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Abstract As an emerging research field of brain science, multimodal data fusion analysis has attracted broader attention

in the study of complex brain diseases such as Parkinson’s disease (PD). However, current studies primarily lie with detecting

the association among different modal data and reducing data attributes. The data mining method after fusion and the

overall analysis framework are neglected. In this study, we propose a weighted random forest (WRF) model as the feature

screening classifier. The interactions between genes and brain regions are detected as input multimodal fusion features

by the correlation analysis method. We implement sample classification and optimal feature selection based on WRF,

and construct a multimodal analysis framework for exploring the pathogenic factors of PD. The experimental results in

Parkinson’s Progression Markers Initiative (PPMI) database show that WRF performs better compared with some advanced

methods, and the brain regions and genes related to PD are detected. The fusion of multi-modal data can improve the

classification of PD patients and detect the pathogenic factors more comprehensively, which provides a novel perspective for

the diagnosis and research of PD. We also show the great potential of WRF to perform the multimodal data fusion analysis

of other brain diseases.

Keywords multimodal fusion feature, Parkinson’s disease, pathogenic factor detection, sample classification, weighted

random forest model

1 Introduction

Parkinson’s disease (PD) is an extremely universal

neurodegenerative disease with a high disability rate

among the elderly [1, 2]. If it can be diagnosed and

treated at the initial stage, most patients can still main-

tain a normal state within a few years of onset. For this

reason, the early diagnosis is of great significance to PD

patients. With the deepening of the research on PD

based on the classical single modality, the researchers

find that PD may be the result of the interaction among

pathogenic factors from different modalities. Therefore,

with the rapid development of the detection technolo-

gies for the structure, function and genetic factors of

brain diseases, the comprehensive and systematic study

of PD combined with neuroimaging and genetics has at-

tracted more and more attention [3].

Although imaging genetics is an emerging research

field, it has been developing rapidly in the past few

years. For example, Kim et al. [4] constructed a lin-
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ear regression model to better predict the clinical score

of PD using genetic and neuroimaging characteristics,

with a higher correlation than traditional methods.

Based on the diffusion tensor imaging, Won et al. [5]

calculated the association between imaging and genet-

ics through connectivity analysis, and established the

model to describe the clinical score of the degree of

depression in PD patients. Wang et al. [6] proposed a

novel automatic learning model of time structure based

on imaging genetic data, and used this model to auto-

matically discover the relationship between longitudinal

genotype and phenotype. Therefore, it has become an

epidemic trend to combine genetic data and imaging

data to study the pathological mechanism of PD for

improving early detection and clinical decision-making.

However, the high dimensionality, group structure

and mixed type of genetic and imaging data inevitably

bring challenges to their fusion methods [7–9]. In pre-

vious studies, researchers usually used traditional di-

mension reduction methods, like independent compo-

nent analysis [10] and principal component analysis [11]

to reduce the dimension of multimodal data and ex-

tract the potential correlation of different modal data.

Although these traditional methods are uncomplicated,

it is difficult to analyze and interpret the important

fusion features. In the latest studies, some improved

methods have been put forward. Peng et al. [12] pro-

posed a method of attribute reduction by combining

autoencoder with deep neural network. A novel maxi-

mum ratio method developed by Mohammed et al. [13]

also showed efficient performance.

Additionally, another challenge for multimodal fu-

sion analysis of genetic and imaging data is the design

of overall framework including the building of fusion

features, the choosing of fusion features and the cate-

gorization of samples. At present, the majority of mul-

timodal fusion studies concentrate on one certain as-

pect, lacking comprehensive researches on the overall

framework. On the other hand, the lack of multimodal

public databases and the small sample size further in-

crease the difficulty of framework design. For example,

Rana et al. [14] emphasized the application of 3D local

binary pattern to construct fusion features with more

recognizable ability. Gupta et al. [15] suggested using

the optimized cuttlefish algorithm for feature selection

to improve the diagnosis of PD. Zeng et al. [16] designed

a new deterministic learning technology to recognize

PD patients. If the building of fusion features, the

choosing of fusion features and the categorization of

samples can be integrated into the overall framework,

it will be more beneficial for the early comprehensive

diagnosis of PD.

