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Abstract Electrocardiogram (ECG) biometric recognition has emerged as a hot research topic in the past decade.

Although some promising results have been reported, especially using sparse representation learning (SRL) and deep neural

network, robust identification for small-scale data is still a challenge. To address this issue, we integrate SRL into a deep

cascade model, and propose a multi-scale deep cascade bi-forest (MDCBF) model for ECG biometric recognition. We design

the bi-forest based feature generator by fusing L1-norm sparsity and L2-norm collaborative representation to efficiently deal

with noise. Then we propose a deep cascade framework, which includes multi-scale signal coding and deep cascade coding.

In the former, we design an adaptive weighted pooling operation, which can fully explore the discriminative information

of segments with low noise. In deep cascade coding, we propose level-wise class coding without backpropagation to mine

more discriminative features. Extensive experiments are conducted on four small-scale ECG databases, and the results

demonstrate that the proposed method performs competitively with state-of-the-art methods.

Keywords electrocardiogram (ECG) biometric recognition, small-scale data, deep cascade bi-forest, multi-scale division,

sparse representation learning

1 Introduction

Many human traits, such as faces, fingerprints,

irises, gaits, and voices, have been studied for the pur-

pose of identity recognition. Over the past decade,

electrocardiogram (ECG) biometric recognition has

emerged as a popular research topic [1]. ECG biomet-

ric recognition has become popular, especially for con-

tinuous recognition systems, due to its several unique

advantages [2]. 1) Liveness Detection. An ECG is

recorded through sensors attached to the body; hence,

it can only be captured from a living person. 2) High

Security. An ECG is difficult to counterfeit or spoof,

leading to the high security of ECG biometric recog-

nition. 3) Universality. ECG signals can be acquired

from all living individuals. 4) Small Data Size. An

ECG is a one-dimensional, low-frequency signal that

can be easily stored and processed.

ECG signals are acquired by the electrodes attached

to the body surface, and they have inevitable contact

noise. There are various types of noise from the signal-

acquisition devices, such as from power-line interfer-

ence, baseline wandering and electrode motion artifact.

ECG signals are corrupted by different noise, which af-

fects the recognition performance, and the signal pre-

processing cannot eliminate all noise. Therefore, a chal-
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lenging problem for ECG biometric recognition is de-

signing a robust and precise method.

Sparse representation learning (SRL) can efficiently

handle noise, and many related methods have been pro-

posed for ECG biometric recognition [3–6]. SRL-based

coding methods belong to one-step models such that

the latent discriminative information cannot be fully

exploited [7].

The deep neural network (DNN) has shown good

performance at ECG biometric recognition [8–12], and

has seen increasing research. Although DNN has

achieved better results in ECG biometric recogni-

tion, many factors limit its development. First, DNN

has good recognition performance based on large-scale

training data for massive weighted parameter tuning,

but is not easy to train on small-scale data usually by

means of data augmentation. Second, DNN requires

powerful computational resources. Third, DNN has

too many hyper-parameters that need intricate adjust-

ment. Additionally, the interpretability and the theo-

retical analysis of DNN are still not completely clear.

The deep cascade model (DCM) has been pro-

posed as an alternative to DNN [7, 13–15]. DCM can

achieve competitive performance without backpropa-

gation optimization, especially for small-scale training

data. However, the existing DCM-based methods only

focus on how to deal with higher-dimensional image

data, without considering small-scale data with low in-

trinsic dimension.

To tackle the above-mentioned challenges and is-

sues, we propose a multi-scale deep cascade bi-forest

model for ECG biometric recognition, which can han-

dle small-scale data with noise. We integrate the

sparse representation coding and random forest into

the deep-layered learning framework, and a specialized

end-to-end improved DCM for one-dimensional data is

developed. Specifically, the proposed framework in-

cludes multi-scale signal coding and deep cascade cod-

ing. For multi-scale signal coding, we design an adap-

tive weighted pooling operation, which can fully ex-

plore the discriminative information of segments with

low noise. In deep cascade coding, we propose a level-

wise class coding without backpropagation, so as to

mine more discriminative features based on level-wise

representation. To the best of our knowledge, this is

the first work to utilize an improved DCM to deal with

one-dimensional signals.

This paper makes the following contributions.

1) We integrate SRL into the deep cascade struc-

ture, and propose multi-scale deep cascade bi-forest for

ECG biometric recognition, which can perform better

even with only small-scale training data.

2) We design the bi-forest based feature generator

(BFG), consisting of two forests with the respective in-

puts of sparse and collaborative representation. Sparse

representation with the L1 norm can obtain high-level

semantic information, collaborative representation with

the L2 norm can capture the collaborative relationship,

and the combined representation can efficiently deal

with noise.

3) We propose an adaptive weighted pooling strat-

egy to enhance the discriminability of local segments.

This strategy can be regarded as an attention mecha-

nism in a deep learning model.

