for model selection,

cross-validation has been widely used in machine

learning [31, 32]. In this work, we use the five-fold cross

validation strategy to train and optimize our Com-

pactVGG. In order to reduce the overfitting of Com-

pactVGG, we only conduct data augmentation on the

four-fold data used for training and one-fold validation

data used for optimization remains no augmented in

each iteration. After five iterations, we obtain five sub-

models. The final result for an unknown sample is the

average output value of the five sub-models.

During the training phase of CompactVGG, we

utilize the stochastic gradient descent algorithm with

Adadelta optimizer, mini batch size, and the cross-

entropy loss function [33, 34]. Besides the use of dropout

technology and L2-norm regularization method, we also

use the early stopping method during the training pro-

cess to avert overfitting [35–37]. We assess the perfor-

mance of CompactVGG on the one-fold validation data

after each epoch. If the performance did not have im-

provement in 10 consecutive epochs, we consider that

the performance would not improve any more, and

ended the training process ahead.

4 Experiments and Results

Since CompactVGG is the key part of CytoBrain,

we set up experiments to evaluate the performance of

CompactVGG. First, we evaluated the training and

the test time performance of CompactVGG. Now that

VGG11 has the fastest training speed among the ex-

isting VGG networks under the same settings due to

its shallow architecture [26], we compared the train-

ing and testing speeds of CompactVGG and VGG11.

Then we evaluated the classifying performance of our

CompactVGG by comparing it with the represen-

tative networks (Inception v3 [38], ResNet50 [39], and

DenseNet121 [40]) on our data. And then we evalu-

ated the effect of using L2-norm regularization by the

ablation study. In order to verify the universality of

CompactVGG, we further evaluated it on two public

datasets. The hyper parameter settings of all networks

were the same (Table 3). All the models were trained,

validated, and tested on a workstation with dual GPUs,

and with 2.20 GHz Xeonr CPU E5-2650 v4, 256 GB

RAM, and 12 GB NVIDIA TITAN Xp.

4.1 Evaluation Measure

In this work, we adopted accuracy, sensitivity (re-

call), specificity, precision, and F1-score to assess the

performance of the models in detecting abnormal cer-

vical cell images. Therefore, we considered both the
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Table 3. Configuration of Training Parameters

Model Initial Learning Rate Mini Batch Size L2-Norm Regularization Factor Dropout Number of Epochs

CompactVGG 0.001 128 1.0 0.5 160

VGG11 0.001 128 N/A 0.5 160

ResNet50 0.001 128 N/A 0.5 160

DenseNet121 0.001 128 N/A 0.5 160

Inception v3 0.001 128 N/A 0.5 160

Note: N/A: not applicable.

negative and the junk cells as the non-positive and cal-

culated the scores according to the following formulas:

Accuracy =
TP + TN

TP + FN + FP + TN
,

Sensitivity = Recall =
TP

TP + FN
,

Specificity =
TN

TN + FP
,

Precision =
TP

TP + FP
,

F1-Score = 2
Precision×Recall
Precision+Recall

=
2TP

2TP + FP + FN
,

where TP (true positive) is the number of correctly de-

tected positive samples, FN (false negative) is the num-

ber of positive samples that are incorrectly identified

as non-positive, TN (true negative) is the number of

correctly-detected non-positive samples, and FP (false

positive) is the number of non-positive samples that are

incorrectly identified as positive.

4.2 Time Performance of CompactVGG

We adopted the same five-fold cross validation strat-

egy to train the VGG11 and the CompactVGG models

on the same platform, respectively, with our developed

dataset. Table 4 lists the average training and test-

ing time of VGG11 and CompactVGG in every fold

respectively. In Table 4 we can see that although Com-

pactVGG needs more training epochs to converge, the

total training time of CompactVGG is less than that of

VGG11. Particularly, the training speed of each epoch

of CompactVGG is much faster than that of VGG11.

Moreover, when the trained models are used to clas-

sify an unknown (test) sample, the processing time of

the CompactVGG model is also much less than that of

the VGG11 model. In Fig.6 we can also see that Com-

pactVGG can generally achieve higher training and val-

idation accuracies than VGG11 in the same training

epochs, illustrating the goodness of learning efficiency

of CompactVGG once again.