Based on these issues and challenges, we perform

multimodal fusion analysis of PD based on genes and

functional magnetic resonance imaging (fMRI) data in

this paper. The classical correlation analysis is used

for the detection of the interaction between brain re-

gions and genes, which is the multimodal fusion feature

of the sample. In order to meet the challenge of high-

dimensionality, a new optimized random forest is pro-

posed in this paper. The idea of weighting each base

classifier and each selected feature is introduced to re-

duce the negative impact of inefficient decision trees

and delete redundant features. This method enhances

the feature learning ability under the condition of small

samples. Then, our research integrates the building of

multimodal fusion features, choosing of features and

categorization of samples into a framework to realize

the comprehensive and all-round analysis of PD. Fig.1

shows the multimodal data analysis framework of PD.

The overview of the framework is as follows:

• construction of multimodal fusion features;

• establishment of weighted random forest (WRF)

model and categorization of samples;

• screening of the most discriminating features;

• recognition of risk genes and abnormal brain re-

gions.

Eventually, the proposed method is evaluated by

real multimodal data. Even under the condition of

small samples, the proposed method still has robust

classification performance. Furthermore, the proposed

method is extended to multimodal data researches of

other brain diseases, and also achieves excellent classifi-

cation ability, which verifies the scalability and stability

of the proposed method. In general, the framework is

helpful to explore the lesions of nervous system diseases

and provide reference for the diagnosis of PD.

2 Materials and Methods

2.1 Dataset Construction

Everyone is born with the “internal cause” of cer-

tain diseases, that is, disease susceptibility genes. One

disease is a typical abnormal phenotype, and many dis-

eases have the genotype corresponding to their abnor-

mal phenotypes. Moreover, the fMRI technology can

analyze the abnormal brain function and morphology

of patients with diseases from the aspects of the brain

structure, connection and circuit. Therefore, for fMRI

and gene data, which are so closely related to diseases,
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Fig.1. Overview of the proposed WRF framework.

it is of great significance to bridge the gap between them

and capture the potential connections between brain

regions and genetic variations. This will be helpful for

researchers to extract meaningful biomarkers and im-

prove clinical diagnosis process [17]. In biology, genes

can affect the function and structure of brain through

gene expressions. In the traditional research paradigm,

this association can be verified by clinical experiments.

In previous studies, the interaction between genes and

brain regions has been detected by correlation analysis

method for early diagnosis of brain diseases, and some

satisfactory results have been obtained [18–20]. We are

committed to using simpler and more practical meth-

ods to extract the interactions between brain regions

and genes as multimodal fusion features, which is a goal

of this paper.

We collect the experimental data from the

Parkinson’s Progression Markers Initiative (PPMI)

database 1○, which contains fMRI data and correspond-

ing single-nucleotide polymorphism (SNP) data. PPMI

is designed to establish a comprehensive set of clinical,

imaging and biosample data that will be used to de-

fine biomarkers of PD progression. Our study collects

55 PD patients and 49 healthy controls (HC), and each

subject contains the fMRI data and the SNP data. The

homogeneities of PD patients and HC at age and gen-

der are confirmed by two-sample t-test and chi-square

test and all subjects have signed the informed consent.

Subsequently, the fMRI data and the SNP data are

preprocessed. The data processing assistant for resting-

states fMRI (DPARSF) within MATLAB is applied to

preprocess the fMRI data. Detailed steps include the

realignment of head movement and time slice, image

registration based on EPI template, image smoothing

(full width at half maximum = 6 mm) and signal fil-

tering (0.01 HZ–0.08 HZ). PLINK software 2○ is applied

to preprocess the sample gene data. The following are

the settings of the specific parameters. The threshold

value of sample recall rate is set at 95% for assessing

the gene data’s total quality. To remove the inferior

SNP, the threshold values of genotyping and minimum

allele frequency are set to 99.9% and 4% respectively,

and we set the p-value threshold of Hardy-Weinberg

equilibrium testing to 1e−4. As a result, the standard-

ized brain images and 23 595 SNPs for each subject are

obtained.

On the basis of anatomical automatic labeling

(AAL) template, the preprocessed fMRI data is split

into 90 brain regions, and the first 80 time points of

each brain region are extracted to obtain the time series

of brain regions. The preprocessed SNPs are divided

into 45 groups according to the genes they belong to.