The rest of this study is organized as follows. In Sec-

tion 2, we briefly review related work. We introduce

a multi-scale deep cascade model for ECG biometric

recognition in Section 3. We report on experimental

evaluation and analysis of our method in Section 4, fol-

lowed by a brief conclusion and some suggestions for

future work in Section 5.

2 Related Work

2.1 ECG Biometric Recognition

The main processes of ECG biometric recognition

include preprocessing, feature extraction, dimension-

ality reduction, and decision. Current feature extrac-

tion methods include fiducial-based, non-fiducial based,

and hybrid approaches. Fiducial-based approaches ex-

tract ECG fiducial markers between points, angles,

areas, and amplitudes [16, 17]. Non-fiducial based ap-

proaches extract ECG features by the entire waveform

morphology of the ECG signal or the isolated ECG

heartbeat [18–21]. Hybrid approaches simultaneously

fuse fiducial- and non-fiducial based features [22, 23].

After feature extraction, to obtain an appropri-

ate low-dimensional subspace, dimensionality reduction

methods are introduced to improve recognition perfor-

mance. Wu et al. [24] proposed several ECG-based can-

celable biometric schemes by signal subspace collapsing.

He and Tan [25] presented a dimensionality reduction

approach based on entropy principal component ana-

lysis (EPCA) for pattern recognition of ECG signals.

Srivastva and Singh [26] proposed an ECG biometric fea-

ture extraction method utilizing a band-pass filter for

quality checking and autocorrelation. Zheng et al. [27]

proposed a feature extraction method based on an ECG

superposition matrix of a single heartbeat ECG. Re-

cently, kernel principal component analysis (KPCA)
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for ECG biometric recognition has shown good per-

formance in recognition rates and robustness [28]. Pal

and Singh [29] presented an ECG biometric recognition

system by KPCA, with recognition accuracy superior

to that of principal component analysis (PCA). Hejazi

et al. [30] presented a non-fiducial ECG authentication

approach using kernel methods. Although ECG has

long been deemed as high security by many researchers,

some researches have recently showed that it is indeed

possible to generate the adversarial ECG signals [31].

How to detect and reject fake ECG samples has be-

coming an important issue.

SRL can efficiently handle noise, and many SRL-

based methods have been proposed for ECG biometric

recognition. Wang et al. [3] proposed to extract com-

pact and discriminative features from ECG signals for

human identification based on sparse representation of

local segments. Jaafar et al. [4] proposed a kernel sparse

representation classifier to enhance system performance

in a high-dimensional feature space for ECG biometric

recognition. Li et al. [5] proposed a robust ECG bio-

metric method based on graph regularized nonnegative

matrix factorization and sparse representation. Gosh-

varpour and Goshvarpour [6] developed an identification

system using a non-fiducial one-lead ECG feature set

based on sparse representation.

Most recently, DNN-based methods have shown

good performance at ECG biometric recognition, and

have seen increasing research. Abdeldayem and

Bourlai [8] investigated the spectral variation of the au-

tocorrelation of the ECG segments to distinguish in-

dividuals, and two models of a 2D convolution neural

network with different convolutional depths and fully-

connected layer sizes were utilized as classifiers. Lo-

bate et al. [9] presented a deep convolutional neural net-

work for ECG biometric recognition. Luz et al. [10] used

two convolutional neural network techniques to extract

useful representation for ECG biometric recognition.

Hammad et al. [11] developed two authentication sys-

tems with different levels of fusion algorithms using a

convolution neural network. Zhang et al. [12] extracted

distinctive features from an ECG segment without refe-

rence point detection via a deep convolutional neural

network, thus avoiding the complicated signal fiducial

characteristic point extraction process.

Although the existing ECG biometric recognition

methods have reported some promising results, there

are still some practical problems. 1) The amplitudes

and intervals of fiducial points are sensitive to noise,

and the recognition results of fiducial-based approaches

are not always reliable. 2) The conventional feature rep-

resentation methods belong to the one-step model, and

the performance is degraded when ECG signals are con-

taminated by noise. 3) The existing ECG databases are

small-scale data, while DNN-based methods for ECG

biometric recognition are not easy to train on small-

scale data. Therefore, a significant and challenging

problem for ECG biometric recognition is how to design

a better robust method that can handle small-scale data

with noise. In this paper, we utilize the advantages of

sparse representation and the deep cascade model, and

propose a multi-scale deep cascade bi-forest for ECG

biometric recognition, which can perform better even

with only small-scale training data.

2.2 Deep Cascade Model

DCM has been proposed as an alternative to DNN,

and many related methods have been reported. Zhou

and Feng [13] first proposed a multi-grained cascade for-

est (gcForest), which generates a deep forest ensemble

approach, with a cascade structure for representation

learning. Zhang et al. [7] proposed an end-to-end deep

cascade model based on sparse representation learning

and nuclear-norm matrix regression with hierarchical

learning, nonlinear transformation, and a multi-layer

structure for corrupted face recognition. Liu et al. [14]

designed a deep forest for spectral-based hyperspectral

image classification. Wen et al. [15] proposed multi-level

deep cascade trees, which can leverage deep cascade

structures by stacking gradient boosting decision trees

to effectively learn feature representation.