Table 4. Comparison Results of Training and Testing Time on
Our Developed Dataset

Comparison Item VGG11 CompactVGG

Number of training epochs 81.20(±20.17) 133.60(±11.55)

Training time (hr) 27.32(±6.83) 26.33(±2.23)

Time per epoch (min) 20.18(±0.08) 11.83(±0.02)

Testing time (s) 40.49(±0.43) 27.37(±0.04)

Time per sample (ms) 1.02(±0.011) 0.69(±0.001)
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Fig.6. Comparison of the learning efficiency between VGG11
and CompactVGG.

4.3 Classification Performance on Our

Developed Dataset

Table 5 summarizes the comparison results of our

CompactVGG and three representative models, show-

ing that CompactVGG achieves the highest scores on

all measures in the independent test set, though it is

more compact than the other networks. The reason

may be that the batch normalization operation and the

L2-norm regularization term help to get better generali-

zation ability of our model. In order to further inves-

tigate the details on detecting different cell types, we

calculated the accuracy on different cell image, listed

in Table 6. In this table we can see that CompactVGG

exhibits superior performance to other three models on

screening positive cervical cells, negative cervical cells,

and junk cells, which shows the promising performance
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Table 5. Classification Performance Comparison Results (%) on Our Developed Dataset

Model Accuracy Sensitivity Specificity Precision F1-Score

Inception v3 79.01±2.70 84.98±2.37 85.11±2.33 71.37±3.18 77.54±2.10

ResNet50 74.77±4.86 87.46±3.22 81.21±5.14 67.38±5.43 75.93±2.54

DenseNet121 83.13±1.54 87.91±1.25 87.58±1.25 75.48±1.79 81.21±1.17

CompactVGG 88.30±1.66 92.83±3.07 91.03±3.56 82.26±5.78 87.04±1.81

Note: The bold numbers represent the best results.

of CompactVGG once again. Table 6 also shows that

all models perform worse on detecting junk cells than

on detecting the other two types of cells. The possi-

ble reason is that there are overlapping cells and cells

deformed by cell membrane rupture in the junk cate-

gory, which have similar characteristics to the other two

types of overlapping cells, and thus it makes the models

difficult to distinguish them correctly.

Table 6. Accuracy (%) of Models for Each Cell Image Category

Model Positive Negative Junk

Inception v3 84.98±2.37 84.82±1.68 74.57±4.36

ResNet50 87.46±3.22 85.08±1.12 65.78±9.54

DenseNet121 87.91±1.25 86.16±2.10 79.93±2.37

CompactVGG 92.83±3.07 92.20±2.02 85.04±4.21

Note: The bold numbers represent the best results.

4.4 Ablation Study on L2-Norm

Regularization

In order to verify whether using L2-norm regulari-

zation can help to enhance the classification perfor-

mance of CompactVGG, we conducted the ablation

study. Fig.7 shows the comparison results on different

performance indicators, illustrating that the L2-norm

regularization method can effectively suppress the over-

fitting of our model, and thus improve the classification

performance.

4.5 Evaluation on Public Datasets

To investigate the performance of CompactVGG on

the third-party data, we further did experiments on

two public datasets: Herlev [41] and SIPaKMeD [42].

The Herlev dataset consists of 917 cervical cell im-

ages, categorized manually by qualified cytopatholo-

gists into seven classes, of which three classes belong to

normal (negative) and four classes belong to abnormal

(positive). The 4 049 cells in the SIPaKMeD dataset

are divided into five types according to the morphol-

ogy and cellular appearance. Among them, superficial-

intermediate and parabasal cells are categorized as nor-

mal (negative), metaplastic cells are benign (negative),

and dyskeratotic and koilocytotic cells are abnormal

(positive). The cell distributions of both datasets are

listed in Table 7. In this table we can see that the Her-

lev dataset is very small, and the number of abnormal

cell images is about three times that of the normal cell

images, which may lead to the model biased towards

the majority class. Although obtaining a high sensi-

tivity is ideal from the medical standpoint, a high false

positive rate is not desirable from the practical perspec-

tive. In order to balance the data as much as possible,

we performed 20 (with a step size of 18 degrees) and 10

rotation transformations (with a step size of 36 degrees)

on every negative and positive image respectively. Af-

ter that, we did data enhancement operations (except

for rotation) as described in Subsection 3.1. For the

SIPaKMeD dataset, we followed the original method

in [42] to do the data augmentation. The five-fold cross

validation strategy was still used to evaluate the per-

formance of the models.