The first 40 SNPs from each group are selected to rep-

resent each gene. For the retained SNP groups, four

types of base A, T, C, and G in SNP are replaced by

digits 1, 2, 3, and 4 respectively, and then the digi-

tal sequences of genes are obtained. In addition, the

time series of brain regions and the digital sequences

of genes are equal in length. Pearson correlation ana-

lysis is utilized to calculate the correlation coefficients

between digital sequences and time series as the input

fusion features of WRF, and 4 050 fusion features are

obtained to characterize the interactions between brain

regions and genes. The Pearson correlation coefficients

1○PPMI database. http://www.ppmi-info.org/, Jan. 2021.
2○PLINK. http://www.cog-genomics.org/plink2, Jan. 2021.
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are calculated with the following equation.
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where Bt represents the functional time series of a brain

region t, Gs is the digital sequence of a gene s, and l

represents the length of each brain region or gene.

2.2 Weighted Random Forest

It is well known that identifying disease-related

biological features in high-dimensional data is a chal-

lenging problem. Ensemble learning has unique advan-

tages of dealing with high-dimensional feature spaces,

small samples and complex data structures [21]. In this

essay, we propose an original integrated learning algo-

rithm named weighted random forest. The training pro-

cess is shown in Fig.2.

To construct a base classifier, the experimental

dataset D = {S, F}Nn=1 is separated into training set

Dtrain = {Strain, Ftrain}, validation set Dvalidate =

{Svalidate, Fvalidate} and test set Dtest = {Stest, Ftest}

by the non-return sampling method at a ratio of 7 : 6 : 8

for each time. In specific, Strain = {s1, s2, · · · , sn},
where sn indicates the n-th sample, and Ftrain =

{+1,−1} is the classification label of the sample, where

“−1” denotes the PD patient and “+1” denotes the nor-

mal person. The training set Dtrain is used to train the

decision tree to get different base learners. The val-

idation set Dvalidate is used to get the weight of the

decision tree. The test set Dtest is used to assess the

generalization ability of WRF. The procedure above is

repeated certain times to form enough base classifiers.

Noting that different decision trees are formed sepa-

rately, and the samples are divided randomly, Dtrain,

Dvalidate and Dtest of each base classifier are different.

According to the sampling strategy above, we ob-

tain multiple training sets and corresponding valida-

tion sets. The input features of single decision tree are

also randomly selected. We assume that the total fea-

ture dimension of each sample is d. The s features are

stochastically extracted as the input features according

Experimental Dataset

Training Set 1  

 W1 × Decision Tree 1 

Weight: W1 Weight: W2 Weight: Wn

  

Weighted Random Forest (WRF) 

Sample and Generate
Training Sets

Construct Decision Trees
Using Training Sets 

Calculate the Weights of
Decision Trees Using

Validation Sets

Integrate Decision Trees and
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Weight the
Decision Trees 

Training Set 2 Training Set n

Decision Tree nDecision Tree 1 

Validation Set 1 Validation Set 2 Validation Set n

Decision Tree 2 

W2 × Decision Tree 2 Wn × Decision Tree n

...

...

...

...

Fig.2. Training process of WRF.
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to the prior knowledge, and the formula is as follows.

s = fix(
√
d),

where fix(∗) denotes an integral function to zero. Af-

ter that, we build a decision tree by using the Gini

index to look for different best categorization points of

all features. The Gini index is characterized as follows.

GINI(Dtrain) = 1−
∑

P 2
a ,

where Pa stands for the chance of which the categoriza-

tion consequence is a. In particular, TF j is applied for

representing the j-th feature in each sample. When the

feature TF j has the value of m, the calculation formula

of Gini index shows as follows.

GainGINITFj,m(Dtrain)

=
m1

M
GINI(D1

train) +
m2

M
GINI(D2

train),

where M stands for the sample amount of the training

set Dtrain, D1
train and D2

train are obtained by dividing

Dtrain into two parts according to value m of feature

TF j , and m1 and m2 are the sample amount in the

sample subsets D1
train and D2

train respectively. Then,

the Gini index of each value of feature TF j is calcu-

lated, and the corresponding value of the minimal Gini

index is selected as the best categorization point. More-

over, the best binary categorization point of each fea-

ture is calculated by the two equations above. There-

fore, one decision tree is built. By repeating the above

construction step of one decision tree K times, K di-

verse decision trees are acquired.