The deep cascade forest is the most widely-used

deep cascade model; it is a deep learning method en-

semble of decision trees [13]. Although the deep cascade

forest has not been exploited in ECG biometric recogni-

tion, it has been used in other fields, where it has shown

competitive performance. Liu et al. [14] designed a deep

forest for spectral-based hyperspectral image classifica-

tion, and then proposed an improved deep forest al-

gorithm for spatial-based hyperspectral image classifi-

cation. Utkin and Ryabinin [32] proposed a discrimi-

native deep forest method by assigning weights to de-

cision trees in a random forest. Su et al. [33] proposed a

deep cascade forest model to classify anti-cancer drug

response. Pang et al. [34] proposed a simple, effective

approach to improve the efficiency of deep forest, which

can pass instances with high confidence directly to the

final stage rather than through all levels.

We use the deep cascade forest for ECG biometric

recognition and present a model including a bi-forest
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feature generator, an adaptive weighted pooling strat-

egy, and two-stage coding, which is quite different from

the above work with a deep cascade model.

3 Proposed Methodology

We first introduce the framework of our proposed

multi-scale deep cascade bi-forest (MDCBF). The MD-

CBF framework has two parts: multi-scale signal cod-

ing (Subsection 3.1) and deep cascade coding (Sub-

section 3.2). We then discuss the overall recognition

process (Subsection 3.3). A simple illustration of our

framework is shown in Fig.1.

3.1 Multi-Scale Signal Coding

Multi-scale signal coding includes three parts: the

multi-scale division, BFG and adaptive weighted pool-

ing. First, we can obtain different local segments of a

heartbeat using the multi-scale division. Then, we use

BFG to generate the class feature codings of different

local segments. At last, we obtain one global feature

coding of different segments by the adaptive weighted

pooling.

3.1.1 Multi-Scale Division

After signal preprocessing, ECG signals are isolated

into heartbeats. Different local segments of a heartbeat

waveform are influenced by the noise more or less. The

local segments with low noise levels can provide more

discrimination information for ECG biometric recogni-

tion. To explore the local discrimination information

of heartbeat wave, we propose a multi-scale dividing

operation to obtain different local segments, which can

reduce the influence of some local segments with more

noise. For example, in three-scale division, a heartbeat

is divided into one, two and three local segments, re-

spectively, as shown in Fig.2.

In Fig.2, the 1/1 scale is the original heartbeat. In

the 1/2 and 1/3 scales, the original heartbeat is equally

divided into two and three segments, respectively. To

reduce the influence of some local segments with more

noise, we separately generate the features of different

local segments. We next design BFG, which consists

of two forests with inputs of sparse and collaborative

representations.

3.1.2 Bi-Forest Based Feature Generator

Let us assume that X = (X1,X2, ...,XC ) ∈ Rm×n

represents training samples, each class Xi contains n

training samples, C is the total number of classes, m

is the number of dimensions, Xi = (xi1,xi2, ...,xini
) ∈

Rm×ni , and n =
∑C

i=1 ni. A test sample y can be re-

constructed by a sparse linear combination of training

samples X as:

y = Xwp,

where wp = (0, ..., 0,wi1,wi2, ...,wini
, 0, ..., 0)

T ∈ Rn is

a sparse coefficient vector with only nonzero elements

associated with the i-th class. It should be noted that

the advantages of representing the test sample as a lin-

ear combination of training samples have been explored

in [35–37].

According to sparse representation learning [37], we

can obtain the sparse representation coefficient of sam-

ple y by solving the following optimization problem:

min
wp

‖y −Xwp‖22 + λ1 ‖wp‖1 , (1)

where λ1 is a regularization coefficient, and ‖•‖1 is the

L1 norm.

After solving for the sparse coefficient wp, the sparse

residual rpi of each class can be computed as follows:

rpi = ‖y −Xδi (wp)‖22 ,

where δi (•) is a vector operator, which only sets

nonzero elements corresponding to the i-th class, 1 6
i 6 C.

Then, the sparse residual-based class feature coding

sp is obtained as:

sp =

(
e−r

p
1∑C

i=1 e−r
p
i

,
e−r

p
2∑C

i=1 e−r
p
i

, ...,
e−r

p
C∑C

i=1 e−r
p
i

)
. (2)

If the testing sample y belongs to class i and spi is

obviously bigger than the other elements in class fea-

ture vector sp, then this shows class discrimination.

Collaborative representation learning replaces the

L1 norm with the L2 norm in (1), and we can obtain

the collaborative representation coefficients of test sam-

ple y by solving the following optimization problem:

min
wq

‖y −Xwq‖22 + λ2 ‖wq‖2 . (3)

Here I is the identity matrix.

The collaborative representation coefficient wq is

obtained by the direct derivative of (3) as:

wq =
(
XTX + λ2I

)−1
XTy,

where I is the identity matrix.

The collaborative residuals rqi of each class can be

computed as follows:

rqi = ‖y −Xδi (wq)‖22 .
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1/1 Scale

1/2 Scale

1/3 Scale

Fig.2. One heartbeat in three-scale division.