Accu
rac

y

Prec
isio

n

F1-S
cor

e

Sensiti
vit

y

Speci
fici

ty

0.0

0.2

0.4

0.6

0.8

1.0

Without L2-Norm Regularization

Using L2-Norm Regularization

Fig. 7. Result of ablation study on L2-norm regularization
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is drawn by the column and the standard deviation is presented
by the yellow vertical line.
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Table 7. Cell Distribution of Herlev and SIPaKMeD Datasets

Dataset Class Cell Type Cell Image Count Category

Herlev 1 Superficial Squamous Epithelial 74 Normal

2 Intermediate Squamous Epithelial 70 Normal

3 Columnar Epithelial 98 Normal

4 Mild Squamous Non-Keratinizing Dysplasia 182 Abnormal

5 Moderate Squamous Non-Keratinizing Dysplasia 146 Abnormal

6 Severe Squamous Non-Keratinizing Dysplasia 197 Abnormal

7 Squamous Cell Carcinoma in Situ Intermediate 150 Abnormal

SIPaKMeD 1 Superficial-intermediate 831 Normal

2 Parabasal 787 Normal

3 Metaplastic 793 Benign

4 Dyskeratotic 813 Abnormal

5 Koilocytotic 825 Abnormal

4.5.1 Investigation of Time Performance on Public
Datasets

Once again, we compared the time performance of

CompactVGG and VGG11 with the fastest training

speed among the existing VGG networks under the

same settings. The comparison results on two public

datasets are listed in Table 8. Here we can see that

under the same settings, the time of CompactVGG in

both the training and the testing step is less than that

of VGG11 in either dataset. Specifically, the models

trained by CompactVGG cost 4.60 and 1.32 millisec-

onds on average to test one cell image of Herlev and

SIPaKMeD respectively, which are faster than those

trained by VGG11. We noticed that Zhang et al. also

tested their ConvNet model on the Hervlev dataset [21],

and reported that the average testing time of Con-

vNet was about 3.5 seconds per image, which is more

than 1 300 times slower than model our CompactVGG

model. The results illustrate once again that the Com-

pactVGG model is efficient and can be used for large-

scale cervical screening system.

4.5.2 Investigation of Classification Performance on
Public Datasets

First, we compared the classification performance of

CompactVGG with that of three representative models,

and the results are listed in Table 9. We can see that

CompactVGG manifests best in all indicators compared

with other three representative methods on the Herlev

dataset, and all methods have excellent performance on

the SIPaKMeD dataset. It is noticeable that different

classes of cell images in the SIPaKMeD dataset are very

“typical”, with obviously different appearance and mor-

phology. Therefore, it would be easy for the learning

algorithms to learn the distinguishing features among

different types of cells, so as to obtain good classifica-

tion performance.

Though all methods’ performance on the

SIPaKMeD dataset is comparable, ResNet50 achieves

the highest scores in three of five evaluation indicators,

illustrating it is superior to the other methods. Nev-

ertheless, ResNet50 scores the lowest in the other two

indicators, indicating that its performance fluctuates

Table 8. Comparison Results of Training and Testing Time on Two Public Datasets

Dataset Comparison Item VGG11 CompactVGG

Herlev Number of training epochs 87.40(±52.71) 82.00(±21.19)

Training time (min) 175.95(±107.35) 121.04(±30.96)

Time per epoch (min) 2.01(±0.025) 1.48(±0.014)

Testing time (s) 0.88(±0.054) 0.83(±0.074)

Time per sample (ms) 4.84(±0.298) 4.60(±0.410)

SIPaKMeD Number of training epochs 196.6(±65.02) 246.40(±62.40)

Training time (min) 46.02(±15.93) 41.32(±9.99)

Time per epoch (s) 13.97(±0.33) 10.08(±0.34)

Testing time (s) 1.10(±0.06) 1.07(±0.18)

Time per sample (ms) 1.36(±0.075) 1.32(±0.221)
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Table 9. Comparison Results (%) of Classification Performance on Public Datasets