Subsequently, the classification accuracies of each

decision tree are acquired by means of the validation

set corresponding to the training set, and the decision

trees are weighted according to the corresponding clas-

sification accuracy. The weight calculation formula is

characterized as

Wl =
ycorrect,l

Y
, l = 1, 2, ..., L,

where ycorrect,l represents the quantity of samples prop-

erly categorized by the l-th decision tree in the valida-

tion set, and Y represents the sample amount in the val-

idation set. The classification accuracy is taken as the

weight of the corresponding decision tree. It is notewor-

thy that the base learner does not need to be retrained

in the process of weighting. Finally, these weighted de-

cision trees are combined to construct WRF. The de-

tailed procedure of obtaining WRF is summarized in

Algorithm 1.

Input: experimental dataset {S↪ F}

Output: the weighted random forest 

1:  Initialize {S↪ F}, n

2:  {S↪ F} is experimental dataset

3:  n is the number of initial decision trees

4:  Partitioned {S↪ F} into {S↪ F}tra_1↪ {S↪ F}val_1↪

       {S↪ F}test_1↪ ...↪ {S↪ F}tra_n↪ {S↪ F}val_n↪ {S↪ F}test_n

.         for k/ to n

6:           Select {S↪ F}tra_k

7:          Randomly select a subset of features as

            {Features}tra_k

8:          {S↪ F}tra_k and {Features}tra_k decision tree

             {Tbk}

9:          {S↪ F}val_k test the classification accuracy 

           of decision tree {Tbk} as weight wk

10:        weighted decision tree {Tbk}= wk × decision 

           tree {Tbk}

11:      end for

12:  WRF /ensemble of weighted decision trees 

                 {Tb, ..., Tbn}       

Algorithm 1. Framework of WRF

2.3 Sample Classification

WRF can be applied to predict the class labels of

new samples. Firstly, the unclassified samples are in-

putted into WRF, and the classification results of each

base classifier are assembled with different weights of

corresponding base classifiers, which is equal to let the

base classifiers vote and decide the result. The weighted

vote of category a is recorded as Sa and defined as fol-

lows.

Sa =

n∑
i=1

I(fi(x) = a)×Wi,

where x represents an unclassified sample, fi (x) is the

prediction result of the decision tree i, Wi is the weight

of decision tree i and I(∗) is the indicator function. If

the test sample x is predicted to belong to category a

by the decision tree i, the value of I(fi (x) = a) is 1;

otherwise the value is 0.

For unclassified samples, category A with the most

votes is selected as the final category. The calculation

formula is as follows.

A = arg max(Sa).

To assess the overall classification performance of

WRF, the classification accuracy is taken as the evalua-

tion criterion. The calculation formula is:

Pre =
ttrue
T

,
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where ttrue represents the quantity of samples accu-

rately classified in the test set and T represents the

size of the test set.

2.4 Extraction of Pathogenic Brain Regions

and Genes

In addition to the classification of samples men-

tioned above, WRF can also identify abnormal fusion

features associated with PD, and extract risk genes and

abnormal brain regions, which is another purpose of

this study. The following is the specific analysis pro-

cess.

The statistical weights of fusion features selected by

decision trees with weights greater than 0.5 are calcu-

lated, and the features with larger weights are taken as

important fusion features. The formula for calculating

the weight of fusion features is characterized as:

BGP v =

m∑
i=1

BGP i,v ×Wi,

where BGP v represents the weight of the v-th fusion

feature, BGP i,v represents the frequency of the v-th

fusion feature in decision tree i, and Wi is the weight of

decision tree i. In another word, the weights of selected

features are based on the weight of the base learner, and

the optimal features are found by calculating the total

weights of different features in multiple base learners.

The weight can be employed to measure the effect of

different fusion features on WRF classification perfor-

mance. The greater the weight of the feature is, the

more significant the effect on WRF is. This also means

that these features are more distinct between normal

people and PD patients, and more related to PD.

Then, we select top D “high-weight fusion features”

and extract different subsets from them. Within the

interval [C,D], starting from C, the number of fusion

features in the subset is gradually increased according

to the frequency descending with b as the step size un-

til the subset contains all D high-frequency features.

Then, these feature subsets are inputted into WRF re-

spectively to test their categorization abilities. We re-

tain the feature subset that has optimal categorization

ability. At the same time, the number of fusion fea-

tures is the best. At last, we calculate the frequencies

of genes and brain regions in the optimal fusion fea-

tures, and the high-frequency genes and brain regions

are risk genes and abnormal brain regions.