Then, the collaborative residual-based class feature

vector sq is obtained as follows:

sq =

(
e−r

q
1∑C

i=1 e−r
q
i

,
e−r

q
2∑C

i=1 e−r
q
i

, ...,
e−r

q
C∑C

i=1 e−r
q
i

)
. (4)

Since the decision forest can significantly improve

the accuracy and generalization ability of classification,

we design a bi-forest to generate class features, which

takes the above sparse and collaborative residuals as

the inputs of two forests. BFG is illustrated in Fig.3

and described in Algorithm 1.

Raw

Feature

Sparse  

Representation

Sparse Residual 

Collaborative Residual

Pooling

Forest

Forest

Class

Feature

Collaborative 

Representation

...
...

...

Fig.3. Illustration of BFG.

For convenience, we define the procedure of gener-

ating feature coding v using training samples X for a

given query sample y as follows:

v = BFGX (y) . (5)

To encourage the diversity that is crucial for ensem-

ble construction, the two forests of BFG are a random

forest and a complete-random forest.

Algorithm 1. Bi-Forest Based Feature Generator (BFG)

Input: training samples X ∈ Rm×n and testing sam-
ple y ∈ Rm, class number C, regularization coefficients
λ1 and λ2
Output: the class feature coding of testing sample
y

1: Obtain the sparse residual matrix Sp =
(sp1, s

p
2, ..., s

p
n) ∈ RC×n of X using (2);

2: Obtain the collaborative residual matrix Sq =
(sq1, s

q
2, ..., s

q
n) ∈ RC×n of X using (4);

3: Separately train two decision forests bySp andSq;
4: Obtain the sparse residual vector vp and collabo-

rative residual vector vq of testing sample y using
(2) and (4), respectively;

5: vp and vq are classified by training two decision
forests to generate class feature coding vectors v1

and v2;
6: Transform v1 and v2 to v using the average pooling

operator, and v is the class feature coding of testing
sample y.

3.1.3 Adaptive Weighted Pooling Strategy

After obtaining multiple local feature codes by BFG

with coding for local segments, we need a pooling ope-

ration such that one original heartbeat can only be rep-

resented by one global feature code. For example, in

Fig.4, for the 1/3 scale, the original heartbeat is equally

divided into three local segments, and three local fea-

ture coding vectors ( s31 ∈ RC×1, s32 ∈ RC×1, and

s33 ∈ RC×1 ) are generated by BFG. Here, we design

an adaptive weighted pooling strategy to obtain the

global feature coding vector v3 ∈ RC×1.

Global
Coding

1/3 Scale
 

...

BFG ...

...

...
Weighted
Pooling

BFG

BFG

v3

s31

s32

s33

Fig.4. Generating global feature coding in the 1/3 scale.

Most pooling strategies only use the same local

weight to build the global feature code, which cannot

capture the discriminative information when some seg-

ments are easily affected by noise. For example, a heart-

beat consists of a QRS segment and the other segments,

among which the QRS segment has a larger amplitude
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and is less affected by noise.

Therefore, when the global feature code is generated

by the multiple coding of local segments, the segment

with larger amplitude should have a larger weight, and

segments with small amplitudes should have smaller

weights. We define the weight wij of the j-th local

segment in the 1/i scale as follows:

wij =
Aij∑i
j=1Aij

,

where Aij is the average amplitude value of the sam-

pling point, 1 6 j 6 i.

In the 1/i scale, the final feature code vi ∈ RC×1 of

a sample is computed as follows:

vi =

i∑
j=1

wijsij ,

where sij ∈ RC×1 is the feature coding vector of the

j-th local segment in the 1/i scale. Since the weight

wij is computed automatically without training, vi can

be gained by an adaptive weighted pooling strategy.

For a query sample y, for the 1/1 scale, we can

only obtain one feature coding vector vy
1 ∈ RC×1. For

the 1/2 scale, we can obtain two feature coding vectors:

s21 ∈ RC×1 and s22 ∈ RC×1, which can be transformed

to one final feature coding vector vy
2 ∈ RC×1:

vy
2 = w21s21 + w22s22.

Similarly, for the 1/3 scale, we can obtain three

feature coding vectors, s31 ∈ RC×1, s32 ∈ RC×1 and

s33 ∈ RC×1, which can be transformed to one final fea-

ture coding vector v3 ∈ RC×1:

vy
3 = w31s31 + w32s32 + w33s33.

Fig.5 demonstrates the final feature coding vectors

of a query heartbeat in three scales.

For each sample xi of training set X ∈ Rm×n, we

can also obtain its feature coding vector SX
1i ∈ RC×1

in the 1/1 scale, SX
2i ∈ RC×1 in the 1/2 scale, and

SX
3i ∈ RC×1 in the 1/3 scale, respectively. By putting

each feature coding vector of each training heartbeat

together, we will obtain three groups of feature coding

vector sets SX
1 ∈ RC×n, SX

2 ∈ RC×n, and SX
3 ∈ RC×n.