Dataset Model Accuracy Sensitivity Specificity Precision F1-Score

Herlev Inception v3 87.85±2.56 88.21±3.31 86.81±4.85 95.04±1.72 91.47±1.93

ResNet50 85.52±2.19 85.52±2.92 85.53±6.09 94.46±2.21 89.73±1.64

DenseNet121 92.05±1.85 93.88±1.23 86.81±5.71 95.33±1.96 94.59±1.23

CompactVGG 94.81±1.08 95.52±1.18 92.76±3.23 97.42±1.12 96.46±0.74

SIPaKMeD Inception v3 97.72±0.65 97.62±1.15 98.83±0.99 98.89±0.64 98.24±0.64

ResNet50 97.62±0.39 97.62±1.25 99.50±0.38 99.26±0.55 98.43± 0.40

DenseNet121 97.75±0.56 98.10±1.25 98.92±0.45 98.41±0.66 98.25±0.80

CompactVGG 97.80±0.50 97.80±0.50 99.17±0.57 98.77±0.83 98.28±0.83

Note: The bold numbers represent the best results.

too much in different indicators. In contrast to ResNet,

CompactVGG ranks the first or the second on four of

five indicators, suggesting that it is more stable than

ResNet50. Now that there are five types of cells in

the SIPaKMeD dataset, we then further investigated

the identification abilities of these methods for diffe-

rent types of cells, shown in Table 10. We can see

that CompactVGG achieves the highest accuracies on

koilocytic, superior-intermediate, and parabasal cells,

the second highest accuracy on dyskeratotic cells, once

again illustrating that CompactVGG performs more

stable than ResNet50 and the other methods.

5 Conclusions

In this study, we developed an automatic cervi-

cal cancer screening system, CytoBrain, based on deep

learning technology. CytoBrain consists of three main

modules: cervical cell segmentation module, cervical

cell classification module, and visualized human-aided

diagnosis module. This paper mainly focuses on the

core methods involved in the first two modules. We

proposed a very simple, efficient but effective method

to extract single cell images from WSIs. In the mean-

while, we proposed a compact VGG network, Com-

pactVGG, to build the cell classifier. We applied three

different strategies to alleviate the overfitting problem

and improve the robustness of our CompactVGG. First,

the dropout technology and the L2-norm regularization

method were both used as regularization means in our

model. Second, the early-stop technology by monitor-

ing the performance on the validation data was utilized

to pick our CompactVGG with the highest accuracy.

Third, we adopted data augmentation approaches to

increase the number and the heterogeneity of cervical

cell images within the training set. The evaluation ex-

perimental results showed that CompactVGG has not

only a faster running speed, but also better classifica-

tion performance.

Although this paper has made good progress, there

are still some limitations that need further improve-

ment. First, in order to ensure the data quality, we

directly discarded the cell images labeled differently by

different experts. However, such discarded cell images

may contain important information on the subtle diffe-

rences between different cell states and should not be

ignored. A further research is how to make use of such

data to improve the performance of CompactVGG. Sec-

ond, we only considered the majority case where a cervi-

cal cell image contains only one nucleus; however, there

may be overlapping nuclei or tight clusters of cervi-

cal cells in the smear slides. Future work will exten-

sively analyze the impact of overlapping nuclei and cell

clumps on the detection accuracy of CompactVGG so

that it can be expected to improve the classification of

such objects. Finally, we currently focused on detect-

Table 10. Average Accuracy (%) of Models for Each Category on the SIPaKMeD Dataset

Model Dyskeratotic Koilocytotic Metaplastic Superior-Intermediate Parabasal

Inception v3 97.78±1.78 94.06±2.20 97.85±0.85 99.40±1.04 99.62±0.57

ResNet50 98.02±1.11 93.09±1.94 98.10±0.77 99.28±0.50 99.75±0.57

DenseNet121 98.64±1.19 94.18±2.12 96.96±1.37 99.28±0.27 99.75±0.57

CompactVGG 98.02±1.02 94.30±2.17 97.34±2.30 99.52±0.27 99.87±0.29

Note: The bold numbers represent the best results.
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ing abnormal (positive) cervical cells by using Com-

pactVGG, while according to different stages of cervi-

cal precancerous lesion, abnormal cells can be classi-

fied as ASC-US (atypical squamous cells of undeter-

mined significance), ASC-H (atypical squamous cells,

cannot exclude high-grade squamous intra-epithelial le-

sion), LSIL (low-grade squamous intra-epithelial le-

sion), HSIL (high-grade squamous intra-epithelial le-

sion), CIS (carcinoma in situ) and so on. Future re-

search should further optimize our system to distin-

guish specific categories of abnormal cervical cells to

make it more practical in clinic.
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