2.5 Parameter Optimization

There is one important free parameter, which needs

to be optimized to achieve the best performance of

WRF, that is, the initial quantity of decision trees. The

optimization method is as follows: within the inter-

val [A, B], the grid search strategy is adopted. Start-

ing from A, the initial quantity of decision trees in-

creases gradually with a step of a, and the upper limit

is B. Then, according to the accuracies of WRF with

different quantities of decision trees, the quantity corre-

sponding to the highest accuracy is the optimal initial

quantity of decision trees.

3 Results

3.1 Construction of Optimal Weighted

RandomForest

According to Section 2, 105 experimental data are

randomly divided into a training set with 35 samples,

a validation set with 30 samples and a test set with 40

samples in accordance with the proportion of 7 : 6 : 8.

The 35 samples of the training set and 57 features ran-

domly selected from 4 050 fusion features are employed

to construct a decision tree Tr1. The number of fea-

tures is obtained through many practical experiments,

and it can play the advantages of WRF more effec-

tively. After the construction, Tr1 is verified by the

corresponding validation set to get the classification ac-

curacy, which is the weight of Tr1. By repeating the

above steps 600 times, the WRF with 600 decision trees

which have their corresponding weights is formed.

To get the optimal WRF, we adopt the optimization

approach mentioned in the parameter optimization sec-

tion to further optimize WRF. The initial quantity of

the decision trees is first confirmed within the range

of [20, 600] and the optimal value of the parameter is

found. To be specific, the quantity of decision trees is

gradually increased from 20 to 600 in steps of 10, and

then we get the classification accuracies under different

quantities of decision trees. The relationship between

the quantity of decision trees and the classification ac-

curacy is shown in Fig.3. It is obvious that when the

number of base classifiers is 410, the classification ac-

curacy of ensemble learners reaches the highest value

of 0.875. [20, 600] is not the final search range for the

parameter. In fact, we search the optimal parameter in

a wider range, and then determine the optimal value of

the parameter in interval [20, 600]. WRF corresponding

to the highest classification accuracy is regarded as the
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optimal model, resulting in the optimal WRF model

with 410 decision trees.
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Fig.3. Relationship between the quantity of decision trees and
the classification accuracy.

3.2 Optimal Fusion Features Extraction

According to the optimal WRF model, every base

classifier has corresponding weight. Once the weight

of a base classifier is obtained, all features in this base

classifier are weighted by the same value. We sum up

the weight of each feature in the base classifiers whose

weights are greater than 0.5, and the weight of each fea-

ture is obtained. By sorting the features in descending

order according to corresponding weights, 400 features

are selected as important fusion features.

In order to ensure the performance of the ensemble

learner, we regard the first 70 important fusion fea-

tures as an input feature subset of WRF to classify PD

patients and HC, where 57 features are randomly se-

lected to build the base classifier, and thereby build

WRF. Subsequently, in the step size of 2, we generally

increase the number of important fusion features from

70 to 400. In order to ensure the performance of the

ensemble learner, we choose at least the first 70 impor-

tant fusion features. Fig.4 exhibits the classification

accuracy of WRF with different input feature subsets.

When the first 320 features are extracted, the classifi-

cation accuracy of the WRF model is the highest and

reaches 87.5%. Consequently, the first 320 important

fusion features are the optimal fusion features.

3.3 Identification of Disease-Related Brain
Regions and Genes

As mentioned in Section 2, we severally calculate

the frequencies of the genes and brain regions in the

optimal fusion features. Higher frequencies of genes or

brain regions indicate that corresponding genes or brain

regions are more abnormal. Brain regions with higher

frequencies are showed in Fig.5(a), where the lowest fre-

quency is 4. We take the frequency of the brain region

as weight, and the size of the weight is graphically ex-

pressed as the size of the point in Fig.5(b). Similarly,

based on the calculated frequencies, we find out the cor-

responding frequency for each gene, and the genes with

higher frequencies are in connection with PD (Fig.6).
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Fig.4. Relationship between the number of multimodal fusion
features and the classification accuracy.