Note that for difficult tasks, we can try more multi-scale

division if computational resources allow.

...

...

...

...

...

...

...

...

BFG

BFG

BFG

BFG

BFG

BFG

1/1 Scale

1/2 Scale

1/3 Scale
v3

v2w21

w22

w31

w32

w33

v1

Fig.5. Generating feature coding vectors from different scales.

3.2 Deep Cascade Coding

Deep cascade coding is a level-by-level procedure,

similar to a layer-by-layer DNN procedure. Each cod-

ing level consists of one BFG unit, as proposed in Sub-

section 3.1.2, which receives feature information con-

taining two kinds of class vectors, one generated by

its previous level and the other by multi-scale division.

Each level of deep cascade learning outputs the result

to the next level, as shown in Fig.6.

After the multi-scale division coding described

above, three class coding vectors (vy
1 , vy

2 , and vy
3 ) of

a query sample y and three class coding matrices (SX
1 ,

SX
2 and SX

3 ) of the training set X are obtained. Then,

the query coding vector vy
1 and the training coding ma-

trix SX
1 are recognized as the input of the first level of

the deep cascade structure.

First, vy
1 is fed into the BFG unit to generate

the class vector v1, which is concatenated with vy
1

to construct the input query sample d1 of level 2,

v1 = BFGSX
1

(vy
1 ), d1 =

(
vT
1 ,v

yT

1

)
. Similarly, each

column in SX
1 is fed into the BFG unit to generate the

coding vector set S1, which is concatenated with SX
1 to

construct the input training coding matrix M1 of level

2, S1 = BFGSX
1

(
SX
1

)
, M1 =

(
ST
1 ,S

XT

1

)
.

Second, in the same way, the features vy
2 and vy

3

of query sample y, augmented by the coding vectors

generated by the previous level, are used as the query

sample of the third- and fourth-level cascade structures,

respectively. SX
2 and SX

3 , augmented by the training

coding matrices generated by the previous level, are

used as the respective training sets to train the third-

and fourth-level cascade structures, respectively. This
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Fig.6. Deep cascade coding.

procedure is repeated, going forward through the cas-

cade structure until level N where we obtain the final

coding vector dN ∈ R2C×1 of query y and the final

training coding matrix MN ∈ R2C×n.

Finally, dN ∈ R2C×1 and MN ∈ R2C×n generated

by level N are fed into the BFG to generate the fi-

nal prediction coding vector v(N+1) ∈ RC×1, v(N+1) =

BFGMN
(dN ) .

3.3 Recognition

In the recognition of a query heartbeat y, we can

obtain its class label by the final prediction coding vec-

tor v(N+1) ∈ RC×1 as follows:

label (y) = arg max
i

v(N+1). (6)

Taking three-scale signal division as an example, the

procedure of MDCBF for ECG biometric recognition is

summarized in Algorithm 2.

4 Experiments

4.1 Databases

To comprehensively validate the effectiveness

of our method, we conducted extensive experi-

ments on four databases: MIT-BIH Arrhyth-

mia Database (MITDB) [38], PTB Diagnostic ECG

Database (PTBDB) [39], Check Your Biosignals Here

initiative Database (CYBHiDB) [40], and University of

Toronto Database (UofTDB) [41].

Algorithm 2. Recognition Procedure

Input: the ECG training heartbeat sets X ∈ Rm×n,
query heartbeat y ∈ Rm, class number C, regulari-
zation coefficients λ1 and λ2, and level number N
Output: the predicted label of the query sample
y.

1: Initialize: i = 1;
2: Obtain feature coding vectors vy

1 , vy
2 and vy

3 of a
query sample y and feature coding matrices SX

1 ,
SX
2 and SX

3 by multi-scale signal coding;
3: d0 = vy

1 , M0 = SX
1 ;

4: while (i 6 N) do
5: Obtain vi = BFGMi−1

(di−1) using (5);
6: Obtain Si = (BFGMi−1

(
M1

i−1
)
, BFGMi−1(

M2
i−1
)
, ..., BFGMi−1

(
Mn

i−1
)
) using (5);

7: Update di =

(
vT
i ,
(
vy
(i%3)

)T)
, Mi =(

(Si)
T
,
(
SX
(i%3)

)T)
;

8: i = i+ 1;
9: end while

10: Obtain feature coding vector v(N+1) =
BFGMN

(dN );
11: Find the index of maximum value in v(N+1) using

(6), which shows the label of y.

MITDB is an arrhythmia database collected at
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the chest, whose recordings have wide intra-class va-

riety. The database contains 48 two-channel record-

ings from 47 subjects, and each recording is a 30-

minute long excerpt from two-channel ambulatory ECG

recordings [38]. We chose the 47 individuals with one

recording for each subject.

PTBDB is usually used for medical diagnosis, and

it includes 549 recordings from 290 subjects. This

database has 1–5 recordings per subject, recorded from

a 12-lead standard and three Frank leads, ranging be-

tween 38.4 seconds and 104.2 seconds [39]. We chose 248

subjects with ranges longer than 100 seconds, and every

subject had one recording.

CYBHiDB was captured from palms and fingertips,

and it contained short- and long-term databases. The

short-term database was collected from 65 healthy sub-

jects at intervals of two days. The long-term database

was collected from 63 healthy subjects, each with two

distinct sessions at a three-month interval [40]. The

long-term database has more inter-class variations in

heartbeat signals over time, and thus we chose it as

the experimental data. The first and the second ses-

sions in the long-term database are called T1 and T2,

respectively.

UofTDB was collected from the thumbs of both

hands of 1 020 subjects, and was specifically created

for biometric recognition. The database includes up to

six sessions over a period of six months in five postures:

sitting, standing, exercising, supine and tripod. The

first session includes 1 012 subjects and only 100 sub-

jects were selected to participate in follow-up sessions

over a period of six months [41]. We considered 46 of the

100 subjects who participated in all five sessions (S1,

S2, S3, S4 and S6), in a sitting posture.

4.2 Preprocessing

ECG signal preprocessing included denoising, R

peaks detection, segmentation and normalization.

First, we used a fourth-order bandpass Butterworth fil-

ter to remove the baseline drift and higher frequency

noise. Second, the R peaks were detected by the Pan-

Tompkins algorithm [42]. Third, we used the R peaks

to obtain heartbeat segmentation, and centered at R

peaks with a certain length from each side of the peaks.

Finally, we normalized all heartbeats to have a mini-

mum value of 0.0 and a maximum value of 1.0.

4.3 Experimental Settings

For MITDB and PTBDB, the data were selected

from one session, and we used 60% of the data for train-

ing, 30% for validation and 10% for testing. For CYB-

HiDB, we considered the first session as training and

validation data, and the second as testing data. For

UofTDB, we considered the S1 session as the training

and validation data, and S2, S3, S4 and S6 as the

testing data. For CYBHiDB and UofTDB, the ratio of

training to validation data is 7 : 3 for each session.

In all databases, each heartbeat was acquired by de-

tecting the R peaks. It was centered at the R peaks with

a segment length of 880 sampling points, with 220 sam-

pling points before the peak and 660 sampling points

after. In all experiments, the testing data were never

seen by the classifier system in the training phase, and

the average results were reported. All experiments were

performed on a PC with an Intel i7-4790 3.60 GHz CPU

and 16 GB RAM, and the programming environment

was MATLAB 2016b.

4.4 Performance Metrics

To evaluate the performance of the proposed

method, we conducted experiments on two modes of

identification and authentication. In the identification

mode, we used the heartbeat recognition rate as an

evaluation criterion. This is the ratio of correctly iden-

tified testing heartbeats,

Heartbeat recognition rate =
N correct beat

N test beat
,

where N test beat is the total number of test heart-

beats, and N correct beat is the number of correctly

identified test heartbeats.

Like most of the work in the literature [1, 43,44], we

used the subject recognition rate as another evaluation

criterion, which was computed by several continuous

heartbeats of voters. For this criterion, each sample

was represented by several continuous heartbeats, and

the subject recognition rate was defined as follows:

Subject recognition rate =
N correct sample

N test sample
,

where N test sample is the total number of test sam-

ples, and N correct sample is the number of correctly

identified testing samples.

In the authentication mode, we calculated a simi-

larity measure with one heartbeat and all the other

heartbeats from the same database. The equal error
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rate (EER) is a system operating point where the false

acceptance rate (FAR) and false rejection rate (FRR)

are approximately equal by a given threshold.

FAR =
NFA

NIRA
× 100%,

FRR =
NFR

NGRA
× 100%, (7)

where NFA is the number of false acceptances, NIRA

is the number of impostor recognition attempts, NFR

is the number of false rejections, and NGRA is the

number of genuine recognition attempts.

4.5 Parameter Evaluation

We conducted experiments to evaluate the para-

meter sensitivity of our MDCBF model, including the

number of cascade levels, the number of BFG units,

and the number of decision trees in each forest. To ob-

tain the optimal solutions of different parameters, we

trained different MDCBF models by changing one para-

meter while fixing the others.

First, we evaluated the influence of the number of

cascade levels. The heartbeat recognition rates with

different numbers of cascade levels on four databases

are shown in Fig.7.
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Fig.7. Heartbeat recognition rate with different numbers of cas-
cade levels.

In Fig.7, we find that the heartbeat recognition rate

increases consistently with the growth of the cascade

levels. On MITDB, after the number of cascade lev-

els reached 3, the heartbeat recognition rate increased

slightly; on CYBHiDB and UofTDB, the heartbeat

recognition rate increased slightly after the number of

cascade levels reached 5; on PTBDB, the heartbeat

recognition rate was stabilized when the number of cas-

cade levels reached 6. Considering the above results, we

set the number of cascade levels to 6 for all databases.

Then, we evaluated the influence of the number of

decision trees of each forest from the basic classifier

BFG, with results as shown in Fig.8.