These high-frequency brain regions and genes,

which include inferior frontal gyrus, opercular part

(IFGoperc.R), Thalamus (THA.L), and posterior cin-

gulate gyrus (PCG.L, C6orf10, GABBR1 and HLA-

DQB2), are regarded as disease-related brain regions

and genes. Our conclusions are consistent with many

previous studies. For example, IFGoperc.R has the

highest frequency among the found morbific brain re-

gions. Chen et al. [22] studied the gray matter atrophy

of PD-mild cognitive impairment (PD-MCI) and the

result of one-way analysis of variance indicated the sig-

nificant difference in the anatomical location of IFGop-

erc.R. Guimarães et al. [23] also detected the grey matter

loss of IFGoperc.R for moderate PD and severe PD pa-

tients compared with HC through the voxel-based mor-

phometry. Similarly, Hou et al. [24] combined fMRI and

the graph theory approach to research the topological

structure of PD and the experimental results showed

that abnormal nodal centralities of IFGoperc.R were

found out in PD compared with HC. IFGoperc.R was

proved to be related to memory [25], language [26] and

motion [27], abnormalities of which could lead to the

occurrence of PD. PCG.L is also significantly abnormal

brain region. Reijnders et al. [28] carried out a morpho-
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Axial View Coronal View

Sagittal View Sagittal View

(b)(a)

Fig.5. (a) Frequencies, and (b) locations and sizes of abnormal brain regions. The color of the point in (b) corresponds to the color
bar in (a).

A
L
6
4
5
9
2
9
.2

A
L
8
0
5
9
0
9
.1

A
C

2
2
6
0
0
7
.1

A
L
6
6
9
9
1
8
.1

A
L
7
7
3
5
4
3
.1

A
L
6
6
3
0
9
3
.1

M
U

C
2
2

H
L
A
-
D

P
B

1
L
IN

C
0
0
2
4
3

C
6
o
rf

1
0

A
L
7
7
3
5
5
1
.1

B
X

2
4
8
3
1
0
.1

B
X

2
4
8
3
2
1
.1

B
X

9
2
7
1
3
9
.1

C
D

S
N

C
R

8
4
7
8
6
1
.1

D
H

R
S
X

G
A

B
B

R
1

H
C

G
9

H
L
A
-
D

Q
B

2

H
L
A
-
D

R
A

P
S
O

R
S
1
C

1
T

R
IM

2
6

A
L
6
6
2
8
4
8
.1

B
X

9
2
7
1
6
8
.1

C
S
M

D
1

H
C

P
5

O
R

5
V

1
T
A

P
2

A
L
8
4
5
4
4
3
.1

L
IN

C
0
2
5
7
1

N
O

T
C

H
4

O
R

1
2
D

3
B

T
N

L
2

C
R

7
5
9
7
7
2
.1

H
C

G
1
7

H
C

G
2
0

H
C

G
2
3

H
L
A
-
D

O
A

A
L
6
6
2
7
8
9
.1

C
R

3
8
8
2
1
5
.1

Z
N

R
D

1
A

S
P

H
L
A
-
B

T
R

IM
4
0

A
L
6
4
5
9
4
1
.2

A
L
6
4
5
9
2
9
.2

14

12

10

8

6

4

2

0

F
re

q
u
e
n
c
ie

s 
o
f 
G

e
n
e
s

Frequencies  8

Frequencies<8

<-

Fig.6. Frequencies of genes. The total number of candidate genes examined in this study is 45, and the high-frequency genes are more
likely to be risk genes for PD.
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logical MRI study, which proved that PD patients were

associated with the gray matter density value of pos-

terior cingulate gyrus. The voxel-based morphometry

and multivariate linear regression were used by Melzer

et al. [29] for studying the connection between cognitive

and grey matter concentration of PD and the results ex-

hibited that PD with dementia had reduced grey mat-

ter volume in the brain region of PCG.L. Moreover, de

Schipper et al. [30] and Evangelisti et al. [31] found out

the increased functional connectivity of PCG.L in PD

patients. Therefore, the findings of abnormal brain re-

gions provide evidence for diagnosis of PD.

Additionally, some risk genes are found out in our

study, which is in line with existing findings. For ex-

ample, the genes of C6orf10, GABBR1 and HLA-DQB2

are likely to be connected with PD, which may cause

brain functional and structural changes through differ-

ential expression in the brains of PD patients [11, 32–34].

3.4 Performance Comparison and Verification

In order to verify the advantages of “Pearson +

WRF” framework proposed in this paper, we use Pear-

son correlation analysis, distance correlation (DC),

canonical correlation analysis (CCA) and Kendall to

build multimodal fusion features, and utilize the two-

sample t-test, decision tree, random forest (RF) and

WRF to abstract optimal fusion features. The para-

meter settings of the other methods are consistent with

that of the method proposed in this paper to keep the

objectivity. The classification performance of the opti-

mal multimodal features abstracted by diverse frame-

works is evaluated by support vector machine (SVM).

The results are shown in Table 1.

Firstly, we are able to observe that “Pearson +

WRF” abstracts the least quantity of optimal fusion

features among all frameworks in Table 1, but has the

highest classification accuracy. At the same time, the

features extracted by other frameworks always partly

overlap with those extracted by “Pearson + WRF”

framework. The non-randomness of these overlaps is

verified by hypergeometric test. It is noteworthy that

the more the overlaps between “Pearson + WRF” and

other frameworks, the higher their classification accu-

racy, indicating that the optimal features extracted by

“Pearson + WRF” are rational. On the basis of the

analysis above, we find that the “Pearson + WRF”

framework extracts the fewest fusion features and is

the most dependable of all frameworks since it can ef-

fectively refrain from the false positive. Consequently,

the optimal fusion features abstracted by the “Pearson

+ WRF” have the best reasonability. Moreover, in or-

der to observe the comparison results more intuitively,

we adopt two evaluation indexes, namely true positive

rate (TPR) and false positive rate (FPR) (Fig.7). The

“Pearson + WRF” framework proposed in this paper

has area under curve (AUC) value of 0.875, ranking in

the top and indicating the best performance among all

frameworks.

Secondly, in the preprocessing step, we intercept

Table 1. Comparison Results of Comprehensive Frameworks

Framework Number of Optimal Multimodal Classification Accuracy Overlaps with

Fusion Features of SVM Our Method

Pearson + WRF 320 0.850 –

Pearson + two-sample t-test 499 0.700 158 (p = 2.158 422e–20)

CCA + two-sample t-test 412 0.625 125 (p = 4.841 794e–19)

DC + two-sample t-test 447 0.625 120 (p = 6.862 647e–28)

Kendall + two-sample t-test 518 0.625 121 (p = 1.312 745e–42)

Pearson + decision tree 700 0.725 160 (p = 7.600 548e–62)

CCA + decision tree 590 0.675 148 (p = 4.006 157e–43)

DC + decision tree 370 0.650 127 (p = 1.215 09e–11)

Kendall + decision tree 470 0.650 138 (p = 9.618 019e–24)

Pearson + RF 670 0.775 184 (p = 5.371 748e–41)

CCA + RF 565 0.625 112 (p = 5.439 128e–60)

DC + RF 445 0.650 134 (p = 5.370 451e–21)

Kendall + RF 495 0.675 145 (p = 3.330 824e–25)

CCA + WRF 560 0.775 187 (p = 2.901 748e–19)

DC + WRF 485 0.750 176 (p = 4.865 552e–12)

Kendall + WRF 560 0.800 215 (p = 1.482 712e–10)
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Fig.7. Comparison of TPR and FPR under different frameworks. (a) Two-sample t-test with Pearson, CCA, DC and Kendall respec-
tively. (b) Decision tree with Pearson, CCA, DC and Kendall respectively. (c) RF with Pearson, CCA, DC and Kendall respectively.
(d) WRF with Pearson, CCA, DC and Kendall respectively.

the time series of brain regions and digital sequences

of genes to reach the same length of 80, and then calcu-

late the correlation coefficients between them by Pear-

son correlation analysis to construct fusion features. In

order to verify that the interception length of 80 is

optimal, that is, l in calculation equation of Pearson

correlation coefficients, we take different values of l re-

spectively to build the fusion features. The rest of the

steps to build the WRF model are the same to prevent

the interference of other factors. Subsequently, we use

the constructed model in the classification of the PD &

HC dataset. As can be seen in Fig.8(a), when l is 80,

“Pearson + WRF” shows an exclusive advantage and

performs much better than the frameworks with other

interception lengths.

Finally, when we extend the “Pearson + WRF”

framework to multimodal data fusion researches of

Alzheimer’s disease (AD) & HC and early MCI (EMCI)

& HC datasets, it also performs quite well in that it

provides the relatively high AUC values (see Fig.8(b)

and Fig.8(c)). This fully verifies the robustness and

generalization ability of the proposed model. Besides,

it should be noted that we get the optimal interception

length through repeated experiments; therefore its val-

ues are different in the other two datasets (see Fig.8(b)

and Fig.8(c)).