Number of Trees in Each Forest

20 40 60 80 100 120 140 160 180 200

H
e
a
rt

b
e
a
t 

R
e
c
o
g
n
it
io

n
 R

a
te

 (
%

)
50

55

60

65

70

75

80

85

90

95

100

MITDB

CYBHiDB

UofTDB

PTBDB

Fig.8. Heartbeat recognition rate with different numbers of de-
cision trees.

As we could see in Fig.8, on all databases, the heart-

beat recognition rates increased with the number of

decision trees when it was under 120. The heartbeat

recognition rates changed little when the number of de-

cision trees was from 120 to 200, thereby we set the

number of decision trees to 120 on the four databases.

Next, we evaluated the performance influence of

parameters of sparse and collaborative representations.

To generate new class vectors using the basic classifier

BFG, we needed to set the regularization coefficient and

number of iterations for sparse and collaborative rep-

resentations. As suggested in [45], the regularization

parameter λ1 of sparse representation was set to 1.2√
m

,

where m was the dimension of the data feature. The

regularization parameter λ2 of collaborative represen-

tation varied from 0.01 to 2 with an interval of 0.01.

When λ2 = 0.06, the heartbeat recognition rates were

all better on the four databases. The heartbeat recogni-

tion rate with different numbers of iterations of sparse

representations is shown in Fig.9.

In Fig.9, we could observe that the performance be-

gin to achieve the best when the number of iterations

reaches 60.

Finally, we evaluated the subject recognition

rate under different numbers of heartbeats on four

databases, as shown in Table 1.
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Fig.9. Heartbeat recognition rate with different numbers of it-
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Table 1. Subject Recognition Rate Under Different Numbers
of Heartbeats (n)

Database n = 1 n = 3 n = 5 n = 7 n = 9

(%) (%) (%) (%) (%)

MITDB 96.58 99.98 99.99 100.00 100.00

PTBDB 86.96 98.26 98.35 99.45 99.93

CYBHiDB 88.95 99.14 99.28 100.00 100.00

UofTDB 87.88 98.85 98.89 99.69 99.97

Table 1 shows that the subject recognition rate in-

creases consistently with the number of heartbeats per

testing sample on the four databases. When the num-

ber of heartbeats was 7 or more, our method achieved a

subject recognition rate of 100% on MITDB and CYB-

HiDB. When the number of heartbeats varied from 1

to 3, the subject recognition rates increased quickly on

all four databases. For example, the subject recogni-

tion rate increased by 10.19% on CYBHiDB. After the

number of heartbeats reached 3, the subject recogni-

tion rate increased slowly and tended to be stable on

four databases, and thus we used three heartbeats as a

sample to perform subject recognition. Generally, three

continuous heartbeats were acquired in about 2–4 sec-

onds, which was acceptable for practical application.

4.6 Performance of Multi-Scale Signal Coding

We first verified the effectiveness of multi-scale sig-

nal coding. We designed a variant of MDCBF called

DCBF, which contains only deep cascade bi-forest with-

out multi-scale signal coding. We used six cascade lev-

els, and each forest included 120 decision trees in both

methods. The results on the four databases are shown

in Table 2.

Table 2. Heartbeat and Subject Recognition Rates of MDCBF
and DCBF

Database
Heartbeat Recognition

Rate (%)

Subject Recognition

Rate (%)

DCBF MDCBF DCBF MDCBF

MITDB 90.23 96.58 98.34 99.98

PTBDB 80.23 86.96 97.32 98.26

CYBHiDB 82.46 88.95 98.08 99.14

UofTDB 81.37 87.88 97.94 98.85

In Table 2, we could see that the heartbeat and sub-

ject recognition rates of MDCBF are both higher than

those of DCBF on the four databases, and it is evi-

dent that multi-scale signal coding could significantly

improve the recognition performance.

To verify the effectiveness of adaptive weight pool-

ing, we designed two variants of MDCBF: MDCBF-AP

and MDCBF-MP, which use the average and max pool-

ing operation, respectively. The heartbeat recognition

rates are shown in Table 3.

Table 3. Heartbeat Recognition Rates of Different Weighted
Pooling Operations

Method MITDB PTBDB CYBHiDB UofTDB

(%) (%) (%) (%)

MDCBF-MP 96.25 86.12 88.23 87.32

MDCBF-AP 95.16 86.37 88.27 87.74

MDCBF 96.58 86.96 88.95 87.88

Table 3 shows that MDCBF using adaptive

weighted pooling performs better than MDCBF-AP

and MDCBF-MP on all four databases. From a deep

learning perspective, our adaptive weighted pooling

operation could be regarded as an attention mechanism

usually used in convolutional neural networks and other

deep models.