4 Discussion

Besides the comparison of the above methods, we

summarize the current popular diagnostic methods for

PD [35]. For example, Sivaranjini and Sujatha [36] tried

to use deep learning neural network to classify magnetic

resonance images of healthy control group and PD pa-
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Fig.8. (a) ROC curve for dataset 1 (55 PD + 50 HC). (b) ROC curve for dataset 2 (37 AD + 36 HC). (c) ROC curve for dataset 3
(37 EMCI + 36 HC). Both dataset 2 and dataset 3 are acquired from Alzheimer’s Disease Neuroim-aging Initiative.

tients, with the accuracy of 88.9%. Martinez-Murcia et

al. [37] proposed a deep convolution automatic encoder

(CAE) architecture, which was tested on neuroimag-

ing dataset of PD, and achieved an accuracy of more

than 90%. Obviously, the accuracy of the PD diagnosis

using deep learning was not much different from that

of the proposed WRF. But WRF can not only classify

PD well, but also extract disease-related factors, which

is the unique advantage compared with deep learning.

In addition, some machine learning methods are also

extremely popular in researches for PD diagnosis. For

example, Gao et al. [38] proved that the model-free ma-

chine learning analytical methods could provide a more

reliable classification accuracy (70%–80%) for falls in

PD patients, compared with the model-based analytical

methods. Abós et al. [39] used the randomized logistic

regression and SVM to carry out feature selection and

distinguish PD patients with MCI from those without

MCI, and the mean accuracy achieved 82.6%. Gene-

rally, our method shows relatively high comprehensive

performance among the current popular PD diagnostic

technologies, and its good robustness and scalability are

conducive to the development of clinical medicine.

In this paper, the Weighted Random Forest method

is proposed to classify PD patients and HC by fusing

the complementary information from different modal

data, and the classification accuracy is 87.5%. There

are mainly two reasons for the good effect. The first

reason is that we find out the optimal quantities of base

classifiers and multimodal fusion features to achieve the

best performance of WRF. When WRF based on the

optimal parameters reaches the peak performance, the

time complexity and the spatial complexity are more

balanced, and the model’s classification effect is bet-

ter. The second reason is that we construct an overall

framework of multimodal data fusion, sample classifica-

tion and feature extraction, which can make up for the

defects of most previous researches focusing on one as-

pect. Additionally, a framework can make better use of

the information complementarity of multimodal data to

improve classification performance. Furthermore, our

data are obtained from the PPMI database. The col-

lection and the processing of the data in this database

have a strict standard, which ensures that the data are

homologous in structure.

Although our method improves the diagnostic ef-

fect of PD, there are still some potential limitations in

this study. On the one hand, the study utilizes the

AAL atlas, which is a popular and accepted method

in this field, to divide the brain regions, and the cor-
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relations between brain regions and genes are used as

features, which lead to the result that complex brain

compartmentalization is not detailed enough. There-

fore, we can use other brain templates to match images

in the next work, such as Broadman. On the other

hand, this study mainly fuses genetic data and fMRI

data to explore brain diseases. There may be a com-

bination of data fusion better than the fusion of these

two datasets [40, 41], which is also a focus of our follow-

up work. We have confirmed the rationality of most

typical pathogenic factors through many existing stu-

dies, which shows the effectiveness of the method. Still,

there are few atypical pathogenic factors lack of relevant

research. In the follow-up work, we will collect more

data, design new algorithms for in-depth analysis, and

better explain their role in the pathogenesis of PD. Fur-

thermore, these factors provide a reference for further

exploration of PD. We plan to cooperate with clinicians

to jointly explain the role and rationality of these fac-

tors.

5 Conclusions

In this study, the resting-state fMRI data and the

genetic data were used to accomplish the multimodal

fusion, and WRF was introduced to accurately distin-

guish PD patients and HC. The main contributions of

this paper are as follows. Firstly, we applied practical

correlation analysis to construct multimodal fusion fea-

tures, which showed better identification ability than

classical single modal features. Secondly, WRF was

proposed and innovatively used with sample classifica-

tion and feature filtering. Finally, we detected the le-

sion brain regions and risk genes from the select optimal

multimodal fusion features. Our efforts are conducive

to understanding the pathogenesis of PD, and intro-

duce a valuable perspective for the diagnosis of brain

diseases.
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