4.7 Performance with Different Basic

Classifiers

BFG has two forests whose inputs are sparse and

collaborative residuals, respectively. To verify the influ-

ence of different basic classifiers, we designed two vari-

ants of BFG: single decision forest using sparse resid-

ual (SDFS), and single decision forest using collabora-

tive residual (SDFC). We also considered decision for-

est (DF) and sparse representation classifier (SRC) [37]

as basic classifiers. In the following experiments, ex-

cept for the basic coding units, the settings were all the

same. These methods were fully tuned to achieve the

best results by choosing the optimal parameters, and

the results are shown in Table 4.
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Table 4. Heartbeat Recognition Rate of MDCBF with Different
Basic Classifiers

Basic Classifier MITDB PTBDB CYBHiDB UofTDB
(%) (%) (%) (%)

SRC 85.61 77.04 78.65 77.48
DF 91.25 81.46 83.62 82.15
SDFC 95.17 85.47 86.78 85.83
SDFS 95.79 85.72 87.12 86.09
BFG 96.58 86.96 88.95 87.88

Table 4 demonstrates that BFG could improve the

recognition performance. Typically, on MITDB, the

recognition rate of our method using BFG is almost

10% higher than that of the method using SRC as the

basic classifier. In addition, the method with the SRC

base classifier achieves a worse result than that with

the DF classifier.

4.8 Robustness to Noise

To validate the robustness of the proposed method,

we added Gaussian noise to four databases. We com-

pared the performance of the proposed method and

the baseline methods of decision forest and sparse

representation [37]. The performance with different

noise levels is shown in Fig.10.

In Fig.10, it could be seen that the performance of

our method is more stable with different noise levels

on four databases. MDCBF could mine more discrimi-

native features based on level-wise representation, and

has more robust performance than the other methods.

4.9 Comparison with State-of-the-Art

Methods

We compared the proposed method with state-of-

the-art methods for ECG biometric recognition on the

four databases, including non-deep-learning methods in

[8,29,46–49], and deep-learning methods in [10–12,50].

The subject recognition rate and EER of comparison

with state-of-the-art methods are shown in Table 5.
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Fig.10. Heartbeat recognition rates with different noise levels on four databases. (a) MITDB. (b) PTBDB. (c) CYBHiDB. (d) UofTDB.
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Table 5. Performance Comparison with the State of the Art

Dataset Method Subject Recognition EER (%)

Rate (%)

MITDB [46] 94.68 2.73

[47] 95.99 4.74

[8] 96.50 [8] –

[50] 98.40 2.27

Ours 99.98 0.34

PTBDB [8] 94.90 [8] –

[29] 97.10 –

[46] 98.19 2.55

[12] 99.54 –

[11] – 1.63 [11]

Ours 98.26 1.78

CYBHiDB [11] – 4.40 [11]

[10] 98.74 2.45

[49] 98.93 1.67

Ours 99.14 1.23

UofTDB [48] – 3.70 [48]

[10] 98.52 2.68

[49] 98.77 2.43

Ours 98.85 2.23

As shown in Table 5, our method outperformed

the non-deep learning methods on all four databases.

As for the deep-learning methods, our method per-

formed much better than these methods on MITDB,

CYBHiDB and UofTDB, and slightly worse than them

on PTBDB. In addition, our method significantly im-

proved the recognition performance over state-of-the-

art methods on MITDB with only 47 subjects, and the

experimental results showed that our method was more

robust than the other methods when handling small-

scale ECG data.

4.10 Analysis of Computation Time

As a multi-scale, layer-by-layer learning model, MD-

CBF consumes more time in the training phase. For

better insight on the computational complexity, we re-

ported the training time of the proposed method and

other methods on MITDB, as shown in Table 6.

Table 6. Training Time of Different Methods on MITDB

Method Time (s)

[51] 3.54

[46] 3.87

[47] 29 640.00

[10] 27 860.00

Ours 767.00

As shown in Table 6, compared with non-deep-

learning methods in [46,51], our method took far more

training time, but it had a clear advantage over meth-

ods based on a deep convolutional neural network in

[10, 47]. As we know, training a deep model is time-

consuming. Our model should be more efficient due to

the one-step and level-to-level cascade learning without

gradient backpropagation and many iterations, which

are usually seen in deep neural networks.

5 Conclusions

The field of ECG biometric recognition has received

considerable attention in recent years. Although some

promising methods have been proposed, it is chal-

lenging to design a robust and precise method for

only small-scale training ECG data. We presented a

deep cascade framework for ECG biometric recogni-

tion, which has three key merits. First, we designed

a BFG with L1-norm sparsity and L2-norm collabo-

rative representation, which can efficiently deal with

noise in ECG biometric recognition. Second, we pro-

posed an adaptive weighted pooling strategy that can

fully explore the discriminative information of segments

with low noise. This strategy can be regarded as an at-

tention mechanism in a deep learning model. Third,

we presented a level-wise class coding without back-

propagation, aiming to mine more discriminative fea-

tures based on level-wise representation. Our work con-

tributes to the improvement of robustness for ECG bio-

metric recognition even with only small scale. In addi-

tion, our recognition approach is not only suitable for

ECG signal but for the other biosignals, such as elec-

tromyogram (EMG) and electroencephalogram (EEG).

In future work, we aim to improve the deep cascade

structure to obtain more discriminative information for

ECG biometric recognition.
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